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Magnetohydrodynamic turbulence affects both terrestrial and astrophysical plasmas. The prop-
erties of magnetized turbulence must be better understood to more accurately characterize these
systems. This work presents ideal MHD simulations of the compressible Taylor-Green vortex under
a range of initial sub-sonic Mach numbers and magnetic field strengths. We find that regardless
of the initial field strength, the magnetic energy becomes dominant over the kinetic energy on all
scales after at most several dynamical times. The spectral indices of the kinetic and magnetic energy
spectra become shallower than k−5/3 over time and generally fluctuate. Using a shell-to-shell energy
transfer analysis framework, we find that the magnetic fields facilitate a significant amount of the
energy flux and that the kinetic energy cascade is suppressed. Moreover, we observe nonlocal en-
ergy transfer from the large scale kinetic energy to intermediate and small scale magnetic energy via
magnetic tension. We conclude that even in intermittently or singularly driven weakly magnetized
systems, the dynamical effects of magnetic fields cannot be neglected.

I. INTRODUCTION

Magnetized turbulence is present in many terrestrial
and astrophysical plasmas. Turbulence in magnetohy-
drodynamics (MHD) has been studied extensively over
recent decades, from experimental, theoretical, and nu-
merical perspectives, as the field continues to work to-
wards a full understanding of magnetized turbulent plas-
mas. However, much of the theoretical and numerical
work focuses on continuously driven plasmas, where a
continuous (although potentially stochastic) force adds
energy to the plasma, resulting in stationary turbulence.
In many natural systems, the turbulence can be inter-
mittently driven by infrequently occurring events or ini-
tialized from the initial conditions. For example, in the
circumgalactic medium (CGM), the hot diffuse gas sur-
rounding galaxies, or in the intracluster medium (ICM),
the plasma in galaxy cluster that accounts for the ma-
jority of baryonic mass, turbulence can be introduced by
various mechanisms. These include mergers with other
galaxies, brief increases in the birth rate of stars, tem-
porary outflows from jets driven by gas accreting onto
supermassive black holes, supernovae, and many more
transient events [1–4]. In pulsed power plasmas such as
in a z-pinch, the plasma is driven by a single initial event
and then allowed to decay into turbulence as kinetic and
magnetic energy in the plasma dissipate into heat [5, 6].
Therefore, to bridge the gap between observed, intermit-
tently driven turbulent systems and theories of stationary
MHD turbulence, we can study the behavior of decaying
magnetized turbulence in an idealized environment.

In decaying turbulence, the turbulent flow arises purely
from the initial conditions in the absence of a continuous
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driving force that injects energy. Essentially, the driving
force is a delta function forcing at the initialization of
the flow. The absence of external forces can avoid some
of the shortfalls of driven turbulence simulations. As an
example of these shortfalls, previous studies have shown
that seemingly unimportant driving parameters such as
the autocorrelation time and normalization of the driv-
ing field can bias plasma properties in turbulence simu-
lations, in some cases affecting the scaling of the energy
spectra [7]. In addition, the driving forces contaminate
the driven scales, making studies of turbulent plasma
properties on those scale difficult to interpret. Simula-
tions of decaying turbulence with fixed initial conditions
avoid these issues since there are no driving forces.

