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We introduce kicked p-spin models describing a family of transverse Ising-like models for an
ensemble of spin-1/2 particles with all-to-all p-body interaction terms occurring periodically in time
as delta-kicks. This is the natural generalization of the well-studied quantum kicked top (p=2) [1].
We fully characterize the classical nonlinear dynamics of these models, including the transition to
global Hamiltonian chaos. The classical analysis allows us to build a classification for this family
of models, distinguishing between p = 2 and p > 2, and between models with odd and even p’s.
Quantum chaos in these models is characterized in both kinematic and dynamic signatures. For the
latter we show numerically that the growth rate of the out-of-time-order correlator is dictated by the
classical Lyapunov exponent. Finally, we argue that the classification of these models constructed
in the classical system applies to the quantum system as well.

I. INTRODUCTION

Ising-like models play a central role in quantum infor-
mation science at the interface of statistical physics and
computation [2]. Fundamental areas of research include
Hamiltonian complexity [3], optimization [4], machine
learning [5], spin glasses [6], and critical phenomena in
many-body systems such as quantum ground-state phase
transitions [7–9] and dynamical phase transitions [10–
13]. Understanding dynamics in such systems is essential
for studies of nonequilibrium physics, such as many-body
quantum chaos [14, 15], and thermalization [16, 17].

Today, quantum simulation offers the prospect of
studying Ising-like models by encoding spins in qubits
and engineering the desired interactions in a controlled
way [18–23]. One approach to quantum simulation is
to employ a gate-based model in order to implement a
desired unitary evolution of the many-body system. The
seminal work of Lloyd [24] showed that through a Trotter-
Suzuki expansion one can approximate any desired uni-
tary map on N qubits with k-local interactions through
an appropriate sequence of gates acting on no more than
k qubits at a time. While, such a gate-based protocol
is often called “digital quantum simulation,” when im-
plemented in a non-fault-tolerant manner, the operation
is fundamentally “analog,” with gates chosen for a con-
tinuum of possible duration. As such, the resulting map
can exhibit dynamical instabilities and quantum chaos,
which can lead to a proliferation of errors [25, 26].

Of particular importance in this context is the fact
that Trotterization introduces a hidden time-dependent
driving force. Explicitly, given a generic time inde-
pendent Hamiltonian H = Hy + Hz where [Hy, Hz] 6=
0, the unitary map up to time t can be simulated
as U(t) = e−iHt ≈ UnτTrot(τ), where nτ = t/τ is
the number of Trotter steps and the single-step Trot-
ter approximated map is UTrot(τ) = e−iHzτe−iHyτ =
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T
(
exp{−i

∫ τ
0
Hkicked(t)dt}

)
. The effective single-step

simulated Hamiltonian Hkicked(t) = Hy + τHz

∑
n δ(t −

nτ) describes a periodically “delta-kicked” system, and
UTrot(τ) is its respective Floquet map.

For example, given a transverse Ising model, H =

−h
∑
i σ

(i)
y −

∑
i,j Λijσ

(i)
z σ

(i)
z , Heyl et al. studied the

Trotterized approximation arising from a gate-based sim-
ulation, and showed that above a critical Trotter step
size, τ , the resulting Floquet operator is characterized
by a many-body quantum chaotic regime, where Trotter
errors proliferate and become uncontrollable [25]. This is
true even for integrable systems described by a single de-
gree of freedom encoded in the collective spin of Ns spin-

1/2 particles, J =
∑Ns
i=1 ~σ

(i)/2. For the Lipkin-Meshkov-

Glick (LMG) model [27], HLMG = −BJy − Ω
2J J

2
z ,

the Trotterized map is the famous quantum kicked-top
model, UQKT = exp{i k2J J

2
z } exp{iαJy}, with α = Bτ

and k = Ωτ [1]. Haake et al. introduced this model
as a paradigm for quantum chaos, and in their seminal
work [1], systematically studied the classical chaos (in
the thermodynamic limit, Ns →∞) and quantum signa-
tures of chaos for finite Ns. After this pioneering work a
plethora of theoretical and experimental developments in
quantum chaos [28–37] have been facilitated by direct or
indirect usage of the kicked top. Recently Sieberer and
coworkers showed that the quantum chaos in the kicked
top can lead to proliferation of errors in Trotterized sim-
ulation of the LMG model [25, 26].

In the present work we study the quantum and clas-
sical chaos of a family of delta-kicked transverse Ising
models with all-to-all connectivity for Ns spin 1/2 parti-
cles, generalizing Haake’s pioneering work [1] to models
with arbitrary p-body interactions. Following from our
discussion above, these delta-kicked systems correspond
to the effective time-dependent Hamiltonian description
of the Trotterization of a family of completely connected
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transverse Ising models, usually called “p-spin” models,

Ĥp = −B
Ns∑
i=1

σ̂
(i)
y

2
− Ω

p

Ns∑
i1,i2,...,ip=1

σ̂
(i1)
z σ̂

(i2)
z . . . σ̂

(ip)
z

2Np−1
s

= −J

[
B

(
Ĵy
J

)
+

Ω

p

(
Ĵz
J

)p]
. (1)

The dependencies on Ns and p are chosen to ensure that
the model is extensive and of a universal form in the
(mean-field) thermodynamic limit.

The two-body case (p = 2) is the LMG model men-
tioned above, featuring a continuous quantum phase
transition between paramagnetic and ferromagnetic
phases. The generalization for p > 2 gained prominence
in the context of quantum information in the work of Jörg
et al., who showed that for p > 2 this system undergoes
a first-order (discontinuous) quantum phase transition,
and is accompanied by an exponentially closing gap to
the ground state, which renders quantum annealing in-
tractable [38]. Subsequent work has analyzed this model
from the point of view of mean-field theory [39], entan-
glement in quantum phase transitions [9], and a variety
of approaches to tame the exponential complexity for ef-
ficient quantum annealing and optimization [40, 41]. In
previous work we studied quantum simulations of p-spin
models using tools of measurement-based feedback con-
trol [42].

Our characterization of the nonlinear dynamics and
classical/quantum chaos of the kicked p-spin family is
structured in a similar fashion as the original kicked top
paper [1], in order to emphasize the similarities/differ-
ences between the kicked top and its generalizations. For
the classical system, in the limit Ns → ∞, borrowing
from foundational results in the theory of area preserv-
ing maps [43–46] we characterize and classify the struc-
tural changes and instabilities, appearing far from the
emergence of chaos, induced by bifurcations. Explicit
computation of the largest Lyapunov exponent provides
a characterization of the transition to global chaos, and
the local structural aspects of the emergence of chaotic
regions are assessed by estimating their surface areas.
Quantum chaos is studied via kinematic and dynamic
signatures. In the former case we focus on the statistics
and localization properties of eigenphases and eigenvec-
tors of the Floquet operator, respectively. In the latter
case we study the growth of the out-of-time-order corre-
lator. Our analysis generalizes the work of Haake on the

quantum kicked top in the light of modern developments
in quantum chaos.

The remainder of the manuscript is organized as fol-
lows. In Sec. II we introduce the Hamiltonian for the
kicked p-spin model and derive the stroboscopic map that
describes the evolution in the classical limit. In Sec. III
we analyze the classical nonlinear dynamics by means of
studying fixed points and their stability and the largest
Lyapunov exponent during the transition to global chaos.
In Sec. IV we characterize the quantum chaotic proper-
ties of the stroboscopic Floquet dynamics via kinematic
signatures (including level spacing statistics and localiza-
tion of the Floquet eigenstates) and dynamical indicators
like the growth rate of the out-of-time-order correlator.
Finally in Sec. V we summarize, conclude and give an
overview of future research directions.

II. THE KICKED p-SPIN MODEL

We study the delta-kicked version of the p-spin model,
Eq. (1), governed by the Hamiltonian [47]

Ĥδ−p(t) =
α

τ
Ĵy +

k

pJp−1
Ĵpz

∞∑
n=−∞

δ(t− nτ), (2)

where α is the precession angle, τ the time interval of
free precession, and k the strength of the nonlinear kick.
The time evolution operator under this Hamiltonian is
the Floquet map

Ûp = T
{
e−i

∫ t
0
dt′Ĥδ−p(t′)

}
= e
−i k

pJp−1 Ĵ
p
z e−iαĴy , (3)

(here and throughout ~ = 1). Choosing α = Bτ and
k = Ωτ , this Floquet map is the Trotterized version of
the unitary evolution generated by Eq. (1). As the mag-
nitude of the spin J = Ns/2 is conserved, the quantum
dynamics take place in the Ns+1 dimensional symmetric
irreducible subspace. In the classical limit Ns → ∞ the
mean spin executes motion on the surface of a sphere,
described by a rotation of the spin about the y-axis by
angle α followed by a nonlinear “twist” about the z-axis.
This twist can be understood as a rotation around the
z-axis by an angle proportional to the p−1 power of the z-
projection of the spin, inducing nonlinear dynamics with
strength k.

The Heisenberg evolution of the collective spin is de-
fined by the map Ĵ′ = Û†p ĴÛp, with components

Ĵ ′x =
1

2

[(
cos(α)Ĵx + sin(α)Ĵz + iĴy

)
eiQ+(k,α,p) +

(
cos(α)Ĵx + sin(α)Ĵz − iĴy

)
eiQ−(k,α,p)

]
, (4a)

Ĵ ′y =
1

2i

[(
cos(α)Ĵx + sin(α)Ĵz + iĴy

)
eiQ+(k,α,p) −

(
cos(α)Ĵx + sin(α)Ĵz − iĴy

)
eiQ−(k,α,p)

]
, (4b)

Ĵ ′z = − sin(α)Ĵx + cos(α)Ĵz, (4c)
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where the arguments of the exponentials are given by

Q±(k, α, p) =
k

pJp−1

p∑
a=1

(±1)aJa(Ĵx, Ĵz; p, α), (5)

with

Ja(Ĵx, Ĵz; p, α) =

(
p

a

)(
cos(α)Ĵz − sin(α)Ĵx

)p−a
. (6)

Notice that for general p, a single evolution step couples
the components of collective spin operators to a poly-
nomial in these components of degree p − 1. As a con-
sequence, evolution under Ûp leads to high complexity

and rapidly takes an initially localized state, e.g., a spin
coherent state, into a highly nonclassical spin state. Fur-
ther details on the derivation of these equations of motion
are presented in Appendix A.

