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A class of explicit numerical schemes is developed to solve for the relativistic dynamics and spin
of particles in electromagnetic fields, using the Lorentz-BMT equation formulated in the Clifford
algebra representation of Baylis. It is demonstrated that these numerical methods, reminiscent
of the leapfrog and Verlet methods, share a number of important properties: they are energy-
conserving, volume-conserving and second order convergent. These properties are analysed empiri-
cally by benchmarking against known analytical solutions in constant uniform electrodynamic fields.
It is demonstrated that the numerical error in a constant magnetic field remains bounded for long-
time simulations in contrast to the Boris pusher, whose angular error increases linearly with time.
Finally, the intricate spin dynamics of a particle is investigated in a plane-wave field configuration.

I. INTRODUCTION

The classical relativistic dynamics of charged particles
in electromagnetic fields is ubiquitous in nature and as
a consequence, is an important topic in many areas of
physics, ranging from plasma physics, astrophysics, accel-
erator physics and many others [1–5]. In plasma physics,
the main theoretical tools based on numerical simula-
tions of the Vlasov equation, the so-called particle-in-
cells (PIC) method, rely on accurate long-term approxi-
mations of particle trajectories [6–9]. In particle acceler-
ators, these trajectories are important to determine the
stability of the beam in the storage ring, again requiring
long-time solutions [10–12].

Recently, some studies have pointed out the impor-
tance of spin dynamics in plasmas [13, 14]. Also, it is
well-known in particle physics that spin dynamics is im-
portant to prepare the electron beam in the right polar-
ization, requiring fine tuning and control of the electro-
magnetic fields in the accelerator [15, 16].

Describing these physical systems theoretically then re-
quire two main ingredients: an equation that describes
the (classical) state of the particle (position, velocity and
spin) and an accurate approximation for the solution of
this equation. The former is provided by the combination
of the relativistic Lorentz equation, for charged particle
trajectories, and the Bargmann-Michel-Telegdi (BMT)
equation [17], which gives a classical description of spin
precession when gradients of the field can be neglected
[1]. The latter is the subject of this article, where nu-
merical methods are developed to solve these equations.
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Solving the Lorentz-BMT set of equations numeri-
cally and efficiently for long-time simulations is a long-
standing problem. To reach this goal, many numerical
approaches have been developed over the years, most of
them focusing on the Lorentz equation and neglecting
spin. The quintessential numerical scheme is the Boris
pusher [18], developed in the 70’s and now widely used
in PIC codes and for simulating the particle dynamics
in magnetic fields. Its success stems from the fact that
the algorithm is simple and preserves the phase-space
volume in the non-relativistic limit, despite not being
symplectic [19]. Moreover, it also preserves energy ex-
plicitly for certain field configurations [20]. These prop-
erties make this method much more accurate in long-time
simulations than standard approaches for systems of or-
dinary differential equations, such as the Runge-Kutta
methods, while still being easy to implement. Given its
success, the Boris method has been revisited many times.
For example, more accurate versions of the Boris method
have been developed via a modified gyration angle update
[21, 22] or a filter algorithm [23]. Also, a Boris-like algo-
rithm with spatial stepping also exists [24]. Other alter-
natives to the Boris method in the non-relativistic limit
include high-order exponential operator splitting [25–29],
symplectic methods [30, 31], multisteps methods [32] and
the line integral method [33].

In the relativistic regime, the system of equations be-
comes nonlinear and thus, more challenging to solve.
In addition, the Boris method is no longer volume-
conserving and thus, looses its accuracy in strong elec-
tromagnetic fields. For these reasons, many alternatives
to the Boris approach have been developed recently to
tackle the relativistic dynamics of charged particles [34–
38]. Most of these approaches rely on the explicit conser-
vation of the phase-space volume and/or the conservation
of energy for long-time accuracy. Many of the most pop-
ular numerical schemes are compared in Ref. [39]. At-

mailto:agontijo@mpi-hd.mpg.de
mailto:steve.maclean@emt.inrs.ca
mailto:francois.fillion@emt.inrs.ca


2

tempts to solve the BMT equation in conjunction with
the Lorentz-force equation are more rare however, but
can be found in Refs. [40, 41].

In this article, we put forth new frameworks for sim-
ulating relativistic dynamics of trajectory and spin for
charged particles in a strong electromagnetic field based
on the spinor formulation of Baylis [42–46]. Leapfrog-
like and Verlet-like second-order numerical methods are
developed based on operator splitting. Both preserve
the phase-space volume; additionally, energy is conserved
when the electric field is absent. These properties are
tested empirically by comparing computed trajectories
to known analytical solutions in homogeneous constant
electric and magnetic fields. It is demonstrated that the
numerical error stays bounded for all field configurations,
in contrast to the Boris method, for which the numerical
error increases linearly with time in the case of a strong
constant magnetic field. Furthermore, our formulation
provides an access to spin, which can be evaluated by
solving another differential equation. The spin dynam-
ics is benchmarked with the exact solution for a particle
moving in a plane electromagnetic wave.

This article is organized as follows. In Section II, we
review the formalism of the Clifford algebras applied to
electrodynamics. In Section III the numerical methods
are described. In Section IV the methods are bench-
marked against the relativistic Boris method. We then
close in Section V with conclusions and an outlook. Units
where c = 1 are used throughout this article.

