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The study of nonlinear oscillator chains in classical many-body dynamics has a storied history going
back to the seminal work of Fermi, Pasta, Ulam and Tsingou (FPUT). We introduce a new family
of such systems which consist of chains of N harmonically coupled particles with the non-linearity
introduced by confining the motion of each individual particle to a box/stadium with hard walls.
The stadia are arranged on a one dimensional lattice but they individually do not have to be one
dimensional thus permitting the introduction of chaos already at the lattice scale. For the most part
we study the case where the motion is entirely one dimensional. We find that the system exhibits
a mixed phase space for any finite value of N . Computations of Lyapunov spectra at randomly
picked phase space locations and a direct comparison between Hamiltonian evolution and phase
space averages indicate that the regular regions of phase space are not significant at large system
sizes. While the continuum limit of our model is itself a singular limit of the integrable sinh-Gordon
theory, we do not see any evidence for the kind of non-ergodicity famously seen in the FPUT work.
Finally, we examine the chain with particles confined to two dimensional stadia where the individual
stadium is already chaotic, and find a much more chaotic phase space at small system sizes.

I. INTRODUCTION

The connection between Hamiltonian many-body
chaos and the foundations of statistical mechanics has
been an intensive research field for more than sixty years.
Most recently, the focus has centered on the quantum
setting and the highlights of this line of work include the
Eigenstate Thermalization Hypothesis (ETH) [1–3] and
the complementary discovery of absence of thermaliza-
tion in many-body localized systems [4–7].

An important role on the classical side has been played
by studies of one dimensional mass-spring systems or
oscillator chains with anharmonicities. The purely har-
monic chains are, of course, integrable, and their normal
modes give rise to an extensive set of conserved quanti-
ties. The challenge has been to add anharmonicities or
non-linearities and to see ergodic behavior emerge. In-
deed, one of the most celebrated parts of this body of
work is the Fermi-Pasta-Ulam-Tsingsou (FPUT) prob-
lem [8–10] whose identification is really what started off
the field in the first case. As is well known, eponymous
authors intended to analyze the energy sharing among
the normal modes in a perturbed linear chain with weak
cubic or quartic anharmonicities taking advantage of the
newly developed computers. To their surprise, instead
of equipartition the system showed signatures of recur-
rences even after long times.

The resulting investigations led to both an understand-
ing of this phenomenon and of its limitations—during
a period of explosive growth in our understanding of
nonlinear dynamics in classical systems and the phe-
nomenon of chaos. Here we should flag the work of
Chirikov and Izrailev who identified an energy separat-
ing the non-ergodic behavior found by FPUT from er-

godic motion, based on the resonance-overlap criterion
[11]. For sufficiently small nonlinear interactions the res-
onances of the associated perturbations do not overlap
so that chaotic layers stay constrained to small phase
space regions. When neighboring resonances overlap the
chaotic layers can spread over the entire phase space lead-
ing to a enhanced energy sharing among different normal
modes. Indeed, FPUT had suggested, in more modern
language, that the critical energy density required for
resonance overlap vanishes in the limit of large particle
numbers, such that equipartition is obtained in the ther-
modynamic limit [10].

The understanding of the low energy regime came
from looking at the continuum limit of FPUT for specific
initial conditions and finding that it is the integrable
(normal or modified) Korteweg de Vries equation that,
e.g., gives rise to the formation of solitons [12], see
also [13] for a recent connection for more generic initial
conditions with integrable systems. The analysis of the
latter and related models has also given deeper insight
into the role of stable phase space islands for the global
nonlinear dynamics, see e.g. about discrete breathers in
[14, 15] and references therein.

In this paper, we introduce a new family of nonlinear
oscillator chains and initiate their study. We are moti-
vated by two objectives. First, these models have a de-
gree of tractability as they involve linear time evolution
interrupted by instantaneous non-linearities, in a similar
fashion as Chirikov’s standard map (aka kicked rotor) for
low-dimensional chaos, see e.g. [16]. Second, they pro-
vide an interesting point of departure for examining the
nature of the phase space in the infinite volume limit as
they permit us to introduce a high degree of chaos al-
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ready at the level of a single degree of freedom. This
creates the possibility that we will observe clear signa-
tures of many-body chaos for relatively modest numbers
of degrees of freedom even in the interacting system.

The models are easily described: we arrange a set of
n−dimensional stadia/billiard tables/domains with hard
walls on a d dimensional regular lattice and populate
each with a single particle. Then we couple the par-
ticles with harmonic springs. From the viewpoint of
many-body physics, these systems fall in the class of dis-
cretized classical field theories with n independent fields
in d space dimensions. It may be worth mentioning that,
conversely to the FPUT problem, our choice of onsite
constraint breaks the translation invariance, and the to-
tal momentum is not conserved anymore. Depending on
the choice of geometry for the stadia, we can build in
various internal symmetry groups and we expect equi-
librium computations on these models to show the same
qualitative behavior as their more familiar relatives, e.g.
multi-component Landau-Ginzburg-Wilson models with
quartic interactions. In this paper we will study exam-
ples in d = 1 with n = 1 with a Z2 symmetry (see Fig. 1)
and n = 2 with Z2 × Z2 symmetry.

From the viewpoint of single-particle chaos theory
our models immediately connect to the study of single-
particle classical and quantum chaos in hard-wall billiard
systems [17–22] such as the stadium billiard [23] which
are among the simplest systems to exhibit chaotic dy-
namics. Indeed, different shapes of the billiard [24] or
additionally applied external fields [25, 26] lead to in-
tegrable, weakly or strongly chaotic classical dynamics.
The most common case is that the Hamiltonian dynamics
is not fully ergodic but characterized by a mixed phase
space where locally integrable or near-integrable dynam-
ics coexist with regions governed by unstable hyperbolic
dynamics [27, 28]. Hence we see that our models allow
for substantial chaos to be built in at the lattice scale as
advertised above. There could be also some adiabatic in-
variant slowing down the thermalization significantly as
recently investigated in [29].

Figure 1. Sketch of our system. Each site obeys billiard con-
straint while it is connected via a harmonic potential to its
nearest neighbor. Periodic boundary conditions are assumed
at the ends of the chain.

In the balance of the paper we begin by more formally
defining our models in Sec. II. Next we study the phase
space for n = 1 (scalar field at each site), and N = 2
particles via Poincaré surfaces of section to get a sense of
the dynamics. The main regular regions (stable islands
for such a low dimensional case) are identified, together
with the central periodic orbit. For larger values of N
the whole Lyapunov spectrum is first analyzed for ar-

bitrary initial conditions. In the thermodynamic limit
the positive part of the Lyapunov spectrum converges
numerically to a smooth curve and shows no vanishing
Lyapunov exponents (up to one corresponding to the en-
ergy conservation) for the choice of initial conditions in
the chaotic sea, see Sec. III. Further we consider special
initial conditions, which generalize the stable islands seen
for N = 2. In Sec.III C we consider smooth initial config-
urations where the chain starts as a rigid bar. While the
continuum limit is integrable, we observe energy shar-
ing among normal modes, caused by the singular con-
finement potential. Also we probe the short wavelength
limit by analyzing the excitations of a single particle. It
turns out that the confinement potential suppresses en-
ergy sharing among different particles in this limit. In
Sec. IV, we compare the results for two-particle correla-
tion functions obtained by the canonical ensemble, and
by molecular dynamics: we can see a very good agree-
ment reinforcing the idea that most of the phase space
is chaotic. Nevertheless small deviations between both
results imply the existence of invariant phase space re-
gions where the dynamics is locally integrable. In Sec.V
we introduce and briefly discuss the model for n = 2, for
which there can be chaos at each site of the lattice.

