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We present a method for unsupervised learning of equations of motion for objects in raw and
optionally distorted unlabeled synthetic video (or, more generally, for discovering and modeling pre-
dictable features in time series data). We first train an autoencoder that maps each video frame into
a low-dimensional latent space where the laws of motion are as simple as possible, by minimizing
a combination of non-linearity, acceleration and prediction error. Differential equations describ-
ing the motion are then discovered using Pareto-optimal symbolic regression. We find that our
pre-regression (“pregression”) step is able to rediscover Cartesian coordinates of unlabeled moving
objects even when the video is distorted by a generalized lens. Using intuition from multidimen-
sional knot-theory, we find that the pregression step is facilitated by first adding extra latent space
dimensions to avoid topological problems during training and then removing these extra dimensions
via principal component analysis. An inertial frame is auto-discovered by minimizing the combined
equation complexity for multiple experiments.

I. INTRODUCTION

A central goal of physics and science more broadly is to
discover mathematical patterns in data. For example,
after four years of analyzing data tables on planetary or-
bits, Johannes Kepler started a scientific revolution in
1605 by discovering that Mars’ orbit was an ellipse [1].
There has been great recent progress in automating such
tasks with symbolic regression: discovery of a symbolic
expression that accurately matches a given data set [2–
23]. Open-source software now exists that can discover
quite complex physics equations by combining neural net-
works with techniques inspired by physics and informa-
tion theory [22, 23].

However, symbolic regression problems are of course just
a small subset of the problems scientists face. In this pa-
per, we focus on a different but closely related problem:
how to decide which parameters of the observed data we
should try to describe with equations. Eugene Wigner

famously stated that “the world is very complicated and
... the complications are called initial conditions, the
domains of regularity, laws of nature” [24], so how can
the discovery of these regularities be automated? In Fig-
ure 1, how can an unsupervised algorithm learn that to
predict the next video frame, it should focus on the x-
and y-coordinates of the rocket, not on its color or on
the objects in the background? More generally, given an
evolving data vector with N degrees of freedom, how can
we auto-discover which n < N degrees of freedom are
most useful for prediction? Renormalization addresses
this question in a particular context, but we are inter-
ested in generalizing this.

Suppose, for example, that we tried to rediscover Kepler’s
results by mounting a camera with a wide-angle lens in a
dark cloudless location, taking a digital snapshot of the
sky at the same siderial time every night, so that distant
stars appeared unmoving. How could a computer algo-
rithm presented with a series of images with say N = 107

pixels automatically learn that the most useful degrees of
freedom for prediction are the position coordinates of the
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FIG. 1: Our pregression algorithm seeks to autoencode a sequence of video frames (left) corresponding to a specific type of motion into

a low-dimensional latent space (middle) where the laws of motion (right) are as simple as possible, in this example those of a quartic

oscillator. In the middle figure each point corresponds to the x and y of the rocket in a given frame, while points having the same

color/shading and being connected by a line belong to the same trajectory.
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Moon and the visible planets (which Tycho Brahe care-
fully measured and tabulated), not the blackness of the
sky, the positions of stars, the color of Mars, or the shape
of the Moon?

The goal of our paper is to tackle this pre-regression prob-
lem, which we will refer to as “pregression” for brevity.
Automated pregression enables laws of motion to be dis-
covered starting with raw observational data such as
videos or other time-series data. This can be viewed as
a small step toward a particular type of unsupervised
learning of physics, whereby an algorithm learns from
raw observational data how to predict the future from
the past without any human supervision or prior knowl-
edge [25–27].

There has been impressive recent progress on using
neural networks for video prediction [28–42] and more
general physics problems [27, 43–48]. However, these
machine-learned models tend to be inscrutable black
boxes that provide their human users with limited under-
standing. In contrast, the machine learning approach in
this paper aspires to intelligible intelligence, i.e., learning
a model of the system that is simple enough for a human
user to understand. Such intelligibility (pursued in, e.g.,
[26, 27, 49–52]) is a central goal of physics research, and
has two advantages:

1. Understanding how a model works enables us to
trust it more, which is particularly valuable when
AI systems make decisions affecting peoples lives
[53–56].

2. Simple intelligible models such as the laws of
physics tend to yield more accurate and generaliz-
able predictions than black-box over-parametrized
fits, especially over long timescales. This is why
spacecraft navigation systems use Newton’s law of
gravitation rather than a neural-network-based ap-
proximation thereof.