Taking the proper limit allows us to define classical
variables and obtain the classical nonlinear dynamical
map when J →∞. In the standard way, we take the ex-
pectation value of the evolved operators in Eq. (4) and

neglect all correlations, i.e. 〈ÂB̂〉 = 〈Â〉〈B̂〉, with Â, B̂
two Hermitian operators. Then, we introduce the classi-
cal unit vector X = 〈Ĵ〉/J , and take the limit J → ∞.
The resulting stroboscopic map of the classical coordi-
nates of X = (X,Y, Z) on the unit sphere is given by

Xm+1 = cos
(
k(cos(α)Zm − sin(α)Xm)p−1

)
(cos(α)Xm + sin(α)Zm)− sin

(
k(cos(α)Zm − sin(α)Xm)p−1

)
Ym, (7a)

Ym+1 = sin
(
k(cos(α)Zm − sin(α)Xm)p−1

)
(cos(α)Xm + sin(α)Zm) + cos

(
k(cos(α)Zm − sin(α)Xm)p−1

)
Ym, (7b)

Zm+1 = − sin(α)Xm + cos(α)Zm, (7c)

with the respective inverse map given by

Xm = cos(α) cos(kZp−1
m+1)Xm+1 + cos(α) sin(kZp−1

m+1)Ym+1 − sin(α)Zm+1, (8a)

Ym = − sin(kZp−1
m+1)Xm+1 + cos(kZp−1

m+1)Ym+1, (8b)

Zm = sin(α) cos(kZp−1
m+1)Xm+1 + sin(α) sin(kZp−1

m+1)Ym+1 + cos(α)Zm+1. (8c)

We will refer to a single application of the stroboscopic
classical Floquet map in Eq. (7) as F [Xm] and the re-
spective inverse map in Eq. (8) as F−1[Xm].

The classical nonlinear dynamics arise from the mean-
field approximation in the thermodynamic limit [48].
This is achieved by replacing the interaction term in Eq.
(2) with its mean field approximation, Ĵpz → p〈Ĵz〉p−1Ĵz.
The resulting effective Hamiltonian yields an evolution
operator composed of two components: a linear rotation
by α and rotation depending on the current state. The
latter is “nonlinear” in that the angle is proportional to
the average of the p−1 power of the z-component. Note,
given our choice of coordinates in Eq. (2), for any choice
of α, trajectories undergo Larmor precession around the
y-axis. We thus refer to the points (0,±1, 0) as “poles”
and the great circle in the x-z plane as the “equator.”

III. NONLINEAR DYNAMICS OF A
CLASSICAL KICKED p-SPIN

In order to better identify and understand the general
properties of the kicked p-spin models, we first summarize

Haake’s analysis of the nonlinear dynamics of the classi-
cal kicked top (p = 2) [1]. The classical kicked top has
doubly reversible dynamics under the appropriate choice
of time reversal symmetry (given below), parity symme-
try, and an additional symmetry of the iterated map F 2

when α = π/2. The two fixed points on the poles of the
sphere (0,±1, 0) bifurcate from elliptic (stable) to hy-
perbolic (unstable) at k = 2, leading to the onset of a
cascade of period doubling bifurcations and a transition
from regular to mixed phased space, before leading to
global chaos. Additionally when α = π/2 the period-4
orbit on the equator (defined below) changes from stable
to unstable at k = π.

In the remainder of this section we extend this anal-
ysis to the whole family of p-spin models. In order to
illustrate the differences as well as similarities between
models with p = 2 and p > 2, we will often compare the
three models with p = 2, 3, 4. We stress that this choice
does not restrict the generality of our findings, as those
three test cases exhaust the kicked p-spin phenomenology
(see [39] for a similar discussion with the p-spin family).
In fact, all the models with odd p > 2 exhibit the same
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phenomenology as p = 3 and all the models with even
p > 2 exhibit that of p = 4. We pay close attention to
the value of α = π/2 as it allows us to directly contrast
models with p > 2 with Hakee’s kicked top results. How-
ever, as we will see models with p > 2 exhibit a rich and
intricate behavior in the range α ∈ [0, π], which we fully
characterize as well.

A. Symmetries

Symmetries of the map F [X] can be found with the
help of the following two transformations

T [X] = (− cos(α)X − sin(α)Z, Y,− sin(α)X + cos(α)Z),
(9)

and

T̃ [X] = (cos(α)X+sin(α)Z, Y, sin(α)X−cos(α)Z), (10)

which are both involutions, i.e. T 2 = T̃ 2 = 1 and have
determinants det(T ) = det(T̃ ) = −1. These transforma-
tions allow us to introduce time reversal operations of the
stroboscopic evolution. One can easily check that F and
F−1 satisfy

TFT ≡ T [F [T [X]]] = F−1[X], (11)

and

T̃F T̃ ≡ T̃ [F [T̃ [X]]] = F−1[X], (12)

when p is even, indicating the map has double reversible
dynamics. However, for odd values of p only Eq. (11) is
satisfied, hence only the T transformation yields a proper
time reversal operation. The major consequence of this
time reversal is that the images of n-periodic orbits of F
under T (and T̃ for even p’s) are also n-periodic orbits,
where it may happen that the orbit is its own image [1].

Using Eq. (11) and Eq. (12) we define a family of
symmetry curves on the unit sphere composed of orbits
invariant under the application of any of the involutions
I[Xm] where I = T, T̃ , TF, FT, .... The T and T̃ invari-
ant curves are given by the great circles satisfying

sin(α)X − (cos(α)− 1)Z = 0, (13)

sin(α)X − (cos(α) + 1)Z = 0, (14)

respectively. In general the invariant curves for the
higher involutions, I, have fairly complicated shapes.

If an orbit is invariant under an involutions I, the
structural changes it might undergo are constrained,
since the resulting orbit must still respect this invariance.
For instance, if the periodic orbit is of even/odd period
then it must have an even/odd number of points on the
corresponding symmetry line of I. Other consequences
of time reversal by T and T̃ , and invariance under I are
explored in [1].

For the case k = 0, the phase space is filled by regu-
lar orbits describing Larmor precession around the y-axis

which deform as k increases. Rotations around the pre-
cession axis then provide information about the symme-
tries of our map. Particularly, for even values of p, the
map F is invariant under π-rotations around the y-axis,

Ry(π)F = FRy(π), (15)

where Ry(π)[Xm] = (−X,Y,−Z). To understand this
fact we notice that the rotation Ry(π) can be constructed

as Ry(π) = T T̃ = T̃ T . Thus, invariance under Ry(π)

immediately implies time reversal under both T and T̃ .
Conversely, the absence of time reversal under either T
or T̃ implies no invariance under Ry(π). Thus, the maps
for even p have the feature that the image under Ry(π)
of every n-periodic orbit of F is also an n-periodic orbit.

Finally, when specializing for α = π/2 and even p’s,
the map F has an additional symmetry. To see this we
use the following identity

FRx(π) = Rx(π)FRy(π), (16)

where RX(π)[Xm] = (X,−Y,−Z), is a rotation around
the x-axis by an angle of π. Using Eq. (16) it is easy to
show that the iterated map F 2 is invariant under Rx(π).

With these symmetries in mind we can give an in-
formed description of the phase portraits of the kicked
p-spin models. In Figs. 1(a-c) we display characteristic
phase portraits for the cases of p = 2, 3, 4 and α = π/2.
In each of the three panels the spheres on the right show
the regular island on the pole (0, 1, 0) and the spheres on
the left show one of the islands a period-4 orbit along the
equator (see description below). For p = 3, Fig. 1b, the
starry shape of the regular island on the pole is a conse-
quence of the absence of the additional symmetry under
rotations around the y-axis.

B. Fixed points

The precession axis determines two fixed points of F ,
the poles (0,±1, 0). Additional ones can be found by
solving the equation F [Xm] = Xm. Writing all the com-
ponents in terms of the Z coordinate, we find that new
fixed points appear when

Xm = − cot(α/2)Zm,

Ym = cot

(
kZp−1

m

2

)
tan (α/2)Zm, (17)

F(Zm; k, α, p) = 0,

where F(Zm; k, α, p) is given by

F(Zm; k, α, p) =

Z2
m −

1

cot2
(
kZp−1

m

2

)
tan2(α/2) + csc2(α/2)

. (18)

When we specialize to the case α = π/2, writing the ex-
pressions in terms of the X coordinate, new fixed points
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(a) (b)

p=2 p=3 p=4

Z Z Z
X X X

Y Y Y
Y Y Y

Z Z Z

X X X

(c)

Figure 1. Phase space portraits for different values of the parameter p. (a) Case p = 2 (kicked top), with k = 1.6 (top), and
k = 2.3 (bottom). (b) Case p = 3 with k = 0.8 (top), and k = 1.2 (bottom), (c) Case p = 4 with k = 1.5 (top), and k = 2.2
(bottom). In each of the panels we oriented the sphere on the left such that we look straight at the positive z (along the
equator), and the sphere on the right such that we look at the positive y (north pole). In this way one of the regular islands
on the poles and one of the resonant islands on the period-4 orbit along the equator are visible. A schematic of the Cartesian
directions is also included to guide the eye. All cases correspond to α = π/2.

appear if

Zm = −Xm, Ym = (−1)p cot

(
kXp−1

m

2

)
, (19)

F(Xm; k, p) = 0,

where F(Xm; k, p) is given by

F(Xm; k, p) =
sin2

(
kXp−1

m

2

)
1 + sin2

(
kXp−1

m

2

) −X2
m, (20)

which recovers the kicked top result when p = 2 [1].
The solutions of F(Zm; k, α, p) = 0 are invariant under
Zm → −Zm, and thus any nontrivial solution gives two
new fixed points. We can then focus on solutions for
positive values of Z, where −Z provides a valid solution
as well. Let us study the solutions of Eq. (19), i.e fix-
ing α = π/2. For p = 2 the first nontrivial fixed point
appears at k = 2. For p ≥ 3 solutions for positive X
come in pairs, which means every solution gives four new
fixed points. In particular, for p = 3 the first nontrivial
solutions appear at k ∼ 4.7, for p = 4 they appear at
k ∼ 7.5. We observe then that new fixed points for the
models with p > 2 appear at fairly large values of k, for
which chaotic region of considerable size have already de-
veloped, as we will see in Sec. III D. This indicates that,
for these cases, the emergence of new fixed points does
not influence the transition to chaos. This point will be
further explored next via the stability analysis of various
fixed points of the map F .

C. Stability

The stability of a fixed point or orbit is investigated
using the eigevalues of the tangent map (Jacobi matrix),

M(Xm) = ∂Xm+1

∂Xm
of F , evaluated at the fixed point or

along the orbit [49, 50].

For the family of models under study, the condi-
tion |Xm|2 = 1 guarantees that one of the eigenvalues
of M(Xm) is always one. Therefore stability analysis
reduces to that of a two dimensional area preserving
map [51]. Area preservation implies det(M(Xm)) = 1,
thus one has that the other two eigenvalues, M =
(M1,M2), of M behave in one of three ways:

(i) If the eigenvalues M of M form a complex con-
jugated pair and live on the unit circle, satisfying
|Tr(M)| < 2, the fixed point is elliptic and known
to be stable as a consequence of Moser’s twist the-
orem [52] (excluding the situation when M is the
l-th root of unity).

(ii) If the eigenvalues M of M form a reciprocal real
pair and live on the real line, satisfying |Tr(M)| > 2,
the fixed point is hyperbolic and unstable.

(iii) If the eigenvalues of M are real and degenerate,
both equal to either 1 or −1, satisfying |Tr(M)| = 2,
the fixed point is parabolic. Determining its stabil-
ity, i.e., whether or not the fixed point is surrounded
by closed invariant curves, requires a case-by-case
study (see [46, 53] for some early works).
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A negative value of the trace indicates an inversion hy-
perbolic/parabolic point [44, 49]. The above classifica-
tion characterize the shape of trajectories in the vicin-
ity of a fixed point or orbit. The effective eccentricity,
eeff = 1

2 |Tr(M)|, connects the stability classification and
the different conic sections.

