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Abstract

Phase-isostable reduction is an emerging model reduction strategy that can be used to accu-
rately replicate nonlinear behaviors in systems for which standard phase reduction techniques
fail. In this work, we derive relationships between the cycle-to-cycle variance of the reduced
isostable coordinates for systems subject to both additive white noise and periodic stimulation.
Using this information, we propose a data-driven technique for inferring nonlinear terms of
the phase-isostable coordinate reduction framework. We apply the proposed model inference
strategy to the biologically motivated problem of eliminating cardiac alternans, an arrhythmia
that is widely considered to be a precursor to more deadly cardiac arrhythmias. Using this
strategy, by simply measuring a series of action potential durations in response to periodic
stimulation, we are able to identify energy-optimal, nonfeedback control inputs to stabilize a
period-1, alternans-free solution.

1 Introduction

Nonlinear oscillations are of key importance in the physical, chemical, and biological sciences. In
high-dimensional settings, phase reduction is often used as a first step to analyze the oscillations
in greater mathematical detail [8], [19] and to implement effective control strategies to produce
desired behavior [22], [18], [30], [41]. While phase reduction is a well-established theoretical frame-
work for analyzing the dynamical behaviors of weakly perturbed oscillatory systems, its underlying
assumptions often break down as the magnitude of control input becomes large necessitating the
incorporation of additional information.

Model reduction strategies based on the Koopman operator [5], [27], [28] have seen a surge of
interest in the past decade as a framework by which the fundamental properties of a nonlinear
dynamical system can be analyzed in a reduced order setting. The Koopman operator framework
can be used to represent the dynamics of a fully nonlinear dynamical system in terms of a linear
but infinite dimensional operator. In principle, a reduced order model of a nonlinear dynamical
system can be obtained by finding a suitable finite-dimensional basis of Koopman eigenmodes [42].
General techniques such as dynamic mode decomposition (DMD) [39], [24], extended DMD [46],
deep learning approaches [57], [25], and delay embeddings [1], [4] have all been proposed to identify
suitable bases in various contexts.

In this work we consider the phase-isostable coordinate framework [51], [47] that characterizes
the slowest decaying Koopman eigenmodes of an oscillatory dynamical system. While strategies
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have been developed for computation of all of the necessary terms of the phase-isostable reduction
when the right hand side of the underlying equations are known [47], [50], robust strategies have
yet to be developed to compute the reduced functions in experimental situations where the full
equations are not known but data is readily available. In light of these limitations, as a primary
contribution of this work, an experimentally feasible strategy for computation of nonlinear terms of
the phase-isostable reduced equations is proposed and illustrated. This strategy explicitly considers
the change in variance of the isostable coordinates associated with entrained oscillations on a cycle-
by-cycle basis in the presence of white noise. This information is then used to infer the nonlinear
terms of the corresponding phase-isostable reduction.

The resulting reduced order model is used to implement and evaluate a nonfeedback control
strategy for eliminating cardiac alternans in a computational model of an excitable cardiomyocyte
[32]; the alternans arrhythmia is widely viewed as a precursor to cardiac fibrillation [31], [7] and
subsequent cardiac arrest. From a dynamical systems perspective, alternans emerges as a result
of a period doubling bifurcation [45], whereby the principle Floquet exponent of a periodic orbit
transitions from a negative to a positive value. Previous authors have developed feedback control
strategies for stabilizing the resulting unstable period-1 orbit, thereby eliminating alternans [12], [6],
[55]. Here, we investigate a nonfeedback control strategy suggested in [48] for achieving the same
objective; nonfeedback methods can be particularly useful for biological applications when real-
time measurements of the system’s state can be difficult to obtain. Using our proposed strategy, by
simply measuring a series of action potential durations in response to periodic stimulation, we are
able to identify energy-optimal, nonfeedback control inputs to stabilize a period-1, alternans-free
solution.

The organization of this paper is as follows: Section 2 provides a background on cardiac alternans
as well as a summary of the phase and isostable coordinate reduction framework used in this work.
In Section 3, we leverage the isostable coordinate reduction framework to identify an energy-
optimal, nonfeedback control strategy for eliminating alternans. We subsequently propose a data-
driven strategy to infer the terms of the reduction necessary to implement this optimal control
strategy. This strategy only requires measured information about the action potential durations
of the cardiac action potentials (as could be measured in an experimental setting) and does not
require any information about the underlying system equations. Section 4 illustrates and evaluates
the resulting control strategy, and Section 5 provides concluding remarks.

2 Background

Here, we provide background information about the motivating problem of developing a nonfeed-
back control strategy for eliminating cardiac alternans as well as the phase-isostable-based reduced
order modeling frameworks that will be used in this work.

2.1 Models for the Dynamical Behavior of Excitable Cardiomyocytes and the
Emergence of Cardiac Alternans

Consider a general model for the cellular behavior of a single cardiomyocyte

Cm
dV

dt
= −(Iion(V,m) + Iext(t)) + εη(t) + αu(t),

dm

dt
= fm(V,m). (1)
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Above, V denotes the transmembrane voltage, m ∈ RN is a collection auxiliary variables that can be
used to represent ion concentrations, gating variables, and other dynamical processes, Iext represents
the influence of an external pacemaker, Iion is a collection of ionic currents, fm sets the dynamics
of the auxiliary variables, Cm is the membrane capacitance, η(t) is a unit intensity, independent
and identically distributed noise process, and both 0 < ε � 1 and 0 < α � 1. Additionally, u(t)
is a transmembrane current input (in µA/cm2) used for control and will be considered later. Most
cardiac cells are excitable, and the external pacemaker Iext(t) sets the pacing rate in (1).

In this work, we will consider the Noble model [32] with model equations given in Appendix
A. Here, we will take Iext(t) = −150 exp(−(mod(t, Tpace)− 8)2). This pacemaker input provides a
periodic input to elicit action potentials at a pacing period Tpace. Representative behavior of this
model is shown in Figure 1 taking ε (which sets the noise intensity) to be 0.14. Cardiac cellular
dynamics are often represented in terms of the beat-to-beat action potential durations (APDs),
defined as the amount of time the transmembrane voltage remains depolarized above a certain
threshold on a given action potential. For slower pacing rates action potentials are nearly constant
on a beat-to-beat basis shown in panel A of Figure 1. As the pacing rate increases, a period
doubling bifurcation occurs yielding stable period-2 behavior as shown in panel B.

Figure 1: Steady state pacing of the Noble Model from Appendix A. Panel (A) illustrates rep-
resentative period-1 behavior that occurs for slower pacing rates. Panel (B) shows representative
period-2 behavior that emerges for faster pacing rates. This stable period-2 behavior is known
as action potential duration alternans. On each beat, action potentials are taken to be the time
between successive crossings of the -70 mV threshold, as denoted above with a dashed horizontal
line.

The steady state period-2 behavior highlighted in panel B of Figure 1 is generally referred to
as APD alternans, that is, a beat-to-beat alternation of the APD despite a constant rate of pacing.
Cellular cardiac alternans is generally considered to be proarrhythmic as it can lead to dispersion
of refractoriness in tissue, wavebreak, and subsequent transition to more lethal cardiac arrhythmias
[45], [7], [13]. From a biological perspective, alternans is usually attributed to steep APD restitution
[33], instabilities in the calcium cycling dynamics [34], or a combination of both factors [14]. From
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a dynamical systems perspective, both calcium-driven and voltage-driven alternans arise due to a
period doubling bifurcation. This work uses methods that are independent of the exact cause of the
bifurcation (e.g., calcium or voltage driven alternans) and focuses on the problem from the point
of view of eliminating the dynamical instability.