The video prediction papers most closely related to the
present work take one of two approaches. Some improve
accuracy and intelligibility by hardcoding coordinate-
finding or physics elements by hand to help learn e.g.
rigid-body motion [57], physical object properties or par-
tial differential equations [58, 59]. The alternative tab-
ula rasa approach assumes no physics whatsoever and
attempts to learn physical object properties [60], object
positions [61, 62], object relations [63] and time evolution
[64–66] by learning a low-dimensional representation or
latent space which is unfortunately too complex or in-
scrutable to allow discovery of exact equations of motion.
The present paper builds on this tabula rasa approach;
our key contribution is to automatically simplify the la-
tent space, using ideas inspired by general relativity and
knot theory, to make the dynamics simple enough for
symbolic regression to discover equations of motions.

The rest of this paper is organized as follows. In Sec-
tion II, we present our algorithm. In Section III, we test

it on simulated videos (such as the flying rocket exam-
ple in Figure 1) for motion in a force-free environment, a
gravitational field, a magnetic field, a harmonic potential
and a quartic potential. We also test the effects of adding
noise and geometric image distortion. We summarize our
conclusions and discuss future challenges in Section IV.

II. METHOD

The goal of our method is to start with raw video se-
quences of an object moving in front of some static back-
ground, and to, in a fully unsupervised manner (with
no input besides the raw video) discover the differential
equation governing the object’s motion. Our algorithm
consists of two parts:

1. a neural-network-based pregression step that learns
to map images into a low-dimensional latent space
representing the physically relevant parameters
(degrees of freedom), and

2. a symbolic regression step that discovers the law of
motion, i.e., the differential equation governing the
time-evolution of these parameters.

A. Learning the latent space

Latent 
space:

Input
images:

Reconstructed
images:

FIG. 2. Architecture of our neural network: an encoder E
that maps images xi into latent space vectors zi, a decoder
D that maps latent space vectors zi back into images xi, and
an evolution operator U that predicts the next latent space
vector from the two previous ones.

Abstractly, we can consider each video frame as a sin-
gle point in an N -dimensional space, where N is the
number of color channels (3 in our case) times the num-
ber of pixels in each image. If the motion involves only
n � N degrees of freedom (for example, n = 2 for a
rigid object moving without rotating in two dimensions),
then all observed points in the N -dimensional space lie
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on some n-dimensional submanifold that we wish to dis-
cover, parametrized by an n-dimensional parameter vec-
tor that we can consider as a point in an n-dimensional
latent space. Our neural network architecture for learn-
ing the latent space is shown in Figure 1, and consists of
three separate feedforward neural networks:

1. An encoder E that maps images xi ∈ RN into la-
tent space vectors zi ∈ Rn,

2. a decoder D that maps latent space vectors zi into
images xi, and

3. an evolution operator U that predicts the next la-
tent space vector zi from the two previous ones (two
are needed to infer velocities).1

The encoder-decoder pair forms an autoencoder [67–75]
that tries to discover the n most dynamically relevant
parameters from each movie frame, from which it can be
reconstructed as accurately as possible.

B. Quantifying simplicity

It is tempting to view the results of our pregression al-
gorithm as rather trivial, merely learning to extract x−
and y− coordinates of objects. This would be incorrect,
however, since we will see that the pregression rediscov-
ers simple physical laws even from video images that are
severely warped, as illustrated in Figure 3, where the
learned latent space is a complicated non-linear function
of the Cartesian coordinates. The basic reason for this is
that Figure 1 makes no mention of any preferred latent-
space coordinate system. This reparametrization invari-
ance is a double-edged sword, however: a core challenge
that we must overcome is that even if the system can be
described by a simple time-evolution U , the basic archi-
tecture in Figure 1 may discover something much more
complicated. To see this, suppose that there is an autoen-
coder (E,D) and evolution operator U providing perfect
image reconstruction and prediction, i.e., satisfying

D(E(xi)) = xi,

U(zi−2, zi−1) = zi
(1)

and that U is a fairly simple function. If we now deform
the latent space by replacing z by z′ ≡ f(z) for some
invertible but horribly complicated function f , then it is
easy to see that the new mappings defined by

E′(x) ≡ f(E(x)),

D′(z′) ≡ D(f−1(z′)),

U ′(z′) ≡ f(U(f−1(z′)))

(2)

1 The two last images are needed because the laws of physics are
second order differential equations that can be transformed into
second order difference equations; our method trivially general-
izes to using the last T inputs for any choice T = 1, 2, 3, ...

will still provide perfect autoencoding and evolution

D′(E′(xi)) = xi,

U ′(zi−2, zi−1)) = zi
(3)

even though the new evolution operator U ′ is now very
complicated. So in contrast with general relativity where
the equations of motion remain formally invariant under
reparametrization, here they do not.

