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Abstract 

A lattice Boltzmann (LB) model with an efficient and accurate interface treatment for 

conjugate heat transfer across a thin wall between two different media is developed. The proposed 

interface treatment avoids fine meshing and computation within the thin layer, instead, the energy 

balance within the thin layer and the conjugate conditions on each interface are utilized to construct 

explicit updating schemes for the microscopic distribution functions of the LB model at the interior 

lattice nodes of the two media next to the thin layer. The proposed interface schemes reduce to the 

standard interface scheme for conjugate conditions in the literature in the limit of zero-thickness 

of the thin layer, and thus it can be considered a more general interface treatment. A simplified 

version of the interface treatment is also proposed when the heat flux variation along the tangential 

direction of the thin layer is negligible. Three representative numerical tests are conducted to verify 

the applicability and accuracy of the proposed interface schemes. The results demonstrate that the 

intrinsic second-order accuracy of the LB model is preserved with the proposed interface schemes 

for thin layers with constant tangential fluxes; while for general situations with varying tangential 

fluxes, first-order accuracy is obtained. This interface treatment within the LB framework is 

attractive in conjugate heat transfer modeling involving thin layers for its simplicity, accuracy and 

significant reduction in computational resources. 

 

I. Introduction 

The process of heat transfer between two media separated by a thin layer is encountered in 

numerous scientific and engineering problems. Representative examples include design of 

different types of heat exchangers with heat transfer between counter-current fluid streams or 

between a fluid and a moving packed bed or falling particles that are separated by thin walls  [1–

3], solar thermal receivers with modular absorbers of thin metallic or ceramic tubes  [4–7], latent 

or thermochemical energy storage units where the porous media are heated/cooled by an external 
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hot/cold fluid going through a thin-walled channel  [8–11], heat pipes with insulation 

layers  [12,13], and heat conduction in multi-layer composite materials  [14], just to name a few. 

Thermal transport in those systems are essentially conjugate heat transfer problems due to the 

different thermophysical and transport properties of the adjacent materials. Modeling of the 

conjugate heat transfer across the thin layer is a challenging task as the conjugate conditions need 

to be satisfied on each side of the thin layer and its dimension can be orders of magnitude smaller 

than the adjacent media, which would typically require non-uniform or adaptive meshing. 

The lattice Boltzmann method (LBM) has become an alternative and attractive numerical 

method for heat and mass transfer in the last decade  [15–18]. In addition to the inherited benefits 

of the LBM for fluid flow - ease of implementation, convenience in boundary treatment involving 

complex geometry, and the ability to be performed as a parallel computation leading to greatly 

reduced computational demand, the LBM is particularly attractive for heat and mass transfer 

simulations due to the fact that the boundary and interfacial macroscopic variables of interest (e.g., 

Dirichlet-type boundary temperature/concentration, Neumann-type boundary heat and mass 

fluxes, and interfacial temperature/concentration and their fluxes) can be directly related to the 

microscopic distribution functions (DFs) in the LBM so that those physical boundary and 

conjugate conditions can be directly implemented or satisfied to the intrinsic second-order 

accuracy  [15,19–21]. Therefore, extensive interest and effort have been devoted in the literature 

to develop effective and accurate interface schemes in the LBM for conjugate heat and mass 

transfer problems (see  [22–27] and references therein). While those interface schemes are directly 

applicable to the above-mentioned conjugate heat transfer across thin walls, they would require 

either very fine mesh in the whole computational domain in order to resolve the thin layer when 

using the standard uniform mesh in the Cartesian coordinates, or non-uniform meshing in the thin 

layer and the other domains. For the latter, although various grid-refinement, grid-stretching and 

multi-block techniques have been proposed and verified in the LBM for fluid flow and heat and 

mass transfer  [28–33], they require additional treatment of the DFs and matching of the relaxation 

time coefficients in the LBM in the regions near the interfaces, typically along with the necessity 

of data interpolation and transfer between the adjacent domains. An effective interface treatment 

in the LBM framework for conjugate heat transfer across a thin layer using the standard Cartesian 

uniform mesh and with acceptable grid resolution is thus desired. 
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This paper aims to develop and verify a convenient and accurate interface treatment in the 

LB model for conjugate heat transfer across thin layers without mesh allocation or LBM 

computation within the thin layer. The conjugate conditions on both sides of the thin layer are 

satisfied through an energy balance analysis in the control volume enclosing the sandwiched layer; 

and those relations are implemented to develop explicit updating schemes for the DFs next to the 

thin layer to complete the standard “collision-streaming” process in the LBM nodes within the two 

media of major interest. The applicability and accuracy of the proposed interface schemes are 

verified through three representative numerical tests for which analytical solutions are available. 

 The remainder of this paper is structured as follows. First, the LB models for the scalar 

convection-diffusion equation (CDE) in the Cartesian coordinate and the axisymmetric CDE in 

the cylindrical coordinate systems are reviewed in Sections II and III, respectively, followed by a 

presentation of the specific schemes for thermal boundary conditions and the standard conjugate 

conditions for zero-thickness interfaces in Section IV. Next, our proposed schemes for thin-layered 

interfaces are detailed in Section V considering three different scenarios. Section VI presents a 

detailed numerical verification and accuracy analysis of the proposed schemes with three test 

cases. Conclusions are given in Section VII. And the Appendix illustrates the analytical solutions 

to the test cases in VI-A and VI-C. 