II. REVIEW OF THE FORMALISM OF
CLIFFORD (GEOMETRIC) ALGEBRAS

APPLIED TO ELECTRODYNAMICS

In this section, the application of the Clifford algebra
to electrodynamics and particle dynamics is reviewed.
More details on this formulation can be found in Refs.
[45–47]. Throughout this paper, a classical particle of
charge q and mass m is considered. Bold letters corre-
spond to ordinary three-dimensional vectors.

A. Charged particle dynamics

In the usual classical relativistic formulation, the tra-
jectory of a charged particle x is governed by the Lorentz-
force equation

dp

dt
= q

(
E +

dx

dt
×B

)
, (1)

where p = γmdx/dt denotes the momentum,

γ = 1/
√

1− (dx/dt)2 is the Lorentz factor, E and B
are the electric and magnetic fields, respectively. The
manifestly-covariant form of this equation reads

m
duµ

dτ
= qFµνuν , (2)

where uµ = (u0,u) = γ(1, dx/dt) is the proper velocity,
τ is the proper time, and Fµν is the electromagnetic field
tensor. The Einstein summation convention is assumed
over repeated Greek indices µ, ν = 0, 1, 2, 3.

In the Clifford algebra formalism, the motion and ori-
entation of a particle is determined by its eigenspinor Λ,
which is just the special Lorentz transformation relating
the rest frame of the charge to the lab frame. The prop-
erties of spacetime vectors known in the rest frame of
the charge are transformed to the lab frame by Λ. For
instance, the proper velocity of the particle in the lab
frame is

U = ΛΛ†, (3)

where

U = (σ0u
0 + σ1u

1 + σ2u
2 + σ3u

3)

=

(
u0 + u3 u1 − iu2

u1 + iu2 u0 − u3

)
. (4)

The component σ0 is the 2× 2 identity matrix while σk,
k = 1, 2, 3, are the Pauli matrices. Note that both ma-
trices U and Λ are unimodular owing to the mass-shell
condition det(U) = (u0)2 − u2 = 1. The velocity in the
usual quadri-vector representation can be recovered via

uµ =
1

2
Tr (Uσµ). (5)

As shown in [46, 48, 49], the Lorentz-force equation (2)
can be written in terms of Λ as

dΛ

dτ
=

q

2m
FΛ, (6)

where F is the electromagnetic field tensor represented
by the traceless matrix

F = Ekσk + iBkσk

=

(
E3 E1 − iE2

E1 + iE2 −E3

)
+ i

(
B3 B1 − iB2

B1 + iB2 −B3

)
.

(7)

The equivalence between Eqs. (2) and (6) can be proven
as follows. Taking the proper time derivative of equation
(3) gives

dU

dτ
=
dΛ

dτ
Λ† + Λ

dΛ†

dτ
. (8)

It follows from Eq. (6) that

dΛ

dτ
Λ† =

q

2m
FU, Λ

dΛ†

dτ
=

q

2m
UF †. (9)

Thus,

dU

dτ
=

q

2m
(FU + UF †),

=
q

m

(
σ0E · u+ u0Ekσk + σk(u×B)k

)
, (10)
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given that U is hermitian. Therefore, the scalar and vec-
tor parts of the above equation give, respectively

m
du0

dτ
= qE · u, (11)

m
du

dτ
= u0qE + (u× qB). (12)

Since the eigenspinor is related to the proper velocity, the
spacetime trajectory xµ is recovered as

xµ =
1

2
Tr (xσµ), (13)

dx

dτ
= ΛΛ†. (14)

The eigenspinor of a particle is different for differ-
ent observers. Suppose that ΛA is the eigenspinor of
a charged particle with respect to observer A. Let LBA
transform properties from the rest frame of the observer
A as viewed by observer B. The eigenspinor for observer
B is then

ΛB = LBAΛA.

The transformation of the eigenspinor thus takes the form

Λ→ LΛ.

B. Spin dynamics

The most significant advantage of the spinorial propa-
gator is the ability to provide the classical spin dynamics
as described by the BMT equation. Arbitrarily defining
σ3 as the direction of the spin in the particle’s rest frame,
the spin 4-vector in the laboratory frame is then given by
[50]

S = Λσ3Λ†, (15)

where Λ obeys the dynamical equation Eq. (6) for the
g-factor g = 2. Taking the proper time derivative of (15),
we have

dS

dτ
=
dΛ

dτ
σ3Λ† + Λσ3

dΛ†

dτ
. (16)

It follows from Eq. (6) that

dΛ

dτ
σ3Λ† =

q

2m
FS, Λσ3

dΛ†

dτ
=

q

2m
SF †. (17)

Thus,

dS

dτ
=

q

2m
(FS + SF †)

=
q

m

(
σ0E · S + S0E

kσk + σk(S ×B)k
)

(18)

given that U is hermitian. Therefore, collecting the terms
and writing in covariant form, we end up with the BMT
equation

dSα

dτ
=

q

m
FαβSβ . (19)

In the standard approach, this differential equation is
solved along with the Lorentz-force equation (2). This
is a challenging problem because the two equations are
coupled via the electromagnetic field. In the Clifford al-
gebra formulation, we solve for Λ by using Eq. (6) and
the spin is simply evaluated using Eq. (15).