Original Warping Noise

FIG. 3. Our method can rediscover simple laws of motion
even if the true images (left) are severely warped (middle)
or corrupted by superimposed noise in the form of smaller
distractor rockets (right).

Not only can our architecture discover unnecessarily com-
plicated solutions, but it by default will. We jocularly
termed this the Alexander principle in honor of a child
of one of the authors whose sense of humor dictated that
he comply with requests in the most complicated way
consistent with the instructions. We will face multiple
challenges of this type throughout this paper, where our
neural networks appeared humorously spiteful simply be-
cause they statistically find the most generic solution in
a vast class of equally accurate ones.

To tackle this problem, we wish to add a regularization
term to the loss function that somehow rewards simplic-
ity and penalizes complexity, ideally in a way that in-
volves as few assumptions as possible about the type
of dynamics occurring in the video. Defining the 2n-
dimensional vector

wi ≡
(
zi−2
zi−1

)
∈ R2n, (4)

we can view the evolution function U(w) as a mapping
from R2n to Rn that we wish to be as simple as possible.
A natural physics-inspired complexity measure for U is
its curvature

Lcurv ≡ RαµνβRµνβα , (5)

defined as the squared Riemann tensor that is ubiquitous
in differential geometry and general relativity, defined as

Rαµνβ ≡ Γανβ,µ − Γαµβ,ν + ΓγµβΓανγ − ΓγνβΓαµγ , (6)

Γαµν ≡
1

2
gασ (gσµ,ν + gσν,µ − gµν,σ) , (7)

g ≡ JJt, (8)
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where J is the Jacobian of U , the matrix g is the induced
metric on the latent space Rn, indices are raised by multi-
plying by g−1, commas denote derivatives as in standard
tensor notation, and the Einstein summation convention
is used. Natural alternatives are the squared Ricci curva-
ture RµνRµν or the scalar curvature R ≡ gµνRµν , where
Rµν ≡ Rαµαν .

Unfortunately, these curvature measures are numerically
cumbersome, since they require taking 3rd derivatives
of the neural-network-defined function U and the Rie-
mann tensor has n4 components. Fortunately, we find
that a simpler measure of complexity performs quite well
in practice, as reflected by the following loss function:

L ≡ Lrecon + αLpred + βLnl + γLacc. (9)

These four terms are averages over all time steps i of the
following dimensionless functions:

Lrecon
i ≡ |xi −D(E(xi))|

|xi|
, (10)

Lpred
i ≡ |zi − U(zi−2, zi−1))|

|zi−1 − zi−2|
, (11)

Lnl
i ≡

1

4n3
|zi−1 − zi−2| ||∇J(wi))||1, (12)

Lacc
i ≡ 1

n
||U(wi)−Mwi||1, (13)

α, β, γ are tunable hyperparameters, and n is the di-
mensionality of the latent space. Here Lrecon is the re-
construction error, Lpred is the prediction error, and both
Lnl and Lacc are measures of the complexity of U . Lnl

is a measure of the nonlinearity of the mapping U , since
its Jacobian J will be constant if the mapping is lin-
ear. Note that Lnl = 0 implies that Lcurv = 0, since
if J is constant, then Γαµν = 0 and the curvature van-

ishes. Physically, Lnl = 0 implies that the dynamics is
described by coupled linear difference equations, which
can be modeled by coupled linear differential equations
and encompass behavior such as helical motion in mag-
netic fields, sinusoidal motion in harmonic oscillator po-
tentials and parabolic motion under gravity. Lacc is a
measure of the predicted acceleration, since there is no
acceleration if the mapping is U(w) = Mw, where

M ≡
(

-I 2I
)
, (14)

and I is the n × n identity matrix. For example, xi =
2xi−1− xi−2 gives uniform 1D motion (with i indicating
the time step at which the x coordinate is recorded). An
alternative implementation not requiring Jacobian gradi-
ent evaluation would be Lnl

i ≡ 1
2n2 ||J(wi+1)− J(wi)||22,

and an alternative acceleration penalty would be Lacc
i ≡

1
n |U(0))|2 + 1

2n2 ||M − J(wi))||22. In summary, our reg-

ularizers Lnl and Lacc attempt make the time-evolution
as simple as possible, forcing the complexity into the au-
toencoder.