The Taylor-Green (TG) vortex provides a useful set of
smooth initial conditions that devolve into a turbulent
flow. It was first proposed by Taylor and Green [8] as an
early mathematical exploration of the development of the
turbulent cascade in a three dimensional hydrodynamic
fluid. In the modern era, it is a canonical transition-to-
turbulence problem also used for validation and verifica-
tion of numerical schemes [9]. From a physics point of
view, the TG vortex has been explored from numerous
angles, including numerical simulations of inviscid and
viscous incompressible hydrodynamics with an emphasis
on the development of small scale structures through vor-
tex stretching [10]. Multiple configurations for TG vor-
tices with magnetic fields were proposed in Lee et al. [11]
in order to study decaying turbulence in incompressible
MHD. The new magnetic field configurations maintain
all of the symmetries of the original hydrodynamic flow
[11], and later works [12–14] used these symmetries to
save computational resources and allow more highly re-
solved simulations of the vortex. These simulations pro-
duced differing k−2, k−5/3, and k−3/2 spectra depending
on the initial magnetic field, where the k−2 spectra was
speculated to be due to weak turbulence. Later work
by Dallas and Alexakis [15, 16] investigated the mecha-
nism behind the different spectra. They concluded that
the k−2 spectra produced by one configuration of the
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magnetic field was due to magnetic discontinuities in the
plasma and not weak turbulence as previously thought.
In Dallas and Alexakis [17], perturbations added to the
initial conditions lead the symmetries of the TG vortex
to break and the k−2 spectra to dissipate to shallower
k−5/3 spectra. A similar problem using the hydrody-
namic initial configuration of the TG vortex but with an
Orszag-Tang magnetic field was studied in imcompress-
ible resistive MHD by Vahala et al. [18], where a k−5/3

energy spectra was found in their simulations.

All of these studies are concerned with incompressible
turbulence, whereas many astrophysical systems (such
as the interstellar, circumgalactic, intracluster, and in-
tergalactic media) are comprised of compressible magne-
tized plasmas. To our knowledge, the formulation of the
TG vortex from Lee et al. [11] remains unexplored in the
compressible MHD regime. Moreover, there have been
recent advances in analytical tools to study the transfer of
energy between reservoirs in compressible MHD [19, 20].
Energy transfer analysis enables measurement of the flux
of energies between length scales within and between the
kinetic, magnetic, and thermal energies of the plasma.
In a compressible ideal MHD plasma, energy can be re-
distributed within the kinetic and within the magnetic
energy budget via advection and compression. Moreover,
magnetic tension can facilitate energy transfer between
kinetic and magnetic energies as vortical motion in the
turbulent plasma contributes to magnetic fields and mag-
netic fields constrain the motion of the plasma. In turbu-
lent flow, intra-budget energy transfers via advection and
compression typically manifest from a larger scale to a
smaller but similar scale (i.e., “down scale-local”), defin-
ing the turbulent cascade. Inter-budget energy transfer
via, e.g., magnetic tension, complicates the picture of a
turbulent cascade as it moves energy between reservoirs
and potentially allows for nonlocal transfer of energy
from large scales directly to much smaller scales. Given
the transient nature of the TG vortex, we expect the en-
ergy transfers to change over time as, e.g., the ratio of
kinetic to magnetic energy evolves over time or due to the
development of increasingly small-scale structure. This is
in contrast to stationary turbulence where the dynamics
remain constant over time in a statistical sense.

For these reasons, we focus on a detailed study of the
dynamics in the magnetized, weakly compressible Taylor-
Green vortex. Moreover, to explore magnetized decay-
ing turbulence in different regimes we present nine sim-
ulations of the TG vortex probing all combinations of
three different initial ratios of kinetic to magnetic energy
(1, 10, and 100, corresponding to initial Alfvénic Mach
numbers ofMA = {1, 3.2, 10}) and three different initial
fluid velocities (initial root mean squared, or RMS, sonic
Mach numbers of Ms,0 = {0.1, 0.2, 0.4}). Thus, we ex-
plore strongly and weakly magnetized, subsonic plasmas
in which density perturbations are present but limited.

To summarize our results, we find that magnetic fields
significantly influence the decaying turbulence in the
plasma regardless of the initial field strength. In all cases,

we find that at late times the magnetic dynamics domi-
nate kinetic dynamics even if the initial magnetic energy
is 100 times smaller than the kinetic energy. Moreover,
the spectral indices of the kinetic and magnetic ener-
gies are not fixed in time but evolve from steep ' k−2

spectra at earlier times to shallower ' k−4/3 spectra at
later times. Using the energy transfer analysis, we see
that most energy transfer is dominated by magnetic field
dynamics. This includes both energy flux from kinetic
to magnetic energy via magnetic tension and the flux of
energy within the magnetic energy budget via compres-
sion and advection. Overall, the kinetic energy cascade
is effectively absent and the initial sonic Mach number
(Ms,0) only weakly affects the observed dynamics. We
also see several transient phenomena during the transi-
tion to turbulence, including temporary inverse turbulent
cascades in both the magnetic and kinetic energies and
large nonlocal energy transfers between scales separated
by up to two orders of magnitude from the kinetic to the
magnetic energy.