For a general g-factor, the calculation of spin is more
challenging. We must introduce an auxiliary spinor Υ
that is dedicated to track the classical spin according to
the following equation [50]

dΥ

dτ
=

q

8m

[
(2 + g)F + (2− g)UF †Ū

]
Υ, (20)

where U = ΛΛ†. Here, Λ is calculated employing the
g = 2 propagator in Eq. (6); thus U is known at each
step in τ . Having calculated Υ, the spin for g 6= 2 is

S̃ = Υσ3Υ†. (21)

It can be verified that when g = 2, one recovers Υ = Λ
and S̃ = S. Following the same steps of Eqs. (16), (17)

and (18) for S̃ instead, we arrive at

d

dτ
S̃α =

q

m

[g
2
FαβS̃β +

(g
2
− 1
)
Uα(S̃λF

λµUµ)
]
,

(22)

which is the BMT equation for a general g-factor.

III. NUMERICAL METHODS

In this section, a class of numerical schemes is devel-
oped starting from the Lorentz-BMT force equation for-
mulated in the Clifford algebra representation developed
by Baylis. The main physical goal is obtaining accu-
rate relativistic trajectories of particles immersed in a
space-time dependent electromagnetic field. This will be
achieved by a combined use of the split-operator method
and standard discretization techniques, resulting in sim-
ple but efficient numerical methods.

The starting point is the system of ordinary differential
equations (ODE) obeyed by the particle in its proper
reference frame, obtained from Eq. (3), along with Eq.
(6). The proper time is related to the lab frame time by
dt/dτ = γ(t), where γ(t) is the Lorentz factor. Then, the
particle dynamical equations become

dΛ(x(t))

dt
=

q

2mγ(t)
F (x(t))Λ(x(t)), (23)

dx(t)

dt
=

1

γ(t)
Λ(x(t))Λ†(x(t)), (24)
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where Λ(x(t)) ∈ M2(C) is the eigenspinor describing the
motion and orientation of a particle, x(t) ∈ M2(C) is
the position of the particle and F ∈ M2(C) is the elec-
tromagnetic tensor. All these quantities are two-by-two
complex matrices (M2(C)) expressed in the Clifford al-
gebra described in Sec. II, where a Pauli matrix basis
decomposition is given [see Eqs. (7) and (14)]. When
g 6= 2, these two equations should be supplemented by
Eq. (20) to obtain the spin dynamics. In the lab frame,
this is expressed as

dΥ(x(t))

dt
=

q

8mγ(t)

[
(2 + g)F (x(t))

+ (2− g)U(x(t))F †(x(t))Ū(x(t))

]
Υ(x(t)).

(25)

Together with the initial values x(t0) = x0 and
Λ(x0) = Λ0, Eqs. (23)-(24) form the initial value problem
solved by the numerical methods. The initial position x0

is evaluated from Eq. (14). Λ0 can be obtained by us-
ing the fact that Λ is a unimodular element of the Pauli
algebra, and therefore can be written as a pure boost
[42, 43, 51]:

Λ0 = e
w0

2 , (26)

where w0 is the initial rapidity. The rapidity is given by

w0 = σkû
k,0 arctan(|u0|), (27)

where û0 := u0/|u0| is the unit vector in the direction of
the initial velocity u0 ∈ R3.

The ODE system (23) and (24) has an important
mathematical property: it preserves the phase-space vol-
ume. This can be demonstrated by showing that the
ODE is divergenceless. For this purpose, we follow Ref.
[52] and introduce similar notation. First, the ODE sys-
tem is written in the general form

dz(t)

dt
= G(z), for z,G ∈ Cm, (28)

where z = (z1, · · · , zm)T is a real vector containing the
ODE degrees of freedom (DOF) while G, also a vector,
specifies the dynamics of all DOF. The exact flow ϕ∆t of
the ODE system is defined by

z(t+ ∆t) = ϕ∆t(z(t)). (29)

To write the ODE system (23)-(24) in the form of Eq.
(28), the vectorization operator is introduced

~A := vec(A) =

[A11, · · · , Am1, A12, · · ·Am2, · · · , A1m, · · · , Amm]T ,
(30)

for any m-by-m matrices A with components
(Aij)i,j=1,··· ,m. This operation is a mapping

vec : Mm(C) → Cm2

that transforms a square ma-
trix into a vector by stacking the columns of the matrix.
This operation obeys some properties, in particular
vec(AB) = (Im ⊗ A)vec(B). Armed with this notation,
it is now possible to demonstrate that the ODE system
is volume-preserving.