In this context, a parabolic point is the hallmark of
a bifurcation process [43]. One eigenvalue equal to 1
implies isolation and persistence of the fixed point are
not guaranteed [54]. In particular, ifM = 1 one observes
a tangent bifurcation, i.e change in stability, and ifM =
−1 one observes a period doubling bifurcation [43, 44].

The above stability classification covers period-l orbits
of F as well, i.e fixed points of the the map F l[Xm]. A
parabolic point of F l[Xm] withM = 1 corresponds with
an elliptic fixed point of F with Mi equal to the l-th
root of 1, indicating a 1 to l bifurcation [43]. The afore-
mentioned types of bifurcations constitute a classification
of these processes in area preserving maps [43, 51], and
are dubbed generic. Nongeneric bifurcations might exists
(see Sec. 1.2.4.7 of [51]). For instance, when additional
symmetry constraints are imposed on the orbits of F , as
it is the case in doubly reversible maps (see Sec. III A).

Parabolic points in conjunction with the symmetries of
the map provide a large amount of information regarding
the structures that one might observe in phase space (see
the example in [55]). For the current study they will play
an crucial role in the behavior of the models with p > 2,
as we will see below.

We split the stability analysis of the p-spin models in
two cases. First, the case α = π/2, where the main
structures in phase space are the regular regions around
the poles and a period-4 orbit on the equator. Second
the case of models with α 6= π/2 where phase space is
dominated by the regular regions around the poles.

1. Stability of models with α = π/2

Using the eigenvalues of the tangent map when α =
π/2, a fixed point of F is stable when the following in-
equality is satisfied,∣∣(−1)p(p− 1)kXp−2Y + cos

(
kXp−1

)
− 1
∣∣ < 2. (21)

The cases of M equal to the l-th root of 1 should be
treated separately, as they indicate bifurcation processes.
In the case of p = 2, Eq. (21) reduces to |kY +cos(kX)−
1| < 2 as obtained by Haake [1].

Consider now the fixed points on the poles. For p = 2,
by virtue of Eq. (21) these points are stable only if k < 2.
At k = 2 the appearance of new fixed points, as dictated
by Eq. (19), together with the change in stability, in-
dicate a bifurcation processes (see left spheres on Fig.
1a). At larger values of k further period doubling bifur-
cations occur, leading to a cascade of these bifurcations,
as investigated by Haake [1].

For the models with p > 2, the left hand side of Eq.
(21) evaluated on the poles yields zero regardless of the

value of k. We observe closed invariant curves surround-
ing the poles (see right spheres in Fig. 1b,c), hinting at
the poles being stable. However at α = π/2, the eigen-
values are M = ±i, the fourth root of unity. Therefore
the poles undergo a 1-to-4 bifurcation as a function of α
(details of which will be given in the next subsection).
The local stability of the poles at this particular value of
α is studied by constructing the 2D area preserving map
describing dynamics in the vicinity of the poles (see Ap-
pendix B for details). This map satisfies the conditions of
the theorem in [53], therefore the parabolic point at the
origin is guaranteed to be surrounded by closed invariant
curves. More specifically, the local area preserving map
coincides with those in example 1 and 2 in [53] for even
and odd p’s, respectively. This confirms our initial obser-
vations and allow us to conclude that the regular islands
around the poles are stable for all values of k.

The stability features of the poles outlined above rep-
resent a major distinction between the models with p = 2
and p > 2, for the special case of α = π/2. In contrast
with the cascade of period doubling in the model with
p = 2, in the models with p > 2 we expect to find regu-
lar islands around the poles which survive even at large
values of the kicking strength k, gradually reducing their
size. This has defining consequences for the crossover
mechanism to global chaos as we will see in Sec. III D.

Let us now study the period-4 orbit on the equator.
This orbit is given by X1 → X2 → X3 → X4 → X1,
were X1 = (1, 0, 0), X2 = (0, 0, 1), X3 = (−1, 0, 0),
X4 = (0, 0,−1). The tangent map of this orbit has the
form M4p = M(X4)M(X3)M(X2)M(X1). In the case
p = 2 the orbit is stable if (2 cos(k) + k sin(k))2 < 4,
which is not satisfied for the first time when k = π. For
the case p > 2 the relevant 2× 2 subblock of M4p takes
the form

M
(2×2)
4p =(

cos2(k)− (−1)p sin2(k) cos(k) sin(k)(1 + (−1)p)
− cos(k) sin(k)(1 + (−1)p) cos2(k)− (−1)p sin2(k)

)
,

(22)

with eigenvalues

M(±)
4p = (cos(k)∓ i sin(k)) (cos(k)∓ i(−1)p sin(k)) .

(23)

If p is odd, then M(±)
4p = 1 and thus F 4 has a parabolic

point. Local stability analysis indicates the points on
the orbit are not stable, meaning that the neighborhood
of points on the orbit is not composed of closed curves
(see Appendix B). The vicinity of the orbit is popu-
lated by trajectories which belong to either the north
or south hemispheres, orbiting around the corresponding
pole. Thus, trajectories shear along the equator which
divides the counter rotating flow between the two hemi-
spheres (see Fig. 1b for a view of the phase space around
the parabolic fixed point).

For this period-4 orbit, if p is even, the two eigenvalues
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are given by

M(±)
4p = e∓i2k. (24)

Thus, the period-4 orbit is composed of elliptic (stable)
fixed points, except at the discrete values k = sπ2 with
s = 1, 2, 3, ..., for which it becomes parabolic and bifur-

cation processes take place. When s is odd M(±)
4p = −1,

indicating the period-8 orbit constructed as two cycles of
the period-4 orbit bifurcates, and each of the points on
the original period-4 orbit undergoes a 1-to-4 bifurcation.

When s is even,M(±)
4p = 1, and each of the points on the

original period-4 orbit undergoes a 1 to 2 bifurcation.
The stability of the period-4 orbit on the equator

allows us to make a distinction between models with
odd and even values of p. For the former, the orbit is
parabolic and always unstable. For the latter it is stable
(elliptic), except for a discrete set of values at which it
bifurcates. Both cases stand in contrast with the model
with p = 2 where the bifurcation processes change the
stability of the orbit. The long-lived regularity of trajec-
tories in the vicinity of the poles and the stability of tra-
jectories near the equator have important consequences
for the way in which models for p > 2 crossover to global
chaos, in contrast to that of the model with p = 2. We
will see this in detail in Sec. III D.

2. Stability of models with α 6= π/2

For the models with p > 2, the eigenvalues at the poles
are Mj = e±iα. Therefore, the poles undergo a 1 to l-
bifurcation as α is varied in [0, π], with bifurcation points
at α = αb = 2πq/l, with q, l relative primes, q < l and
l > 2.

For our kicked p-spin models all of these bifurcations
are generic, meaning that they correspond to the clas-
sification in [43, 51]. There is, however, one exception.
Models with even p are double reversible, therefore the
involution C = T T̃ (and C̃ = T̃ T ) commutes with the
map F , that is CF = FC [56]. For these models, the
poles are a fixed point of C as well; they are strongly
symmetric orbits (see Sec. 1.2.4.7 of [51]). Therefore,
any orbit emerging as a result of the bifurcation process
must satisfy the symmetry imposed by C, i.e orbit points
lie on the symmetry lines of C. This implies that when
l is even the bifurcation is generic, but when l is odd
the bifurcation is double, since the orbit should have an
even number of points in order to satisfy the symmetry
imposed by C. Thus we observe the emergence of two
period-l orbits which look essentially identical to a single
period-2l orbit emerging from a 1 to 2l bifurcation.

Bifurcation processes provides additional insights into
the distinction between models with odd and even p for
p > 2. When p is odd, dynamics in the vicinity of north
and south poles is described by the same 2D are preserv-
ing map, and bifurcations on both poles take place for
α > αb. On the other hand, when p is even, dynamics in

Figure 2. Averaged phase space similarity S as a function of
α. The panels display the cases (a) p = 3 and (b) p = 4; in
both cases we included the curve for p = 2 for comparison
purposes. The vertical lines indicate the values of α = 2π/4
(dashed), and α = 2π/3 (dashed-dotted), respectively, which
mark the position of the two most prominent bifurcations.
The other parameters are: k = 1, δα = 5× 10−4, ntot = 1500
initial conditions and N = 200 kicks.

the vicinity of the poles is described by the same 2D area
preserving map only under the trivial change k → −k.
This indicates that north/south poles bifurcate on oppo-
site sides of αb (an example of this is given in Appendix
B).

As an example we consider the two lower order bifur-
cations, taking place at values of q = 1, l = 3, 4, i.e.
αb = π/2, 2π/3, corresponding to a 1 to 4 and 1 to 3 bi-
furcations, respectively. When αb = π/2, for odd values
of p the bifurcation takes place at both north and south
poles in the direction of α > π/2. For even values of p
we see the bifurcation in the north pole in the direction
of α > π/2, and in the south pole in the direction of
α < π/2. Furthermore, the period-4 orbit appearing as a
result of the bifurcation process is composed of unstable
points, and it ceases to exists at α ∼ 2 for p odd, and
α ∼ 2, α ∼ 1 for the north and south poles, respectively,
in the case of even p’s.

Consider now αb = 2π/3. For models with odd val-
ues of p the new orbit emerges, in both north and south
poles, when α > 2π/3. For models with even values of p
the new orbit emerges, in the north pole, when α > 2π/3,
and in the south pole when α < 2π/3. In the latter case
the bifurcation is double; we observe two period-3 orbits
emerging from the pole, looking structurally the same as
a period-6 orbit. Importantly, phase space is structurally
the same in the vicinity of α = 2π/3 and in the vicinity of
α = 2π/6, where a generic 1 to 6 bifurcation takes place.
Therefore, any consequence of the stability of dynam-
ics around the poles will display a symmetric character
between these two points (see, for instance, Fig. 3c and
Fig. 4c). Additionally, at this bifurcation point, for mod-
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els with odd p, the poles have an unstable character, as
was described by Simó in [46]. This will have a defining
consequence on the early emergence of large chaotic seas,
as we will study in Sec. III D.

3. Identification of the most prominent bifurcations for
models with p > 2

In the previous subsection we focused on the bifurca-
tions taking place at α = 2π/3 and α = 2π/4. For the
models with p > 2, p = 3, 4 as studied here, these two
bifurcations are the most prominent/important ones. We
define the importance of a bifurcation by the magnitude
of global structural changes it generates in phase space.
The degree of global structural changes can be quanti-
fied by the similarity/dissimilarity of two phase space
portraits constructed starting with the same set of initial
conditions and with parameters that are only infinitesi-
mally different. Thus, if one phase space portrait corre-
sponds to parameters (α, k), the second one corresponds
to parameters (α′, k′) = (α+δα, k+δk) with δα, δk � 1.

We consider a similarity/dissimilarity quantifier S
based on the Pearson correlation coefficient [57], first in-
troduced in [42]. We review its explicit construction in
Appendix C. As we are interested purely on global struc-
tural changes induced by bifurcation processes, we will
fix k = 1, value for which the chaotic instability is not
present yet, and will study S as a function of α. In
Fig. 2a,b we present the results of averaging S over the
generated phase space portraits, i.e a fixed set of initial
conditions chosen uniformly over the unit sphere, for the
systems with p = 3, 4 and include the p = 2 curve for
comparison purposes.