We organize the paper as follows. In Section II, we
describe the simulation and analysis setup including nu-
merical methods, detailed Taylor-Green vortex initial
conditions, and the energy transfer analysis. In Sec-
tion III, we present results of the simulations (focusing
onMs,0 = 0.2) such as the bulk properties of the plasma,
the evolution of the energy spectra, and the transient be-
haviors seen through the energy transfer analysis:In Sec-
tion IV, we discuss our findings in the broader context
of magnetized turbulence and astrophysical plasmas and
conclude in Section V with a summary of our key find-
ings. The online supplementary materials for this paper
contain detailed plots of the results of all initialMs,0[21].

II. METHOD

A. MHD Equations and Numerical Method

The equations for compressible ideal MHD plasma can
be written as a hyperbolic system of conservation laws.
In differential form the ideal MHD equations are

∂tρ+∇ · (ρu) = 0

∂tρu +∇ · (ρu⊗ u−B⊗B) +∇
(
p+ B2/2

)
= 0

∂tB−∇× (u×B) = 0

∂tE +∇ ·
[(
E + p+ B2/2

)
u− (B · v) B

]
= 0

where ρ is the density, u is the flow velocity, B is the
magnetic field (that includes a factor of 1/

√
4π), p is the

thermal pressure, and E is the total energy density. We
close the system of equations with the equation of state
for an adiabatic ideal gas with

p = ρ (γ − 1) e



3

where γ is the ratio of specific heats and e is the internal
energy found from

E = ρ

(
1

2
u · u +

1

2
B ·B + e

)
.

We use the open source K-Athena [22] astrophysical
MHD code, which is a performance portable version of
Athena++ [23] using the Kokkos performance porta-
bility library [24]. K-Athena uses an unsplit finite vol-
ume Godunov scheme to evolve the ideal MHD equa-
tions originally presented and implemented in Athena
[25]. The method consists of a second-order Van Leer
predictor-corrector integrator with piecewise linear re-
construction (PLM) and HLLD Riemann solver, and con-
strained transport to preserve a divergence-free magnetic
field.

B. Magnetized TG Vortex

The TG vortex was first proposed by Taylor and Green
[8] as a mathematical exploration of the development
of hydrodynamic turbulence in 3D. The initial flow was
made to be periodic and symmetrical in order to accom-
modate simple approximations to a solution. There exist
a number of different formulations. We follow the setup
described in Wang et al. [9] for the hydro variables and
Lee et al. [11] for the initial magnetic field configuration.

The simplest hydrodynamic setup of a TG vortex be-
gins with a periodic field of fluid velocity in the xy-plane
and periodic pressure and density field with constant
sound speed throughout the domain. Using a cubic pe-
riodic domain with side length 2πL, the initial fluid ve-
locity is set to

ux = u0 sin
x

L
cos

y

L
cos

z

L

uy = −u0 cos
x

L
sin

y

L
cos

z

L
uz = 0

where u0 is the maximum initial velocity. Note that in
this formulation the initial flow velocity is confined to the
xy-plane. The initial pressure and density are set to

P = P0 +
ρ0u

2
0

16

(
cos

2x

L
+ cos

2y

L

)(
cos

2z

L
+ 2

)
ρ = Pρ0/P0

so that P and ρ are proportional to each other. This
means that the sound speed

cs =
√
γP/ρ =

√
γP0/ρ0

is initially constant throughout the domain.
The root mean square (RMS) of the initial Mach num-

ber is related to u0 by

Ms,0 =
u0
2cs

.