An ODE system is divergence-free when

m∑
i=1

∂Gi
∂zi

= 0. (31)

In addition, a divergence-free ODE system is volume pre-
serving [52], thus we now demonstrate that Eq. (31)
holds for (23) and (24). First, the vectorization mapping
is applied to the ODE system yielding

d~Λ

dt
=

q

2mγ
(I2 ⊗ F )~Λ := G(Λ), (32)

d~x

dt
=

vec
(
ΛΛ†

)
γ

:= G(x). (33)

where ~Λ, ~x,G(x), G(Λ) ∈ C4 are four-dimensional vectors,
obtained from the stacking of matrix components. Obvi-
ously, the derivatives

∂G
(x)
i

∂~xi
= 0 for i = 1, · · · , 4, (34)

simply because G(x) has no explicit dependence on x. On
the other hand, derivatives of G(Λ) are not zero, rather
we have

∂G
(Λ)
1

∂~Λ1

=
∂G

(Λ)
3

∂~Λ3

= E3 + iB3, (35)

∂G
(Λ)
2

∂~Λ2

=
∂G

(Λ)
4

∂~Λ4

= −E3 − iB3. (36)

However, when taking the divergence, a sum on all these
contributions is taken and we get ∇·G(Λ) = 0. As a con-
sequence, the ODE system is divergence-free, implying
that it is also volume-preserving [52]. It is emphasized
here that the phase-space is spanned by the position and
eigenspinor (x,Λ). In particular, it is not the same space
as the one for Hamiltonian systems, defined via the posi-
tion and momentum of the particle (x,p). Nevertheless,
volume preservation is an intrinsic property of the dy-
namic ODE system (23)-(24) and therefore, numerical
schemes fulfilling this property should be more accurate
in long-term calculations because they will preserve the
qualitative features of the solution [53].

A. Discretization of the ODE system

To develop such numerical schemes, a time grid is
introduced where xn = x(tn), Λn = Λ(x(tn)), and
tn = t0 + n∆t, where n ∈ N and ∆t is the time step.
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To preserve volume, the two approaches described in the
following subsections take advantage of the fact that the
formal solution of Eq. (23) is

Λn+1 = T exp

[
q

2m

∫ tn+1

tn

F (x(t′))

γ(t′)
dt′
]

Λn, (37)

where T represents time-ordering. This can be written
in a form more convenient for numerical approximation
[54]:

Λn+1 = exp

[
∆t

(
q

2m

F (xn)

γn
+ T

)]
Λn, (38)

where T =
←−
∂tn is now the “left” time-shifting operator.

At this point, the solution is still exact. To evaluate this
numerically, an operator splitting approximation scheme
is implemented. In particular, a third order accurate
approximation of the last expression, the symmetric ex-
ponential decomposition, is used. It is given by

Λn+1 = e
∆t
2 T exp

[
∆t

q

2m

F (xn)

γn

]
e

∆t
2 T Λn +O(∆t3),

(39)

= exp

[
∆t

q

2m

F (xn+ 1
2 )

γn+ 1
2

]
Λn +O(∆t3), (40)

= V nΛn (41)

where the properties of the time-shifting operator has
been used to obtain (40) and where V n is the two-by-
two transition matrix. The latter corresponds to an ex-
ponential scheme for the Λ-update, typical of operator
splitting methods. It allows for estimating Λn+1 assum-
ing Λn, xn+ 1

2 and γn+ 1
2 are known.

However, the Lorentz factor is related to Λ via (14)
and therefore, is available only at time tn. An ac-
curate approximation of the Lorentz factor at tn+ 1

2

can be obtained by deriving an equation for its time-
dependence and by approximating this evolution equa-
tion to a desired order. Taking the time derivative of
γ(t) = Tr[ΛΛ†]/2 gives

dγ(t)

dt
=

1

2
Tr

[
dΛ

dt
Λ† + Λ

Λ†

dt

]
,

=
q

4mγ(t)
Tr
[
FΛΛ† + ΛΛ†F †

]
, (42)

where Eq. (23) was used to get the second equation. The
latter can be discretized to obtain the value of the Lorentz
factor at tn+ 1

2
with a second order accuracy, in order

to be consistent with the accuracy of the exponential
evolution scheme for Λ in Eq. (40). An explicit Euler
method is used for that purpose, yielding

γn+ 1
2 = γn +

∆t

2

q

4mγn
Tr
[
F (xn)ΛnΛn† + ΛnΛn†F †(xn)

]
+O(∆t2). (43)

When this second order accurate expression is reported
into Eq. (40), it incurs a third order error on the expo-
nential, consistent with the numerical scheme.

The last ingredient missing for the update of γ and Λ
is the position x, evaluated at times tn and tn+ 1

2
. This

can be achieved by evolving x on half time-steps or on a
time-staggered grid, in the same spirit as the Verlet and
leap-frog methods, respectively. This will be described
in more detail in the following subsections.

To obtain the spin dynamics for a general g-factor (g 6=
2), one has to solve Eq. (25) numerically along with the
equations for Λ and x. This can be achieved via a split-
operator technique, similar to the Λ-update given in Eq.
(40). First, Eq. (25) is written as

dΥ(x(t))

dt
= Γ(x(t))Υ(x(t)), (44)

where

Γ(x(t)) =
e

8mγ(t)

[
(2 + g)F (x(t))

+ (2− g)U(x(t))F †(x(t))Ū(x(t))

]
. (45)

This can be solved formally as a time-ordered exponen-
tial:

Υn+ 1
2 = T exp

∫ t
n+ 1

2

t
n− 1

2

Γ(x(t′))dt′

Υn− 1
2 . (46)

Then, a third-order accurate approximation of the time-
ordered exponential is given by

Υn+ 1
2 = exp (∆tΓn) Υn− 1

2 +O(∆t3). (47)

To evaluate this expression, one needs the value of Λn, Fn

and γn beforehand, which is possible by evaluating Eq.
(47) at the appropriate step in the numerical algorithm
(see the end of the next subsections).