2.2 Isostable Coordinates and Phase-Amplitude Reduction

Towards applying a reduced order modeling framework for general cardiac cell models, the model
equations (1) can be represented by a dynamical system that is entrained to an exogenous periodic
input:

ẋ = F (x) + Iext(a) + αIinp + εInoise(t),

ȧ = 1. (2)

Here, x ∈ RN is the state of the system ordered so that the first element corresponds to the
transmembrane voltage variable and the remaining elements correspond the auxiliary variables,
Iext(a) is a Tpace-periodic input with a ∈ S1 being a time-like variable that takes values in the range

[0, T ) where T is a multiple of Tpace, Iinp =
[
u(t) 0 . . . 0

]T
, and Inoise =

[
η(t) 0 . . . 0

]T
.

Letting y ≡
[
x a

]T ∈ RN+1, define yγ(t) of (2) to be a periodic orbit (either stable or unstable)
that exists in the absence of control and noise. In order to further analyze (2) in a reduced order
setting we will consider the phase-isostable coordinate framework [51], [47]. This reduction strategy
leverages Floquet theory [20] to define a set of exponentially decaying isostable coordinates (which
can also be thought of as level sets of the Koopman eigenfunctions [28], [26] with decay rates
governed by the Floquet exponents). It will be assumed that all but one of the nonunity Floquet
multipliers of this orbit are close enough to zero so that only one isostable coordinate is required
to characterize the dynamics transverse to the limit cycle. While somewhat restrictive, the single
amplitude coordinate assumption has been successfully applied in a variety of other applications
[29], [54], [49]. Here, we are considering dynamics that are close to a period doubling bifurcation
in which a Floquet exponent transitions between positive and negative values. If none of the
other Floquet exponents are close to zero, it is reasonable to expect that the salient dynamics can
captured by this single, near-zero isostable coordinate. With these assumptions, one can use the
isostable reduction framework to transform a general model of the form (2) to a phase-isostable
based model of the form

θ̇ = ω + [Z(θ) + ψB(θ)] (αu(t) + εη(t)), (3)

ψ̇ = κψ + [I(θ) + ψC(θ)] (αu(t) + εη(t)). (4)

Here, θ is the phase coordinate which gives the timing of the oscillation, ψ is the isostable coordinate
which characterizes deviations transverse to the limit cycle, ω = 2π/T is the natural frequency,
κ is the principle Floquet exponent, Z(θ) and I(θ) are the phase and isostable response curves
that characterize the response to inputs near the limit cycle, and B(θ) and C(θ) provide nonlinear
corrections that are valid to first order accuracy in the isostable coordinate. Above, it is assumed
that the noise intensity is small enough so that the Ito correction [11] can be ignored.

We note that while the periodic orbit of (1) results from an externally applied periodic input,
when the system is augmented with a time-like variable in (2), it becomes autonomous and the
notion of asymptotic phase is still applicable. For the moment, suppose that yγ(t) is stable (the case
where yγ(t) is unstable is considered momentarily). At all locations in the basin of attraction of
the entrained periodic orbit, the asymptotic phase can be represented using the notion of isochrons
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Figure 2: The panels above show relevent terms from the reduction (6). The Noble model from Ap-
pendix A is considered with a pacing rate of 290 ms. As described in the text, two action potentials
are used to define the periodic orbit so that the resulting Floquet multipliers are positive. Panel
(A) shows the voltage trace on the periodic orbit, with panels (B) and (C) giving the corresponding
values of I(θ) and C(θ), respectively.

[15], [56] which are defined as follows: in the absence of noise and control, for any initial condition
y(0) ∈ yγ(t) the isochron associated with y(0) is given by the set of all w(0) for which limt→∞ ||y(t)−
w(t)|| = 0. Recall that in (2) it is assumed that the periodic orbit is entrained to the periodic
input Iext(a) so that the time-like variable, a, alone determines the asymptotic phase; using the
aforementioned definition of isochrons, one can show that θ = mod(θ0 + 2πa/T, 2π) (cf. [47]) where
θ0 is a constant that can be defined arbitrarily. For simplicity of exposition, we will define the
phase so that θ0 = 0. We take a = 0 when t = 0 so that

θ = mod(2πt/T, 2π). (5)

Consequently, the phase dynamics in (3) can be eliminated yielding a single equation to describe
the evolution of the isostable coordinates

ψ̇ = κψ + [I(ωt) + ψC(ωt)] (αu(t) + εη(t)). (6)

In general, phase reduction alone (i.e, using only (3)) is not sufficient to study the behavior of
entrained systems such as (1). Indeed, the direct relationship (5) makes the study of the phase
dynamics trivial. However, the incorporation of isostable coordinates allows for the stability of
entrained solutions to be analyzed with Equation (6). Figure 2 shows the terms of Equation (6)
for the Noble model from Appendix A with a pacing period of Tpace = 290 ms. The Floquet
multiplier associated with a single action potential at this pacing rate over a single cycle is -0.85
which would yield an imaginary Floquet exponent making subsequent analysis difficult. In order to
yield a positive Floquet multiplier, two action potentials are used to define the periodic orbit with
an overall period of T = 2Tpace yielding a Floquet multiplier of 0.723 and an associated Floquet
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exponent κ = log(0.723)/T = 5.6× 10−4. Panel (A) of Figure 2 shows the transmembrane voltage
with the associated values of I(θ) and C(θ) in panels (B) and (C), respectively. These terms are
computed numerically using strategies suggested in [47]. As shown in Appendix B, I(θ) = −I(θ+π).

Finally, the simplification (5) that ultimately yields (6) is obtained assuming that the entrained
periodic orbit is stable so that the notion of isochrons can be used. In Appendix C, we illustrate
that even for an unstable orbit, Equations (5) and (6) can still be used to characterize the phase
and isostable dynamics when both noise and applied transmembrane current are small.

3 A Data-Driven Model Identification Strategy and Optimal De-
sign of Periodic Inputs to Eliminate Alternans

The analysis in this section is motivated by the design of inputs u(t) that can be used to modify
the stability of an entrained solution of (2). In the absence of input and noise, the associated
equation for the reduced isostable dynamics from (6) has a fixed point at ψ = 0. The stability of
this solution is governed by the sign of Re(κ), with Re(κ) < 0 (resp., Re(κ) > 0) corresponding to
stable (resp., unstable solutions). When the period doubling bifurcation that results in alternans
occurs, the period-1, alternans-free solution loses stability (i.e., its associated Floquet exponent
crosses zero) and a stable period-2 solution associated with alternans emerges. From a dynamical
perspective the problem of eliminating alternans can be framed as a problem of finding a periodic
input that yields a periodic orbit with with κ < 0. In [48] it was shown that when applying a T -
periodic input αu(t) to (6) the Floquet exponent of the shifted periodic orbit is modified according
to

∆κ =
α

T

∫ T

0
C(ωt)u(t)dt. (7)

Equation (7) provides a guide from which to design nonfeedback stimuli to modify the stability
of a periodic orbit. This strategy, however, requires explicit knowledge of C(θ). In situations
where the dynamical equations from (2) are known, it is relatively straightforward to compute the
terms in the reduction (3) and (4) numerically using methods described in [47]. However, in many
experimental applications, the dynamical equations are usually not known accurately enough to be
used for control purposes. Previous authors have developed strategies for measuring phase response
curves for experimental systems using a ‘direct method’ [19], [10] and related strategies have been
proposed for computing I(θ) and B(θ) [53]. However, no experimentally feasible strategies currently
exist that can be used to infer the term C(θ) which is necessary for implementation of Equation (7).
The analysis to follow provides a strategy whereby the shape of C(θ) from (6) can be inferred by
understanding how statistical properties of the isostable coordinates change in response to periodic
forcing in a noisy environment.