II. MODELS

A. n = 1, Z2−symmetric chain

We present here two possible ways to define our model:
a discretized field theory with periodic boundary condi-
tions or a closed chain. First consider a discretized field
theory on a lattice of N sites with a unit mesh, ϕi denotes
the value of the field at the ith site. The Lagrangian for
the field is

L =
1

2

N∑
i=1

mϕ̇i
2 − k

2

N∑
i=1

(ϕi+1 − ϕi)2 − V (ϕi) , (1)

where m (resp. k) are the mass (resp. spring constant)
of the field. Note that periodic boundary conditions are
assumed. The local, or on site, potential V (ϕ) is taken
to mimic the presence of hard walls:

V (ϕ) =

{
0 0 < ϕ < ϕ0 ,

∞ otherwise ,
(2)

Rescaling the field via ϕ̃i = ϕi/ϕ0, and the time via

t̃ =
√
k/m t, the Lagrangian (1) can be rewritten as,

after dropping the tildes:

L =
kϕ2

0

2

[
N∑
i=1

(
dϕi
dt

)2

−
N∑
i=1

(ϕi+1 − ϕi)2 − V (ϕi)

]

Later we shall rather use the Hamiltonian formulation,
and measure the energy in units of kϕ2

0/2. Relabeling
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the field value as xi, and the corresponding momentum
as pi, the final Hamiltonian is:

H =

N∑
i=1

p2
i + (xi+1 − xi)2 + V (xi). (3)

with the potential

V (x) =

{
0 0 < x < 1 ,

∞ otherwise ,
(4)

i.e., if a particle hits the wall, the sign of its incoming
momentum is reversed. The Hamiltonian (3) will be the
central object in our study. We can arrive at our field
potential as the limit limp→∞(x − 1/2)2p. The choice
p = 2 yields the standard interacting Klein-Gordon field
in d = 1 which has been studied at length previously
[30–33]. Our model is also similar to a model used for
DNA denaturation, where the hard wall limit appears
as the singular limit of the exponential damping of the
interaction term [34].

The second way of introducing our model is to con-
sider a closed chain of N classical particles with har-
monic nearest-neighbor interactions, each moving in one-
dimension while sitting in a box of length L = Na, where
a is the distance between two particles at rest. When one
is interested in the variations around the equilibrium, it
is relevant to introduce the deviation of the position of
each particle from its rest position: ϕi = xi − a The
Lagrangian for such a closed chain is

L =
1

2

N∑
i=1

mϕ̇i
2 − k

2

N∑
i=1

(a+ ϕi+1 − ϕi)2 − V (ϕi) , (5)

with the same definition for m, and k as above. The
key ingredient of our model is in the choice for the local
potential

V (ϕ) =

{
0 0 < ϕ < a ,

∞ otherwise ,
(6)

Due to our choice of a closed chain, i.e. periodic bound-
ary conditions, only the quadratic term remains in the
interaction part. Performing the change of variable
ϕ̃i = ϕi/a, and t̃ =

√
k/m t, leads again to the Hamilto-

nian (3) through the above mentioned steps.
The Hamiltonian (3) is invariant under the map, which

reverts every position as

xi 7→ 1− xi .

As it is an involution it gives rises to a Z2−symmetry.
The Hamilton equations of motion are

ẋi = 2pi

ṗi = 2(xi+1 − 2xi + xi−1).
(7)

up to reflections at the walls.

B. n = 2, Z2 × Z2−symmetric chain

The introduced model can be easily generalized to
multi-component scalar fields, which allows for arbitrary,
and a larger variety of confining geometries. For later
use, we introduce a doublet of scalar fields in a stadium
billiard:

H =

N∑
i=1

px
2
i +py

2
i +(xi+1−xi)2 +(yi+1−yi)2 +V (xi, yi),

(8)
where V (x, y) is the confinement potential for a Buni-
movich stadium billiard [23] with r = 0.5 and b = 0.5,
see Fig. 2. In particular, when hitting the wall the linear
combination of pxi and pyi giving the momentum in the
normal direction is reversed, whereas the linear combina-
tion defining the tangential momentum is conserved. In
that setting, even the single-particle motion is chaotic.
We will use that particular geometry in Sec. V.

Figure 2. A sketch of the stadium billiard. For later purposes,
we use r = 0.5 and b = 0.5. The lines stand for the symmetry
axes.

As the Hamiltonians (3) and (8), and the constraints
are time-independent, the total energy E is a constant of
motion. Hence E and N remain as the only free param-
eters of the problem, and the energy density h = E/N is
used as relevant control parameter. This choice of scaling
is different from the recent study of the largest Lyapunov
exponent as reported in FPUT problem [35]. For later
reference we further introduce the frequencies of the nor-
mal modes

ωi = 4 sin
(
i
π

N

)
, 0 ≤ i ≤ N − 1 (9)

of the free problem, i.e. V (xi)=0.

C. Limiting cases

Before we present and analyze our numerical simula-
tions we consider two relevant limiting cases with re-
spect to the energy density. Due to the presence of the



4

walls the maximum scaled distance between any two par-
ticles is smaller than 1, and hence the interaction en-
ergy is bounded (by N). For energy densities h � 1,
the minimum kinetic energy per particle is therefore
ekin = h− 1, leading to a minimum momentum per par-
ticle pmin =

√
ekin =

√
h− 1. If in the regime h � 1

(or pmin � 1) the effect of the interaction between dif-
ferent particles is neglected, the system reduces to N
independent particles in a billiard. This regime seems as
the most favorable to see the recently introduced glassy
dynamics [32], even if we did not investigate it specif-
ically. On the contrary, the limit h � 1 resembles a
tight, nearly free harmonic chain, where the energies of
the individual normal modes are redistributed from time
to time due to infrequent collisions with the walls. As
shown below, in this case, the dynamics of the system is
weakly chaotic still leading to an information loss of the
initial configuration. These two extreme regimes of h are
roughly separated at h ≈ 1 that is expected to be the
most chaotic regime. We finally note that for h > 1 the
entire configuration space is accessible due to the upper
bound for the interaction.

III. PHASE SPACE ANALYSIS FOR THE
SCALAR (n = 1) MODEL

A. Two particles - Poincaré surface of sections

It is instructive to start with two particles (N = 2),
each having only one degree of freedom (n = 1), since
the underlying dynamics is still easy to visualize. The
Hamiltonian reads

H2 = p2
1 + p2

2 + (x2 − x1)2, (10)

where 0 ≤ x1, x2 ≤ 1.
Figure 3 shows Poincaré surfaces of section (PSoS) of
the corresponding phase space: the canonical coordinates
x1(t) and p1(t) of the first particle are plotted at each
time t when the second particle reaches the symmetry
point x2 = 0.5 with momentum p2(t) < 0.

The system exhibits clear features of integrable dynam-
ics for large h, as visible in panel d): The PSoS displays
cuts through tori in phase space, each creating a sin-
gle quasi-smooth curve. This regime of large h can be
seen as a perturbation of the non-interacting case where
the PSoS would simply consist of horizontal lines. Con-
versely, at small or moderate h, See panels a),b) in Fig. 3,
larger regions of the PSoS appear uniformly filled, indi-
cating ergodic dynamics.