B. Verlet-like numerical scheme

A Verlet-like numerical scheme is obtained by approx-
imating Eq. (24) using a two-step method, based on the
explicit forward and backward Euler scheme:

xn+ 1
2 = xn +

∆t

2

ΛnΛn†

γn
+O(∆t2), (48)

xn+1 = xn+ 1
2 +

∆t

2

Λn+1Λn+1†

γn+1
+O(∆t2). (49)

Although each step has an accuracy O(∆t2), the full evo-
lution is O(∆t3). This can be demonstrated by substi-
tuting Eq. (48) into (49). Then, we get

xn+1 = xn +
∆t

2

[
ΛnΛn†

γn
+

Λn+1Λn+1†

γn+1

]
, (50)
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corresponding to the trapezoidal rule method with an
accuracy O(∆t3). Splitting this in two steps as in Eqs.
(48)-(49) allows for getting the position at time tn+ 1

2
re-

quired in Eq. (40).
To summarize, here is a description of the algorithm

to evolve the position for one time step. It assumes that
Λn, xn are known:

1. Compute γn using γn = 1
2Tr

[
ΛnΛn†

]
.

2. Compute xn+ 1
2 using Eq. (48).

3. Compute F (xn).

4. If we want the spin dynamics and if g 6= 2, compute
Υn+ 1

2 using Eq. (47).

5. Compute γn+ 1
2 using Eq. (43).

6. Compute Λn+1 using Eq. (40).

7. Compute γn+1 using γn+1 = 1
2Tr

[
Λn+1Λn+1†].

8. Compute xn+1 using Eq. (49).

C. Leapfrog-like numerical scheme

The leapfrog-like scheme is obtained by considering a
time-staggered grid, where Λ and x are evaluated on dif-
ferent time steps. Then, the time derivative in Eq. (24)
is discretized using a midpoint finite difference scheme,
centered on tn. This is written as

xn+ 1
2 = xn−

1
2 + ∆t

ΛnΛn†

γn
+O(∆t3). (51)

This again has an accuracy O(∆t3).
With this staggered grid, the position is not evaluated

at tn, as required to obtain the Lorentz factor at tn+ 1
2
.

The strategy used here is to approximate the electromag-
netic field in Eq. (43) by linear interpolation as

F (xn) =
F (xn+ 1

2 ) + F (xn−
1
2 )

2
+O(∆t2). (52)

This average can be evaluated on the staggered grid.
To summarize, here is a description of the algorithm

for one time step. It assumes that Λn, xn−
1
2 are known:

1. Compute γn using γn = 1
2Tr

[
ΛnΛn†

]
.

2. Compute xn+ 1
2 using Eq. (51).

3. Compute F (xn−
1
2 ) and F (xn+ 1

2 ).

4. Compute F (xn) using Eq. (52).

5. If we want the spin dynamics and if g 6= 2, compute
Υn+ 1

2 using Eq. (47).

6. Compute γn+ 1
2 using Eq. (43).

7. Compute Λn+1 using Eq. (40).

The first step of the scheme, from t0 to t 1
2
, can be per-

formed via the forward Euler step (48). Although this
step is O(∆t2), it does not deteriorate the global conver-
gence order of the numerical scheme because it is used
only once.

D. General properties of the numerical schemes

The numerical schemes described in the last two sub-
sections share a number of interesting properties.

1. Order of convergence

First, they have a second order rate of global conver-
gence. Henceforth, the numerical error ε after N time
steps obeys

ε := ‖xN − xexact(t
N )‖∞ ≤ C∆t2, (53)

where C ∈ R+ is some positive constant, xN is the ap-
proximated solution of the position vector (with xi =
1
2Tr(xσi)) and xexact is the exact solution. The infinite
vector norm is defined as ‖x‖∞ = maxi=1,2,3 |xi|.

Eq. (53) is not proven rigorously here as this would
demand a careful analysis of the regularity of the solu-
tion, which is outside the scope of this article. Rather,
it is assumed that the solution is smooth enough, which
is reasonable for a large class of physically relevant ini-
tial conditions and electromagnetic fields. In this case,
the global convergence rate is usually one order less than
the local accuracy. As demonstrated in Sections III B
and III C, each step of the numerical schemes incurs lo-
cal numerical error O(∆t3), leading to a second order
global rate of convergence. This property will be ver-
ified empirically in Section IV, where numerical results
are displayed.

2. Energy conservation

Second, both numerical methods are energy conserv-
ing when there is no electric field E = 0. This can be
demonstrated in the following way. The energy EN of
the particle is given after N time steps by

EN = γNm =
m

2
Tr
[
ΛNΛN†

]
. (54)

On the other hand, from Eq. (41), we have that

ΛN =

N∏
i=0

V iΛ0. (55)
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When the electric field is zero, the transition matrices
(V i)i=0,··· ,N are unitary, as can be deduced from the def-
inition of F in Eq. (7). As a consequence, the energy
becomes

EN =
m

2
Tr
[
Λ0Λ0†] = γ0m, (56)

where the cyclic property of the trace and unitarity have
been used to cancel the transition matrices. The fact that
EN = E0 confirms that the energy is manifestly conserved
by the numerical scheme.