For simplicity, we set P0 = 1 and ρ0 = 1. We assume
the fluid is a monatomic ideal gas with an adiabatic index
γ = 5/3. The resulting total initial kinetic energy is

EU,0 = ρ0u
2
0 (πL)

3
. (1)

Magnetic fields were first added to the TG vortex in
[11] with the express constraint of preserving the same
symmetries of the hydrodynamic flow. Here, we follow
the proposed insulating configuration so that currents are
confined to πL boxes, e.g., the cube [0, πL]3 forms an
insulating box. The corresponding initial magnetic fields
are given by

Bx = B0 cos
x

L
sin

y

L
sin

z

L

By = B0 sin
x

L
cos

y

L
sin

z

L

Bz = −2B0 sin
x

L
sin

y

L
cos

z

L

where B0 is the initial magnetic field strength. In prac-
tice, we initialize the magnetic field from the magnetic
vector potential A

Ax = −B0 sin
( x
L

)
cos
( y
L

)
cos
( z
L

)
Ay = B0 cos

( x
L

)
sin
( y
L

)
cos
( z
L

)
Az = 0

using B = ∇×A. This guarantees ∇·B = 0 to machine
precision in the initial conditions, which is then preserved
by the constrained transport algorithm throughout the
simulation. The total initial magnetic energy is

EB,0 = 3B2
0 (πL)

3
(2)

so that the initial ratio of kinetic to magnetic energy is

EU,0
EB,0

=
ρ0u

2
0

3B2
0

. (3)

Since the magnetic field is zero is some regions of the
domain, the Alfvénic Mach number MA = u

√
ρ/B is

also undefined in some regions. For this reason, we use a
proxy based on the mean energies for the Alfvénic Mach
number

MA :=
√
〈EU 〉/〈EB〉 (4)

throughout the rest of the paper. We also adopt a similar
proxy for the plasma β (ratio of thermal to magnetic
pressure)

β :=
2

γ

M2
A

M2
s

(5)

where Ms is the RMS of the sonic Mach number.
The hydrodynamic and magnetic initial conditions

exhibit a number of symmetries that are maintained
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throughout the simulation. In each of the three dimen-
sions there are two planes across which the fluid is anti-
symmetric. For our setup, these are planes through x = 0
and x = πL; planes through y = 0 and y = πL; and
planes through z = 0 and z = πL. Additionally, the flow
is rotationally symmetric through a rotation of π around
the two axes x = z = πL/2 and x = z = πL/2 and ro-
tationally symmetric through a rotation of π/2 around
the axis x = y = πL/2. These symmetries are more
thoroughly explored in [11].

We explore the transition to magnetized turbulence
and the following decay in different regimes with our
simulation suite of TG vortices and focus on two pa-
rameters: the initial RMS Mach number using Ms,0 =
{0.1, 0.2, 0.4} and the initial ratio of kinetic to mag-
netic energy using EU,0/EB,0 = {1, 10, 100}, or alterna-
tively, the initial RMS Alfvénic Mach number MA,0 =
{1, 3.2, 10}. We simulate all nine combinations of the
three values of these two parameters. Throughout the
rest of the text, we use MsX to refer to simulations
with Ms,0 = X and MaY to refer to simulations with
MA,0 = Y .

The initial magnetic field amplitude B0 is obtained
from Equation 3 using given a specific value ofMs,0 and
MA,0. All simulations employ a cubic [−0.5, 0.5]3 do-
main with periodic boundaries, with L = 1

2π to be con-
sistent with the definition of the initial condition that is
presented above. We use a uniform Cartesian grid with
1,0243 cells. The characteristic length scale of the initial
vortices is πL, so that we define

T =
πL

u0

as the dynamical time [26] In order to evolve the simula-
tions for sufficient time to allow a turbulent flow to form
and evolve, we run each simulation for ≈ 6 dynamical
times.

In our results, we present all measurements of
time in terms of the dynamical time T and all
measurements of wavenumber in terms of 1/L.
Unless otherwise noted, all other results are in
terms of simulation units.