 

II. Lattice Boltzmann Model for the Standard Convection-Diffusion Equation  

 The general convection diffusion equation (CDE) with source terms for heat and mass 

transfer can be written as 

    
         (1) 

where 𝜙 is the dimensionless macroscopic variable of interest such as normalized temperature or 

concentration, t the time, u the velocity vector,  the diffusion coefficient, and G represents any 

combination of source terms. 

In the LB method, the following evolution equation is proposed to model and recover the 

CDE (1)  [15,18] 

 (2) 

where the microscopic distribution function (DF), gα(x, t)  g(x, ξα, t), is defined in the discrete 

velocity space, ξ is the particle velocity vector that is discretized to a small set of discrete velocities 
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{ξα|α = 0, 1, …, m  1}, eα the αth discrete velocity vector, δt the time step, L the collision operator, 

 
the equilibrium distribution function, and ωα the weight coefficient. The macroscopic 

scalar variable is obtained from 

         (3) 

and the equilibrium DF can be expressed as  [15,18] 

.                                (4) 

Regarding the collision operator L, there are three models that have been extensively studied, 

including the earliest and most original BGK (also commonly referred to as the single-relaxation-

time (SRT) model)  [34], the two-relaxation-time (TRT) model  [35], and the general multiple-

relaxation-time (MRT) model  [15,18]. In addition, different lattice structures have also been 

examined with applications in various situations (e.g., see  [18,36]). In this work, the D2Q5 MRT 

LB model originally proposed by Yoshida and Nagaoka  [15], which is attractive due to its simple 

implementation and second-order accuracy, is used. Specifically, a transformation matrix M is 

defined to map the DFs to their moment space: m = M∙g and meq = M∙geq, and the collision operator 

becomes 

,                (5) 

where S is a matrix of relaxation time coefficients, 	𝜏!" ,  which are related to the diffusion 

coefficients Dij as in the following  

,                                (6) 

in order to recover the CDE. The constant coefficient εD = 1/3 and the equilibrium moments can 

be explicitly derived as  [18,19,22] 

meq = .                   (7) 

 The standard “collision-streaming” procedure is also used in this work for efficient 

computational implementation, with 
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streaming step: 

 ,                            (9) 

where  represents the post-collision state. 

 

III. Lattice Boltzmann Model for the Axisymmetric Convection-Diffusion Equation 

For the wide range of engineering applications involving conjugate heat transfer between 

different fluids or a fluid and a porous bed separated by an annular medium, such as heat 

exchangers, tubular solar collectors/reactors, etc., the heat transfer process is axisymmetric, and 

thus axisymmetric lattice Boltzmann models, as discussed by multiple authors  [37–40], can be 

very advantageous. In this work, we apply the D2Q5 MRT axisymmetric model proposed by Li et 

al.  [37]. The typical axisymmetric CDE can be described as  

 
(10) 

where r and z represent the radial and axial directions, respectively, Drr and Dzz are the diagonal 

diffusion coefficients of the tensor Dij, and ur and uz are the respective velocity components. The 

proposed model effectively rearranges this equation to fit the form shown in Eq. (1) as  

 
(11) 

with , , which are now in terms of the pseudo-Cartesian coordinate system 

with two additional source components. For the above CDE, the MRT evolution equation for the 

DFs is thus redefined as  

 (12) 

where takes the form as described in Eq. (5). The leading order solution of the 

CDE can be obtained from Eq. (3). The additional source terms can be described in terms of the 

DFs as  

    (13) 
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 (14)    

 The reader is referred to  [37–41] for further discussion on the axisymmetric model and 

associated comparisons of accuracy behavior. 

 

IV. Thermal Boundary Conditions and Standard Conjugate Conditions 

 For both Dirichlet and Neumann-type thermal boundary conditions, second-order accurate 

boundary treatments based on the interpolation of post-collision distribution functions were 

proposed and verified in  [19]. By treating the interface as a zero-thickness shared boundary, those 

boundary schemes were applied to relate the interfacial scalar values and their fluxes to the DFs at 

the lattice nodes next to the interface for conjugate conditions.  In this work, we make use of those 

relationships on each side of the thin wall and construct convenient interface schemes. For 

completeness, the boundary and interface schemes are summarized below and the derivation of 

the specific thin-wall conjugate condition schemes will be provided in the next section. 

For the Dirichlet boundary condition , the following was proposed  [19]  

  (15) 

and the Neumann boundary scheme can be written as  

 (16) 

where  pointing from the boundary node to the interior lattice nodes xf and xff (see Fig. 

1), the coefficients cdi and cni (i = 1, 2, 3 and 4) are only related to the local lattice link fraction Δ, 

and  is the boundary flux in the lattice velocity vector  direction  [19].  

Specifically, Li et. al  [19] proposed three particular schemes based on an adjustable 

parameter, cd1, for the Dirichlet scheme which are determined with  

 Scheme 1: =                               (17a) 

Scheme 2: , and        (17b) 

Scheme 3: ,          (17c) 
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For the results presented in this work, Scheme 2 will be utilized and previous accuracy 

analysis  [18,19,22,27] have shown accurate results with the other schemes. For the Neumann 

scheme, the coefficients can be uniquely determined to preserve the second-order accuracy as 

,  ,
 

, and .                  (19) 

The conjugate interface conditions can be expressed in general formulation as  [27] 

, and        (20) 

,  for heat transfer, or (21a) 

,          for mass transfer (21b) 

where k is the thermal conductivity of the materials, ρ the density, cp the specific heat, and ϕjump 

and qjump the possible scalar and flux jump conditions at the interface. The subscripts f and s refer 

to the conterminous domains sharing a common boundary, typically referred to as the fluid-solid 

adjacent boundaries, and n represents the unit normal vector. For simplified situations when the 

velocity component normal to the interface is zero and no jump conditions are present, Eqs. (20, 

21) reduce to  

,          (22) 

        (23) 

where ,  in heat transfer and D = Dm, σ = 1 in mass transfer. 