In this setting S = 1 indicates two phase space por-
traits which are identical and S = 0 indicates two phase
space portraits which are completely different. Interme-
diate values indicate phase space portraits having a sub-
set of trajectories which undergo a structural change and
hence are dissimilar. In both Fig. 2a,b the vertical lines
indicate α = 2π/3, 2π/4, respectively. Notice that the
most prominent dips of S appear around these two po-
sitions, leading us to the conclusion that the two more
prominent bifurcations in systems with p > 2 take place
at α = 2π/3, 2π/4. We will see that these strong struc-
tural changes will have influence in the early emergence
of chaotic trajectories.

D. The transition to Hamiltonian chaos

The transition to chaos in perturbed Hamiltonian
systems with few degrees of freedom is well under-
stood [49, 58, 59]. For a small enough perturbation al-
most all invariant tori remain unchanged, as dictated
by the KAM theorem [49, 50, 59], with the exception
of small chaotic regions appearing in the vicinity of un-
stable manifolds [60]. At larger perturbation strengths

some invariant tori are destroyed, giving birth to chains
of regular regions and new unstable manifolds, provid-
ing new ground for the chaotic region to expand. Area
preserving mappings of the Poincare surface of section
display this same behavior [51], with the emergence of
chains of regular regions dictated by the Poincare-Birkoff
theorem [61–63].

In the case of a two dimensional phase space, the
chaotic region is clamped in between the regular regions,
and generally the emergence and growth of chaotic re-
gions adheres strictly to the mechanism described above.
However, some Hamiltonian systems exhibit period dou-
bling cascades [64] in conjunction with the destruction of
KAM tori, and therefore the transition from regular to
global chaotic motion is enhanced (see [49], Appendix G
of [50] and [65, 66]). In fact, a period doubling bifurcation
is the last instability to occur before the neighborhood of
the fixed point becomes completely chaotic [44].

In his pioneering work [1] Haake showed the existence
of a period doubling cascade in the kicked top (p = 2),
which is interwoven with the destruction of KAM tori.
From our stability analysis, it follows that none of the
models with p > 2 exhibit period doubling bifurcations,
and in fact the bifurcations present on these models cor-
respond to l-cycle bifurcations with l > 2. Therefore,
for the special case of α = π/2, where the period dou-
bling cascade occurs for p = 2, we expect the kicked top
to transition faster than any other model to the global
chaos regime. On the other hand, for values of α 6= π/2
we expect to encounter a different situation, as the pres-
ence of the l-cycle bifurcations influences the emergence
of chaotic regions in the models with p > 2. In the follow-
ing we study this transition in detail, by characterizing
the behavior of the largest Lyapunov exponent and the
surface area of the chaotic sea.

1. Largest Lyapunov exponent

Chaotic behavior is identified with a positive value of
the largest Lyapunov exponent, indicating that nearby
initial conditions diverge exponentially fast, i.e., knowl-
edge of the initial state is lost exponentially fast [67–69]

When considering a map like the one in Eq. (7), using
Oseledets ergodic theorem [70, 71] one can compute the
largest Lyapunov exponent, Λ+, via

Λ+(α, k, p) = lim
N→∞

[λ+(α, k, p)]1/2N , (25)

where N is the number of time steps, λ+ is the largest

eigenvalue of the matrix
∏N
m=1 M

T (Xm)M(Xm) and
M(Xm) is the tangent map introduced before. We can
gain some insight on the chaotic behavior of the kicked p-
spin models by computing an estimate of Λ+ in the limit
of strongly chaotic trajectories, k � 1. This estimate for
the model with p = 2 was first obtained in [72]. For mod-
els with a general value of p, we show in Appendix D that
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Figure 3. (a) Largest Lyapunov exponent of the kicked p-spin
map in Eq. (7) as a function of k and for the special case of
α = π/2. We show the cases of p = 2 (black), p = 3 (red) and
p = 4 (green). Chaos emerges first for models with p > 2 due
to either the instability or bifurcations of the period-4 orbit
along the equator. For p = 2 it takes the first period dou-
bling bifurcation, k = 2, before chaos can appear, then the
transition to strong chaotic trajectories (dashed black line)
happens faster than for any other p. The inset shows a zoom
into the parameter range k ∈ [1.0, 4.5]. (b,c,d) Largest Lya-
punov exponent as a function of α and k, for the models with
p = 2, 3, 4, respectively. For the model with p = 2 the domi-
nant behavior of Λ+ occurs at α ∼ π/2. For the models with
p > 2 and odd values (p = 3 in (c)), dominant behavior of Λ+

takes place around α ∼ 2π/3. For the models with p > 2 and
even values (p = 4 in (d)), dominant behavior of Λ+ appears
at α ∼ π/2 ± π/6. Values corresponding to the 1-to-3 bifur-
cation processes of the poles (see Sec. III).

the largest Lyapunov exponent can be approximated by

Λ+(α, k, p) = ln [(p− 1) sin(α)k]− (p− 1), (26)

Several observations follow from the form of Eq. (26).
First, strong global chaos behaves similarly in all the
models, regardless of the value of p, since Λ+ ∼ ln(k).
Second, the value of k at which the limit of strong chaotic
trajectories is reached is exponential in the size of p.
Third, the periodicity of Λ+(α, k, p) with α implies that
chaotic dynamics cannot develop when α is an integer
multiple of π, since Λ+ = 0. At these values of α, the
precession will map the system to itself or to its y-image.
Finally, in the limit of large kicking strengths, Eq. (26)
has a maximum at α = π/2, indicating that the system
will exhibit the strongest chaotic limit at this value of α.

Here we completely characterize Λ+, including the case

of weak chaos, by numerically calculating Eq. (25). We
use a method based on QR decomposition [73–75] and
compute Λ+ for values of k ∈ [0, 100] and α = π/2. Re-
sults for the models with p = 2, 3, 4, with N up to 106

steps, are shown as dots in Fig. 3a. Note that the models
with p > 2 already have a nonzero Lyapunov exponent
at values of k ∼ 1. In the case of the model with p = 3,
red dots in Fig. 3a, we know that the instability of the
parabolic points on the period-4 orbit along the equa-
tor guarantees the existence of small regions of chaotic
trajectories in the vicinity of the orbit whose size grows
continuously as the kicking strength increases. For the
model with p = 4, blue dots in Fig. 3a, the exponent be-
comes positive for the first time around k ∼ π/2, when
the period-4 orbit on the equator bifurcates for the first
time (see inset in Fig. 3a).

In contrast, the exponent for the model with p = 2
remains zero up to k > 2, when the first period doubling
bifurcation takes place. Once the period doubling bifur-
cations begin, the model with p = 2 approaches the limit
of strong chaotic trajectories (dashed black line in Fig.
3a) faster than the models with p > 2. In fact, for p = 2,
already for small values of k, the estimate in Eq. (26) is a
good approximation to Λ+. After the onset of chaos, the
system rapidly approaches the limit of strongly chaotic
trajectories. However, it does not capture the small os-
cillations appearing at intermediate values of k, which
where studied and characterized in [72]. On the other
hand, for larger values of p, larger kicking strengths are
required to push the system into the strong chaotic tra-
jectories regime, as noted from Eq. (26).

In summary, for the case of α = π/2 two important
features stand out. On the one hand, chaos is an early
phenomenon in models with p > 2, either due to the in-
stability of the period-4 orbit on the equator or its bifur-
cations. However, at larger values of k this process slows
down due to the everlasting stability of the fixed points
at the poles. On the other hand, the model with p = 2
exhibits a cascade of period doubling bifurcations which
brings phase space to global chaos faster than any other
model. This is due to the fact that a period doubling bi-
furcation is the last one to take place before the vicinity
of the fixed point becomes completely chaotic [44, 49].

We conclude the study of the largest Lyapunov expo-
nent Λ+ with a numerical exploration of its behavior as
a function of both model parameters (k, α), in the ranges
α ∈ [0, π] and k ∈ [0, 10]. Numerical results are shown in
Figs. 3b,c,d. For the model with p = 2 the behavior of
Λ+ is dominated by the case of α = π/2 (see Fig. 3b) as
we described above. However, for models with p > 2 this
is not the case. If p is odd the transition to chaos occurs
first in the region π/2 < α < 2π/3, where both poles un-
dergo 1 to 4 and 1 to 3 bifurcations. In particular, chaos
appears fairly early when α ∼ 2π/3 (see Fig. 3c) since at
this bifurcation point, the poles have an unstable char-
acter and a small value of k ∼ 1 is enough to generate a
chaotic sea of considerable size; we will expand on this in
the next subsection. For the models with even values of
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Figure 4. (a) Surface of the chaotic sea Ach as a function of the
nonlinear parameter k for the special case of α = π/2. In the
models with p > 2 (red and green), instability and/or bifurca-
tions of the orbit on the equator lead to a small chaotic region
at fairly small values of k. For p = 2, Ach grows exponentially
after the first period doubling bifurcation at k = 2. The inset
shows a zoom into the region with k ∈ [0, 2.5]. (b,c,d) Sur-
face area of the chaotic region as a function of both k and
α for the models with p = 2, 3, 4, respectively. The fastest
growth of Ach for p = 2 occurs at α = π/2, for p = 3 occurs
at α = 2π/3 as the poles are unstable, for p = 4 it occurs
at α = π/2 ± π/6, as the bifurcation processes on the poles
occur for the north/south poles symmetrically with respect
to α = π/2. All the curves and points on the heat maps were
obtained by averaging the result of the calculation explained
in Appendix E over values of tmax = 120, 121, ..., 140 and us-
ing dmin = 6−2.

p the main features of Λ+ appear symmetrically around
α = π/2±π/6 (see Fig. 3d) values for which bifurcations
similar to those taking place in the models with odd p’s
appear. However, as we saw in Sec. III, here the north/-
south pole undergoes the bifurcations to the right/left of
α = π/2, respectively.

2. Behavior of the chaotic sea surface area

The study of the largest Lyapunov exponent provided
a distinction between the models with p = 2 and p > 2,
which we connected to the stability/instability of the
main regular regions of their corresponding phase space.
However, Λ+ is a global measure and does not provide
explicit information of the shapes and sizes of regular
and chaotic regions. To complement our previous obser-

vations we study the behavior of the size of the chaotic
region as a function of the model parameters.

The surface area of the chaotic sea, denoted here Ach,
can be estimated following a Metropolis sampling-like
algorithm, as presented in the Appendix of [76]. The
key idea behind this method is the concept of recurrence
times [77]. In short, given some set of ntot initial condi-
tions uniformly distributed on the manifold of interest,
we count how many have not returned sufficiently close
to the initial neighborhood after some finite time tmax.
Given the surface area of the phase space manifold, this
number gives a good approximation to the portion that
is occupied by a chaotic region. Further details on the
method and our choice of parameters are given in Ap-
pendix E.

Using this Metropolis-like method we numerically
study the behavior of the surface area of the chaotic re-
gion as a function of k and α, and pay special attention
to the case α = π/2. Results for Ach(k) in this latter case
are shown in Fig. 4a. For values of k < 2, the area of the
chaotic region for p = 3, 4 is always larger than that of
p = 2. In particular, for the model with p = 3 we know a
chaotic sea develops in the vicinity of the period-4 orbit
along the equator, as it is composed of unstable points.