At intermediate energy density h = 1, see panel c),
the phase space is dominated by two large stable is-
lands centered around two fixed points. Note that the
lower one persists even in the limit of small h. In-
deed, for all energy densities, there exists a stable fixed
point at x1(0) = x2(0) = 0.5, p1(0) = p2(0). The po-
sitions of both particles coincide, which minimizes the

Figure 3. Poincaré surfaces of section visualizing the N = 2
particle dynamics induced by the Hamiltonian (10) for energy
density (a) h = 0.01, (b) h = 0.1, (c) h = 1 and (d) h = 10.
Different colors mark different trajectories. About 250 initial
conditions are used by choosing x1(0) and p1(0) on a regular
16 × 16 grid on the accessible phase space with x2(0) = 0.5
and p2(0) < 0.

interaction, and they move together as one single en-
tity. It is easy to determine that this corresponds in-
deed to x1(0) = x2(0) = 0.5, and p1(0) = p2(0) =

√
h,

as is illustrated also in Fig. 3. We will later consider
the generalization of this fixed point for a chain of N
particles. The vicinity of this phase space point can be
then described by a smooth continuum limit. For en-
ergy densities h & 1, the second stable island emerges at
x1(0) = 0.5 and p1(0)→ 0 for h→∞ [36]. While in this
case the second particle bounces rapidly off the walls, the
position of the first particle at the center of the box is
only slightly disturbed. Again we will detail the general-
ization of such an excitation of a single particle or driven
motion.

B. N particles and general initial conditions

For a larger number of particles it becomes quickly
prohibitive to probe the entire phase space with a nar-
row grid of initial conditions. Instead, we calculated the
Lyapunov spectra for M = 100 different, randomly cho-
sen initial conditions for various given total energies in
order to explore how ergodic the phase space dynamics
is for different h.
The exponential divergence in time of two neighboring
trajectories starting with a small deviation δΓ(0) from
an initial point Γ(0) in phase space is quantified through
the maximal Lyapunov exponent that is defined as

λΓ(0),δΓ(0) = lim
t→∞

1

t
ln
|δΓ(t)|
|δΓ(0)|

. (11)

We numerically compute this exponential growth rate in
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Figure 4. Positive part of the Lyapunov spectrum, as a func-
tion of their (rescaled) index, for different particle numbers N
and different energy densities (a) h = 0.1, (b) h = 1 and (c)
h = 10. The maximal Lyapunov exponent (for i = 1) reaches
a maximum when h varies around h ∼ 1.

the 2N -dimensional phase space. For each initial condi-
tion, there exist 2N different Lyapunov exponents, which
we sort in decreasing order, λ1 > . . . λ2N , see e.g. [37] for
an implementation procedure. In a closed Hamiltonian
system the symplectic structure of the dynamical map
implies that the phase space volume is conserved and the
Lyapunov exponents are connected via the pairing rule
λi = −λ2N−i, see e.g. [38]. Hence it is sufficient to con-
sider only the first half of those exponents. To compute
the Lyapunov exponents we followed the trajectories for
a time range up to 105 collisions, depending on energy
density h and particle number N , until a convergence
within 3% of relative accuracy was achieved for the pos-
itive Lyapunov exponents.

The resulting Lyapunov spectra are depicted in Fig.

4. The panels (a) to (c) show, for increasing energy den-
sity, N − 1 positive Lyapunov exponents, so there are no
global integrals of motion save the total energy. The dif-
ferent spectra in each panel exhibit convergence towards
continuous curves with increasing N as the number N−1
of points increase and the error bars shrink. Note that
the fact that one finds N−1 positive Lyapunov exponents
does not preclude the presence of stable regions in phase
space. The numerical convergence towards a continuous
curve was already made for the standard FPUT-chain
[39], a three-dimensional Lennard-Jones potential [40–
42] and for a hard sphere gas [43]. When considering a
larger number of initial conditions (i.e. a finer grid of
initial points on the constant energy surface), the errors
bars get smaller hence a better convergence towards a
smooth curve. This convergence of the Lyapunov spectra
towards a continuous curve indicates a dominant phase
space region of unstable motion i.e. chaotic dynamics.
While we see a clear decrease of the smallest Lyapunov
exponent for increasing N at any value of h, our numer-
ics do not enable us to draw a definite conclusion about
the limit.

C. Regular regions in phase space

In this Section we describe more precisely three dif-
ferent families of so called regular initial conditions, i.e.
they may lead to a non ergodic long time behavior (hence
failure of thermalization). The goal is first to emphasize
the mixed character of the many-body phase space. Sec-
ond we discuss the size of some families of regular initial
conditions, to understand how large their contribution is
when going to the infinite size limit. Two of the families
generalize the two stable islands we identified for N = 2.
But the third is new to the case of large N .

1. Near-uniform motion

In order to explore whether stable regular phase space
regions exist in the large-N limit, we begin with the
many-particle generalizations of the two-particle fixed
point (x1(0), x2(0), p1(0), p2(0)) = (0.5, 0.5, p0, p0) with
p0 < 0 in Fig. 3. For more than two particles, it is
given by the conditions pi(0) = pj(0), xi(0) = xj(0) for
any i, j ∈ {1 . . . N}. It corresponds to a common motion
of all particles sitting at the same position as a ”rigid
body”. One should stress that the rigid motion exists at
any given value of the total energy.

To analyze the stability behavior of this fixed point we
studied the properties of trajectories in its vicinity. To
this end we considered trajectories with an excitation of
the first normal mode in analogy to the original FPUT
setting and introduce, as a convenient measure, the time-
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dependent center-of-mass (COM) energy

Ecom(t) =
1

N

(
N∑
i=1

pi(t)

)2

. (12)

The ”rigid-body fixed point” is the only phase space
point obeying the condition Ecom(0)/E=1. This can be
proven shortly as follows. Certainly this fixed point obeys
this condition. Now assume this condition is obeyed at
a certain time for a given trajectory. This means in par-
ticular that all the particles sit at the same position in-
side their respective box (otherwise the potential energy
would be nonzero). If no particle reaches the wall, then
the center of mass energy is a conserved quantity (be-
cause the evolution is free) and the condition is satis-
fied. If a particle reaches a wall, so do all the others be-
cause they sit at the same position inside their box. This
means that all the momenta are simultaneously reversed:
pi 7→ −pi. The center of mass momentum has then
also its sign reversed:

∑
i pi 7→ −

∑
i pi. The energy of

the center of mass remains unchanged, and the condition
Ecom/E = 1 again holds after this collision. The time
evolution of Ecom(t) for a typical trajectory of N = 100
particles near the fixed point is shown in Fig. 5(a). The
largest amount of energy remains in the center-of-mass
degree of freedom until t ≈ 400. For an energy density
h = 0.01, the average momentum per particle along these
trajectories is

√
h ∼ 0.1 implying that the center of mass

keeps its energy for almost 80 reflections with the wall.
Afterwards, the energy is distributed among the other
normal modes within a few further reflections. This ob-
servation makes it reasonable to introduce the notion of
a relaxation time τr, i.e. the time scale on which the en-
ergy mode distribution starts to spread associated with
a non-negligible width in the set of modes:

τr = min

{
t

∣∣∣∣Ecom(t) <
Ecom(0)

2

}
. (13)

The results for τr are presented in Fig. 5(b,c) for differ-
ent energy densities (averaged over 100 different initial
conditions), showing, on the whole, a moderate increase
with increasing particle number.

Our numerical analysis shows moreover that τr in-
creases exponentially with the ratio Ecom(0)/E towards
the fixed point. This is a further indication, that the fixed
point becomes unstable with increasing particle number.