3.1 Optimal Elimination of Alternans Using Periodic Stimulation to Stabilize
the Underlying Period-1 Orbit

In previous work [48], a strategy was developed for identifying an energy-optimal strategy to sta-
bilize an unstable periodic orbit using a periodic control input. A modified strategy based on this
approach is presented here for stabilizing an unstable period-1 alternans-free solution of (2). The
optimal control derivations presented below take η(t) = 0 in (6), assuming that noise intensity in
the full system is too small to significantly influence the Floquet exponents of the periodic solu-
tion. To begin, suppose that the unstable periodic orbit has only one unstable Floquet multiplier,
with the remaining nonunity Floquet multipliers being small enough in magnitude so that their
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associated dynamics can be effectively ignored. Such a system can be represented according to the
isostable coordinate reduction (6),

ψ̇ = κψ + [I(ωt) + ψC(ωt)]u(t), (8)

where κ is the unstable Floquet exponent, I(θ) is the isostable response curve, C(θ) is a first order
correction for the isostable dynamics, and ω = 2π/T where T is the period. In the above isostable
reduced equation, α has been absorbed into u(t) for simplicity of exposition. As discussed in Section
2.2, because the dynamics are entrained to an external pacemaker, the phase θ = ωt and cannot
be influenced by u(t).

Recall that we take the total period of oscillation to be T = 2Tpace. Letting u(t) be a T -periodic
input, notice that (8) is T -periodic. Additionally, because u(t) and ψ are both assumed to be small,
(8) is of the general form ẋ = εF (x, t) and formal averaging [38], [16] can be applied to represent
(8) as

Ψ̇ = (κ+ ζ)Ψ + ν, (9)

where ζ = 1
T

∫ T
0 C(ωs)u(s)ds, ν = 1

T

∫ T
0 I(ωs)u(s)ds, and Ψ provides a close approximation for ψ

when using the averaging framework. Fixed points of Equation (9) correspond to periodic orbits
of the unaveraged equations (8) with the same stability so that ζ gives the effective change in the
Floquet multiplier resulting from the application of u(t).

Towards the formulation and solution of an optimal control problem to stabilize an unstable
solution of (8) (and consequently stabilize the period-1 alternans-free solution of (2)), we seek to

find a stimulus that minimizes
∫ T

0 u2(t)dt subject to the constraint κ + ζ = κtarg, where κtarg is
a target Floquet exponent for the stabilized solution. As noted in [48], this constraint is satisfied
provided the differential equation

Ṙ = C(ωt)u(t) + κ, (10)

with boundary conditions R(0) = 0 and R(T ) = Tκtarg is satisfied. Consequently, the goal of
finding an energy-optimal, periodic stimulus to stabilize the unstable periodic can be posed as a
calculus of variations problem [21] which seeks to minimize the cost functional

M[R, Ṙ, u(t)] =

∫ T

0

(
u2(t) + L1(Ṙ− C(ωt)u(t)− κ)

)
dt, (11)

where L1 is a Lagrange multiplier that forces the dynamics to satisfy (10). Associated Euler-
Lagrange equations are

∂M

∂u
=

d

dt

(
∂M

∂u̇

)
, (12)

∂M

∂R
=

d

dt

(
∂M

∂Ṙ

)
, (13)

where M is the integrand of the cost functional (11). All extremal solutions of (11) must satisfy
the Euler-Lagrange equations (12) and (13). The optimization problem can be further simplified,
as done in [48], by noting that direct evaluation of (13) shows that L̇1 = 0 along extremal solutions
so that L1 is a constant. Evaluation of (12) shows that

u(t) =
L1C(ωt)

2
. (14)
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Additionally, upon substituting (14) into (10) and manipulating, one finds that when the Lagrange
multiplier

L1 =
2(κtarg − κ)

1
T

∫ T
0 C2(ωt)dt

(15)

is chosen, the required boundary conditions of (10) are satisfied. Noticing that κtarg − κ < 0 in
(15), one finds L1 < 0 so that the energy-optimal stimulus from (14) is proportional to C(ωt) and
scaled by a negative constant.

As a final note, Equation (14) states that the optimal control inputs to stabilize the unstable
alternans-free solutions of (1) are simply proportional to C(θ). The data-driven estimation strategy
for C(θ) detailed in Section 3.5 is able to estimate C(θ)µ where µ > 0 is an unknown constant. The
inability to compute the magnitude of C(θ) means that it is not possible to determine the magnitude
of the optimal stabilizing input a priori. From a practical perspective, however, stabilization can
still be achieved by applying an input ξC(θ) where ξ is a negative constant and increasing the
magnitude of ξ until stabilization is achieved. The resulting input will be energy-optimal in the
sense that it shifts the Floquet exponent towards more negative values as efficiently as possible,
i.e., the effective Floquet exponent κ+ ζ when the periodic input is applied will be achieved using
the minimum possible energy.

3.2 Exploiting Noise to Estimate C(θ) From the Phase-Isostable Reduced Equa-
tions

The section to follow details a strategy by which the shape of C(θ) from the reduced order equation
(6) can be inferred by considering the variance of the isostable coordinates in response to noise. For
the moment, we will take u(t) = 0 and it will be assumed that ψ remains an O(ε) term in response
to the O(ε) noise. For the moment, we will assume that κ < 0 (We will consider situations where
κ > 0 in Section 3.4). Under these assumptions, to leading order, (6) becomes

ψ̇ = κψ + εI(ωt)η(t) +O(ε2). (16)

Introducing r(t) ≡ ψ(t)e−κt one can write

ψ̇ = ṙeκt + κreκt = κreκt + εI(ωt)η(t). (17)

Rearranging and simplifying yields
ṙ = εe−κtI(ωt)η(t). (18)

Directly integrating (18) yields

r(t) = r(t0) + ε

∫ t

t0

e−κsI(ωs)η(s)ds, (19)

and finally,

ψ(t) = ψ(t0)eκ(t−t0) + ε

∫ t

t0

eκ(t−s)I(ωs)η(s)ds. (20)

We will consider (20) in a situation where t is sufficiently larger than t0 so that ψ(t0) can be assumed
to be zero. Letting E[X] denote the expected value of the random variable X, E[ψ(t)] = 0 because
the noise has zero mean. The variance is then

var(ψ(t)) = E[(ψ(t)− E[ψ(t)])2],

= ε2
∫ t

t0

e2κ(t−s)I2(ωs)ds, (21)
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where the second line follows from the property that (
∫ t2
t1
f(x)dx)2 =

∫ t2
t1

∫ t2
t1
f(x)f(y)dxdy along

with the property of white noise that E[η(s)η(s′)] = δ(s− s′).
Next, consider the reduced order system under the application of a small sinusoidal input

u(t) = α sin(2πnt/T ), where n ∈ N and 0 < ε� |α| � 1. In other words, α is assumed to be small,
but still significantly greater than the noise intensity. Suppose that the resulting input yields a
periodic orbit of (2) that is still entrained to the external periodic input Iext(a). The resulting orbit
yγ∗(t) will be a version of yγ(t) that has been shifted by a small amount due to the incorporation
of u(t). This yields isostable dynamics similar to (6):

ψ̇∗ = (κ+ ∆κ)ψ∗ + ε [I(ωt) + ∆I(ωt) + ψ∗(C(ωt) + ∆C(ωt))] η(t). (22)

Here ψ∗ corresponds to isostable coordinate for the orbit yγ∗(t). In (22), the periodic orbit is
shifted slightly by the new application of u(t) and the terms ∆κ, ∆I(ωt), and ∆C(ωt) are included
to account for resulting shifts in the reduced order equations. Note here that yγ∗(t) is defined
to be the entrained solution that results when u(t) is applied; consequently u(t) does not appear
explicitly in (22). Once again, because the noise intensity is O(ε), the magnitude of ψ∗ is assumed
to be an O(ε) term.