For the model with p = 2 (black line in Fig. 4), after
k = 2, Ach grows exponentially fast, as a consequence of
the period doubling cascade, already covering the whole
sphere at k ≈ 3.5, in agreement with our observations
steaming from the study of the largest Lyapunov expo-
nent. Notice that the models with p > 2 cannot follow
this exponential growth of Ach for this large range of
values of k, since the chaotic sea is constrained between
stable regions, either the poles (odd p) or the poles and
equator (even p), and they remain stable for all values of
k, only gradually reducing its size.

The behavior of Ach(k, α) for the models with p =
2, 3, 4, in the ranges k ∈ [0, 12], α ∈ [0, π], are shown in
Fig. 4b,c,d, respectively. In agreement with our obser-
vations for the largest Lyapunov exponent, the behavior
of Ach for the model with p = 2 is dominated by the bi-
furcation processes taking place as a function of k when
α = π/2. In fact, as a function of k, Ach(k, α) reaches
the saturation value when α = π/2 faster than for any
other value of α (see Fig. 4b).

In the case of models with p > 2 and odd, the dominant
behavior of Ach(k, α) takes place around α = 2π/3, value
at which a 1 to 3 bifurcation occurs. Furthermore the
unstable character of the poles lead to an early emergence
of a considerable sized chaotic region, Ach ≈ 30% around
the point (k, α) ∼ (1, 2π/3) in Fig. 4c. For models with
p > 2 and even, we do not observe a chaotic sea for values
of k < 2.5, except when α = π/2, where the bifurcations
of the period-4 orbit a long the equator create a narrow
chaotic region.

Finally, we note that the behavior of Ach as a function
of both k and α is in direct correspondence with that of
Λ+, as can be seen by comparing Figs. 3b,c,d with Figs.
4b,c,d. With this two quantities we have complete in-
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formation regarding the sizes of chaotic regions in phase
space and the strength of the local instability of trajec-
tories inside these chaotic seas.

IV. QUANTUM CHAOS OF A KICKED p-SPIN

In this section we characterize the quantum chaotic
features of the kicked p-spin model, informed by the pre-
vious analysis of the classical nonlinear dynamics.

Signatures of quantum chaos arise from two different
points of view. On the one hand, signatures of chaos are
found in properties of the eigenvalues and eigenvectors
of the Hamiltonian or Floquet operator driving the dy-
namics [78]. We refer to these as kinematic signatures.
In their study, the system symmetries play a central role.
On the other hand, quantum chaos can be characterized
via dynamical signatures appearing in the time evolution
of the states or observables [79–83]. These include the dy-
namical generation of entanglement [31, 34, 84–86], “hy-
persensitivity” to perturbations [87], tripartite mutual
information [88], the easiness/hardness of reconstruct-
ing an initial state via tomographic protocols [89, 90], to
name few. More recently, the use of high order correla-
tion functions, in particular the out-of-time-order corre-
lator (OTOC) [91, 92], a four point correlation between
two observables with vanishing commutator at the ini-
tial time, has received attention given the relationship
between chaos and information scrambling [93–97].

As a first step we study the symmetries of the Flo-
quet map Ûp in Eq. (3). The map F in Eq. (7) is the
classical limit of this quantum map, and therefore we
expect that each of the symmetries of F should be man-
ifested as a symmetry of Ûp. First we investigate how
symmetry under Ry(π) (or the lack of it) is manifested

in the quantum system. It follows from Eq. (15) that Ûp

is invariant under Ry(π) = e−iπĴy for even values of p.
Thus, the Floquet eigenvectors come with two different
parities according to how they transform under Ry(π),

and thus a block diagonal representation for Ûp can be
constructed. Time reversal is obtained from the two ap-

propriate anti-unitary operators T̂ and ˆ̃T , which yield
the doubly reversible character of the quantum evolution
for even values of p, with the composition rules for T, T̃
and Ry(π) described in Sec. III A. Similar to the classical
case, the broken rotational symmetry around y for odd
values of p implies that only T̂ is a proper time reversal
operator for the dynamics of those models. Additionally,
for α = π/2, Û2

p is invariant under π rotations around
the x-axis when p is even, as this symmetry requires in-
variance under Ry(π). In correspondence with the family
of involutions I introduced in Sec. III A, one can con-
struct operators Î, which provide a way of identifying
additional symmetries.

Figure 5. (a) Normalized averaged adjacent ratios, Γ(k), of

the eigenphases of Ûp for the special case of α = π/2. Eigen-
phases show a nontrivial degree of correlation for the model
with p = 3 at small values of k ∼ 1.5. The model with
p = 2 only shows a nontrivial value after k > 2. Both be-
haviors in concordance with the observations for Ach in Fig.
4a. In order to acquire good statistics we use Ns = 2048.
(b) Averaged PR, δ, as a function of k for the special case
of α = π/2. The models with p > 2 show some degree of
Floquet vectors delocalization at small k’s, Floquet vectors
retain some degree of the instability of classical trajectories.
We use N = 1024. (c,d,e) Normalized average adjacent ra-
tio of eigenphases as a function of k and α, in the ranges
k ∈ [0, 12], α ∈ [0, π], for the models with p = 2, 3, 4, re-
spectively. Γ(k, α) exhibits the same behavior as the classical
measures Λ(k, α), Ach(k, α), indicating that the eigenphases
carry information of the stability/instability and different bi-
furcation processes taking place in the classical model. (c-e)
Numerical results with N = 1024 for the models with even
value of p were obtained by combining the statistics of the
parity-symmetric and the parity-antisymmetric subblocks of
Ûp.

A. Diagnosing quantum chaos: the kinematic view

Different kinematic signatures have been proposed to
quantify the chaoticity of quantum systems [78, 98].
Among these, the statistics of the level spacing of eigen-
phases {µj}j=1,..,Ns+1 of Ûp, is widely accepted as an
indicator of the transition from regularity to chaos, in
particular for systems with a chaotic classical counter-
part [99, 100]. We consider the statistics of ratios of
level spacings between two adjacent eigenphases, as in-
troduced in [101], to quantify the degree of repulsion be-
tween eigenphases. A simple test of the degree of regu-
larity of the spectrum is provided by computation of the
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average adjacent spacing ratio [102], defined as

r =
1

Ns + 1

Ns+1∑
j=1

rj , rj =
min(dj , dj+1)

max(dj , dj+1)
, (27)

where dj = µj+1 − µj is the eigenphase spacing and
Ns = 2J . The regular regime is characterized by the ab-
sence of correlations between the eigenphases, in which
case the statistics of the spacings {dj} follow that of
a Poisson distribution, with an average adjacent eigen-
phase spacing ratio given by rPOS ≈ 0.39 [102]. On
the other hand, chaos is associated with the presence
of strong correlations between the eigenphases (after re-

moving additional symmetries in Ûp, for instance, parity
symmetry for even p values). In this case, the eigenphase
spacing follows the statistics of the circular orthogonal
ensemble (COE) of random matrices, where time-reversal
symmetry is the only remaining symmetry. The average
adjacent spacing ratio rCOE for this ensemble has a value
of rCOE ≈ 0.530(1) [102]. Given these two limiting val-
ues for the mean adjacent ratio, we define the following
normalized indicator

Γ =
r − rPOS

rCOE − rPOS
, (28)

where now a value of Γ ∼ 0 indicates a regular regime
of in the quantum kicked p-spin Floquet operator, and a
value of Γ ∼ 1 signals the chaotic regime.

We numerically study the behavior or Γ as a function
of k and α. For a fixed value of α = π/2 and for the
models with p = 2, 3, 4 results are shown in Fig. 5a,
corresponding to the black, red and green lines, respec-
tively. The model with p = 3 presents a value of Γ which
deviates from the Poisson value when k ∼ 1, in agree-
ment with our observations for the classical model where
instability of some regions of phase space gave birth to
small chaotic seas at similar values of k. We then see
that the eigenphase repulsion encodes information about
the instability present in this model. For the model with
p = 2, we see a nonzero value of Γ only for k > 2, in
agreement with the existence of a classical mixed phase
space due to the emergence of chaotic regions after the
period doubling bifurcation of the corresponding classical
model. For large enough kicking strength all models sat-
urate to the random matrix prediction (regardless of the
value of p), giving evidence of the fully chaotic character
of the spectral statistics.

As we observed in our analysis of the classical nonlin-
ear dynamics, when α 6= π/2 there are rich and intri-
cate phase space structures for the models with p > 2.
To explore their manifestations in the quantum map, we
numerically compute the normalized averaged adjacent
ratio, Γ(k, α) in the ranges k ∈ [0, 12] and α ∈ [0, π].
Results are shown in Fig. 5c,d,e. We observe similar
behavior to that of the classical indicators Λ+(k, α) and
Ach(k, α) presented in Fig. 3 and Fig. 4, respectively.

For the model with p = 2, the behavior of Γ(k, α) is
dominated by the case of α = π/2, and values of α 6= π/2

lead to a wider ranges of k for which the eigenphases do
not display strong repulsion (see the blue regions in Fig.
5a). For models with p > 2 and odd, as p = 3 in Fig.
5d, the spectrum exhibits strong eigenphase repulsion, al-
most saturating the random matrix prediction, at small
values of k when α ∼ 2π/3, values at which the classi-
cal model has an unstable bifurcation point. For models
with p > 2 and even, as p = 4 in Fig. 5e, Γ(k, α) is
symmetric with respect to α = π/2, and it displays the
strongest eigenphase repulsion around α ∼ π/2 ± π/6.
Around those two values, it saturates the random matrix
prediction only for k & 4, thus approaching the chaotic
regime slower than the other models. This is a direct
consequence of the high regularity and stability of the
corresponding classical model.

Another useful kinematic signature of quantum chaos
is the participation ratio (PR) associated with the Flo-
quet eigenstates. Generally the PR is defined as the in-
verse of the second moment of the distribution elements

PR(|ψ〉) =

(
Ns+1∑
l=1

|〈ψ|φl〉|4
)−1

, (29)

where |ψ〉 is an arbitrary state and {|φl〉}l=1,..,Ns+1 is
a reference basis set. In our case it corresponds to the
eigenbasis of Ĵy, which defines the precession axis and
thus the canonical direction for our p-spin. The PR
measures how localized or delocalized the state |ψ〉 is
in the reference basis. Thus, we can use the PR to con-
struct a measure of localization of the Floquet eigenbasis
{|µl〉}l=1,..,Ns+1 by taking the averge PR of the Floquet
states in the reference basis. We then define

δ =
1

δCOE(Ns + 1)

Ns+1∑
l′=1

PR(|µl′〉), (30)

where δCOE ∼ Ns+1
3 is the value of the PR averaged

over the COE ensemble (see methods in [26] and [14]),
and {|µl〉}l=1,..,Ns+1 are the eigenvectors of the Floquet

operator Ûp. Under this definition δ ∼ 1
δCOE

indicates
strong localization of the Floquet eigenvectors, associ-
ated with the regular regime, and δ ∼ 1 indicates highly
delocalized Floquet eigenvectors which are generically as-
sociated with the chaotic regime.