The interface for conjugate conditions can be considered as a shared boundary for the 

adjacent domains, thus the following are noted based on the Dirichlet scheme 

and the Neumann scheme yields 
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where  are the interface scalar temperature and  are the interfacial fluxes, both 

of which can be conveniently evaluated within the LB framework, the coefficients  and (i = 

1, 2, 3 and 4) are related to cdi and cni as , and . 

Combining Eqs. (20, 21, 24, 25) one can obtain a system of equations to analytically solve 

for the DFs  and . Note that Eqs. (22-25) are used in the formulations 

presented in this paper. For brevity, here we present the following interface scheme for decoupled 

conjugate conditions (i.e., when the lattice vectors  and  are aligned with the normal n of the 

interface)  [22] 

,    (26a) 

,   (26b) 

with 

, (i = 1, 2, 3),      (27a) 

and 

.         (27b) 
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and the conjugate conditions on both sides of the thin layer are utilized to construct suitable 

schemes to complete the streaming step (see Eq. (9)) for the DFs at the lattice nodes next to the 

thin layer. Specifically, we consider three basic scenarios representing different configurations 

and applications. The first two setups are selected to show the treatments for thin flat plates and 

annular layers, for which the standard and axisymmetric LB models in Sections II and III are 

implemented, respectively. In addition, the heat flux in the tangential direction is assumed to be 

zero or constant so that the heat flow rates in the normal direction on both sides of the thin layer 

are balanced in those two cases. While the third setup is for the general situation with varying 

normal and tangential fluxes. For brevity, only steady cases are considered and the scalar and flux 

jumps at both interfaces for all cases are assumed to be zero. A similar approach can be used to 

develop a scheme to resolve the transient variations, using information from the past time steps, 

such as an additional discretization of the transient term with the Euler’s method. 

A. Conjugate heat transfer through flat thin-layer with constant tangential flux 

The thin-layered setup is shown in Fig. 1, where Φ refers to the normal heat fluxes at the 

interfaces of concern. The s and f subscripts refer to the upper and lower domains that are resolved 

with the LBM, and the thin subscript denotes the sandwiched middle layer.  

 
Fig. 1. Domain setup and layout of lattice nodes for conjugate heat transfer across a flat thin 
plate. 

 Assuming zero normal velocity, the normal heat fluxes at the two interfaces in Fig. 1 can 

be related to that through the thin layer as  
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 (28a)    

and  

 (28b)    

where  

 and . (28c)    

Note that while we use the “fluid” and “solid” notations for consistency to previous papers, both 

domains can be fluidic or solid as will later be demonstrated. 
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Clearly, the relationships in Eqs. (29) and (31a, b) now constitute two conjugate conditions 

for the temperature and flux components , , , and  similar to the standard conjugate 

conditions for a zero-thickness interface in Eqs. (22, 23). Following the derivation of the interface 

schemes in the previous section, we propose similar interface schemes for conjugate heat transfer 

through thin walls as in Eqs. (26a, b), now with the new coefficients 
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,    (32b) 
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which directly allow for the unknown DFs  and  to be obtained to 
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.        (33b) 

It is observed that the coefficients in Eqs. (33a, b) match exactly with those in Eqs. (27a, b). Thus 

the present interface scheme is able to recover that for the standard conjugate conditions with 

zero-thickness interface. 

 As will later be discussed in Sec. VI-A, Eqs. (26,32) can be used to retain the innate 2nd-

order accurate LBM scheme for straight interfaces for all Δ values. However, it is also favorable 

to present a simplified case for Δ = 0.5 for simple and efficient implementation. Assuming Δf = 

Δs = 0.5, Eqs. (26, 32) reduce to 

,   (34a) 

.   (34b) 

Again, in the limit of hthin = 0, it becomes 

,      (35a) 

.     (35b) 

This is consistent with the decoupled conjugate scheme at ∆ = 0.5 originally proposed in  [22]. 

The scheme in Eqs. (34a, b) is a convenient simplification for faster simulations and when 

it is undesirable to track the specific locations of the boundaries relative the LB grid, but it is 

stressed that 2nd-order accuracy will only be achieved under the specific case of Δ = 0.5 with an 

expected decreased convergence order for Δ ≠ 0.5 and curved geometry. 

B. Conjugate heat transfer through annular thin-layer with constant tangential flux 

While the proposed model in Sec. V-A can resolve the thin region in typical planar 

coordinates, it is also advantageous to present a model for cylindrical coordinates, since a 

common application that this framework can be applied to is the solution of the CDE for “thin-

walled pipes.” For the axisymmetric model, we present the domain schematic and lattice layout 

as shown in Fig. 2.  
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Fig. 2. Domain setup and layout of lattice nodes in the axisymmetric LB model for conjugate 
heat transfer across an annular thin medium. 