TABLE I. Physical systems tested

Equations
of motion

Correct Rediscovered

Uniform ẍ = 0 ẍ = 0
motion ÿ = 0 ÿ = 0
Gravity ẍ = 5

9
ẍ = −1

ÿ = − 5
9

ÿ = −1
Magnetic ẍ = −ẏ ẍ = 1

3
ẏ

field ÿ = ẋ ÿ = − 1
3
ẋ

Harmonic ẍ = −4x ẍ = − 4
9
x

oscillator ÿ = −y ÿ = − 1
9
y

Quartic ẍ = − 4×10−4

9
x(x2 + y2) ẍ ≈ −.00001x(x2 + y2)

oscillator ÿ = − 4×10−4

9
y(x2 + y2) ÿ ≈ −.00001y(x2 + y2)

III. RESULTS

A. Latent space learning

We first tested our algorithm for four physical systems
obeying linear differential equations, corresponding to
motion with no forces, in a gravitational field, in a mag-
netic field and in a 2D harmonic oscillator potential (see
Table I and Figure 4). To make things harder to solve,
we defined “down” at a 45◦ angle for the gravity case.

For each type of motion, we generated between 100 and
150 trajectories, with around 30 video frames each, corre-
sponding to equally spaced, consecutive time steps. For
each trajectory video, the shape of the rocket and the
background were kept fixed, but the position of the rocket
was changed according to the corresponding physical law
of motion, starting with a random initial velocity and a
random initial position within the image boundaries. Our
training set thus contains a total of 3000-5000 images for
each type of motion; sample trajectories are shown in
Figure 4 (top), where each dot represents the x- and y-
coordinate of the rocket in a given frame and points of
the same color/shading connected by a line belong to the
same trajectory. After simulating the trajectories and
generating a 1000×1000 pixel image of each video frame
(Figure 1 for an example), we downsampled the image
resolution to 64×64 pixels (Figure 5) before passing them
to our neural network.

The encoder network consists of five convolutional ReLU
layers with kernel-size 4 and padding 1, four with stride
2 followed by one with stride 1. At the end there is a
fully connected linear layer that reduces the output of
the encoder to a vector of size equal to the dimension
of the latent space. The number of channels goes from
3 for the input image to 32, 32, 64, 64 and 256 for the
convolutional layers. The decoder network is a mirror im-
age of the encoder in terms of layer dimensions, with the
convolution layers replaced by deconvolution layers. The
evolution operator has three fully connected 32-neuron
hidden layers with softplus activation function and a lin-
ear n-neuron output layer. We implemented these net-
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No force Gravity Magnetic 
field

2D harmonic
oscillator

Quartic
oscillator

FIG. 4. Example of original (top) and rediscovered (bottom) trajectories in the latent spaces. In the top panel, each point
represents the x- and y-coordinates of the rocket in each frame. In the bottom panel, each point corresponds to the two main
principal components discovered in the 5D latent space. In both cases, points of the same color/shading and connected by a
line belong to the same trajectory.

DownsampledOriginal Reconstructed

FIG. 5. Example of original, downsampled and reconstructed
image.

works using PyTorch using a batch size of 256 and the
Adam optimizer. For these four linear types of motion,
we set γ = 0 and α = β = 10−3 and trained for 4,000
epochs with a learning rate of 10−3, multiplying α and β
by 10 after every 1000 epochs. We then trained for 3, 000
additional epochs while dividing the learning rate by 10
every 1,000 epochs.

In the end, our algorithm successfully learned useful 2D
latent spaces (see Figure 4, bottom), reconstructed im-
ages with 2% r.m.s. relative error that were visually
nearly indistinguishable from the truth (see Figure 5) and
achieved sub-percent prediction errors (Lpred ≈ 0.11%,
0.48%, 0.31%, 0.71% and 0.76% for the uniform motion,
gravity, magnetic field and quartic oscillator cases, re-
spectively). However, this required overcoming two sep-
arate obstacles.

We initially lacked the factor |zi−1 − zi−2| in equa-
tion (11), so by the Alexander principle, the neural net-

work learned to drive the prediction loss Lpred toward
zero by collapsing the latent space to minuscule size. The
|zi−1 − zi−2|-factor solves this problem by making the
prediction loss dimensionless and invariant under latent
space rescaling.