3. Phase-space volume preservation

Finally, the third property of the numerical schemes
is phase-space volume preservation. The detailed proof,
given in the following, hinges on the fact that the Jaco-
bian of the flow has a unit determinant, for each step of
the numerical schemes. As mentioned earlier, this prop-
erty is important for long-term simulations required in
accelerator and plasma physics.

We start by proving that the Verlet-like scheme is man-
ifestly volume preserving. First, the vectorization oper-
ation defined in Eq. (30) is applied and the scheme is
written as

φn+ 1
2 :=

{
~xn+ 1

2 = ~xn + ∆t
2γn vec(ΛnΛn†)

~Λn+ 1
2 = ~Λn

, (57)

φñ :=

{
~xñ = ~xn+ 1

2

~Λñ = (I2 ⊗ V n)~Λn+ 1
2

, (58)

φn+1 :=

{
~xn+1 = ~xñ + ∆t

2γñ vec(ΛñΛñ†)
~Λn+1 = ~Λñ

, (59)

where φn are approximated flows and ñ denotes an in-
termediary time step. Setting

z =

[
~x
~Λ

]
, (60)

the Jacobian of the flow can be written in matrix form
as

∂φn+ 1
2

∂zn
=

[
I4 M (1)

0 I4

]
, (61)

∂φñ

∂zn+ 1
2

=

[
I4 0

M (2) I2 ⊗ V n
]
, (62)

∂φn+1

∂zñ
=

[
I4 M (3)

0 I4

]
, (63)

where the four-by-four matrices M (1,3) comes from the
derivative with respect to Λ in Eqs. 57 and 59, while the
matrix M (2) comes from the derivative with respect to
x in Eq. 58. Their explicit expression is not important
because we are interested in the determinant of the Ja-
cobian. Using the properties of determinant, the latter

are given by

det

(
∂φn+ 1

2

∂zn

)
= 1 (64)

det

(
∂φñ

∂zn+ 1
2

)
= det (V n)

2
(65)

det

(
∂φn+1

∂zñ

)
= 1. (66)

The last determinant can be evaluated from the definition
of V n and the identity for the determinant of a matrix
exponential:

det (V n) = exp

[
∆t

q

2mγn+ 1
2

Tr(F (xn+ 1
2 ))

]
. (67)

However, from the definition of the electromagnetic field,
we have that Tr(F (xn+ 1

2 )) = 0, confirming that the last
determinant is also unity. This concludes the demonstra-
tion that the Verlet-like scheme is volume preserving.

The argument for the leapfrog scheme is very similar.
The approximated flow is now

φn+ 1
2 :=

{
~xn+ 1

2 = ~xn + ∆t
γn vec(ΛnΛn†)

~Λn+ 1
2 = ~Λn

, (68)

φn+1 :=

{
~xn+1 = ~xn+ 1

2

~Λn+1 = (I2 ⊗ V n)~Λn+ 1
2

, (69)

with the understanding that x and Λ are staggered. In
matrix form, the Jacobian of the flow gives

∂φn+ 1
2

∂zn
=

[
I4 M̃ (1)

0 I4

]
, (70)

∂φn+1

∂zn+ 1
2

=

[
I4 0

M (2) I2 ⊗ V n
]
. (71)

The last steps of the proof are the same as for the Verlet-
like scheme and we obtain a unit determinant. Thus, we
conclude that the leapfrog scheme is also volume preserv-
ing.

IV. NUMERICAL RESULTS

The Verlet-like and leapfrog-like numerical schemes
have been implemented in C++, using the highly efficient
and easy to use linear algebra library Armadillo [55].
The resulting code can perform approximately 5.0× 104

time steps per second on a standard laptop computer
(with an Intel I7 CPU). The numerical methods are com-
pared to the standard Boris pusher, described in Ref.
[39] and implemented in Python. To verify some numer-
ical properties and benchmark against known analytical
solutions, simple uniform electromagnetic fields are first
considered, in the same spirit as the numerical tests given
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in Ref. [39]. Then, to display nontrivial spin dynamics,
a plane-wave electromagnetic field is chosen.

The following numerical calculations are performed in
natural units in which c = ~ = me = 1, where me is
the electron mass. In these units, the reference time and
length are given by tnu = ~/mec

2 and `nu = ~/mec,
respectively. All physical quantities are thus given by
dimensionless quantities, expressed in these units.

A. Constant uniform electric field

A uniform electric field applies a force on a charged
particle, inducing acceleration in the field orientation.
Without loss of generality, we consider an electric field
pointing in the x-direction given by E = (E, 0, 0). In
this simple case, the Lorentz equation of motion can be
solved analytically. Assuming the particle is initially at
rest (v(0) = 0) and positioned at the origin (x(0) = 0),
the solution is given by [39]

xanalytical(t) =

(
m

qE
[γ(t)− 1] , 0, 0

)
(72)

where

γ(t) =

√
1 +

(qEt)2

m
. (73)

To test the numerical methods, we consider a positively
charged particle with an electron mass (a positron with
mass m = 1 in natural units) immersed in an electric
field of magnitude E = 0.5. In the first test, we look at
the particle position as a function of time and compare
to the analytical solution. The final time of the simula-
tion is set to tfinal = 10. and the number of time steps to
N = 10000, making for a time step of ∆t = 1.0 × 10−3.
The numerical results for the position are displayed in
Fig. 1, along with the numerical error ε evaluated from
Eq. (53). The results demonstrate that all methods re-
produce accurately the analytical solution (all the curves
are overlapping). However, the error of the Verlet-like
scheme is lower than the two other methods.