 It should be noted that the fluxes at the two interfaces on each side of the thin region are 

not the same, rather, the heat flow rate is conserved. Thus the fluxes can be directly related as 

before with an additional radius ratio as  

 (36)    

which can be written in a form similar to Eq. (29) as  

. (37)    

 Similarly, assuming constant tangential flux along the interface, the normal heat flow rate 

is uniform throughout the thin layer, thus the normal flux can be calculated with the temperatures 

at the interfaces as 

 (38)    

 Now that two relations have been obtained relating the fluxes  and macroscopic 

variables , we can develop similar conjugate schemes as given in Eqs. (26a, b) with the 

new coefficients within the axisymmetric LB model: 
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                                         (39a) 

where 

              (39b) 

Similarly, for the special case of Δf = Δs = 0.5, Eqs. (26, 39) reduce to 

 ,    (40a) 

.    (40b) 

 

C. Conjugate heat transfer through flat thin-layer with non-uniform tangential flux 

While a number of cases can be simulated using the framework shown in Secs. V-A and 

V-B, a need may arise where the tangential flux is non-uniform so that the heat fluxes in the 

normal direction on each side of the thin layer are not balanced (see illustration in Fig. 3 below 

where ql ≠ qr so that qd ≠ qu). It should be emphasized that the well-posedness of the conjugate 

heat transfer problem typically does not allow the specification of the tangential flux in addition 

to the conjugate conditions in the normal direction on both sides of the thin layer. For these cases, 

an approximation of the tangential flux based on interpolation of the fluxes in the adjacent lattice 

nodes can be used. We begin with a modified setup shown in Fig. 3, where qi denotes the heat 

flux on the surfaces with l, r, u, and d representing the left, right, up and downward walls, 

respectively. 
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Fig. 3. Domain setup and layout of lattice nodes for conjugate heat transfer across a flat thin 
plate with general non-uniform tangential flux involved. 

As shown in Sections V-A and V-B, in order to resolve the thin layer, two relations must 

be present that can relate the unknown distribution functions  and . To 

develop the first relation, we view the section noted in Fig. 3 from a control volume perspective, 

for which the energy balance at steady state gives 

 (41) 

where . It is noted that qd and qu can be related to the microscopic DFs 

following the Neumann-type flux relations in Eq. (16). Substitution of those into Eq. (41) gives 

the following relation between  and   

 (42)    

 Additionally, it can be assumed that the heat flow rate (proportionally to flux in planar 

domain) distribution is continuous across the thin layer, and thus ql and qr can be approximated 

from the interpolation of the fluxes at the nearby lattice nodes. Taking ql as an example in Fig. 4, 

a local area-based interpolation of the heat fluxes at those nodes gives  
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 (43a)    

Similar interpolation can be applied to obtain qr 

 (43b)    

 

 
Fig. 4. Illustration of the area-based interpolation for ql. 

 Furthermore, it is noted that all the lattice nodes xlf, xls, xf, and xs are interior nodes within 

the two domains. The scalar gradients ∂ϕ/∂x at the interior nodes can be conveniently obtained 

from the microscopic DFs as verified in  [15,42,43]. In this work, we use the formula proposed 

in  [42] to obtain those in Eq. (43) 

 (44)    
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unknowns  and . To construct the second relationship, the scalar values 

at the interfaces of the thin layer, and , should be included. However, it should be noted 

that with varying tangential flux involved, the simple relation in Eq. (30) can no longer be used. 

To deal with this, we approximate the flux components qd and qu as 
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 (45a)    

and  

 (45b)    

where  is the introduced scalar value at the center of the thin layer (see Fig. 3). 

Combining Eqns. (45a) and (45b) one obtains the relation  

 (46)    

 Since , , , and  can all be obtained from the microscopic DFs in the LBM, 

we can rewrite Eq. (46) as  

 

(47)    

 Combining Eqs. (42) and (47), the general interface scheme for conjugate heat transfer 

through a thin wall can be written as 

                   (48a) 

,                           (48b) 

with the same coefficients as presented in Eqs. (32a, b) for , i = 1-3. 
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Similar to the previous sections, a simplified scheme is ascertained if Δf = Δs = 0.5, such that Eqs. 

(48a, 48b) reduce to 

   (49a)                          

   (49b) 

 

VI. Numerical Verification and Discussion 

In order to demonstrate the numerical validity and accuracy of the thin-wall schemes, three 

test cases with analytical solutions available are examined: Sec. VI-A: 1D diffusion in a 3-layered 

slab, Sec. VI-B: 2D axisymmetric diffusion with a sandwiched thin region, and Sec. VI-C: 2D 

convection diffusion within a channel where two different fluids are separated by a thin layer. The 

first test studies the scheme presented in Sec. V-A, where the tangential flux within the thin area 

is zero. Test VI-B studies the same concept with applications in circular domains with the 

axisymmetric LBM model, thus studying the applicability of the proposed scheme in Sec. V-B. 

The final test analyzes the accuracy and convergence behavior of the general scheme in Sec. V-C 

with non-uniform tangential fluxes. Moreover, since the scheme in Sec. V-A can be considered an 

approximation of the general scheme in Sec. V-C when neglecting the tangential flux variations, 

a direct comparison of those two schemes is also conducted with both implemented in the last test. 

The advantage and improvement of the general scheme over its simplified version is verified from 

an accuracy standpoint. 

A. 1D diffusion in a 3-layered slab 

 The planar configuration and the lattice domain is illustrated in Fig. 5, where H1, H2, and 

H3 are the respective domain heights with distinct materials of thermal conductivities k1, k2, and 

k3. 
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Fig. 5. Schematic depiction of the computational domain and the lattice distribution for 1D 
diffusion in a 3-layered slab. 

 The boundary and interfacial link fraction offsets Δ3,top, Δ1,bottom, Δ12, and Δ23 represent the 

local distances of the boundary and interface nodes to the closest LBM nodes as shown. For LBM 

computation, Dirichlet conditions are applied on both the top and bottom walls following 

 and ; periodic boundary conditions are imposed on 

the left and right walls; and the proposed interface scheme in Eqs. (26a, b) with coefficients 

determined in Eqs. (32a, b) for flat thin-layers resolves the dual set of conjugate conditions. To 

obtain non-trivial results, a quadratic heat source is also imposed. The analytical solution is 

provided in the Appendix. 