Numerical results for δ(k) in the case of α = π/2 are
shown in Fig. 5b, with p = 2, 3, 4 corresponding to the
black, red, and green lines, respectively. From the aver-
age localization of the Floquet states in the basis of Ĵy we
recognize a similar behavior to that of the surface area of
the chaotic sea, Ach in Sec. III D. For small values of k,
Floquet states for p = 3, 4 show nonzero average delocal-
ization, indicating that the Floquet states retain some of
the unstable character of trajectories in the correspond-
ing classical model. As we increase k, δ increases for all
values of p eventually saturating the random matrix pre-
diction. However in the case of p = 2, δ(k) grows faster
than any other models, saturating the random matrix
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prediction first. We highlight how the kinematic signa-
tures studied here are in excellent correspondence with
our observations on stability and transition to chaos in
the family of classical models [103].

B. Early time Lyapunov growth of the OTOC

The out-of-time-order correlator (OTOC) is a tempo-
ral correlation function measuring the growth in time of
the overlap between two observables that initially com-
mute. It was initially introduced as a probe of nonlin-
ear behavior in the mean-field theory of superconductiv-
ity [91], later rediscovered and popularized due to its im-
portance in the study of information scrambling [92, 95–
97] in nonequilibrium many-body quantum systems and
its relation with the classical Lyapunov exponent. In this
context, the OTOC is given by

f(t) = tr
(
ρ0V̂

†Ŵ †(t)V̂ Ŵ (t)
)
, (31)

with ρ0 a reference initial state, V̂ , Ŵ two opera-
tors of interest which commute at the initial time, i.e
[V̂ , Ŵ (0)] = 0, and Ŵ (t) denotes the Heisenberg evolu-

tion of Ŵ (0) = Ŵ up to some finite time t.
A related quantity of interest is the operator growth of

the commutator between V̂ and Ŵ (t), since it provides
information on the speed at which the available degrees of
freedom are occupied in time. The growth of the square
commutator is quantified by

C(t) = tr
(
ρ0[Ŵ (t), V̂ ]†[Ŵ (t), V̂ ]

)
, (32)

where V̂ , Ŵ are as in Eq. (31). The exact form of f(t)
and C(t) will depend on the choice of operators and refer-
ence state. For the latter, if one considers a thermal state
the growth rate and saturation value of C(t) strongly de-
pends on the temperature [104, 105]. Here our interest
is to study the growth of the commutator purely due to
operator growth, and so we choose ρ0 = 1

D I, the infinite
temperature state, where expectation values are given
by 〈B̂〉 = 1

D tr(B̂). Furthermore we take the operators

V̂ and Ŵ to be Hermitian. Under these conditions, Eq.
(32) takes the form

C(t) =
2

D

(
tr(V̂ 2Ŵ 2(t))− Re [f(t)]

)
, (33)

where D is the dimension of the Hilbert space. The
square commutator as defined in Eq. (32) typically ex-
hibits two different behaviors, at short and long times.
The short-time behavior is characterized by a mono-
tonic growth, which has been reported to follow different
functional forms [76, 95, 106, 107], especially in generic
many-body systems. Furthermore it has been conjec-
tured that the initial growth rate saturates and is always
bounded [92]. For quantum systems with chaotic clas-
sical counterparts, it has been shown in several models

Figure 6. (a,c,e) Short time evolution of the OTOC for dif-
ferent values of k with N = 512. (b) Lyapunov exponent
as obtained from the short time growth rate of the OTOC
(triangles), numerically from the classical map (dots), and
analytically from Eq. (26) (dashed line). (d) Lyaounov ex-
ponent as obtained from the short time growth rate of the
OTOC (triangles), numerically from the classical map (dots),
and analytically from Eq. (26) (dashed line). (f) Lyaounov
exponent as obtained from the short time growth rate of the
OTOC (triangles), numerically from the classical map (dots),
and analytically from Eq. (26) (dashed line). From top to
bottom we show, p = 2 (a,b), p = 3 (c,d), and p = 4 (e,f).

that the growth rate of C(t) at early times is exponential
and characterized by the classical Lyapunov exponent or
by a factor proportional to it [108–110]. A discussion of
the origin of this phenomena in the semiclassical regime
for systems of collective spin variables was recently given
in [111], and for a generic bosonic mode in [112].

We point out that in some cases, quantum systems
with integrable classical counterparts can also lead to
“scrambling” in the sense of an exponentially increasing
C(t) at short times. This behavior is typically attributed
to the presence of saddle points in the classical dynam-
ics [113, 114]. Due to this fact, the long-time behavior
of C(t) has been proposed as a complementary probe for
quantum chaos [76, 114], since for chaotic systems C(t) is
expected to present oscillations of exponentially vanish-
ing amplitude. For the case of the kicked p-spin models,
the exponential growth of C(t) can be safely attributed



14

to chaos, for p > 2, and we see in the classical analysis
that there are no saddle points. This conclusion holds
for the case of p = 2 and α = π/2, studied in Fig. 6, as
the first saddle point appears at k = 2, value at which
a nonnegligible chaotic sea is already present in phase
space.

We now turn our attention to the short time regime of
C(t) for the dynamics of the kicked p-spin models. In par-
ticular we look at the square commutator with the choice
of operators V̂ = Ŵ = Ĵz and thus Ŵ (t) = Ŵ (nT ) =

Û†np ĴzÛ
n
p , operators which are accessible in state of the

art proposals for measuring OTOC’s [115]. In Fig. 6a,c,e
we present the early time evolution of C(nT )/CCOE for
p = 2, 3, 4, respectively. The normalization factor CCOE

is obtained by replacing Ûp in Eq. (32) by a random
unitary from the COE ensemble (see methods in [26] for
further details). Notice how the exponential growth is
already visible at k ∼ 1.5 for p > 2 (green and orange
lines in Fig. 6c,e). On the other hand, once C(nT )/CCOE

grows exponentially, the rate of growth is larger for p = 2
(see red and purple lines in Fig. 6a,c,e). These two as-
pects are in direct agreement with the behavior of Λ+ in
Fig. 3a.

Finally, by a linear fit of the section that grows expo-
nentially, we extracted the quantum Lyapunov exponent
ΛQ, shown as light dots in Fig. 6b,d,f. From this fit and
direct comparison with the largest Lypaunov exponent,
Λ+ in Fig. (3), we found ΛQ ≈ 2Λ+. This result expands
those in [108, 109], providing evidence of the early-time
Lyapunov growth of the OTOC for a system whose dy-
namics is constrained to a compact phase space, here,
the unit sphere. This is in agreement with the recent
result of Lerose and Pappalardi who, using a quantum
generalization of the Oseledets ergodic theorem in the
semiclassical limit [111], provided an explicit construc-
tion that connected the OTOC and other dynamical sig-
natures such as entanglement entropy, with the classical
Lyapunov exponent and Kolmogorov-Sinai entropy.

V. SUMMARY AND OUTLOOK

We studied the Floquet dynamics of a family of Ising
p-spin models subject to time-periodic delta kicks. These
models can be regarded as the generalization of the
paradigmatic quantum kicked top, which is recovered for
p = 2. We fully characterized the classical nonlinear
dynamics of these models by studying its symmetries,
fixed points, stability, bifurcations, and the emergence
of chaos. This analysis allowed us to draw several dis-
tinctions between the models with different p’s. With
this foundation, we characterized the quantum chaotic
features of the kicked p-spin models via both kinematic
(eigenvalues and eigenvectors) and dynamical indicators
(OTOCs). We saw how the classical dynamics informed
the emergence of quantum chaos in the limit of large
spins.

The generalization of the kicked top for p > 2 showed

new phenomena arising from the decoupling of the ef-
fects of the two different dynamical processes: precession
and nonlinear kicking, characterized by the parameters
α and k, respectively. In other words, in the case of
p = 2, structural changes of phase space as well as the
transition to global chaos are dependent on both α and
k. Here, the most prominent parameter regime takes
place at α = π/2, value at which a cascade of period
doubling bifurcations accelerates the transition to global
chaos. On the other hand, for p > 2, structural changes
of phase space are strictly dictated by α, and the tran-
sition to global chaos is dictated only by k. A further
distinction within the models with p > 2, is given by the
nature of the structural changes, in particular bifurca-
tions. When p > 2 and even, some bifurcations are dou-
ble as it is required to satisfy the symmetries imposed by
the double reversibility of the models, whereas for p > 2
and odd, all bifurcation processes are generic [43].

We illustrate many of the studied phenomena with the
models with p = 3, 4. The observed phenomena is ex-
haustive and covers the whole family of models, where
one might need larger values of k with increasing p in or-
der to observe chaotic regions of considerable size. This
is in agreement with the instability of the ferromagnetic
phase of the p-spin models with increasing p [39].

To characterize quantum chaos, we studied the normal-
ized mean adjacent ratio of level spacings of the eigen-
phases of the Floquet operator Ûp, and the averaged in-
verse participation ratio of its eigenvectors. The behavior
of these two quantities was seen to be in direct correspon-
dence with that of the classical Lyapunov exponent and
the area of the chaotic region in phase space, respectively.
Finally, we studied the short time growth of the OTOC.
We showed numerically that the growth rate is dictated
by twice the classical Lyapunov exponent, 2Λ+, provid-
ing further evidence to the connection of the the OTOC
with the classical Lyapunov exponent [92], for a system
whose evolution lies on the unit sphere.

In the present work we studied the kicked p-spin mod-
els as Hamiltonian dynamical systems. As mentioned in
the introduction to the present work, p-spin models are
of importance in some areas of quantum information pro-
cessing. In the context of quantum simulation it is now
known that such kicked system will naturally arise in an
analog quantum simulator where you have restrictions
on the allowed “native gates” which can be implemented.
The effects of chaos in such simulator were studied in [26]
for the case p = 2. We have shown that the p-spin models
with p > 2 display a richer behavior beyond the case of
p = 2, and that chaotic instability is not the only insta-
bility playing an important role in these models. Given
the complete characterization of these family of models
provided in this work, we will extend its application to
analog simulation in future research.

Furthermore, p-spin models are important toy mod-
els in adiabatic quantum computing. Given the re-
cently studied connection between discretized adiabatic
evolution and certain variational optimization schemes
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such as quantum approximate optimization algorithm
(QAOA) [116, 117], the relation, if any, between the in-
stabilities of the kicked dynamics and the performance
and efficiency of QAOA in p-spin models is an interest-
ing future directions. The phenomenology of p-spin mod-
els can also be investigated with other types of analog
quantum simulators, for instance programmable quan-
tum processors [118]. In that situation, the relation be-
tween observed simulation errors, native imperfections,
and nonlinear dynamical effects of the simulator model
is a research avenue currently under investigation.
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Appendix A: Computation of the Heisenberg
equations of motion

In this appendix we present the main steps behind the
derivation of the stroboscopic Heisenberg equations of
motion for the collective operators in Eq. (4).