Rewriting (22) to focus solely on the order ε terms from (22) yields

ψ̇∗ = (κ+ ∆κ)ψ∗ + ε(I(ωt) + ∆I(ωt))η(t) +O(ε2) (23)

Noting the similarity between (16) and (23), we find that E[ψ∗] = 0 and

var(ψ∗(t)) = E[(ψ∗(t)− E[ψ∗(t)])2] = ε2
∫ t

t0

e2(κ+∆κ)(t−s)(I(ωs) + ∆I(ωs))2ds. (24)

Recalling that u(t) is an O(α) term, ∆κ and ∆I(ωs) are also O(α) terms. With this in mind,
expansion of (24) and subsequent comparison to var(ψ) yields

var(ψ∗)− var(ψ) = ∆k ε2
∫ t

t0

[
2e2κ(t−s)I2(ωs)(t− s)

]
ds︸ ︷︷ ︸

β

+ 2ε2
∫ t

t0

[
e2κ(t−s)I(ωs)I ′(ωs)∆I(ωs)

]
ds︸ ︷︷ ︸

ρ

+O(α2)

= ∆κβ + ρ, (25)

where ′ ≡ d/dθ. Equation (25) can be simplified further by noting, as shown in Appendix B,
that for the models considered in this work, i.e., those that yield negative Floquet multipliers
when the overall period is comprised of a single action potential, I(θ) = −I(θ + π). Hence,
∆I(θ) = −∆I(θ + π) and I ′(θ) = −I ′(θ + π) as well. With this in mind, considering the structure
of ρ and β, in situations where κ is small so that the decay of e2κ(t−s) is slow, the integrand
governing ρ will take positive and negative values that tend to balance out and ρ will be small
relative to β. This is indeed the case for our numerical model – using the reduced order model
associated with the Tpace = 290 ms pacing rate, ∆κβ is more than 1000 times larger in magnitude
than ρ. Therefore, we assume that ρ is negligible in (25) allowing (7) can be substituted into (25)
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to yield

var(ψ∗)− var(ψ) =
β

T

∫ T

0
C(ωt)u(t)dt

=
αβ

T

∫ T

0
C(ωt) sin(2πnt/T )dt

=
αβ

2
bn, (26)

where bn is the nth term of the Fourier series expansion of C(ωt). An identical argument (using
cosine wave inputs instead of sine waves) can be followed to provide relations for the other terms
of the Fourier series expansion

C(ωt) = a0/2 +
∑
n

(bn sin(2πnt/T ) + an cos(2πnt/T )) . (27)

Figure 3: Numerical confirmation of the derived relationships between changing Floquet multi-
pliers and the variance of the resulting isostable coordinates for simulations of (16) and (23).
Black dots in panel (A) show how the variance of the isostable coordinates changes when input
u(t) = α sin(8πt/T ) is applied. Predictions computed according to (25) are shown as open circles.
Histograms of the measurements of the isostable coordinates obtained from simulations of (16) and
(23) are shown in Panels (C) and (D) providing a visual representation of the change in variance
that results when sinusoidal input is applied. Note that overlapping regions of the histograms in
panels (C) and (D) appear brown.

Panel (A) of Figure 3 provides a numerical confirmation of the relations (25) using the Noble
model with a pacing rate of 290 ms. Noise with intensity 2×10−4 is used to simulate the associated
reduced order model (16) and the value of ψ is stored after every 10T units of time. Next, in the
absence of noise, u(t) = α sin(8πt/T ) (i.e., a sinusoid with a period that corresponds to half the
pacing period) is applied and the resulting reduced order terms are computed. Once these terms are
identified, simulations of (23) are performed using noise with the same intensity and the variance
of the measurements of the isostable coordinates are compared. Black dots in panel (A) of Figure 3
shows the difference in variance between simulations as a function of α with open circles computed
according to (25). Panels (C) and (D) show distributions of ψ and ψ∗, taken from simulations of
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(16) and (23), respectively. In panel (B), the actual change in the Floquet exponent is compared
to the value predicted by the relationship (7).

3.3 Relating the Variance of the Isostable Coordinates to Measurable Data

Equation (26) illustrates how sinusoidal inputs influence the variance of the isostable coordinates
in relation to the terms of the Fourier expansion of C(ωt). However, the isostable coordinate itself
is not directly measurable from data. Instead, the variance of the isostable coordinates will be
related to measured APDs, i.e., the time that the cell remains depolarized during a given action
potential. The APD is a commonly used measurement to characterize the behavior of experimental
cardiomyocytes. As in Figure 4, let tm1 (resp. tm2 ) denote the time that the transmembrane voltage
crosses some threshold Π with positive (resp. negative) slope during the mth action potential. The
mth action potential duration is then defined as

TmAPD = tm2 − tm1 . (28)

Figure 4: While the APD, defined in Equation (28) is a more natural experimental definition,
both tm1 and tm2 are random variables, which would complicate the analysis below. By contrast,
the AAPD defined in (29) consists of only one random variable (since tm0 is deterministic). In
practice, since var(tm1 − tm0 ) is small, the difference between the variance of the APDs and AAPDs
is negligable. The voltage threshold, Π, defines a Poincaré section that is used to calculate APDs.

For simplicity of the exposition, we will consider an augmented action potential duration
(AAPD) by defining tm0 to be the moment that mod(t, Tpace) = 0 on the mth cycle and letting

TmAAPD = tm2 − tm0 . (29)

As illustrated in Figure 4, TmAAPD is slightly longer than TmAPD. To proceed, we will use the op-
erational phase reduced coordinate framework [52] to relate the time of crossing of a particular
isochron to the time at which a trajectory crosses a specified Poincaré section. For the moment,
consider the entrained periodic orbit of (2) that emerges when taking u(t) = 0. We will define t̃m2
to be the time that Π is crossed on the APD downstroke when ψ = 0 (i.e., the time that the APD
would end if the system state is exactly on the limit cycle). We also recall that θ = mod(2πt/T, 2π)
and define θ̃2 ≡ mod(2πt̃m2 /T, 2π) to be the corresponding phase when this crossing occurs. Note
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that θ̃2 is the same from cycle-to-cycle. With this information, according to Equation (15) from
[52], for O(ε) values of ψ,

tm2 = t̃m2 −
ψ(t̃m2 )gV (θ̃2)

V̇ (θ̃2)
+O(ε2), (30)

where, as described in [52], gV (θ) is the transmembrane voltage component of the Floquet eigen-
function associated with ψ, and V̇ (θ) is the time derivative of the transmembrane voltage evaluated
on the unperturbed periodic orbit. Substituting Equation (30) into (29) and taking the variance
to leading order yields

var(TmAAPD) = var

(
t̃m2 −

ψ(t̃m2 )gV (θ̃2)

V̇ (θ̃2)
− tm0

)

= var

(
−ψ(t̃m2 )gV (θ̃2)

V̇ (θ̃2)

)
=
(
gV (θ̃2)/V̇ (θ̃2)

)2
var(ψ(t̃m2 )), (31)

where the second and third lines follow from the fact that (t̃m2 − tm0 ) and gV (θ̃2)/V̇ (θ̃2) are both
constants. The time at which the variance of the isostable coordinates are evaluated in Equation
(26) is arbitrary as long as it is consistent on a cycle-by-cycle basis. Therefore, taking t = t̃m2 in
(26), starting with (31) one can write

var(T ∗AAPD)− var(TAAPD) =
αβ

2

(
gV (θ̃2)

V̇ (θ̃2)

)2

bn +O(α2)

= αµbn +O(α2), (32)

where T ∗AAPD (resp., TAAPD) represent the augmented action potentials measured with (resp., with-
out) input from u(t) and µ = β(gV (θ̃2)/V̇ (θ̃2))2/2. Here, it is assumed that gV (θ) and V̇ (θ) only
change by order α when the O(α) input u(t) is applied yielding the additional O(α) terms in (32).
Note that the integrand that determines β is strictly positive so that µ > 0.