B. Knot theory to the rescue

The second obstacle was topological. If you drop a
crumpled-up towel (a 2D surface in 3D space) on the
floor, it will not land perfectly flat, but with various
folds. Analogously, the space of all possible rocket im-
ages forms a highly curved surface in the N -dimensional
space of images, so when a randomly initialized neural
network first learns to map it into a 2D latent space,
there will be numerous folds. For example, the left panel
of Figure 6 shows 16 trajectories (each shown in a dif-
ferent color/shading) corresponding to the rocket mov-
ing uniformly in straight lines. The middle panel shows
these same trajectories (with the same colors/shades as in
the left panel) in the latent space first discovered by our
neural network when we allowed only two latent space di-
mensions. Some pairs of trajectories which are supposed
to be straight parallel lines (left panel) are seen to cross
in a cat-like pattern in the latent space (middle panel)
even though they should not cross. During training, the
network tries to reduce prediction and complexity loss
by gradually distorting this learned latent space to give
trajectories the simplest possible shapes (straight lines
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FIG. 6. The topological problems (middle) that prevented directly learning a 2-dimensional latent space (left) can be understood
via knot theory and eliminated by instead discovering the two main principal components (right) in a learned 5-dimensional
latent space. The left panel shows 16 force-free rocket trajectories, with points denoting the rocket center in each frame and
points of the same color/shading corresponds to the same trajectory. The middle panel shows the corresponding points zi

produced by our encoder network trained with a 2D latent space. The right panel shows the eigenvalues obtained from a
PCA on a five-dimensional learned latent space, revealing that the latent space is rather 2-dimensional because two principal
components account for most of the variance.

in this case), but gets stuck and fails to unfold the la-
tent space. This is because the reconstruction loss Lrecon

effectively causes distinct images to repel each other in
the latent space: if two quite different rocket images get
mapped to essentially the same latent-space point, then
the decoder will epically fail for at least one. Unfolding
would require temporarily moving one trajectory across
another, thus greatly increasing the loss. This is anal-
ogous to topological defects in physics that cannot be
removed because of an insurmountable energy barrier.

Fortunately, knot theory comes to the rescue: a famous
theorem states that there are no d-dimensional knots in
an n-dimensional space if n > 3

2 (1+d) [76]. For example,
you cannot tie your shoelaces (d = 1) if you live in n = 4
dimensions. Our topological pregression problem corre-
sponds to the inability of the neural network to untie a
d-dimensional knot in n dimensions, where d is the di-
mensionality of the image submanifold of RN (d = 2 for
our examples). We therefore implemented the following
solution, which worked well for all our examples: First
run the pregression algorithm with a latent space of di-
mension n′ > 3

2 (1 + d) (we found n′ = 5 to be enough
for us) and then extract an n-dimensional latent space
using principal component analysis. This corresponds
to incentivizing the aforementioned towel to flatten out
while still in the air and then rotating it to be parallel
to the floor before landing. Figure 6 (right) shows that
upon applying PCA to the points in the 5-dimensional
latent space, two principal components dominate the rest
(accounting for more than 90% of the variance), reveal-
ing that all rocket images get mapped roughly into a 2D
plane (Figure 4) in a 5D latent space.

To quantify the robustness of this finding, we repeated
the magnetic field pregression analysis 10 times for each
n′-value, with random neural network initializations, ob-

taining success rates of 0% for n′ = 2, 20% for n′ = 3,
80% for n′ = 4, and 100% for n′ = 5. In other words, al-
though it is possible to get lucky with smaller n′, reliable
success occurred only when n′ exceeded the knot-theory
bound 3

2 (1 + d) = 4.5.

C. Nonlinear dynamics and the accuracy-simplicity
tradeoff

Increasing the two parameters β and γ in equation (9)
penalizes complexity (Lnl and Lacc) more relative to in-
accuracy (Lrecon and Lpred). For our quartic oscillator
example (Figure 1), achieving Lnl = 0 is impossible and
undesirable, since the correct dynamics is nonlinear with
∇J 6= 0, so we wish to find the optimal tradeoff between
simplicity and accuracy. We did this by training as above
for 7,000 epochs but setting β = 0, then keeping γ = β
and further training 14 networks in parallel for a geomet-
ric series of β-values from 0.01 to 200. These 14 networks
were trained for 3,000 epochs with learning rate starting
at 10−3 and dropping tenfold every 1,000 epochs.