Consider first the evolution of Ĵz, given our choice axis
in the p-spin Hamiltonian the only nontrivial evolution
is generated by the precession unitary. The Heisenberg
evolution of Ĵz is then a rotation around the y-axis by an
angle α. The equations for Ĵx and Ĵy can be constructed

from the evolution equations of Ĵ±. The Heisenberg evo-
lution of the latter are computed exploiting the commu-
tation relations between spin ladder operators and Ĵz. A
single step of the stroboscopic evolution of the Ladder
operators is given by

Ĵ ′± = eiαĴye
ik

pJp−1 Ĵ
p
z Ĵ±e

−ik
pJp−1 Ĵ

p
z e−iαĴy . (A1)

To deal with the unitary involving Ĵpz we apply the Baker-

Campbell-Haussdorf formula and get

e
ik

pJp−1 Ĵ
p
z Ĵ±e

−ik
pJp−1 Ĵ

p
z = Ĵ±+

∞∑
n=1

1

n!

(
ik

pJp−1

)n [
Ĵpz , Ĵ±

]n
,

(A2)
where the notation [ , ]n indicates nested applications of

the commutator. Noticing that the commutator [Ĵpz , Ĵ±]
can be written as

[Ĵpz , Ĵ±] = ±
p∑
a=1

Ĵp−az Ĵ±Ĵ
a−1
z , (A3)

= ±Ĵ±

(
p∑
a=1

(±1)a+1

(
p

a

)
Ĵp−az

)
, (A4)

where to go from the first line to the second line we intro-
duced the commutation relation [Ĵz, Ĵ±] = ±Ĵ±, a total
of (p−a)-times and move Ĵ± all the way to the left. After
substituting Eq. (A4) into Eq. (A2) one easily recognizes
that the Baker-Campbell-Haussdorf series is nothing but
the series expansion of the exponential of the operator
sum in Eq. (A4), and we write

e
ik

pJp−1 Ĵ
p
z Ĵ±e

−ik
pJp−1 Ĵ

p
z = Ĵ±e

ik

pJp−1

∑p
a=1(±1)a(pa)Ĵ

p−a
z .

(A5)
Now we can easily apply the rotation part of the Floquet
operator, and a single step of the stroboscopic evolution
of the ladder operators takes the form

Ĵ ′± =
(

cos(α)Ĵx + sin(α)Ĵz ± iĴy
)
eQ±(k,α,p), (A6)

where the functions Q±(k, α, p) was defined in Eq. (5) of
the main text. From this last expression the equations of
motion for Ĵ ′x,y in Eq. (4) follow.

Appendix B: Details of some stability results

1. Explicit form of the tangent ma

For all the results presented in the main text and this
appendix we have used the tangent map of the inverse
classical stroboscopic evolution in Eq. (7). Explicitly it
has the matrix form

M(p)(Xm) =cos(α) cos(kZp−1
m ) cos(α) sin(kZp−1

m ) C(Zm; k, α, p) cos(α)
(
− sin(kZp−1

m )Xm + cos(kZp−1
m )Ym

)
− sin(α)

− sin(kZp−1
m ) cos(kZp−1

m ) −C(Zm; k, α, p)
(
cos(kZp−1

m )Xm + sin(kZp−1
m )Ym

)
sin(α) cos(kZp−1

m ) sin(α) sin(KZp−1
m ) C(Zm; k, α, p) sin(α)

(
− sin(kZp−1

m )Xm + cos(kZp−1)Ym
)

+ cos(α)

 ,

(B1)

where C(Zm; k, α, p) = (p− 1)kZp−2
m . 2. Stability of fixed points for arbitrary α and k

In the case of the map in Eq. (7) for arbitrary values
of k and α, a general expression for the stability of a
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fixed point, i.e Xm such that F [Xm] = Xm, is written
by noticing that the tangent map, evaluated at Xm has

characteristic polynomial of the form

M3 −G1(Xm; k, α, p)M2 +G2(Xm; k, α, p)M
+G3(Xm; k, α, p) = 0, (B2)

where M are the eigenvalues of the tangent map, and
the coefficients Gi(Xm; k, α, p) with i = 1, 2, 3 are given
by

G1(Xm; k, α, p) = C(Zm; k, α, p) sin(α)Ym + cos(α) + cos(kZp−1
m ) cos(α) + cos(kZp−1

m ), (B3a)

G2(Xm; k, α, p) = −C(Zm; k, α, p) sin(α) cos(α) cos(kZp−1
m )Ym −G1(Xm; k, α, p), (B3b)

G3(Xm; k, α, p) = −C(Zm; k, α, p)
(
cos(kZp−1

m )− sin(kZp−1
m )

)
cos(α) sin(kZp−1

m )(1− cos(α))Zm − 1. (B3c)

Dynamics is constrained to the unit sphere, |Xm|2 =
1, thus one of the eigenvalues of M(Xm) is always 1.
We can then write a factorization for the characteristic
polynomial in Eq. (B2) as

(M− 1)(B1M2 +B2M+B3) = 0 (B4)

where the coefficients Bi with i = 1, 2, 3 are functions
of Xm with parameters k, α and p. From this last ex-
pression and Eq. (B2) we identify, B1 = 1, B3 =
−G3(Xm; k, α, p) and B2 = 1 − G1(Xm; k, α, p). Given
these coefficients the other two eigenvalues of M have
the forms −B2

2 ±
1
2

√
B2

2 − 4B3, thus the fixed point un-
der study is stable if

B2
2 − 4B3 < 0. (B5)

As a sanity check consider the case of α = π/2 studied
in the main text. For this value of α the coefficients
B2 → 1 − (p − 1)kZp−2

m Ym − cos(kZp−1
m ) and B3 → 1,

after which Eq. (B5) takes the form(
1− (p− 1)kZp−2

m Ym − cos(kZp−1
m )

)2 − 4 < 0, (B6)

which recovers the expression given in the main text
since, given a fixed point, Xm = −Zm when α = π/2.

3. Stability of the fixed points at the poles

We study now the stability for a general value of α,
and the bifurcation processes highlighted in Sec. III for
the fixed points on the poles.

Consider first the model with p = 2, for the fixed points
on the poles we have, C(Zm; k, α, p)→ k, cos(kZm)→ 1,
and the coefficients B2 → ∓k sin(α)− 2 cos(α), B3 → 1,
giving the stability condition

(2 cos(α)± k sin(α))
2
< 4, (B7)

which reduces to the inequality k2 < 4 when α = π/2 as
expected.

In the case of models with p > 2, for the fixed points at
the poles we have, C(Zm; k, α, p) → 0, cos(kZp−1

m ) → 1
and the coefficients B2 → −2 cos(α), B3 → 1, giving
the stability condition cos2(α) < 1. Which is satisfied
for all α except at the discrete set of values α = rπ
with r an integer. At these particular values the two
nontrivial eigenvalues of M are equal to M = −B2

2 =
cos(rα) = ±1 depending on the parity of r, thus poles
are parabolic points. These values of α lead to trivial
dynamics. Every point gets mapped to itself after either
one or two applications of F . We can conclude then, on
the stability of the fixed points at the poles for the models
with p > 2 for all values of k and almost all values of α.
With the only exceptions being given by elliptic points
with eigenvalues equal to the l-th root of one, as they
signal bifurcation points.

The eigenvalues of M at the poles as function of α are

M = e±iα, (B8)

they are roots of 1 when α = αb = 2πq/l with q and l
relative primes, q < l and l > 2. We investigate these
bifurcations by restricting dynamics to the local neigh-
borhood around the poles.

Consider, for instance, the north pole (0, 1, 0) and con-
struct the area preserving map for points in its vicin-
ity. This is achieved by taking Ym = 1, Xm = δX and
Zm = δZ, with δX, δZ � 1. Expanding Eq. (8) to
leading order, and noticing that by placing the origin at
(0, 1, 0), the x-direction requires a reflection to be ori-
ented in the appropriate fashion, thus we apply the addi-
tional transformation δX → −δX. After these steps we
obtain

δX ′ = sin(α)δZ + cos(α)
(
δX − kδZp−1

)
, (B9a)

δZ ′ = cos(α)δZ − sin(α)
(
δX − kδZp−1

)
, (B9b)

which is a generalization of the paradigmatic quadratic
map initially studied by Michel Henon in [45].

In the particular case of p = 3, we recover the gen-
eral form of the quadratic map [45]. Importantly for
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us, Henon studied the periodic orbits of this map up
to period-4. He found that there are no period-2 or-
bits. There are two period-3 orbits which appear at
α = cos−1(1 −

√
2), one composed of unstable points

and one composed of stable points up to α = 2π/3, value
at which it changes stability. There are two period-4 or-
bits which appear at α = π/2. One of them is composed
of unstable points, the other one of stable points up to
α = cos−1(−0.10336015), value at which it changes sta-
bility. The existence of the period-3 orbits is not the
result of a 1 to 3 bifurcation, as this one is expected to
occur at α = 2π/3, value at which both orbits already
exists. On the other hand, the period-4 orbits are indeed
the result of a bifurcation process and they emerge from
the origin at α = π/2.

The positions of all the points in the period-3 and
period-4 orbits move away from the origin as a function
of α, therefore these periodic orbits only exists during
a, sometimes, more restricted range of α’s as the one
presented in [45]. The identification with the Henon
quadratic map is only exact when p = 3, however the
observed phenomenology is similar for all odd values of
p, where larger values of k are required in order to observe
the emergence of these orbits.

The models with even p’s display a different, yet quali-
tatively similar, phenomenology. In the case of p = 4 the
local area preserving map is cubic. To illustrate these
points, and some of the remarks made in Sec. III C, we
study the bifurcation at α = π/2.

First we address the question of whether the fixed point
is surrounded by closed invariant curves. Evaluating Eq.
B9 at α = π/2 and taking the second iteration of the
resulting map we obtain

δX ′ = −(δX − kδZp−1), (B10a)

δZ ′ = −δZ − (−1)p−1k(δX − kδZp−1)p−1. (B10b)

For models with even p, Eq. (B10) satisfies the conditions
of the main theorem in [53]. In fact, it is equivalent to
the area preserving map considered in example 1 in [53].
Hence, the fixed point at the origin is surrounded by close
invariant curves. Similarly, when p is odd the map in Eq.
(B10) is equivalent to the one investigated in example 2
of [53], thus we are guaranteed to have close invariant
curves surrounding the fixed point.

The bifurcation process can be studied by considering
the area preserving map in Eq. (B9) with α = π/2+γ and
γ � 1. Then taking the fourth iterate of the resulting
map one finds

δX ′ = δX + (6γ2 − 1)kδZp−1 + 4γδZ − 6γ2δX,
(B11a)

δZ ′ = δZ − 4γδX + 4γkδZp−1 − 6γ2δZ (B11b)

where we have kept terms up to order O(δZp−1) and
O(γ2). New fixed points of this map are

δZ =

(
4γ + 9γ3

k

) 1
p−2

, δX = γkδZp−1 − 3

2
γ2δZ.

(B12)

(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

(d.1) (d.2)
p=4

p=3

Figure 7. Snapshots of phase space right before and after
the 1-to-4 bifurcation studied in this appendix. Left/right
columns show the north/south pole projected onto the x-z.
(a,b) Bifurcation in the model with p = 3, the bifurcation
takes place at α > π/2 in both north and south poles. (c,d)
Bifurcation in the model with p = 4. The north pole bifur-
cates for α > π/2, and the south pole for α < π/2. The pa-
rameters of the displayed phase portraits are: α = π/2±0.025,
k = 1.0.