This trend is stabilized with increasing particle number
N : we could not find any recurrences as in FPUT model,
even when going to significantly longer times (of the order
of 105). Together with the exponential sensitivity of the
relaxation time τr with respect to the initial condition,
this lets us claim that the rigid-body fixed point stays
unstable in the large N regime. Eventually it is worth
noting that the above defined relaxation time scales as
the period of the motion inside the box when varying h:
rescaling by the period, i.e. multiplying by

√
h, our data

show a fair collapse for the relaxation time.

Figure 5. (a) Typical time evolution of Ecom(t), Eq. (12),
for a trajectory near the stable N−particle fixed point with
initial conditions Ecom(0)/E = 0.95 and h = 0.01. One can
detect the relaxation of the center-of-mass mode after a time
t ∼ 400, this corresponds to roughly 80 subsequent reflections
on the wall. (To get a smoother curve the selected times are
those for which no particle is too close to the walls.) (b)
Dependence of the relaxation time τr on the ratio Ecom(0)/E
for different particle numbers. Dashed lines: h = 0.1, Full
lines: h = 0.01.

2. Localized solutions

The second family of regular initial conditions general-
izes the asymmetric high energy solution that centered a
stable island for N = 2. For illustrative purposes we pick
the maximally asymmetric such solution. This amounts
to dealing with the lattice scale physics when looking at
the system as a discretized field theory. More precisely
consider the excitation of a single particle, with the fol-
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lowing initial condition:

xi(0) = 0.5 , 1 ≤ i ≤ N

pi(0) =

{√
E i = 1 ,

0 otherwise ,

(14)

i.e. i.e the energy is stored in the kinetic energy of the
first particle. This initial condition is also relevant to
investigate the analogy in larger dimension of the second
stable fixed point visible for N = 2 in Fig.3(c). In order
to test, whether the dynamics of the remaining particles
is directly affected by the presence of the wall, we define
the following quantity:

xmax
2 = maxx2(t)− 0.5. (15)

Whenever xmax
2 reaches the threshold value 0.5, the par-

ticle next to the initially excited one is touching the wall.
This stands for a test for energy relaxation: if the next
particle is not excited enough to touch the wall, this
means that energy equipartition among all particles can-
not take place.
We start with N = 3 particles. The equation of motion
for the neighbor of the initially excited particle is given
by, see (7):

ẍ2 = 4(x1 − x2) + 4(x3 − x2). (16)

By symmetry one has further x2 = x3, and the equation
of motion reduces to

ẍ2 + ω2
0x2 = ω2

0x1. (17)

where ω0 = 2 is the nonzero mode frequency of the chain
with 3 particles. We now solve an approximating problem
when the excitation energy E is large. The dynamics of
the initially excited particle, at the site 1, is identified
with a free particle, i.e. not feeling the interaction with
its neighbors. Its neighbor is then treated as a driven
harmonic oscillator following (17).
The solution of the equations of motion inside a box of
length 1, obeying the initial conditions (14), is simply
given by a periodic triangular function:

x1(t) =

{
2
√
Et− 2k + 1

2 , 2k − 1
2 ≤ 2

√
E t ≤ 2k + 1

2 ,

−2
√
Et+ 2k + 3

2 , 2k + 1
2 ≤ 2

√
E t ≤ 2k + 3

2

(18)

with k an integer number. This can be rewritten as a
Fourier series:

x1(t) =
1

2
+

4

π2

∑
k≥0

(−1)k

(2k + 1)2
sin((2k + 1)ω t), (19)

with ω = 2π
√
E is the frequency of oscillations inside the

box in our units.
The expression (19) is then inserted as a driving for the
nearest neighbor x2(t). This yields to the following form
for the solution of (17):

x2(t) = A sin(ω0t) +
1

2
+

4

π2

∑
k≥0

ω2
0

ω2
0 − (2k + 1)2ω2

(−1)k

(2k + 1)2
sin((2k + 1)ω t), (20)

where A is the amplitude of the homogeneous part. It
can be determined by the initial conditions to be

A = − 4

π2

∑
k≥0

ω0ω

ω2
0 − (2k + 1)2ω2

(−1)k

(2k + 1)
. (21)

xmax
2 is then given by

xmax
2 = |A|+B, (22)

where B is the amplitude of the driven term

B =
4

π2

∑
k≥0

ω2
0

ω2
0 − (2k + 1)2ω2

1

(2k + 1)2
. (23)

The comparison between the numerical obtained am-
plitudes and the analytical approximations can be seen in

Fig. 6 (a). The separation between a fast moving free par-
ticle and its neighbors being driven by it, provides a very
efficient approximation for large energies E � 1. For
energies around E ' 1, this approximation breaks down.
This is clearly expected, since in that regime the dy-
namics of the initially excited particle becomes strongly
affected by the interaction with its neighbors as the inter-
action energy is comparable to its kinetic energy. There-
fore it does not follow the trajectory of a free particle as
in Eq. (19). Moreover it is remarkable, that xmax

2 < 0.5
for large energies. This means that the dynamics of the
neighbors of the highly excited particle is not affected
by the presence of the wall, hence the energy sharing is
strongly suppressed.
It is possible to build a similar simple approximation for
larger particle numbers: N > 3. Our numerical results in
Fig. 6 (b) show that this phenomenon crucially persists
for larger values of N . Indeed, one can now describe the
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Figure 6. Amplitude of the motion of the nearest neighbor
particle after the excitation of a single site as a function of
the energy of the excitation. The dashed red lines indicate the
threshold at which the neighbor particle touches the wall for
a time up to 103 . (a) N = 3. Blue circles: numerical solution
of the full chain. Black triangles: Homogeneous part of the
analytical solution given by Eq. (21). Black stars: Driven part
of the analytical solution given by Eq. (23). (b) Variation of
xmax

2 as a function of the number of particles N . Blue circles:
N = 3. Orange stars: N = 5. Red squares: N = 7. Green
crosses: N = 11. Purple hexagons: N = 33. Brown triangles:
N = 65.

intuition behind this behavior: the central particle gen-
erates a high frequency drive acting on the rest of the
chain. As long as the smallest frequency in this drive lies
well above the bandwidth of the chain in the linear ap-
proximation, the response is strongly non-resonant and
hence weak. Further, at these frequencies, the chain only
supports evanescent waves and so the energy deposited
into the central site cannot escape to infinity. This leads
us to the conclusion that there is an absence of energy
relaxation in the thermodynamic limit for the initial con-
ditions of the type (14). Perhaps we can extend these to
non-zero energy density states by creating a super-lattice
of such “hot”sites but we have not investigated this care-
fully. We note that this is the analog of the KAM ques-
tion in this system where we weakly couple the nonlinear
degrees of freedom in each individual stadium. Absent
the coupling, the system is integrable.

3. Quasi-linear solutions

Next we discuss another family of low energy solutions
which do not have any analog for N = 2. These are
sensitive to the non-linearity for small times but then
become insensitive to it for a very long time, probably of
the order of the Poincaré recurrence time for the linear
problem which is clearly extremely long for large systems,
see below.

Let us start with the simple observation that any initial
condition, which leads to a time evolution where each
position of the chain xi(t) obeys

0 < xi(t) < 1, 1 ≤ i ≤ N ,

is also an acceptable solution for the problems with the
wall. Those solutions follow a linear time evolution, iden-
tical to the free chain. In particular those initial condi-
tions have a Lyapunov spectrum which is trivial: every
Lyapunov exponent is exactly 0. The conserved quanti-
ties are the energy of the linear modes of the harmonic
chain. Among those solutions there is a particularly in-
teresting class: the solutions which start with a zero mo-
mentum of the center of mass. We found that, quite
surprisingly, those solutions can be deformed in the pres-
ence of the walls to solutions, which will first touch the
walls then follow a purely linear time evolution.