In the second test, we determine the order of conver-
gence by looking at the scaling of the numerical error
with the time step. The same particle, electric field and
evolution time are considered. Four different number of
time steps are chosen for each numerical methods, lead-
ing to different value of ∆t. At the end of the simulation,
the numerical error on position is evaluated using Eq. 53.
The numerical results are displayed in Fig. 2, along with
the linear fit (dashed line) used to determine the order of
convergence. The values of the order of convergence are
given in Table I. Similar to the first test, these numerical
results demonstrate that numerical errors for the Boris
and Leapfrog-like schemes are similar, while the Verlet-
like method shows an improvement of approximately one
order of magnitude, for any time step size. In addition,
the analysis reveals that all the numerical schemes have
a second-order convergence rate.
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FIG. 1. Position x and numerical error ε(t) = ‖x(t) −
xanalytical(t)‖∞ as function of time for the Boris, Verlet-like
and Leapfrog-like methods for a particle in a constant electric
field. All position curves are overlapping with the analyti-
cal solution. The position, the numerical error and time are
expressed in natural units.

Numerical scheme Order of convergence

Boris 2.0285

Verlet-like 1.9847

Leapfrog-like 1.9916

TABLE I. Order of convergence for all the numerical schemes,
determined from a fit of the error as a function of the time
step, for a particle in a constant electric field.

B. Constant uniform magnetic field

In a constant magnetic field, a charged particle follows
a circular trajectory at constant speed |v| because the
magnetic field do not exert any work on the particle. For
simplicity, we choose a magnetic field in the z-direction,
given by B = (0, 0, B). In this case, the trajectory will
follow a circle in the xy-plane. This is confirmed by look-
ing that the analytical solution obtained from solving the
Lorentz equation. The position is given by

r = rg
γvm|v|
qB

, θ(t) =
qB

γvm
t, (74)
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FIG. 2. Numerical error at t = tfinal = 10 for a particle in
a constant electric field as function of the time step ∆t for
the Boris, Verlet-like and Leapfrog-like methods. The dashed
line corresponds to a fit of the data, used to determine the
order of convergence. The numerical error and the time step
are expressed in natural units.

where γv = 1/
√

1− v2 is the constant Lorentz factor,
r = |x| is the radial distance from the origin, rg stands for
the constant gyroradius and θ(t) is the angle with respect
to the y-axis. Therefore, in simulations, the particle is
positioned at x = (0, rg, 0) at initial time t = 0.

Again, we consider a positively charged particle with
an electron mass. The magnitude of the magnetic field
is set to B = 0.5 while the initial velocity is chosen as
v = (0.4, 0.0, 0.0). With these values, the gyroradius of
the trajectory is rg ≈ 2.8824564017956553.

In the first test, we verify the conservation of en-
ergy claimed in Section III D. To achieve this goal, a
long term simulation is carried out with a final time
of tfinal = 100000 and a number of time steps set to
N = 1.0 × 106. The energy is evaluated from the rel-
ativistic gamma factor as E(t) = γ(t)m. According to
the exact solution, the energy is constant and given by
Eexact = γvm. In Fig. 3, the relative error on the energy,
defined as εrel = |E(t)−Eexact|/|E(t)+Eexact|, is displayed
for the three numerical methods. They all show an ex-
cellent energy-preservation property, accurate up to ma-
chine precision. This result is an empirical confirmation
of the theoretical result given in Section III D.

In the second test, the actual error on position is eval-
uated. For these calculations, the final time is chosen as
tfinal = 1000 and the number of time step is N = 10000.
The radius and angle are evaluated from the Cartesian
components and the error on the radius and angle is sim-
ply defined as εr = |r(t)− rg| and εθ = |θ(t)− θexact(t)|.
The results are displayed in Figs. 4, 5 and 6 for the
Boris, the Verlet-like and the Leapfrog-like schemes, re-
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FIG. 3. Relative error on energy as function of time for a
particle in a constant magnetic field. Time is expressed in
natural units.

spectively. The first observation is that all the numerical
methods reproduce the analytical result with fairly high
accuracy. However, two conclusions can be reached by
looking at the error in the numerical results. On the one
hand, the accuracy of the Boris scheme for the radius of
the trajectory is far superior than the other two schemes.
Indeed, the error of the Boris scheme reaches machine
precision (εr ≈ 3.0× 10−14) while the error for the other
two schemes oscillates, bounded by εr . 0.9× 10−4. On
the other hand, the numerical error on the angle accu-
mulates linearly in the Boris scheme, consistent with the
findings of Ref. [39], and can reach relatively high value
in long-term simulations. This linear accumulation of
error is not observed for the Verlet and Leapfrog-like
scheme. Rather, the error oscillates but stays bounded
by εθ . 0.16 × 10−4. This interesting property is likely
due to the volume-preserving properties of the numerical
scheme.