Since, as mentioned above, there is a broad class of
equally accurate solutions related by a latent space
reparametrization z 7→ f(z), we expect that increasing
β from zero to small values should discover the simplest
solution in this class without decreasing prediction or re-
construction accuracy. This is the solution we want, in
the spirit of Einstein’s famous dictum “everything should
be made as simple as possible, but not simpler”. Further
increasing β should simplify the solution even more, but
now at the cost of leaving this equivalence class, reduc-
ing accuracy. Our numerical experiment confirmed this
expectation: we could increase regularization to β = 50
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(the choice shown in Figure 1) without significant ac-
curacy loss, after which the inacuraccy started rising
abruptly. It should be noted that a similar Pareto ap-
proach could be used for the other four linear types of
motions, but in those cases, the Pareto frontier would
be trivial, given that the right solution (minimum loss)
corresponds to having no non-linearity (minimum com-
plexity).

D. Image warping and noise

As mentioned in Section II B, the fact that our algorithm
rewards simplicity in the evolution operator U rather
than the encoder/decoder pair should enable it to dis-
cover the simplest possible latent space even if the space
of image (x, y)-coordinates is severely distorted. To test
this, we replaced each image with color c[x, y] (defined
over the unit square) by a warped image c′[x, y] defined
by

c′[x, y] ≡ c[g(x) + x(1− x)y, g(y) + y(1− y)x],

g(u) ≡ u(11− 18u+ 12u2)/5 (15)

as illustrated in Figure 3 (middle panel), and analyzed
the 3,000 warped video frames of the rocket moving in
a magnetic field. As expected, the pregression algorithm
recovered a non-warped latent space just as in Figure 4,
so this extra complexity was entirely absorbed by the
decoder/encoder, which successfully learned the warping
function c 7→ c′ of equation (15) and its inverse.

We also tested the robustness of our pregression algo-
rithm to noise in the form of smaller rockets added ran-
domly to each video frame. We used 3 different types of
distractor rockets as noise, and added between zero and
10 to each image as illustrated in Figure 3 (right panel).
The result was that the pregression algorithm learned to
reconstruct the latent space just as before, focusing only
on the large rocket, and reconstructing images with the
distractor rockets removed.

E. Automatically discovering equations and
inertial frames

Let us now turn to the task of discovering physical laws
that are both accurate and simple. Although the five
rocket-motion examples took place in the same image
space, the Alexander Principle implies that the five latent
spaces (bottom panels in Figure 4) will generally all be
different, since we trained a separate neural network for
each case. Specifically, we expect the latent spaces to
each differ by some affine transformation r 7→ Ar+ a for
some constant vector a and 2× 2 matrix A, since affine
transformations do not affect the amount of nonlinearity

FIG. 7. Video trajectories in the 2D harmonic oscillator po-
tential (top) look different when mapped into the latent space
using the encoder trained on that same data (right) than when
mapped using the encoder trained on uniform force-free mo-
tion (left). However, the two latent spaces are equivalent up
to an affine transformation.

or acceleration required and thus leave our complexity
loss functions Lacc and Lcurv unchanged.

Figure 7 shows the same sequence of images of the rocket
moving in the 2D harmonic oscillator potential mapped
into two latent spaces, learned by training our pregres-
sion algorithm on either that same 2D oscillator data
(right panel) or on the force-free data (left panel). As
expected, their trajectories are seen to differ by an affine
transformation. Indeed, the left panel of Figure 8 shows
that the latent spaces discovered by all our 5 experiments
are interrelated by affine transformations. Here we have
mapped all latent space coordinates ri, i = 1, ..., 5, into
a single unified latent space r = Airi+ai by introducing
five 2 × 2 matrices Ai and 2D translation vectors ai to
match up corresponding rocket positions (each color is
associated with an encoder trained on a specific type of
motion: force free (red), 2D oscillator (blue), magnetic
(yellow), gravitational field (green) and quartic oscillatior
(black) and green. Specifically, without loss of generality,
we take one of the latent spaces (derived from the har-
monic oscillator) to be the unified one (so r1 = r,A1 = I,
a1 = 0), and solve for the other Ai and ai by minimizing
the total mismatch

M ≡
5∑
i=2

〈`(|Airi+ai−r1|)+`(|A−1i (r1−ai)−ri|)〉, (16)

where the average is over all our rocket images mapped
through the the five encoders. If the loss function pe-
nalizing mismatch distance were `(r) = r2, equation (16)
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would simply be a χ2-minimization determining Ai and
ai via linear regression, except that we have also penal-
ized inaccuracy in the inverse mapping (second term) to
avoid biasing Ai low. To increase robustness toward out-
liers, we instead followed the prescription of [26] by choos-
ing `(r) ≡ 1

2 log2

[
1 + (r/ε)2

]
and minimizing M with

gradient descent, using an annealing schedule ε = 101,
100, ..., 10−10.