It may be fruitful at this stage to draw an analogy
with the Caldeira-Leggett model [44], which has become
one of the paradigmatic model for classical and quantum
open systems. In that model a particle is in contact with
a thermal bath, which leads to friction. In our model,
for those initials conditions both initially excited parti-
cles experience a partial damping (some energy is leaking
to the other site) followed by a long sequence of linear
time evolution. Of course, for a finite chain, there will a
Poincaré recurrence time, where the chain goes arbitrar-
ily close to its initial configuration. In a thermodynamic
perspective, i.e. when sending N to infinity, this recur-
rence time diverges. Hence the time evolution, after a
short damping episode, becomes linear and never feels the
walls again. Due to this effectively integrable long time
behavior, this set of initial conditions encodes a lack of
thermalization despite some contacts with the walls. We
found that those trajectories form a continuous family
parameterized by their total energy E, which is bounded
when required to observe this late linear evolution. Still
those initial conditions are not creating strictly stable
regions in the phase space: any perturbation of such a
trajectory, leading to a nonzero center-of-mass momen-
tum, is likely to be ergodic.

To make the description clearer we choose N = 64 and
look at the following initial conditions:

xi(0) = 0.5 , 1 ≤ i ≤ N

pi(0) =


+
√
E/2 i = 1 ,

−
√
E/2 i = 2 ,

0 otherwise ,

(24)
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i.e. every particle is at rest in the middle of the box,
save two, which are given an initial velocity. For small
enough E this leads to solutions never reaching the box
ends, hence trivial solutions of the problem with walls.
In Fig. 7 it is shown that, for moderate value of E, the
initially excited particles are touching the wall exactly
once. They redistribute some energy to the chain. Their
remaining energy is not enough to have them touching
the wall a second time and the whole chain then follows a
free evolution. In particular, one cannot see any contact
with the wall on a time range, which is several orders
of magnitude larger than both the traveling time inside
the box (of order 1), and the longest period of the linear
mode (of order N). Using the method described in [45]

Figure 7. Trajectories of the particles inside a chain of length
N = 64. The initial conditions are given by (24) with E =
10/π2, hence the rattling frequency is slightly off the band
of the linear modes. Blue dashed line: x1(t). Red dotted
dashed line: x2(t). Black dotted line: x3(t). Green solid
lines: examples of xi(t) for i ≥ 4. Inset: x3(t) on a longer
time range.

we estimated the Poincaré recurrence time for the size
N = 64 to be of the order of 1032. More precisely this
time was estimated to get a revival at a distance of the
initial point less than 5%. This is significantly less than
any closest approach distance seen in the Inset of Fig. 7.
This is the reason why we choose here the value N = 64:
we could not have an estimate of the recurrence time for
larger values of N . Nevertheless we could run simulations
for the chain for N up to N = 1024 (data not shown) and
see the regime of linear evolution last over a time range
longer than any other above mentioned time scales.

D. About the continuum limit

After reviewing some explicit examples of regular ini-
tial conditions, we discuss the continuum limit of the
model in case, following the FPUT case, it sheds light on
such matters. This limit is achieved when one replaces
the discrete particle positions xi(t) by a continuous scalar
field φ(x, t). First one may consider the presence of only

one wall in the (scalar) field space at φ = 0. The wall
can be seen as the limit of a smooth confining potential.
One option for the potential is:

V1(φ) =
e−αφ

α
, α > 0 . (25)

In the limit of α → ∞ the field φ is constrained to be
non negative, hence a wall effect. The Euler-Lagrange
equation for the field theory with this potential are easy
to obtain:

∂2
t φ− ∂2

xφ = e−αφ , (26)

where one recognizes the Liouville field theory, which is
known to be integrable [46].

Next one can repeat the same game for a field con-
strained in a one-dimensional box, say 0 ≤ φ ≤ 1. The
smoothing potential is now

V2(φ) =
e−αφ + eα(φ−φ0)

α
, α > 0 (27)

where φ0 = 1 is the width of the box in the limit α→∞.
In that case we found this leads to a deformation of the
sinh Gordon field theory, which is also integrable, see
App. D.

To summarize we believe that the underlying inte-
grable continuum limit is deeply singular, the reflection
on the wall leads to discontinuities in the time-derivative
of the field, and a continuum approximation requires a
significant effort to be justified. Interestingly when de-
vising a smoothed version of the model with a steep trap-
ping potential instead of hard walls, this leads to a fully
integrable field theory.

IV. RECOVERY OF STATISTICAL
MECHANICS FOR THE n = 1 MODEL:

CANONICAL AVERAGES

In the following we study the validity of the (classical)
ergodic hypothesis for statistical properties such as the
mean energy per particle and spatial two-point correla-
tor. We aim to compare the statistical average performed
within the canonical ensemble, and the time-averages
along few very long trajectories using molecular dynam-
ics simulations. While the canonical averaging implicitly
assumes global ergodicity, the existence of non-ergodic
phase space regions leads to deviations in the molecular
dynamics results. As was shown in the previous section,
the excitation of a single site may contribute to enhance
two particle- correlations. The deviations between molec-
ular dynamics and the canonical ensemble are therefore
a useful tool to get a quantitative understanding for the
size of these non-ergodic regions.

Since the Hamiltonian of our system contains only
nearest-neighbor interactions, the corresponding parti-
tion function can be computed based on a transfer matrix
approach [47–49]. Here we develop the main ideas and
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provide details of the transfer matrix approach for our problem in App. C. Consider a partition function of the
form

Z(β) =

(
π

β

)N/2 ∫ 1

0

dx1· · ·
∫ 1

0

dxNTβ(x1, x2) . . . Tβ(xN−1, xN )Tβ(xN , x1) (28)

where the transfer operator Tβ is defined via a symmetric
kernel Tβ(x, y) on a compact space. There is a discrete
set of eigenvalues λl(β) for the integral equation [50]∫ 1

0

Tβ(x, y)fl(y)dy = λl(β)fl(x) , (29)

where fl is the eigenfunction associated to λl(β). The
partition function of a chain with N particles, defined in
(28) can be rewritten with those eigenvalues

Z(β) =

(
π

β

)N/2
Tr(TNβ ) =

(
π

β

)N/2 +∞∑
l=0

λl(β)N . (30)

Since the spectrum of Tβ is discrete for positive β, only
the largest term λ0(β)N is relevant in the limit N →∞.
The average energy per particle is given by [48]

h(β) = − 1

N

∂

∂β
log(Z(β)) ' 1

2β
− λ′0(β)

λ0(β)
. (31)

For our model the kernel of the transfer operator Tβ is

Tβ(x, y) = exp
[
−β(x− y)2

]
, 0 ≤ x, y ≤ 1 . (32)

As we could not analytically solve the eigenvalue equa-
tion (29), we discretized the space to convert the integral
equation into a linear system. Taking the matrix defin-
ing this system of size 103 × 103 was enough to ensure
the numerical error to be less than 1%. The result for
the temperature-energy relation is shown in Fig. 8. The
high- and low-energy limits of the model already indi-
cated a non trivial temperature dependence of the energy
density. In view of our previous considerations in Sec.
II the system resembles, on the one hand, N indepen-
dent trapped particles in the high energy limit, implying
one quadratic degree of freedom per particle in the limit
β → 0. On the other hand, for β → ∞ one expects an
energy-temperature relation similar to a harmonic oscil-
lator and thus two quadratic degrees of freedom per par-
ticle. Our numerical canonical solution confirm that this
is indeed the case. The corresponding solid blue curve
in Fig. 8 shows a crossover from h = 0.1 and h = 1 be-
tween the regimes when there are approximately one or
two quadratic degrees of freedom per particle. The high-
temperature behavior is further analytically supported
and understood in terms of a more advanced approxima-
tion for the leading eigenvalue of the transfer operator
Tβ , see App. C.