It was also observed (not shown here for simplicity)
that the bound on the error can be lowered by increasing
the number of time steps and decreasing ∆t, as expected
from the numerical method convergence rates. However,
when one reaches a large number of time steps (N &
100000), a small error starts accumulating, possibly due
to the repeated third-order error at every iteration. This
phenomenon has also been reported in simulations using
other numerical methods [38]. Nevertheless, the fact that
the error stays bounded for both r and θ when ∆t is
not too small, makes the Verlet and Leapfrog schemes
interesting alternatives for long-term simulations.
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FIG. 4. Positions r, θ and numerical errors εr, εθ as a function of time for the Boris scheme and a particle in a constant magnetic
field. The radius, the numerical error on radius and time are expressed in natural units.

C. Plane wave

The final test is for a particle immersed in a plane wave
propagating in the z-direction. For an analysis of the
spin dynamics of electrons in laser fields, see Ref. [56].
This illustrates spin dynamics and the convergence of
the numerical methods when the electromagnetic field is
space-dependent. We choose g = 2 because an analytical
solution exists in this case for the spin dynamics, allowing
us to verify the convergence of the numerical scheme.

The electromagnetic field is given by

E(t, z) = (E cos(ϕ), 0, 0) , (75)

B(t, z) = (0, E cos(ϕ), 0) , (76)

where E is the field amplitude and ϕ = ω(z − t), with ω
the angular frequency. The corresponding vector poten-
tial is

A(ϕ) =

(
E

ω
sin(ϕ), 0, 0

)
. (77)

Remarkably, it is possible to find an exact solution of the
Lorentz-BMT equation in such field configuration. The

positions are given by [57]

x(t) =

(
qE

mω2
[1− cos(ϕ)] , 0,

q2E2

8m2ω3
[sin(2ϕ)− 2ϕ]

)
.

(78)

On the other hand, the spin dynamics can be extracted
from the matrix spinor via (15) once an expression for
Λ is found. In a plane wave, it has been shown that the
eigenspinor is given by [46]

Λ(ϕ) = Λ(ϕ0)− e

2mω
∆A(ϕ)k̄Λ(ϕ0), (79)

where k̄ = ωσ0 − σ · k is the Clifford conjugate of
the wave vector expressed in the Clifford algebra while
∆A(ϕ) = A(ϕ) − A(ϕ0) is the variation of the electro-
magnetic vector potential, again expressed in the Clifford
algebra as A(ϕ) = σkA

k(ϕ).
In the simulations for a plane-wave electromagnetic

field, the final time is tfinal = 10 while the number of
time steps is N = 10000, making for ∆t = 0.001. The
electric field strength is set to E = 1 while the angular
frequency is ω = 2π. The particle is initially at the origin
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FIG. 5. Positions r, θ and numerical errors εr, εθ as a function of time for the Verlet-like scheme and a particle in a constant
magnetic field. The radius, the numerical error on radius and time are expressed in natural units.

x(0) = 0 and at rest v(0) = 0. The comparison with the
analytical solution is displayed in Figs. 7 and 8, for the
Boris and Verlet-like methods, respectively. The results
for the Leapfrog-like scheme are not shown for simplicity
and because they are similar to the Verlet scheme. The
numerical error is evaluated using Eq. (53) and presented
below the position. These numerical results demonstrate
that the Boris and Verlet-like methods reproduce the ex-
act solution accurately and perform equally well, both
having numerical errors bounded by ε . 2.5 × 10−8 for
the x and z positions.

However, the main advantage of the Verlet-like scheme
is that spin dynamics can be obtained easily via the re-
lation (15). The numerical results are compared to this
analytical solution is Fig. 9 for the Verlet-like scheme
(again, the Leapfrog method is not displayed because it
presents similar results). The numerical error is also eval-
uated for each spin component using εs = |SNi −Si,exact|,
for i = x, z. Again, the numerical method reproduces
the exact solution very accurately, with numerical errors
bounded by εs . 8.0× 10−8 for both spin components.

V. CONCLUSION

In this work, the Lorentz-BMT system of equations
was solved numerically in the Clifford algebra representa-
tion. Two numerical schemes were developed and tested
against the Boris pusher by comparing with analytical so-
lutions. It was demonstrated that the numerical schemes
have bounded numerical errors, even in strong magnetic
fields, in contrast to the Boris method. This long-term
accuracy is attributed to their volume-preserving proper-
ties. We also showed that the Verlet- and Leapfrog-like
schemes share the strengths of the Boris pusher: they
have second order convergence, they are explicit, they
preserve energy when there is no electric field and finally,
they are simple and easy to implement. In addition, they
can be used to obtain the spin dynamics of the charged
particle, without solving explicitly another differential
equation when g = 2. For general g-factors, a numer-
ical strategy was presented. All of these features make
them very appealing for applications in plasma physics,
accelerator physics, astrophysics and others.

The numerical methods developed in this article could
be improved in several ways. For instance, the split op-
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FIG. 6. Positions r, θ and numerical errors εr, εθ as a function of time for the Leapfrog-like scheme and a particle in a constant
magnetic field. The radius, the numerical error on radius and time are expressed in natural units.

erator method can be extended to third order accuracy
and even higher [58–60]. Combining these results on ex-
ponential operators with usual methods for solving or-
dinary differential equations, we conjecture that higher
order numerical schemes could be obtained. This will be
the topic of future work.
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