For illustration, Fig. 6 presents profiles of  for eight sets of thermal conductivity 

ratios, k31 = k3/k1, for the materials in the first and third domains with Δ3,top = Δ1,bottom = Δ12 = Δ23 

= 0.5. For the simulation, the domain heights are fixed as  and . The 

remaining parameters used are k21 = k2/k1 = 250 for k31 > 1, k23 = k2/k3 = 250 for k31 < 1, 

, and σ = k31. For clarification, Q is determined for all simulations presented from 

the relation  where kthin = k2. The reader should 

note that with the proposed interface scheme in this work, no lattice nodes or LBM computation 
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are needed for the thin-layer. For the quadratic source  in 

Domains I and III,  a = 1, b = 0, and c = 0 were used. It is discerned that the LBE results agree 

very well with the exact solutions.  

 
Fig. 6. Dimensionless temperature profiles within the three-layered slab for conjugate heat 
transfer across the thin middle layer with varied thermal conductivity ratios.  

 For further inspection, Fig. 7 shows the profiles of with varied thin-layer 

thicknesses H2. This simulation maintains the same resolution in Domains I and III as 

, and Domain II is varied as  H2 = (1, 2, 8, 32, 64, 128, 256, 1024)δx. The other 

simulation parameters are set as k31 = 1, k21 = 5, τ1 = τ3 = 0.65, σ = 1, a = 1, b = 0, and c = 0. A key 

point to be made here is that the interface scheme across the thin layer proposed in this work is 

derived from integration of the temperature gradient over the thin-layer domain (see Eq. (30)), 

which is an exact relation when no varying tangential heat flux is present (qr = ql). This is the 

reason that the LBM results shown in Fig. 7 retain a high degree of accuracy even at large H2 

values without associated meshing in the domain. The large H2 values shown in Fig. 7 are 

presented to demonstrate this point, however care should be taken as the formulation would not be 

well-posed for cases with thick walls and non-negligible amounts of tangential heat flux variation. 

A similar statement can be made for an unsteady formulation with thick walls. 
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Fig. 7. Dimensionless temperature profiles,	𝝓𝟏,𝟐,𝟑, at varied thin-region thicknesses.  

 To further assess the accuracy of the proposed interface scheme, we define the relative L2-

norm error as 

 (50)    

where E2 contains the relative errors of the thermal field where LBM nodes are present. The 

Dirichlet boundary conditions applied at the bottom and top of the domain have been studied 

extensively  [19,22], therefore they are not studied again here. For convenience, we let Δ1,bottom = 

1 – Δ12 and Δ3,top = 1 – Δ23 to keep H1 and H3 as integers. The effects of different interfacial offsets, 

Δ, are investigated with the E2 error distribution. However, it should be noted that these are strictly 

chosen for numerical verification and no limit is imposed on the scheme related to interfacial 

offsets. Several wall thicknesses are studied, ranging from  

and for interfacial offsets ranging between Δ = 0.01, 0.25, 0.50, 0.75, and 0.99. Fig. 8 presents the 

results of the study for simulation parameters k21 = 8, k31 = 0.02, τ1 = 0.75, τ3 = 0.875, σ = 0.013̅3, 

a = 1, b = 0, and c = 0.  
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Fig. 8. Relative L2-norm errors for varying wall thicknesses, (a) H1/H2 = H3/H2 = 5, (b) H1/H2 
= H3/H2 = 25, (c) H1/H2 = H3/H2 = 50, and (d) H1/H2 = H3/H2 = 100, versus the grid resolution, 
1/H, at different lattice link fraction Δ12 and Δ23 values. 

 It is consistently observed that all the interfacial offsets and wall thicknesses studied 

demonstrate 2nd-order accuracy. Some variation in the overall error is evident between different 

cases, however the magnitudes can be considered relatively small, ranging between 10-5 and 10-6 

when . The authors also note that various k1, k2, k3, σ, τ1, and τ3 parameters were 

applied and second-order accuracy was obtained for all cases, however we omit the additional 

results for brevity. 

B. 2D axisymmetric diffusion with a sandwiched circular layer 

To validate the proposed interface scheme in Sec. V-B for annular thin-layers with the 

axisymmetric LBM, a three-region annulus test case is proposed as displayed in Fig. 9, where 𝑅 

refers to the radii of the setup with corresponding subscripts i, 1, 2, and o differentiating the radii. 

It is pointed out that the LBM model implemented is one-dimensional since no variation is 

observed in the θ direction. Similar to the previous section, Dirichlet boundary conditions are 

1 3 512H H xd=+
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applied at both the inner and outer annulus surfaces as  and ; periodic 

boundary conditions are applied in the length direction (into the page) maintaining an infinitely 

long cylinder; and the interface scheme described in Sect. V-B is used to account for the conjugate 

conditions and heat transfer across the thin-layer. 

 
Fig. 9. Schematic depiction of the circular domain with axisymmetric diffusion in a 3-layered 
bounded annulus. 