Figure 8. Average energy density h as a function of the inverse
temperature β. Solid blue line: Canonical average energy
density; The black dashed lines indicate the trivial energy-
temperature relations h(β) = 1

β
for two quadratic degrees of

freedom per particle and h(β) = 1
2β

for one degree of free-
dom per particle. Those limiting cases are further justified
in App. C. The red dashed curve shows the refined high-
temperature approximation Eq. (C14).

The transfer matrix approach can also give predictions
for the spatial correlation functions, see App. C. Consider
the two-point correlator

C(i) = 〈xjxj+i〉 − 〈xj〉〈xj+i〉 . (33)

Without long-range order it is decaying exponentially
as C(i) ∼ exp(−i/ξ), where ξ denotes the correlation
length. The dominant contribution of the correlation
function is of order (λ1

λ0
)i, where λ1 is the second largest

eigenvalue of Tβ , as shown in App. C, thus leading to the
correlation length

ξ(β) =
1

log
(
λ0(β)
λ1(β)

) . (34)

Using a recently derived approximation [51] for the in-
tegral equation (29) one can also check that the critical
exponent for the correlation length coincides with the
value from the universality class of Ising model:

ξ ∝ T−1, T → 0 .
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Figure 9. Two-particle correlation function C(i), Eq. (33).
Molecular dynamics simulations are performed for different
particle numbers for an energy density h = 0.1 for scaled
times up to t = 106 and arbitrary initial conditions. The
black dashed curve shows the results of the transfer matrix
method with β = 8.55. The blue dotted curve shows C(i)
near to the rigid body trajectory. Inset: zoom into C(i). An
increasing deviation between molecular dynamics and canon-
ical ensemble with decreasing particle number is visible.

After uncovering the temperature energy relation, it
is now possible to compare the predictions of the canon-
ical ensemble average and molecular dynamics [52]. To
this end we considered the two-point correlation function
C(i) Eq.(33) with 〈xi〉 = 0.5 due to symmetry. In our
numerical results the average is taken over the site index
n, and the canonical ensemble or single trajectory until
t = 106 to bound the absolute error by 2 · 10−4. Quasi-
integrable dynamics in or close to the identified stable
island in III B gives rise to large correlations of neighbor-
ing particles. Since the canonical ensemble averages over
the entire phase space, one expects the molecular dynam-
ics to give smaller predictions for the correlation func-
tion. As can be seen in Fig.(9), this is indeed the case.
The difference between canonical ensemble and molecular
dynamics increases with decreasing particle number N .
This shows the increasing impact of non-ergodic phase
space regions to the global phase space dynamics of the
system when the total number of particle is reduced. On
the opposite, i.e. when increasing N , the data indicate
better and better agreement between both procedures.

V. TWO COMPONENT (n = 2) SCALAR
MODEL

So far we have been discussing a single scalar field at-
tached to each lattice site. Adding a second scalar field
significantly enriches the model as then the local dynam-
ics at each site can be made chaotic. Even more, one

could devise in advance which type of chaotic dynamics
(weakly or strongly mixing) each sites will follow.

First one may ask for each site being trapped in a rect-
angular billiard. In that case both the Hamiltonian (8)
and the boundary conditions separate between the x, and
y directions. Therefore all our previous discussion about
the n = 1 can be immediately transcribed here. One
could for example devise initial conditions which lead to
quasi-linear evolution for the x component of the field at
each site, whereas the y component follows a localized
behavior.

The picture changes drastically, when the boundary
conditions start to couple both components of the lo-
cal field. In particular we consider the Hamiltonian (8)
where each local field xi(t), yi(t) forms a two-dimensional
vector, whose endpoint is confined inside the stadium bil-
liard so that the local dynamics is now chaotic.

The protocol of a single site excitation to search
for quasi-localized solutions is now as follows: one
particle is given a very large initial kinetic energy in
an arbitrary direction, whereas the others stand still.
We repeated the same analysis as above, and computed
the maximum amplitude of y2. The results, which are
shown in Fig. 10, clearly show that the energy sharing
is no longer suppressed (in comparison with Fig. 6).
Instead one can see that the initial driving of one par-
ticle excites its nearest neighboring particles in such a
way that they will be affected by the presence of the wall.

This can be understood considering the Fourier spec-
trum of the driving particle motion, as can seen in Fig. 11.
We considered the y-component of the driving particle
motion up to times of T = 1.3 · 102, i.e. before achieving
energy relaxation. Then a Fourier transform was per-
formed on y1(t). While the Fourier spectrum of the box is
discrete and far off-resonance, the chaotic motion in the
stadium billiard leads to a continuous spectrum. The
low-frequency components are closer to resonance and
allow now for energy sharing. This contribution origi-
nates from time intervals where the particle is propagat-
ing mostly in the x-direction. The low y-component leads
to an enhanced energy sharing.

VI. CONCLUSIONS

We have introduced a family of models of coupled clas-
sical nonlinear oscillators. These models can live on d
dimensional lattices and involve n scalar fields per site
which are confined to a chosen domain (the billiard table
or stadium). We focused on the simplest situation of a
chain (d = 1) of N sites, where the scalar field (n = 1)
at each site is confined inside a box. We performed ex-
tensive numerical simulations for size up to N = 30, and
find that the system is ergodic for randomly chosen ini-
tial conditions. More precisely, the long time limit of
the two-point correlator agrees well with the predictions
of statistical mechanics. Unlike another famous nonlin-
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Figure 10. (a) Same as Fig. 6 (b) when each site of the chain
carries a vector, whose amplitude is now confined inside a
stadium billiard. Blue circles: N = 3. Orange stars: N =
5. Red squares: N = 7. Green crosses: N = 11. Purple
hexagons: N = 33. Brown triangles: N = 65.

Figure 11. Fourier spectrum for the motion of the first,excited
particle, with E = 15.0 and N = 3. Blue/Dark grey: in the
stadium billiard (n = 2). Orange/Light grey: in the box
(n = 1).

ear chain, that of FPUT, we did not see any evidence of
recurrences suggestive of an integrable continuum limit.
This is a little surprising, as the continuum limit of our
system is itself a particular limit of the integrable sinh
Gordon system. However, it is likely that the integra-
bility of the latter system is lost in the passage to the
limit.

It was proven that a ’generic’ trajectory, i.e. with ran-
dom initial conditions is ergodic in the large N limit
hence statistical mechanics is applicable in that sense.
But it is worth stressing that we also provided explicit
families of initial conditions, which lead to non-ergodic
behavior and absence of thermalization. Two were in-
ferred from the N = 2 case: one corresponds to the field
being identical at every sites. This looks like a particu-
lar set for the initial data in the field theory obtained in
the continuum limit. The other initial condition looks at
the opposite limit with short wavelength (of the size of
the mesh) fluctuations: this ”local quench” type of initial
conditions leads to a localized dynamics where the energy
only leaks for a short period of time from the excited site

to its neighbors. Remarkably we also identified a last
continuous family of initial conditions where the chain
starts to feel the non-linearities due to the wall, then fol-
lows the behavior of a linear harmonic chain. In future
work it would be interesting to see if one can quantify the
scaling with N of the phase space volume for such solu-
tions and whether there is a KAM approach for small N
about the decoupled well limit.