Next, we estimated the velocity ṙ and acceleration r̈ at
each data point by cubic spline fitting to each trajec-
tory r(t) in the unified latent space, and found candi-
date differential equations of the form r̈ = f(ṙ, r) using
the publicly available AI Feynman symbolic regression
package [22, 23]. To eliminate dependence on the cubic
spline approximation, we then recomputed the accuracy
of each candidate formula f by using it to predict each
data point from its two predecessors using the boundary-
value ODE solver scipy.integrate.solve bvp [77], selecting
the most accurate formula for each of our five examples.

Applying an affine transformation r 7→ Ar + a to both
the data and these equations of course leaves the pre-
diction accuracy unchanged, so we now exploit this to
further reduce the total information-theoretic complexity
of our equations, defined as in [23, 26] and summarized
in Table II. Figure 8 (2nd panel) shows a contour plot
of the equations complexity as a function of an overall
shift (darker means smaller). We observe a clear opti-
mum for the shift vector a, corresponding to eliminating
additive constants in the harmonic and quartic oscilla-
tor equations. For example, ẍ = −x is simpler than
ẍ = 2.236−x. The 3rd panel of Figure 8 shows the total
equation complexity (as a stacked histogram) as a func-
tion of an overall rotation of the coordinate axes. We see
several minima: the gravitational example likes 45◦ rota-
tion because this makes the new horizontal acceleration
vanish, but the other examples outvote it in favor of a 0◦

rotation to avoid xy cross-terms.

Only three degrees of freedom now remain in our matrix
A: two for shear (expanding along some axis and shrink-
ing by the inverse factor along the perpendicular axis)
and one for an overall scaling. We apply the vectorSnap
algorithm of [23] to reveal rational ratios between pa-

rameters and then select the shear that maximizes total
accuracy. As can be seen in the contour plot in the right
panel of Figure 8 (darker color means lower complexity),
∼ 3% shear is optimal. Finally, we apply the overall
scaling that minimizes total complexity, resulting in the
rediscovered laws of motion show in the right column of
Table I. The table shows that these are in fact exactly the
laws of motion used to generate our training set images
(up to some noise in the quartic term prefactor caused
by the cubic spline interpolation), but reexpressed in a
latent space that is larger by a factor 9

5 than the one we
used, and has its x-axis flipped, which further simplifies
our formulas (for example, the rediscovered gravitational
acceleration is 1 instead of 5

9 ).

We note that the formulas in Table I were discovered
fully automatically in the sense that no hyperparame-
ters were adjusted in any of the steps (except for the la-
tent space dimensionality being reset to exceed the knot-
theory requirement as mentioned above). These laws of
motion were auto-discovered in three conceptually differ-
ent steps:

1. Train a neural network to find an accurate black-
box fit. There is a continuum of equally accurate
fits corresponding to latent-space reparametriza-
tion invariance.

2. Exploit this reparametrization invariance to mini-
mize complexity caused by unnecessary nonlinear-
ity. There remains a continuum of equally accurate
fits corresponding to latent-space affine transforma-
tions.

3. Exploit this affine invariance to minimize total sym-
bolic complexity in the fitted equations.

Steps 2 and 3 both reveal dynamical simplicity by absorb-
ing ever more of the complexity into the autoencoder.

IV. SUMMARY

We have presented a method for unsupervised learning
of equations of motion for objects in raw and optionally



9

TABLE II. Complexity definitions

Object Symbol Description length DL
Natural number n log2 n
Integer m log2(1 + |m|)
Rational number m/n DL(m) + DL(n) = log2[(1 + |m|)n]
Real number r log+

(
r
ε

)
, log+(x) ≡ 1

2
log2

(
1 + x2

)
Parameter vector p

∑
i DL(pi)

Parametrized function f(x; p) DL(p) + k log2 n; n basis functions appear k times

distorted unlabeled video. This automatic un-distortion
may be helpful for modeling real-world video afflicted
by stereoscopic projection, lens artifacts, varying light-
ing conditions, etc., and also for learning degrees of free-
dom such as 3D coordinates and rotation angles. Our
method is in no way limited to video, and can be applied
to any time-evolving dataset, say N numbers measured
by a set of sensors, where one is interested in discovering
predictable features in this time-series data and learning
their laws of motion in as simple form as possible.