For steady axisymmetric diffusion with conjugate conditions at the interfaces, the exact 

solution can be solved as 

 (51a)    
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 (51c)    
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 (52b)    

 (52c)    

 Dirichlet boundary conditions of ϕi = 0 and ϕo = 1 are applied for all studies presented in 

this section, and the proposed conjugate interface scheme in Sec. V-B is implemented. First, a 

visual illustration of the temperature distribution is shown in Fig. 10 for fixed radii of Ri = 24, R1 

= 120, R2 = 144, and Ro = 240 all in LB unit. The relaxation time coefficients τ1 and τ3 in the LBM 

for Domains I and III are fixed as τ1 = 0.65 and τ3 = 1.0, the thermal conductivity of Domain II is 

fixed as k21 = k2/k1 = 100 for k31 ≥ 1 and k23 = k2/k3 = 100 for k31 ≤ 1, and the heat capacity ratio is 

varied as σ = 0.3k31. To analyze the scheme sensitivity and robustness, a wide range of k31 ratios 

are tested as shown. As expected, excellent agreement between the simulated and theoretical 

temperature profiles is observed.  

 
Fig. 10. Dimensionless temperature profiles,	𝝓𝟏,𝟐,𝟑, as a function of domain height, 𝒓/𝑹𝒐, for 
varied thermal conductivity ratios. 

 To evaluate the order-of-accuracy of the proposed interface scheme, the L2-norm errors are 

ascertained by varying multiple setup parameters. First, we study the effect of the link fractions on 

the accuracy of the proposed scheme. As in Sec. VI-A, we maintain the relationship that the 

domain itself is an integer by constraining the physical offsets at Ri and Ro as Δ1,bottom = 1 – Δ12 

and Δ3,top = 1 – Δ23. These constraints are strictly for ease of results formatting and there is no 
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inherent limit that the radial differences must be integers. Fig. 11 shows the results of E2 versus 

the grid resolution for link fractions Δ = 0.01, 0.25, 0.50, 

0.75, and 0.99 with differing thicknesses of the thin region as 	 and 

. The relaxation time coefficients and material ratios are fixed as 

, k21 = 8, k31 = 0.04, and σ = 0.013̅3. Clearly, second-order accuracy is preserved 

for all cases tested. The retainment of this inherent second-order accuracy is observed since the 

model exactly resolves the heat transfer within the thin layer (see Eq. (36)) when the heat flow rate 

is constant at steady state in the radial direction for the problem. 

 

Fig. 11. L2-norm errors for varying thin annulus thicknesses, (a)  and 

(b) , versus the grid resolution, . 

 To further gain an understanding of the effect of wall thickness and to compare the present 

“non-meshing” scheme to the original interface scheme in LBM, we compare the L2-norm errors 

obtained using both the interface scheme presented in this work and an LBM model including 

lattice nodes within the sandwiched thin layer with two sets of conjugate conditions resolved by 

the zero-thickness interface scheme (see Eq. (26, 27)). For simplicity, we choose the inner-outer 

radius ratio as  for all simulations and the interfacial offsets are all 

set to 0.5 so that the lengths of the regions containing lattice nodes are all integers. The ratio of the 

thin-layer thickness to overall domain extent are varied as = 3, 6, 9, 12, and 15. 

The relaxation time coefficients and heat capacity ratios are  and and σ = 
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(5/14)k31, respectively. Fig. 12 presents the results of the study, with Fig. 12a and Fig. 12c 

constraining the thermal conductivities as k21 = 100, k31 = 25 and Fig. 12b and Fig. 12d as k21 = 4,  

k31 = 0.04. Fig. 12a and Fig. 12b correspond to the results obtained with the framework developed 

in Section V-B, while Fig. 12c and Fig. 12d are from the zero-thickness interface setup as 

described, which requires lattice nodes within the middle layer and two sets of conjugate 

conditions. It is evident that both methods demonstrate second-order accuracy. From a magnitude 

of error standpoint, both schemes demonstrate considerably low errors and their magnitudes are 

very close to each other. Furthermore, it can be observed that the results in Fig. 12 (c, d) are less 

sensitive to the geometry change (different ratios) when using the original 

zero-thickness scheme compared to those in Fig. 12 (a, b) with the present scheme, i.e., the curves 

are packed within a thinner band. This study confirms the applicability and accuracy of the 

proposed interface scheme, which can significantly simplify the interface treatment and save 

computational resources.  

 
Fig. 12. L2-norm errors for varying thermal conductivity ratios, (a) k21 = 100, k31 = 25 and 
(b) k21 = 4, k31 = 0.04, versus the grid resolution, , for the 
finite-thickness scheme; (c) k21 = 100, k31 = 25 and (d) k21 = 4, k31 = 0.04, versus the grid 
resolution, 1/(Ro – Ri),  for the zero-thickness scheme. 

( ) ( )2 1o iR R R R- -
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 In addition to the interior temperature field, various design applications require that 

interfacial temperatures and heat fluxes for solid components, such as MOSFETs and stator coil 

windings, be effectively predicted to verify that they are within their required thermal operating 

ranges. Using Eqs. (24) and (25), the macroscopic temperature and flux can be “back-calculated” 

using the known post-collision DFs and the solved DFs  and  at the new 

time step from the interface scheme in Section V. To gain an understanding of the order-of-

accuracy of these interfacial quantities, two additional sets of L2-norm errors are defined as 

,      (53) 

,               (54) 

which can be used to evaluate the L2-norm errors on each of the two interfaces of the thin layer. 