Finally, one can write rewrite the terms each AAPD as

TmAAPD = tm2 − tm0
= tm2 − tm1 + tm1 − tm0
= TmAPD + tm1 − tm0 . (33)

On each cycle tm1 − tm0 is primarily a function of the pacing used to elicit action potentials, which
does not change on a cycle-to-cycle basis. Consequently, the variance in the measurements of tm1 −tm0
will generally be negligible compared to the variance of the APDs. For example, for simulations
of (1) using the Noble model [32] var(t1 − t0) is more than 10,000 times smaller than the variance
of the resulting APDs. Thus, it is generally possible to use the standard definition of the APD in
Equation (32) instead of the AAPDs, that is,

var(T ∗APD)− var(TAPD) = αµbn +O(α2). (34)

3.4 Inference of Necessary Terms for Weakly Unstable Periodic Orbits

In order for the integrals from (25) to converge, the underlying periodic orbit must be stable so
that κ is negative. However, for the application considered in this work of stabilizing an unstable
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period-1 orbit, it is necessary to identify C(θ) when κ > 0. As shown here, supposing κ > 0 and
small enough in magnitude so that it can be stabilized with a periodic input, the relationships
derived in Section 3.2 can still be applied to estimate C(θ).

To begin, consider an unstable T -periodic orbit yγ(t) of (2) that exists when u(t) = 0. Taking
n1 ∈ N, suppose that under the application of an input u1(t) = α1 sin(2πn1t/T ) that the resulting
entrained orbit can be stabilized. Suppose also that under the application of a different input
u2(t) = α1 sin(2πn1t/T ) + α2 sin(2πn2t/T ) where n2 ∈ N that the resulting entrained orbit is still
stabilized. Once again, it will be assumed that noise εη(t) present in simulations of the reduced
order equations. Letting var(ψ∗i ) be the variance of the noisy isostable coordinate measurements
and ∆κi and ∆Ii(θ) be the terms of the shifted orbit under the application of the inputs ui(t) for
i = 1, 2, from (24) we have

var(ψ∗2)− var(ψ∗1) = ε2
∫ t

t0

e2(κ+∆κ2)(t−s)(I(ωs) + ∆I2(ωs))2ds

− ε2
∫ t

t0

e2(κ+∆κ1)(t−s)(I(ωs) + ∆I1(ωs))2ds. (35)

Above, because the shifted orbits are now stable, both κ+ ∆κ1 and κ+ ∆κ2 are less than zero so
that the integrals (35) converge as t approaches infinity.

Following the derivation from Section 3.2, assuming that α1 and α2 are small, to leading order,
one can write (35) as

var(ψ∗2)− var(ψ∗1) = (∆κ2 −∆κ1)β + 2ε2
∫ t

t0

[
e2κ(t−s)I(ωs)I ′(ωs)(∆I2(ωs)−∆I1(ωs)

]
ds. (36)

As explained in Section 3.2, the remaining integral in (36) is negligibly small relative to (κ1−κ2)β
and can be ignored. Finally, substituting (7) into the remaining terms of (36) and simplifying
yields

var(ψ∗2)− var(ψ∗1) =
α2β

T

∫ T

0
C(ωt) sin(2πn2t/T )dt

=
α2β

2
bn, (37)

where bn is the nth term of the Fourier series expansion of C(ωt). Once again, an identical argument
can be used to obtain cosine terms of the Fourier series expansion. Note the similarity between
(37) and (26). Provided that both u1(t) and u2(t) stabilize the weakly unstable periodic orbit, the
differences in the variance of the resulting isostable coordinates can be used to infer the terms of
the Fourier series expansion of C(θ). Similar to (34) it is possible to use direct measurements of
the APDs instead of measurements of the isostable coordinates so that to leading order, Equation
(37) becomes

var(T ∗APD2
)− var(T ∗APD1

) = α2µbn, (38)

where var(T ∗APD1
) and var(T ∗APD2

) correspond to the resulting variances measured when u1(t) and
u2(t) are applied, respectively.

3.5 Procedure to Infer the Terms of the Fourier Series expansion of C(θ) for
Cardiomyocytes

Combining the results 3.2-3.4, consider a a T -periodic, entrained orbit describing excitable car-
diomyocytes that can be represented according to (2). One can infer µC(θ), where µ > 0 is an
unknown constant, for the reduced order Equation (6) using the procedure detailed below.
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3.5.1 Implementation for a Stable Entrained Orbit

Step 1) Simulate (2) with u = 0. Measure every mth APD where m is chosen so that the individual
measurements are well-approximated as independent to each other. Compute the resulting
variance of the collection of measurements.

Step 2) Repeat Step 1 using u(t) = α sin(2πt/T ).

Step 3) Comparing the resulting variance in APDs from Step 2 to the variance obtained from Step
1, it is possible to infer the scaled Fourier coefficients µb1 from (34) where µ is an unknown
positive constant.

Step 4) Repeat Steps 2 and 3 taking u(t) = α sin(4πt/T ), α sin(6πt/T ) . . . and u(t) = α, α cos(2πt/T ),
α cos(4πt/T ) . . . to obtain the scaled Fourier coefficients µbn and µan using the relations
of the form (34).

3.5.2 Implementation for a Weakly Unstable Entrained Orbit

Step 1) Simulate (2) with u1(t) = α1 sin(2πn1t/T ). The magnitude and frequency of u1(t) must
be chosen so that it stabilizes the unstable periodic orbit. After initial transient behavior
decays, measure every mth APD where m is chosen so that the individual measurements
are well-approximated as independent to each other. Compute the resulting variance of
the collection of measurements.

Step 2) Repeat Step 1 using u2(t) = α2 sin(2πt/T ) + u1(t).

Step 3) Comparing the resulting variance in APDs from Step 2 to the variance obtained from Step
1, it is possible to infer the scaled Fourier coefficients µb1 from (34) where µ is an unknown
positive constant.

Step 4) Repeat Steps 2 and 3 taking u2(t) = α2 sin(4πt/T ) + u1(t), α2 sin(6πt/T ) + u1(t) . . . and
u2(t) = α2 + u1(t), α2 cos(2πt/T ) + u1(t), α2 cos(4πt/T ) + u1(t) . . . to obtain the scaled
Fourier coefficients µbn and µan using the relations or the form (38).

From an experimental perspective, the strategy suggested above is attractive because of its
simplicity – it only requires the ability to measure a series of APDs and information about C(θ)
can be inferred by computing the variance of the resulting measurements. One drawback, however,
is that µ is generally unknown so that the shape of C(θ) but not the magnitude can be obtained.
Nevertheless, as we will see in the examples to follow, knowledge of the shape of C(θ) alone is
sufficient to implement the proposed optimal nonfeedback control strategies from Section 3.1 for
eliminating alternans.