The natural next task is to study the model with n = 2
that was introduced in this paper. We gave evidence
that the chaos already present at the level of a single
site destroys the localized solutions that we found—so
the model is now considerably more chaotic. A more
careful study of relatively small values of N could be
rewarding in that we hope to find that this model exhibits
much stronger chaos and shows convincing evidence of
effective ergodicity as it heads towards the infinite volume
limit. Separately, it would be interesting to introduce
disorder in our models to see if we can generate many-
body localization on reasonably long time scales.
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Appendix A: Numerical Integration

The time integrations were performed by an adaptive
Runge-Kutta-algorithm of fourth order. The default step
size was 3 · 10−4. After each step, the particle are tested,
whether each of them is still located inside its own box.
If it is not the case, the original coordinate is maintained
and the step size is reduced by a factor 10. This proce-
dure is repeated, until a final step size less than 10−12 is
reached. Finally, the sign of the momentum of the parti-
cle at the boundary is reversed and the step size set to its
default value again (i.e. 3 · 10−4). With that algorithm,
we obtained a relative energy error of ∆E

E ≤ 10−11 for a

total time of 105.
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Figure 12. Relative error ∆E
E

for a typical trajectory. The
starting energy density was h = 0.1. With our algorithm we
obtained a relative energy error ∆E

E
∼ 10−11.

Appendix B: Calculation of Lyapunov Exponents

The calculation scheme for Lyapunov exponents is
based on the methods described in [53, 54]. For given
equations of motions

Γ̇(t) = F(Γ(t)), (B1)

an infinitesimal deviation evolves according to

˙δΓ(t) =
∂F(Γ)

∂(Γ)

∣∣∣∣∣
Γ(t)

δΓ(t), (B2)

In the case of coupled harmonic oscillators F(Γ) = FΓ
is linear, therefore δΓ(t) can be calculated by a simple
matrix exponential between two collisions:

˙δΓ(t) = eFtδΓ(0), (B3)

At times tj(Γ), one of the particle is reflected on the wall.
This can be described by the mapping

Γ′ = MΓ, (B4)

where M switches the sign of the momentum of the re-
flected particle. According to [53], the mapping for the
deviation problem is for the linear problem given by

δΓ′ = MδΓ + [M,F]Γδτc, (B5)

with δτc = tj(Γ + δΓ)− tj(Γ) the collision delay time for
the deviated trajectory.
Repeating the steps in [54], after a reflection of the i-th
particle the new deviations δx′i and δp′i can be expressed
by the deviations δxi and δpi before the collision with
the wall:

δx′i = −δxi

δp′i = −δpi − 4
(xi+1 − 2xi + xi−1)

pi
δxi

(B6)

Here xi, pi denote the coordinate and momentum of
the i-th particle before the reflection, δxi and δpi the
corresponding deviations. The other entries remain
unchanged.

In order to calculate the entire Lyapunov spectrum, we
used the algorithm proposed by [55]. As a numerical
check, the largest Lyapunov exponent was independently
calculated by the algorithm presented in [37] for a few
random initial conditions. Both techniques gave the
same result.

Appendix C: The transfer matrix method

This Section is based on [56]. It is here adapted to our
present model. The Hamiltonian of our model is

H({pi, xi}) =

N∑
i=1

p2
i + (xi − xi+1)2 + V (xi) , (C1)

where the potential V (xi) stands for the confinement in a
box for each particle: 0 ≤ xi ≤ 1. It is also assumed that
there are periodic boundary conditions xN+1 = x1. The
canonical partition function for a given inverse tempera-
ture β is (we choose units such that Planck’s constant h
is unity):

Z(β) =

∫ ∞
−∞

dp1

∫ 1

0

dx1· · ·
∫ ∞
−∞

dpN

∫ 1

0

dxNe
−βH({pi,xi})

(C2)
As usual the integration over the momenta is straightfor-
ward so there remains the multidimensional integral over
the positions

Z(β) =

(
π

β

)N/2 ∫ 1

0

dx1· · ·
∫ 1

0

dxNe
−β

∑
i(xi−xi+1)2 .

(C3)
At this stage it is customary to introduce the following
differential operator

Tβ : L2([0 : 1]) −→ L2([0 : 1])

f 7−→ g ,

with the defining formula

g(x) ≡ (Tβf)(x) =

∫ 1

0

e−β(x−y)2f(y)dy (C4)

As the kernel is smooth, and summable on the domain
(x, y) ∈ [0 : 1] × [0 : 1], Tβ is a compact self-adjoint
operator. Following the Hilbert Schmidt theorem, see
e.g. [50] p. 110, its spectrum is real, discrete and Tβ
admits a spectral decomposition using its eigenvalues and
corresponding eigenfunctions. Those are defined through
the following equation:∫ 1

0

Tβ(x, y)f(y)dy = λf(x) , Tβ(x, y) = e−β(x−y)2 .

(C5)
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Note that due to the trivial bound (for positive β):

|Tβ(x, y)| ≤ 1

the eigenvalues are also bounded from above. Last one
can show that Tβ is positive definite. Introduce h(z) such

that Tβ(x, y) = h(x−y). Here one has h(z) = e−βz
2

. Use
that its Fourier transform is positive on the real axis:

[Fh](k) ≡
∫ ∞
−∞

e−ikzh(z)dz =

√
π

β
e−k

2/4β > 0 .

Then for any function f(x) in L2, one has:

〈f, Tβf〉 =

∫ 1

0

dx

∫ 1

0

dye−β(x−y)2f(x)f(y)

=

∫ ∞
−∞

dk

2π

∣∣∣∣∫ 1

0

f(x)eikxdx

∣∣∣∣2 [Fh](k) ,

and this quantity is zero iff f(x) is identically 0. This
means that every eigenvalue is not degenerate and posi-

tive.

Eventually the eigenvalues of the transfer operator Tβ
can be sorted in decreasing order:

1 ≥ λ0(β) > λ1(β) > · · · > λN−1(β) > · · · > 0 .

The reason for introducing such an operator is because
the partition function (C3) can be rewritten as:

Z(β) =

(
π

β

)N/2
Tr(TNβ )

All thermodynamic quantities can be therefore expressed
by the eigenvalues and eigenvectors of the transfer oper-
ator Tβ . The transfer matrix approach can be also used
to calculate expectation values or two-point correlation
functions in space. Consider for example the expectation
value 〈xi〉. It can be written in the form

〈xj〉 =
1

Z

∫ 1

0

dx1· · ·
∫ 1

0

dxNTβ(x1, x2) . . . Tβ(xj−1, xj)xj Tβ(xjxj+1) . . . Tβ(xN−1, xN )Tβ(xN , x1) =
1

Z

∞∑
l=0

λl(β)N
∫ 1

0

x|fl(x)|2dx ,

(C6)

where fl stands for the normalized eigenfunction of Tβ associated to λl(β) following (C5). Similarly the space
correlation function can be expressed as

〈xjxj+i〉 =
1

Z

∫ 1

0

dx1· · ·
∫ 1

0

dxNTβ(x1, x2) . . . Tβ(xj−1, xj)xj Tβ(xjxj+1) . . . Tβ(xj+i−1, xj+i)xj+i Tβ(xj+ixj+i+1) . . . Tβ(xN , x1)

=
1

Z

∑
l,m≥0

λl(β)N−iλm(β)i
(∫ 1

0

xfl(x)fm(x)dx

)2

.

When going to the continuum limit N → ∞, all the
above formulas become significantly simpler. The parti-
tion function is well approximated by:

Z(β) '
(
π

β

)N/2
λ0(β)N , N →∞ .