We obtain Eq. (B9) as the local dynamical description
around the north pole, however, for odd p’s, it also de-
scribes local dynamics around the south pole. Therefore
Eq. (B12) gives the bifurcation of the south pole as well.

For even p’s, local dynamics around the south pole
is given by Eq. (B9) only after taking k → −k, thus
the bifurcation takes place only when γ < 0, only then
Eq. (B12) yields real values. Notice that this asymmetry
in the direction of the bifurcation is allowed since the
invariance of F 2[Xm] under Rx(π) only exists at α =
π/2. We display projections of both hemispheres of phase
spaces showing the 1-to-4 bifurcation, for the exemplary
models with p = 3, 4 in Fig. 7.

Regardless of the parity of p, the emergent fixed points
are unstable. We see this evaluating the trace of the
tangent map of Eq. (B11) at the new fixed points,

Tr(M) = 2
[
1 + 2γ2

(
(p− 1)(4− 15γ2)− 4

)]
, (B13)

where we have kept terms up to order O(γ2), and com-
puted the trace by writing its square in terms of the de-
terminant. In the worst case, given by p = 3, the trace
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is always larger than 2 provided γ2 < 2
15 . However, we

observe that at those values of α the period-4 orbits do
not exists anymore, as their positions do not comply with
neither the locality condition nor with X2

m = 1. We con-
clude then, the period-4 orbit emerging as a consequence
of the 1-to-4 bifurcation of the poles is composed of un-
stable points.

4. Stability of the period-4 orbit on the equator at
α = π/2

We saw that the period-4 orbit along the equator is
composed of parabolic points for all the models with odd
value of p. To investigate the stability of this orbit, we
construct the area preserving map describing motion of
points in the vicinity of the orbit. This is achieved by
considering small increments on the two directions per-
pendicular to each of the points on the orbit, then con-
catenating the resulting four area preserving maps. Ad-
ditionally we consider α = π/2+γ with γ � 1, and write
cos(α) ∼ −γ, sin(α) ∼ 1 − γ2. Going over these steps,
and writing the orbit as in Sec. III, beginning and ending
at (1, 0, 0) we find

δX ′ ≈ 1, (B14a)

δY ′ = (−1)p sin(k)γ(2− γ2)

+ (1 + (−1)p) sin(k) cos(k)(γ + (1− γ2)δZ)

+
(
cos2(k)− (−1)p sin2(k)

)
(δY − kδZp−1)

+ k cos(k)W, (B14b)

δZ ′ = γ + γ(2− γ2)(1− γ2) cos(k)

+
(
cos2(k) + (−1)p−1 sin2(k)

)
(1− γ2)(γ + (1− γ2)δZ)

+ (1− 2γ2) cos2(k)(γ + (1− γ2)δZ)

− (1− (−1)p−1)(1− γ2) cos(k) sin(k)(δY − kδZp−1)

− (1− 2γ2) cos(k) sin(k)(δY − kδZp−1)

+ (−1)p−1(1− γ2)k sin(k)W, (B14c)

where W =
(
δY − kδZp−1 − γ

)p−1
. When considering

odd values of p Eq. (B14) reduces to

δY ′ = δY − kδZp−1 + k cos(k)W − sin(k)γ(2− γ2),
(B15a)

δZ ′ = γ + γ(2− γ2)(1− γ2) cos(k)

+ (1− γ2)(γ + (1− γ2)δZ)

+ (1− 2γ2) cos2(k)(γ + (1− γ2)δZ)

− (1− 2γ2) cos(k) sin(k)(δY − kδZp−1)

− (1− γ2)k sin(k)W. (B15b)

With this last expression we can compute the tangent
map, keeping up to terms of order O(δZp−1) and O(γ2),
at (1, 0, 0). Its trace is given by

Tr(M) ≈ 2

[
1 +

1

8

(
2γ2 − (1− 2γ2)(1− γ2) cos2(k)

)2]
.

(B16)

(a) (b)

(c) (d)

Figure 8. (a,b) Bifurcation of the period-8 orbit for p = 4 and
α = π/2 constructed as two cycles of the period-4 orbit on the
equator. The parameters are k = π/2 (a) and k = π/2 + 0.05
(b). (c,d) Bifurcation of the period-4 orbit. The parameters
are k = π (c) and k = π + 0.05 (d).

Which is always larger than 2. Furthermore, the peri-
odic orbit is only well define at α = π/2, thus (1, 0, 0)
is a fixed point of the map in Eq. (B14) when γ → 0.

In this limit Eq. (B16) gives 2
[
1 + cos4(k)

8

]
, which is al-

ways larger than 2, confirming the observations made in
Sec. III, trajectories in the vicinity of the periodic or-
bit do not form closed curves. In fact, the equator is
a region where trajectories belonging to opposite hemi-
spheres shear, leading to the instability of the parabolic
points forming the period-4 orbit.

Finally, for models with even value of p the orbit is
composed of elliptic fixed points, except when k is a mul-
tiple of π/2. These values of k signal bifurcations of either
the period-8 orbit, form by two cycles of the period-4 or-
bit (for instance at k = π/2), or the period-4 orbit (for
instance at k = π). We present two snapshots of these
bifurcation processes for the model with p = 4 in Fig.
8, where we show projections of phase space on the y-z
plane, with the origin at (1, 0, 0). Fig. 8a,b show the 4
to 16 bifurcation taking place at k = π/2 and Fig. 8c,d
show the 4 to 8 bifurcation taking place at k = π.

Appendix C: Construction of the
similarity/dissimilarity quantifier

Let {Xl}l=1,..,ntot
and {X ′l}l=1,..,ntot

be two sets with
ntot trajectories defining the phase space portraits of the
two parameter sets (α, k) and (α′, k′) = (α+ δα, k+ δk).
Each phase space portrait obtained from the same set
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of ntot initial conditions chosen uniformly on the unit
sphere. Each trajectory is generated up to the same final
time N .

Consider a trajectory on each set, say Xk and X ′k, be-
longing to the same initial condition, we quantify their
similarity by the product of the Pearson correlation coef-
ficients [57] of their three Cartesian components extended
in time,

S(Xk,X
′
k) = cor(X̃k, X̃

′
k)cor(Ỹk, Ỹ

′
k)cor(Z̃k, Z̃

′
k), (C1)

where X̃k = (X
(1)
k , X

(2)
k , ..., X

(N)
k ). The Pearson correla-

tion coefficient is given by

cor(A,B) =
cov(A,B)√
var(A)var(b)

, (C2)

with cov(A,B) the covariance between vectors A and B
of same length, and var(A) the variance of vector A. No-
tice that Eq. (C2) gives 1 for perfect correlation between
A and B and 0 in absence of correlations.

We construct the similarity/dissimilarity quantifier be-
tween phase space portraits by taking the average of S
over the ntot initial conditions

S =
1

ntot

ntot∑
k=1

S ({Xk}, {X ′k})

=
1

ntot

ntot∑
k=1

cor(X̃k, X̃
′
k)cor(Ỹk, Ỹ

′
k)cor(Z̃k, Z̃

′
k). (C3)

For this quantity a value of S = 1 tells that the two phase
spaces are identical, and S = 0 tells the two phase spaces
are completely different.

Appendix D: Lyapunov exponent in the limit of
strongly chaotic trajectories

In this appendix we provide the derivation of the an-
alytic expression for the Largest Lyapunov exponent in
the limit of strongly chaotic trajectories, Eq. (26) in the
main text.

For strongly chaotic trajectories [72, 119] the largest
Lyapunov exponent is given by

Λ+(α, k) = lim
N→∞

1

N

N∑
m=1

ln |M+(Xm)|, (D1)

where M+(Xm) is the largest eigenvalue of the tangent
map in Eq. (B1). Using the ergodic hypothesis we change
the time average in Eq. (D1) for a phase space average
(average over the unit sphere). Then Eq. (D1) takes the
form

Λ+(α, k) =
1

4π

∫ 1

−1

dZ

∫ 2π

0

dφ ln |M+(Xm)|, (D2)

Figure 9. (top) Mixed phase phase spaces of the kicked p-
spin model. From left to right: models with p = 2, 3 and
k = 2, 2.5. (center) Phase portraits as in (top) colored with
the value of the local Lyapunov exponent, we used 104 initial
conditions distributed approximately uniformly on the unit
sphere. (bottom) Values of the recurrence time for each of
the Ntot initial conditions used in the Ach calculation. Notice
how well the algorithm identifies the chaotic regions (white)
for the two values of p shown. Compare the white regions
with the chaotic ones in the (center) and (top) panels.

where Z = cos(θ) and (θ, φ) represent the same direction
on the unit sphere as X but in angular variables. In the
limit of k � 1 we can approximate M+ by

M(p)
+ (Xm) ≈ (p− 1)k sin(α)Zp−2

√
1− Z2 sin(φ), (D3)

obtained by writing Eq. (B1) in angular variables and
keeping terms to first order in k. Substituting Eq. (D3)
into Eq. (D2) and computing the integral we obtain the
expression in Eq. (26) of the main text.

Appendix E: Numerical computation of the surface
area of the chaotic region

In this appendix we provide further details on the
method used for the estimation of the surface are of the
chaotic region.

An estimate of the surface area of the chaotic region,
Ach, can be constructed using the concept Poincaré recur-
rence times [77]. Given some initial condition, when the
dynamics is regular time evolution will bring the system
arbitrarily close to the initial condition after a short time,
meaning that the system usually displays some degree
of periodicity. On the other hand, when the dynamics
is chaotic these “recurrence” times can be exponentially
large. Thus, we can construct an estimate of the area
of the chaotic region by setting a truncation time tmax

and a distance dmin defining a small local neighborhood
around the initial condition, and counting the number
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ntmax
of initial conditions which have not returned inside

this neighborhood after tmax time steps.
Recalling that the surface area of the unit sphere is

4π, in this approach we can write the are of the chaotic
region as

Ach = 4π
ntmax

ntot
, (E1)

and the area of the regular region is then given by
Areg = 4π − Ach. In all our numerical experiments we
use a grid of ntot = 104 initial conditions, evenly spaced
on the unit sphere. This grid, on the sphere, can only
be constructed to an approximate degree, we use the Fi-
bonacci algorithm (see for instance [120]), which is known
to give fairly accurate results. To avoid fluctuations in
our counting of initial conditions, we construct ntmax

as
an average over 20 different values of tmax.

In order to check the accuracy of our implementation
of the above described method, we compare pictures of
phase space (in Mercator projection), with figures of the
same phase spaces colored according to the value of the
local Lyapunov exponent, and figures of the same phase
spaces colored according to the values of the returning
time obtained with our implementation. These phase
portraits are shown in Fig. 9, where the left column cor-
responds to results for the model with p = 2, k = 2.5,
α = π/2 and the right column to the model with p = 3,
k = 2.0, α = π/2. We observe an excellent agreement be-
tween the chaotic region identified via the Metropolis-like
sampling (withe region in bottom panels of fig. 9), and
the region displaying a nonzero value of the local Lya-
punov (red region on center panels of Fog. 9). Therefore
we verify the that our implementation of the method ac-
curately identifies the chaotic region in phase space.
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[46] Carles Simó, “Stability of degenerate fixed points of an-
alytic area preserving mappings,” in Bifurcation, théorie
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