4 Results

As discussed in Section 3.1, an energy-optimal strategy for eliminating alternans using periodic
stimulation can be implemented solely with knowledge of C(θ) from (6), i.e., that capture the
second order accurate terms of the isostable dynamics. Here we apply the strategies developed in
the previous section to infer the function C(θ) with a data-driven strategy. This technique is then
leveraged to identify energy-optimal periodic stimuli that can stabilize unstable period-1 solutions
thereby eliminating alternans using the optimal control framework in Section 3.1.
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4.1 Implementation of the Proposed Techniques for a Stable Periodic Orbit

Figure 5: Illustration of the proposed strategy for estimating C(θ) of the reduced Equation (6)
for a stable entrained orbit. The grey lines in each panel show the exact value of C(θ) calculated
directly from the model equations using methods described in [47]. Black lines in each panel show
the data-driven approximation of C(θ)/µ = a0/2+

∑n
k=0 (bk sin(2πkt/T ) + an cos(2πkt/T )) for the

indicated value of n. The coefficients of the Fourier series expansion are determined using the
strategy detailed in Section 3.5.1. Dashed lines show the first n Fourier modes of the exact solution
The magnitudes of the resulting plots are appropriately normalized to provide visual comparisons
with the exact solutions. While the proposed estimation strategy is unable to capture all of the
detailed associated with the high frequency modes, the contributions of the lower frequency modes
are accurately estimated.

We consider the Noble model equations given in Equation (A1) taking Tpace = 330 ms with
ε = 0.14. After allowing initial transients to decay, a representative plot of the resulting stable
Period-1 waveform is shown in panel (A) of Figure 1. As discussed in Appendix B, because the
principle Floquet multiplier is negative, when taking T = 2Tpace, C(θ) is periodic with period Tpace.
Consequently, all odd coefficients of the Fourier series expansion (27) are simply zero. Following the
procedure detailed in Section 3.5.1, separate trials taking inputs of the form u(t) = 0.3 sin(2nπt/T )
and u(t) = 0.3 sin(2nπt/T ) are performed for all even n ≤ 14. For each trial, the associated input is
applied for approximately 5000 cycles and the variance of the resulting APDs is measured. A large
number of cycles is considered here so that the estimates of each Fourier coefficient do not change
significantly when the procedure is repeated, however, accurate results can still be obtained using
fewer measurements as will be illustrated in the results from Section 4.2. These measurements are
then used to infer µC(θ) where µ > 0 is an undetermined constant as defined below Equation (32).
In Figure 5, plots of the resulting curves are shown highlighting accuracy of the proposed method.
The accuracy in the estimate of C(θ) increases as more terms are included, however, diminishing
returns are observed with n larger than 6 in this example.

While the proposed estimation strategy accurately captures the lower frequency modes, the
higher frequency modes (i.e., those with n > 6) are not accurately inferred. This is likely due to
the fact that the magnitudes of these high frequency terms contributing to C(θ) are relatively small,
and as such, it is hard to detect their influence on the APDs. As will be shown in the examples
to follow, because these higher frequency modes have a relatively small contribution to the overall
value of C(θ), these errors do not significantly degrade the accuracy of the resulting reduced order
models.
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4.2 Implementation of Proposed Techniques for an Unstable Periodic Orbit

In this example, we consider the data-driven inference of C(θ) for an unstable period-1 orbit and
the subsequent design of a control input to eliminate alternans. Once again, we consider the Noble
model equations from (A1), this time pacing at a rate of Tpace = 253 ms. The period-1 solution
is unstable at this pacing rate; the Floquet multiplier corresponding to a single action potential is
-1.05. When taking T = 2Tpace the resulting Floquet exponent is 1.98× 10−4.

In numerical simulations of (1) we choose the ε = 0.20 to set the noise strength. Because the
period-1 orbit is unstable, alternans emerge in steady state in the absence of any external input.
Panel (B) of Figure 6 show histograms of the resulting APDs collected for over 8000 representative
action potentials. In steady state, action potential durations alternate between about 130 and
230 ms. These times correspond to peaks on the corresponding histogram. Occasionally, after
a long action potential, the next action potential will fail to initiate. In tissue, such failure to
initiate can cause conduction block that creates favorable conditions for the genesis of reentrant
arrhythimas associated with fibrillation [31], [7]. After a failed action potential, the subsequent
APD is approximately 360 ms. These occurrences account for a small but nonnegligible portion of
the observed APDs.

Figure 6: Various periodic inputs u(t) (in µA/cm2) are applied (panels A,C,E) to the Noble model
from Equation (A1) using a pacing rate of 253 ms. When no input is applied, alternans emerges
in steady state as seen in the histogram in panel (B). Occasionally, after a particularly large action
potential duration, the ensuing action potential fails, leading to an APD of approximately 350 ms
immediately afterward. The application of the sinusoidal inputs in panels (C) and (E) stabilize the
unstable period-1 alternans-free orbit, thereby eliminating alternans as can be seen in corresponding
panels (D) and (F), respectively.

As discussed in Section 3.4, in order to infer the reduced order terms associated with the
unstable, period-1 alternans free solution, it is necessary to find some nominal input that eliminates
alternans. Panels (C) and (D) of Figure 6 show examples of such stimuli that are proportional to
sin(4πt/T ) and cos(4πt/T ), respectively. The corresponding histograms in panels (D) and (F)
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indicate that alternans is eliminated and either of these stimuli can be used as the necessary
stabilizing input u1(t) to implement the strategy for identifying C(θ) using the procedure described
in Section 3.5.2. Figure 7 illustrates the results of implementing this procedure. Inputs u2(t) are
shown as colored traces in panels (A) and (C) and are applied in addition to the baseline inputs
u1(t) shown in grey. Histograms of of the measured action potentials of corresponding color are
shown in panels (B) and (D).

Figure 7: Green lines in panels (A) and (C) represent the baseline stabilizing stimulus u1(t) (in
µA/cm2) as described in the procedure from Section 3.5.2. Green bars in panels (B) and (D)
show the respective histograms of the APDs. Black, red, and blue lines in panels (A) and (C) show
stimuli u2(t)−u1(t), highlighting the additional inputs added to u1(t). Histograms of corresponding
color are shown in panels (B) and (D). Differences between the resulting variances of the measured
action potentials are then used to infer information about the shape of C(θ).

The variances of the measured APDs from Figure 7 are used as part of the procedure from
Section 3.5.2 to infer the shape of C(θ). In order to investigate the number of APDs necessary
to obtain an accurate estimate of the curve C(θ), the fitting procedure is repeated over multiple
independent trials that measure different numbers APDs. These results are shown in Figure 8.
While accurate estimates can be obtained when using a small number of APDs, the variation
in the inferred curves tends to diminish when more APDs are measured. Additionally, as more
Fourier modes are estimated, the accuracy of the resulting approximation improves. Reduced order
curves obtained from trials taking 8000 APDs with various choices of n are used to identify the
shape of energy-optimal stimuli for stabilizing the period-1 alternans-free solution with the strategy
described in Section 3.1. Specifically, as shown by Equation (14), the optimal stabilizing stimulus
is proportional to −C(θ). In order to provide an estimate of the stabilization efficiency for each
resulting input, the resulting optimal u(t) is applied to the full model (1) using the pacing rate
Tpace = 253 ms. The magnitude is adjusted until alternans is eliminated and the resulting variance
of the action potentials is between 65 and 67 ms. The resulting variance in the action potentials
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Figure 8: Results from implementing the proposed strategy from Section 3.5.2 for estimating C(θ)
from the reduced equations of the form (6) associated with an unstable periodic orbit. Each panel
shows 100 independent estimates of C(θ) (colored lines) using the indicated number of APDs to
estimate the required APD variances according to the Fourier series expansion C(θ)/µ = a0/2 +∑n

k=0 (bk sin(2πkt/T ) + an cos(2πkt/T )). The magnitudes of the resulting plots are appropriately
normalized to provide visual comparisons with the exact solutions. The black lines in each panel
show the exact value of C(θ) calculated numerically from the model equations using methods
described in [47]. Taking more terms of the Fourier series expansion (i.e., with n larger than 6)
only yields small differences in the resulting values of C(θ) and these results are not shown.

is proportional to the effective Floquet exponent (as illustrated by Equation (25)). Therefore, by
mandating the same variance for each stabilizing stimulus, we can gauge the efficiency by considering∫ Tpace

0 u2(t)dt for each stimulus. These results are shown in Figure 9. In general, estimating more
terms of the Fourier series expansion of C(θ) will yield inputs that are closer to optimal, however,
diminishing returns are observed for the higher order coefficients.