Using identical parameters to that of Fig. 12a, the errors are plotted for the interfacial temperature 

and flux in Fig. 13 and Fig. 14, respectively. Fig. 13a and Fig. 14a represent the scalar and flux 

quantities at r = R1 calculated with the updated streaming function and similarly so 

in Fig. 13b and Fig. 14b for the quantities at r = R2 with  It is observed that 2nd- and 

3rd-order convergence rates with low error magnitude are obtained for E2_tint and E2_qint, 

respectively, for the case of zero-tangential flux studied here. The 3rd-order convergence is due to 

the selection of Δ = 0.5 everywhere and the other simulation parameters. Additional tests were 

also conducted with arbitrary Δ values and in general only 2nd-order accuracy is preserved, for 

brevity, the results are not shown here. Overall, this test further strengthens the propensity of the 

scheme for wide use, as it is still strongly applicable in situations where the interface temperature 

and heat flux need to be determined at the thin layer. 
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Fig. 13. L2-norm errors for the interfacial scalar values (a) ϕintf at r = R1 and (b) ϕints at r = R2 
versus the grid resolution with simulation parameters 

k21 = 4, k31 = 0.04, , and σ = (5/14)k31. 

 

Fig. 14. L2-norm errors for the interfacial flux values (a) qintf at r = R1 and (b) qints at r = R2 
versus the grid resolution with the same parameters in 
Fig. 13. 

C. 2D convection diffusion within a channel with plug-flow fluids 

 To evaluate the applicability and accuracy of the general interface scheme in Sec. V-C for 

cases with non-uniform tangential flux, a 2D dual-section convection-diffusion problem with a 

plug flow is simulated based on previous works  [19,22]. The test case presented in  [19,22] are 

extended to include an additional domain (three total domains) with the allowance of varied 

heights as schematically depicted in Fig. 15. Sinusoidal Dirichlet boundary conditions are applied 

( ) ( ), 1 21/ 1LB nodes i oR R R R Rº - + -é ùë û

1τ = 0.625 3τ = 0.85,

( ) ( ), 1 21/ 1LB nodes i oR R R R Rº - + -é ùë û
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to both the top and bottom walls as , and 

periodic boundary conditions are applied at the left and right sides of the domains.  

 
Fig. 15. Schematic depiction of the computational domain and the lattice distribution for 
convection-diffusion in a 3-layered channel with two fluid domains. 

 Assuming a constant plug flow u = (U, 0) in Domains I and III and u = (0, 0) in Domain 

II, the characteristic Péclet number is defined as Pe = UH/D1 with H = H1 + H2 + H3. The exact 

solution for the scalar field is given in the Appendix. 

 For illustration, Fig. 16 shows the LBM solution for the dimensionless temperature field 

at Pe = 10 for a domain of H1 = H3 = 128δx and H2 = δx with all boundary and interface link 

fractions Δ = 0.5. The parameters used also include k21 = 10, k31 = 1, σ = 1 and . It 

is observed that the LBM solution overlays directly on the exact solution with no noticeable 

variations. It is also noted that this test case does include variation in the heat flow rate in the x-

direction within the thin-layer, therefore making it a suitable benchmark example to examine the 

general interface scheme developed in Sec. V-C. 
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1 3 0.55t t= =



30 
 

  
Fig. 16. Comparison of LBM results and exact solution for the dimensionless temperature 
field of ϕ at Pe = 10. 

 A comprehensive study of the numerical stability is out of the scope of this work, while  

similar stability behavior presented in  [22] for the zero-thickness conjugate scheme can be 

expected for the present schemes. The numerical stability can usually be improved by choosing 

approximate relaxation time coefficients as demonstrated in  [22]. For conjugate heat transfer 

between phases or materials with very large transport property ratios, the decoupled interface 

scheme presented in  [44] can be implemented and the present interface scheme can be easily 

extended to incorporate that. In addition, the area-based interpolation for the approximation of the 

tangential fluxes (  and  in Fig. 3) could also lead to instability when the relative dimension 

of the thin layer to the neighboring domains is large enough. 

 The order-of-accuracy of the LBM solution for the interior temperature fields in Domains 

I and III is examined first. Fig. 17 shows the L2-norm errors defined in Eq. (51) for varying H2 

with Pe = 20, k31 = 2/3, k21 = 10, σ = 2/3, and τ1 = 0.60, τ3 = 0.60. It should be emphasized that 

three different interface schemes were implemented: in Fig. 17a,  the tangential flux variation is 

neglected and the scheme in Sec. V-A was used; while in Fig. 17b, the general scheme in Sec. V-

C with interpolation-based approximation of the tangential fluxes, ql and qr, in each LB unit cell 

was applied (see Eqs. (40a, b)); moreover, in Fig. 17c, the general scheme in Sec. V-C was also 

implemented but with exact tangential fluxes of ql and qr rather than their approximations. In 

general, the exact tangential flux is not available, but this can serve as a valuable reference case to 

rq lq
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compare with the simulated cases. Several key points can be observed from Fig. 17: (1) the error 

magnitude is significantly reduced in Fig. 17b compared to Fig. 17a, (2) the errors are less 

sensitive to the variation of the thin-layer thickness H2 in Fig. 17b compared to Fig. 17a, both 

confirming the necessity of including the tangential flux variation in the interface scheme, (3) 

compared to the idealized situation in Fig. 17c with second-order convergence, only first-order 

accuracy is obtained for both schemes proposed in  Sec. V-A and Sec. V-C, implying that the 

approximation of the tangential fluxes is responsible for the reduction in the order-of-accuracy. 

Therefore, it can be concluded that the present interface scheme is first-order accurate for general 

cases. 

 
Fig. 17. L2-norm errors for the interior temperature field, E2, at varied H2 and Pe = 20 versus 
the grid resolution, 1/H, for different interface schemes (a) neglecting tangential fluxes as in 
Sec. V-A, (b) general scheme in Sec. V-C, and (c) general scheme in Sec. V-C but with exact 
tangential fluxes used. 