Although we focused on dynamics, it could also be inter-
esting to generalize our approach to other situations, by
attempting to infer other properties of the system rather
than its future state. Another interesting avenue for
future work is to explore whether the above-mentioned
topological intuition provided by knot theory can help
improve autoencoders more generally, and whether the
above-mentioned regularization of curvature or nonlin-
earity can prove useful in other machine-learning con-
texts.

The reparametrization invariance of general relativity
teaches us that there is an infinite class of coordinate sys-
tems that provide equally valid physical descriptions. In

our case, such reparametrization invariance of our auto-
discovered latent space is a nuisance because, in con-
trast to general relativity, the laws of motion are not
reparametrization invariant and can be made arbitrarily
complicated. We broke this degeneracy by quantifying
and minimizing the geometric and symbolic complexity of
the dynamics. Although different systems were simplest
in different coordinate systems, we found that minimiz-
ing total complexity for all of them recovered a standard
isotropic inertial frame. An interesting topic for future
work would be to explore whether our brains’ representa-
tions of physical systems are similarly optimized to make
prediction as simple as possible.
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[39] Vedran Vukotić, Silvia-Laura Pintea, Christian Ray-
mond, Guillaume Gravier, and Jan C Van Gemert. One-
step time-dependent future video frame prediction with a
convolutional encoder-decoder neural network. In Inter-
national Conference on Image Analysis and Processing,
pages 140–151. Springer, 2017.

[40] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan,
Roy H Campbell, and Sergey Levine. Stochastic varia-
tional video prediction. arXiv preprint arXiv:1710.11252,
2017.

[41] Marc Oliu, Javier Selva, and Sergio Escalera. Folded re-
current neural networks for future video prediction. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 716–731, 2018.

[42] Zhipeng Liu, Xiujuan Chai, and Xilin Chen. Deep mem-
ory and prediction neural network for video prediction.
Neurocomputing, 331:235–241, 2019.

[43] Juan Carrasquilla and Roger G Melko. Machine learning
phases of matter. Nature Physics, 13(5):431, 2017.

[44] Evert PL Van Nieuwenburg, Ye-Hua Liu, and Sebas-
tian D Huber. Learning phase transitions by confusion.
Nature Physics, 13(5):435, 2017.

[45] Evert van Nieuwenburg, Eyal Bairey, and Gil Refael.
Learning phase transitions from dynamics. Physical Re-
view B, 98(6):060301, 2018.

[46] Giacomo Torlai and Roger G Melko. Learning thermo-
dynamics with boltzmann machines. Physical Review B,
94(16):165134, 2016.



11

[47] Tomi Ohtsuki and Tomoki Ohtsuki. Deep learning the
quantum phase transitions in random electron systems:
Applications to three dimensions. Journal of the Physical
Society of Japan, 86(4):044708, 2017.

[48] Vedran Dunjko and Hans J Briegel. Machine learning
& artificial intelligence in the quantum domain: a re-
view of recent progress. Reports on Progress in Physics,
81(7):074001, 2018.

[49] Ilker Yildirim, Kevin A Smith, Mario Belledonne, Ji-
ajun Wu, and Joshua B Tenenbaum. Neurocomputa-
tional modeling of human physical scene understanding.
In 2nd Conference on Cognitive Computational Neuro-
science, 2018.

[50] David Zheng, Vinson Luo, Jiajun Wu, and Joshua B
Tenenbaum. Unsupervised learning of latent physical
properties using perception-prediction networks. arXiv
preprint arXiv:1807.09244, 2018.

[51] Michael B Chang, Tomer Ullman, Antonio Torralba, and
Joshua B Tenenbaum. A compositional object-based ap-
proach to learning physical dynamics. arXiv preprint
arXiv:1612.00341, 2016.

[52] Zhang Zhang, Yi Zhao, Jing Liu, Shuo Wang, Ruyi Tao,
Ruyue Xin, and Jiang Zhang. A general deep learn-
ing framework for network reconstruction and dynamics
learning. Applied Network Science, 4(1):1–17, 2019.

[53] Stuart Russell, Daniel Dewey, and Max Tegmark. Re-
search priorities for robust and beneficial artificial intel-
ligence. Ai Magazine, 36(4):105–114, 2015.

[54] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Chris-
tiano, John Schulman, and Dan Mané. Concrete prob-
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