We are unaware of other nonfeedback control strategies that could be used to stabilize alter-
nans. Nevertheless, in order to make comparisons between other previously considered alternans
elimination strategies, we consider delayed feedback control of the form [35]

u(t) = γ(V (t)− V (t− τ)), (39)

where τ = Tpace and γ is a constant. The general delayed feedback control framework has been
widely studied as a means of stabilizing unstable periodic orbits [40], [9] and has also been pre-
viously investigated in terms of its ability to control cardiac alternans [37]. In contrast to the
proposed nonfeedback control strategy, the delayed feedback control requires the ability to continu-
ously and accurately measure the transmembrane voltage while concurrently applying input. Using
γ = −0.025, we find that the delayed feedback strategy (39) is able to eliminate alternans using
approximately 76 percent less energy than the nonfeedback control strategy as shown in Figure
9. Qualitatively similar results are obtained using values of γ between -0.01 and -0.05. While the
delayed feedback strategy uses less overall energy, from a practical standpoint it can be difficult
to simultaneously apply input and take measurements from the same probe. Additionally, mea-
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surement noise and other uncertainties can lead to errors that degrade the effectiveness of such
feedback control methods [2], [40]; these practical considerations are not investigated here.

Figure 9: Using the proposed strategy to infer the curve C(θ) with Fourier modes up to the
indicated value of n (and also using the exact value of C(θ)), the right panel shows the resulting
optimal stimulus (in µA/cm2) that stabilizes alternans and yields a variance of 66 ±1 ms in the

APDs. Corresponding bars in the left panel represent value of
∫ Tpace

0 u2(t)dt for the indicated
stimuli. Resulting energy consumption using the feedback (FB) control strategy from (39) taking
γ = −0.025 is also shown, where the reported energy usage represents the average per pacing cycle.
The input using the true value of C(θ) is optimal when using the nonfeedback strategy and the
approximations that result when using the inferred curves provide better estimates of the optimal
inputs as more terms of the Fourier series expansion are included. While the delayed feedback
control uses less energy than the proposed nonfeedback strategy, practical drawbacks associated
with the implementation of feedback control in experimental situations may outweigh the benefit
from the energy savings. As such, the delayed feedback control strategy and the nonfeedback
control strategy cannot be directly compared solely on the basis of overall energy usage.

5 Conclusion

Phase-isostable reduction frameworks represent a powerful model reduction strategy that can ac-
curately replicate system dynamics in situations where first order accurate techniques alone are
unable to capture the perturbed system behavior. While many strategies are available to numer-
ically compute the reduced order terms to high orders of accuracy when the model equations are
known [47], [53], [50], fewer options are available to infer the necessary terms of the reduction
solely from observed data, for example, when the model equations themselves are unknown. Meth-
ods akin to the ‘direct method’ [19], [10] can be used to approximate Z(θ) and I(θ) from Equations
(3) and (4) from experimental data. However, there are currently no general techniques that can
be used to estimate B(θ) and C(θ), i.e., the higher order terms that characterize dominant system
nonlinearities.
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In this work, we investigate the behavior of noisy oscillations that are entrained to an external
input which admit reduced order models of the form (6). By analyzing the variance of the measured
isostable coordinates on a cycle-by-cycle basis in response to additive white noise, we are able to
develop a procedure to estimate the function C(θ). Furthermore, we find that this knowledge
of C(θ) ultimately allows for the identification of energy-optimal nonfeedback control inputs for
eliminating cardiac alternans that shift Floquet exponents of associated unstable period-1 orbits
from positive to negative values. As implemented in this work, this strategy does not consider the
estimation of the other terms from the phase amplitude reduced equations (3) and (4), but could
be used in conjunction with other data driven strategies such as those suggested in [49] or [53] to
get a fuller picture of the phase and isostable dynamics. It would be of interest in future work
to extend the proposed model inference techniques for reduced order systems that require more
than one isostable coordinate. Additionally, incorporating higher order noise terms such as the Ito
correction [11] may allow for more accurate inference of the high frequency Fourier modes.

From the perspective of eliminating cardiac alternans, there are many limitations that this work
does not address. Foremost, the Noble model [32] used here is relatively simple and only contains
a limited description of the underlying cellular currents. While the data-driven model inference
strategy proposed here does not depend on the specific model used, it would be interesting to
investigate its utility in more complicated cardiac models. Additionally, while the work presented
here focuses on the elimination of alternans in a single cell, the true danger of alternans is in
the dispersion of refractoriness it can induce in tissue. This phenomenon is generally referred to
as discordant alternans and can emerge due to conduction velocity restitution and other factors
[44], [36], [23]. These effects are not considered in this work, but it would be of interest to adapt
the methods presented here for partial differential equation models of cardiac action potential
propagation where stabilization of the unstable dynamics that give rise to concordant and discordant
alternans can be investigated. Additionally, the present study considers direct transmembrane
charge injection as the control input for eliminating alternans. While this is possible in experimental
preparations, it would be more feasible to consider other inputs such as the application of a time-
varying extracellular voltage gradient (which would need to be considered with a bidomain model
[43]). These considerations will be addressed in future work.

Importantly, this work highlights that noise, which is generally present in most biological sys-
tems, can be exploited in order to identify nonlinear terms associated with reduced order models.
Further investigation could yield other strategies for robust identification of reduced order dynam-
ical models in noisy environments.

This material is based upon the work supported by the National Science Foundation (NSF)
under Grant No. CMMI-1933583.

Appendix A Noble Model Equations

The Noble model equations from [32] are used in numerical simulations in this work. The model
equations are reproduced below:

CmV̇ = iNa + iK + iAn + αu(t) + εη(t),

ṁ = αm(1−m)− βmm,
ḣ = αh(1− h)− βhh,
ṅ = αn(1− n)− βnn. (A1)
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Here, V is the transmembrane voltage and m, h, and n are gating variables that set the value of the
various ionic currents. Cm = 12µF/cm2 is the membrane capacitance, η(t) represents independent
and identically distributed zero mean white noise with unit intensity, ε and α are small constant
parameters, and u(t) is an external input. Relationships governing the ionic currents are

iNa = (400m3h+ 0.132)(V − 40),

iK = (1.2n4 + 1.2 exp((−V − 90)/50) + 0.015 exp((V + 90)/60))(V + 100),

iAn = gan(V + 60), (A2)

where gan is a variable leak conductance that is chosen to be 0 in this work. Additional coefficients
are given by

αm =
100(−V − 48)

exp((−V − 48)/15)− 1
,

βm =
120(V + 8)

exp((V + 8)/5)− 1
,

αh = 170 exp((−V − 90)/20),

βh =
1000

1 + exp((−V − 42)/10)
,

αn =
0.1(−V − 50)

exp((−V − 50)/10)− 1
,

βn = 2 exp((−V − 90)/80). (A3)

Appendix B Characteristics of the Phase-Isostable Reduction For
Systems With Negative Floquet Multipliers

The problem of eliminating alternans in cardiac models of the form (2) can be viewed from a
dynamical systems perspective as stabilizing an alternans-free periodic-1 orbit that loses stability
as a result of a period doubling bifurcation. As explained in the main text, this orbit (with period
Tpace) loses stability as its principle Floquet multiplier λ, crosses from λ > −1 to λ < −1. Because
this Floquet multipler is negative, we let two action potentials comprise the full periodic orbit so
that T = 2Tpace in the isostable reduction yielding a positive principle Floquet multiplier. Here,
we show that in this situation, I(θ + π) = −I(θ) and that C(θ + π) = C(θ) for the reduced order
equations (6).