 Furthermore, Fig. 18 and Fig. 19 present the interfacial scalars and fluxes (ran on a 

256x256 LBM grid), respectively, with simulation parameters Pe = 10, H2 = 0.5δx, σ = 3.5k31, τ1 
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= 0.57, and τ3 = 0.52. Three specific cases with varying thermal conductivity ratios were tested: 

Case 1: k31 = 1, Case 2: k31 = 0.01, and Case 3: k31 = 100. Again, to further elucidate the comparison 

of two proposed interface schemes in Sec. V-C (denoted by “LBM,NF” for non-uniform tangential 

flux) and its simplified version in Sec. V-A (denoted by “LBM,CF” for constant tangential flux), 

both are plotted in the scalar and flux plots in Fig. 18 and Fig. 19. It is apparent that the LBM 

solutions with the general scheme in Sec. V-C implemented matches very well with the exact 

solution, while some noticeable discrepancy is observed for the solutions obtained with the 

“constant tangential flux” scheme. This is innately due to the nature of both schemes, with the 

general scheme in Sec. V-C being able to account for the tangential flux variation. 

 
Fig. 18. Profiles of the interfacial scalar ϕint at (a) y = H1 and (b) y = H1 + H2 for τ1 = τ3 = 0.55 
at Pe = 10. 
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Fig. 19. Profiles of the interfacial flux (k∂ϕ/∂y)int at (a) y = H1 and (b) y = H1 + H2 for τ1 = τ3 
= 0.55 at Pe = 10. 

 Furthermore, to verify the order-of-accuracy of the evaluated interfacial scalar and flux 

values when using the general interface scheme in Sec. V-C, the L2-norm errors E2_tint and E2_qint 

defined in Eqs. (53, 54) are computed and presented in Fig. 20 and Fig. 21, respectively.  

 
Fig. 20. L2-norm errors for the interfacial scalar values (a) ϕintf at y = H1 and (b) ϕints at y = 
H1 + H2 versus the grid resolution with the general interface scheme in Sec. V-C. Simulation 
parameters include Pe = 20, k31 = 2/3 , k23 = 15, σ = 2/3, τ1 = 0.60, τ3 = 0.60.  
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Fig. 21. L2-norm errors for the interfacial fluxes in the normal direction (a) qintf at y = H1 and 
(b) qints at y = H1 + H2 versus the grid resolution with the general interface scheme in Sec. V-
C with the same simulation parameters as in Fig. 20. 

From the results shown, 1st-order convergence is observed for all cases for E2_tint, and 2nd-

order convergence for E2_qint, with an increase in error magnitude as H2 is increased. The higher 

convergence order of the interfacial flux is similar to that presented in Figs. 13 and 14. As expected, 

the degradation in the order-of-accuracy can be attributed to the addition of non-miniscule 

tangential heat flux along the sandwiched layer interfaces and the associated interpolation of the 

ql and qr components used to construct the general interface scheme. Nonetheless, the proposed 

schemes in this work show considerable promise with low error magnitude and the benefit with 

greatly reduced computational demand compared to a typical computational setup of including LB 

nodes in all domains. 

 

VII. Conclusions 

 In this paper, a computationally efficient interface treatment within the lattice Boltzmann 

method (LBM) framework was proposed to resolve the conjugate conditions that are evident on 

opposing sides of a thin layer of material bound by separate and distinct domains of interest. The 

proposed treatment is attractive as it satisfies the conjugate conditions on both sides and avoids 

fine meshing and computation within the thin layer. Three particular interface schemes were 

developed, presented in Sections V-A through V-C. In Sec. V-A, the scheme was presented for 

planar coordinates specifically for cases with zero or constant heat flux tangential to the thin-layer 

interface. Sec. V-B thus presents a similar analysis for cylindrical coordinates. Finally, Sec. V-C 
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presents a general interface scheme with flux correction that is applicable to a wider range of 

applications involving conjugate heat transfer across thin layers without any constraint on the 

tangential flux variation.  

 A detailed order-of-accuracy analysis was then presented for three representative 

benchmark cases. The quantities investigated include the interior temperature fields as well as the 

evaluated interfacial temperatures and fluxes. The first two cases have no flux variation in the 

tangential direction, thus the proposed schemes are able to preserve the intrinsic second-order 

accuracy of the LB model. The final test case shows the advantage of the correction scheme and it 

was verified that the proposed scheme is first-order accurate for general cases. Overall, the 

demonstrated results show the validity of the proposed interface treatment, which shows a strong 

propensity for numerical solvers with a focus on improved computational efficiency with 

retainment of a high degree of accuracy.  
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Appendix: Analytical Solutions to the Test Cases in Sections VI-A and VI-C 

1. For diffusion within the 3-layered domain in Fig. 5, the governing CDEs are written as  

 (A1a)    
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.  (A2c)    

With standard conjugate conditions at the two interfaces, the exact solutions for the thermal 

field can be expressed as   

 (A3a)    

 (A3b)    

 (A3c)    

where 
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, ,  (A4b)    

,  (A4c)    
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 (A4g)    

 2. For convection-diffusion within the channel with the 3-layered domain in Fig. 13, The 

governing CDEs are 
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 (A5b)    

 (A5c)    

 Also with standard conjugate conditions at the two interfaces, the exact solution for the 

thermal domain can be solved as 

 (A6a)    

 (A6b)    

 (A6c)    

where “Re” denotes the real part of a complex number, and the coefficients are  
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,  (A7h)    
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