This approximation is very useful to compute the
temperature-energy relation. The mean energy per par-
ticle is given by

h(β) = − 1

N

∂

∂β
log(Z(β)) ' 1

2β
− λ
′
0(β)

λ0(β)
, N →∞ (C7)

In the last equation, the contributions of λNi for i ≥ 1,
has been neglected as they are exponentially smaller in
the large N regime. Similarly the two-point correlation

function simplifies in this regime to

〈xixi+k〉 − 〈xi〉〈xk〉 '
(∫ 1

0

xf0(x)f1(x)dx

)2(
λ1(β)

λ0(β)

)k
(C8)

In particular it varies with k like exp[−k/ξ(β)], where
the correlation length ξ(β) is given by

ξ(β) =
1

ln
(
λ0(β)
λ1(β)

) (C9)

1. High temperature (β → 0) regime

At large temperature, or small β, the integral equa-
tion defining the transfer operator becomes very simple.
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Starting from the Taylor expansion valid for β going to
0:

e−β(x−y)2 ' 1− β(x− y)2 +
β2

2
(x− y)4 ,

the integral equation (C5) becomes∫ 1

0

[
1− β(x− y)2 +

β2

2
(x− y)4

]
φ(y)dy = λφ(x) .

(C10)
Looking at the left hand side one can see that φ(x) is
a fourth degree polynomial. Therefore one can put the
trial formula

φ(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0

into (C10) to solve the eigenvalue problem. In this
regime, this becomes a linear system. More precisely
putting a fourth degree polynomial into the integral equa-
tion leads to the following matrix eigenvalue equation:


β2

10
β2

8
β2

6
β2

4
β2

2

−β
2

3 − 2β2

5 −β
2

2 − 2β2

3 −β2

−β5 + 3β2

7 −β4 + β2

2 −β3 + 3β2

5 −β2 + 3β2

4 −β + β2

β
3 −

β2

4
2β
5 −

2β2

7
β
2 −

β2

3
2β
3 −

2β2

5 β − β2

2
1
5 −

β
7 + β2

8
1
4 −

β
6 + β2

16
1
3 −

β
5 + β2

14
1
2 −

β
4 + β2

12 1− β
3 + β2

10



a4

a3

a2

a1

a0

 = λ


a4

a3

a2

a1

a0

 (C11)

Although we cannot write an explicit expression for the
largest eigenvalue in general, we can determine its Taylor
series for small β:

λ0(β) ' 1− β

6
+

7β2

180
, β → 0 , (C12)

so that the partition function for the chain in the contin-
uum limit N → ∞, and in the regime of large tempera-
ture (β → 0) is:

Z(β) '
(
π

β

)N/2
λ0(β)N '

(
π

β

)N/2(
1− β

6
+

7β2

180

)N
.

(C13)
Following (C7) the equipartition theorem is:

h(β) ' 1

2β
+

1

6
− β

20
, β → 0 . (C14)

Note that the constant term can also be recovered using
first order perturbation theory in the coupling constant
g.

2. Low temperature (β →∞) regime

The regime of small temperature, or large β, is the
most interesting one. It is investigated using the trace
of the resolvent of Tβ , see e.g. [50]. The eigenvalues of
the transfer operator Tβ are the zeroes of a characteristic
function F (λ), which is analytic in the domain λ 6= 0.
This function F (λ) has also an exact converging expan-
sion in the domain λ > 1 using the properties of the

kernel. Using approximating formulas for the kernel in
the regime β → ∞ we will derive an approximation for
this expansion. Assuming analytic continuation one may
obtain some information about the leading eigenvalues.

Start with the exact identity, see Eq.(18) p.72 in [50],

F ′(λ)

F (λ)
=

1

λ

∞∑
n=1

1

λn
TrKn , (C15)

where Kn are the iterated kernels:

K1(x, y) = Tβ(x, y)

Kn+1(x, y) =

∫ 1

0

Kn(x, z)Tβ(z, y)dz, n ≥ 1 .

The main remark is that those kernels can be easily es-
timated for large β. More precisely we will show by re-
cursion that

Kn(x, y) '
(√

π

β

)n−1
e−β

(x−y)2

n

√
n

, n ≥ 1 . (C16)

This assumption is trivially true for n = 1. If it is as-
sumed for n, then

Kn+1(x, y) =

∫ 1

0

Kn(x, z)Tβ(z, y)dz

'
(√

π

β

)n−1
1√
n

∫ 1

0

e−β
(x−z)2

n −β(z−y)2dz

Next one uses that in the regime of β → ∞ the integral
can be approximated using a saddle point approach: the
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main contribution comes from the neighborhood of the
minimum of

gn+1(z) =
(x− z)2

n
+ (z − y)2 .

This minimum is reached for z = (x+ny)/(n+1), which
is always in the prescribed range [0; 1] for every n ≥ 1.
Therefore one can extend the integration range to the
whole real axis, and using that

gn+1

(
x+ ny

n+ 1

)
=

(x− y)2

n+ 1
,

one gets∫ 1

0

e−β
(x−z)2

n −β(z−y)2dz ' e−β
(x−y)2

n+1

∫ ∞
−∞

e−β
n+1
n [z− x+ny

n+1 ]2dz

=

√
π

β

n

n+ 1
e−β

(x−y)2

n+1 .

Inserting this result in the definition of Kn+1 one gets

Kn+1(x, y) '
(√

π

β

)n
e−β

(x−y)2

n+1

√
n+ 1

,

which ends the recursion proof.
Those approximations for each iterated kernels enables

one to estimate the traces:

TrKn ≡
∫ 1

0

Kn(x, x)dx '
(√

π

β

)n−1
1√
n

(C17)

Then the right hand side of (C15) can be rewritten

F ′(λ)

F (λ)
' 1

λ

√
β

π

∞∑
n=1

(
1
λ

√
π
β

)n
√
n

=
1

λ

√
β

π
Li1/2

(
1

λ

√
π

β

)
,

(C18)
where the polylogarithm function Lis(z) was introduced:

Lis(z) =

∞∑
n=1

zn

ns
, |z| < 1 .

As mentioned at the beginning this derivation was as-
suming λ > 1. When decreasing λ, one can see that the
largest zero of F leading to a singularity in (C18) should
obey:

1

λ

√
π

β
= 1 ,

which yields for the leading eigenvalue

λ0(β) '
√
π

β
(C19)

Using this approximation gives the mean energy per par-
ticle in the low temperature regime, i.e. the equipartition
theorem, following (C7):

h(β) ' 1

β
, β →∞ . (C20)

This coincides with the numerical estimate in Fig. 8.
Appendix D: Mapping to sinh Gordon

In this Section it is shown how to map the equation
obtained in the continuum limit for n = 1 with smoothed
walls to the sinh Gordon field theory. Start with the
Lagrangian in (1 + 1)−dimension:

L =

∫ +∞

−∞

[
1

2
(∂tφ)

2 − 1

2
(∂xφ)

2 − V2(φ)

]
dx, (D1)

where the potential V2(x) is given by (27). The Euler-
Lagrange equation is then:

∂2
t φ− ∂2

xφ = eαφ − e−α(x−1) (D2)

First change the unknown function:

φ(x, t) 7→ ϕ(x, t) = α

(
φ(x, t)− 1

2

)
,

so that the field equation (D2) becomes now

∂2
t ϕ− ∂2

xϕ+ 2αe−α/2 sinhϕ = 0 .

Then by rescaling the spacetime coordinates

x 7→ ξ =
√

2αe−α/2x, t 7→ τ =
√

2αe−α/2t , (D3)

one gets the standard sinh Gordon field equation

∂2
τϕ− ∂2

ξϕ+ sinhϕ = 0 (D4)
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