To begin, consider a general dynamical system of the form

ẋ = F (x), (B1)

where x ∈ RN and F gives the system dynamics. Suppose that (B1) admits a Tpace-periodic orbit
xγ(t). Letting ∆x = x − xγ(t) be a small perturbation from the periodic orbit, one can linearize
with respect to the periodic orbit to find

∆ẋ = J(xγ(t))∆x, (B2)

where J(xγ(t)) is the Jacobian evaluated at xγ(t). Let Φ(t, t0) be the state transition matrix
associated with (B2) with the property that x(Tpace) = Φ(Tpace, 0)x(0). As stated in the main
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text, we assume that |λ| close to 1 so that it decays slowly and that all other nonunity Floquet
multipliers (i.e., the eigenvalues of Φ(Tpace, 0)) are close to 0 so that they can be ignored. When

considering a period of T = 2Tpace, κ = log(λ2)
2Tpace

. Letting T be the overall period used in in the

phase-isostable reduction framework, from [50], we know that I(t) is the T -periodic solution to

dI

dt
= (κId− JT (xγ(t))I(t), (B3)

where Id is an appropriately sized identity matrix. The adjoint system of (B2) is

ẏ = −JT (xγ(t))y, (B4)

and the solution to this differential equation is given by y(Tpace) = ΦT (0, Tpace)y(0) = (ΦT (Tpace, 0))−1y(0)
so that 1/λ is an eigenvalue of ΦT (0, Tpace). Let ỹ(t) be the solution to (B4) for which ỹ(Tpace) =
(1/λ)ỹ(0). Through direct substitution, one can verify that I(t) = ỹ(t) exp(κt) is the T -periodic
solution to (B3). With this in mind, one finds

I(Tpace + t) = ỹ(Tpace + t) exp(κ(Tpace + t))

= ΦT (0, t)ΦT (0, Tpace)ỹ(0) exp(κt) exp(κTpace)

= −ΦT (0, t)ỹ(0) exp(κt)

= −I(t). (B5)

In order to determine C(θ), it will be necessary to compute the Floquet eigenfunction, g(θ), corre-
sponding to κ. As discussed in [50], g(θ(t)) is the T -periodic solution to

dg

dt
= (J(xγ(t))− κId)g(t). (B6)

Letting ∆x̃(t) be the solution to (B2) for which ∆x̃(Tpace) = λ∆x̃(0), one can verify that g(t) =
∆x̃(t) exp(−κt) is the T -periodic solution to (B6) through direct substitution. Once again, with
this in mind, one finds

g(Tpace + t) = ∆x̃(Tpace + t) exp(−κ(Tpace + t))

= Φ(t, 0)Φ(Tpace, 0)∆x̃(0) exp(−κt) exp(−κTpace)

= −Φ(0, t)∆x̃(0) exp(−κt)
= −g(t). (B7)

From [50], C(t) can be obtained by computing the T -periodic solution to the linear time-varying
system

dC(t)

dt
= −

N∑
i=1

[
Ii(t)Hi,xγ(t)g(t)

]
− JT (xγ(t))C(t)

= −JT (xγ(t))C(t) +D(t), (B8)

where Ii(t) ≡ eTi I(t) with ei being the ith component of the standard basis, Hi,xγ(t) is the Hessian

matrix of the ith component of F . The term D(t) = −
∑N

i=1

[
Ii(t)Hi,xγ(t)g(t)

]
is a simplification

that isolates the terms that comprise an effective time-varying input. Note that D(t) is Tpace-
periodic as can be seen after direct substitution of the relations (B5) and (B7). Recalling that the
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state transition matrix from time t0 to t for the equation ẏ = −JT (xγ(t))y is given by ΦT (t0, t),
the unique solution to (B8) is given by the variation of constants formula [17]

C(t) = ΦT (0, t)C(0) +

∫ t

0
ΦT (τ, t)D(τ)dτ. (B9)

Noting that C(t) must be T -periodic, C(0) must be an eigenvector associated with the unity
Floquet multiplier of ΦT (0, Tpace) so that the term ΦT (0, t)C(0) is Tpace-periodic. Also note that
the integrand of (B9) is Tpace-periodic so that the entire solution C(t) must also be Tpace-periodic.
Finally, along the periodic orbit, θ = ωt = 2πt/T = πt/Tpace and thus we find that I(θ+π) = −I(θ)
and that C(θ + π) = C(θ) as desired.

Appendix C Characteristics of Phase-Isostable Reduced Equations
for Unstable Entrained Orbits

Consider an unstable entrained periodic orbit described by (2) that emerges due to periodic forcing

Iext(t). For convenience of notation, we let y ≡
[
x a

]T ∈ RN+1 and let

G(y) ≡
[
F (x) + Iext(a)

1

]
∈ RN+1 (C1)

represent the noiseless, unperturbed dynamics. Here, F and Iext are defined as part of (2). Let
yγ(t) denote the unstable periodic orbit. As done in the main text, we assume that the neglected
isostable coordinates have Floquet exponents that are negative and large in magnitude. We let
κ > 0 be the unstable, nonneglected Floquet exponent. As explained in [48], a reduced order set of
phase and isostable coordinates associated with this unstable orbit can be obtained with dynamics
of the form (3) and (4) that are valid to leading order |∆x|2, where |∆x| ≡ x(t)−xγ(t). The phase
response curve Z(θ) can be obtained by identifying the periodic solution to the adjoint equation [3]

dZ

dt
= −JT (yγ(t))Z, (C2)

where J is the Jacobian of G evaluated at yγ(t) and Z(t) is normalized so that GT (y(t))Z(t) = ω.
Considering the structure of (2), the N + 1th column of JT (yγ(t)) contains only zeros. Therefore

Z(t) =
[
0 0 . . . 0 ω

]T
(C3)

is the appropriately normalized periodic solution to (C2). Furthermore, as detailed in [47], B(t) is
the periodic solution to

dB(t)

dt
= −

N+1∑
i=1

[
Zi(t)Hi,xγ(t)g(t)

]
− (JT (xγ(t)) + κId)B(t), (C4)

where Zi(t) ≡ eTi Z(t) with ei being the ith component of the standard basis, Hi,xγ(t) is the Hessian

matrix of the ith component of G, and g(t) is defined above Equation (B6). From (C3), Zi is 0 for
i = 1, . . . , N . Furthermore, HN+1,xγ(t) = 0 as can be seen from (C1). The only periodic solution to

(C3) is then B(t) =
[
0 0 . . . 0 0

]T
. Assuming that direct perturbations to a are not possible

since it is a time-like variable, to leading order accuracy Equation (3) becomes θ̇ = ω so that the
phase dynamics can be eliminated and the reduced order dynamics take the form (5).
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