C. Energy Transfer Analysis

In order to probe the movement of energy between dif-
ferent energy reservoirs, we use the shell-to-shell energy
transfer analysis from Grete et al. [20], which extends
the framework presented in Alexakis et al. [27] to the
compressible regime.

The total transfer of energy from some shell Q in en-
ergy reservoir X to some shell K in reservoir Y is denoted
by

TXY (Q,K) X,Y ∈ [U,B] (6)

where we use U and B to denote the kinetic and magnetic
energy reservoirs, respectively.

In this work we focus on the energy transfer within the
kinetic and magnetic energy reservoirs via advection and
compression which are respectively

TUU (Q,K) =−
∫

wK · (u · ∇) wQdx

− 1
2

∫
wK ·wQ∇ · udx

TBB(Q,K) = −
∫

BK · (u · ∇) BQdx

− 1
2

∫
BK ·BQ∇ · udx

and the energy transferred from kinetic energy to mag-
netic energy via magnetic tension (and vice versa) given
by

TUBT (Q,K) =

∫
BK · ∇

(
vA ⊗wQ

)
dx (7)

TBUT (Q,K) =

∫
wK · (vA · ∇) BQdx . (8)

Here we use the mass weighted velocity w =
√
ρu so that

the spectral energy density is positive definite [28], and
vA is the Alfvénic wave speed.

The velocity wK and magnetic field BK in a shell K
(or Q) are obtained using a sharp spectral filter in Fourier
space. The shell bounds are logarithmically spaced and
given by 1 and 2n/4+2 for n ∈ {−1, 0, 1, . . . , 32}. Shells
(uppercase, e.g., K) and wavenumbers (lowercase, e.g.,
k) obey a direct mapping, i.e., K = 24 corresponds
to the logarithmic shell that contains k = 24, i.e.,
k ∈ (22.6, 26.9].

III. RESULTS

In this section we present results of the Taylor-Green
vortices we simulated, showing bulk properties of the
fluid (Section III A), including the evolution of the dif-
ferent energy spectra. These results demonstrate that
the kinetic, magnetic, and thermal energy reservoirs in-
teract with each other in a manner that depends signifi-
cantly on the initial strength of the magnetic field. The
energy spectra evolves to a turbulent cascade over 1-2
dynamical times and then stays there for the remainder
of the simulation. In Section III B, we examine in de-
tail the transfer of energy between different energy reser-
voirs, including the transient behaviors we observed in
the simulations. We see robust transfer of energy at all
scales within the kinetic and magnetic energy reservoirs
when examined separately, as well as complex and time-
varying nonlocal transfer of energy between the kinetic
and magnetic energy reservoirs, including evidence for an
intermittent inverse turbulent cascade. Since the initial
Mach number had much less of an effect on the results
compared to the initial ratio of kinetic to magnetic en-
ergy, we focus on results using only the three Ms0.2 sim-
ulations as reference. We provide more complete plots
of all nine simulations spanning all Mach numbers in the
online supplements[21].

Starting with a visual demonstration of the TG vor-
tex, Figure 1 shows the sonic Mach number and magnetic
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FIG. 1. Slices of sonic Mach number (left) and magnetic
pressure (right) at t = 0.77T and t = 5.16T in the xy−plane
through z = π

2
L, with streamlines on the left showing the

direction of flow and streamlines on the right showing the
direction of the magnetic fields, plotting only the 1st quadrant
from the Ms0.2 Ma10 simulation, demonstrating the transition
of the flow into turbulence.

pressure from the Ms0.2 Ma10 simulation after 0.77 dy-
namical times and after 5.16 dynamical times in a slice
in the xy−plane through the origin. Only one quadrant
of the xy-place is shown, as it exhibits symmetry across
4 quadrants in the xy-plane. From the slice plot, we can
see that the TG vortex begins as a smooth vortical flow
and magnetic field. After several dynamical times, the
smooth flow devolves into a chaotic magnetized turbu-
lent flow. Kinetic and magnetic structures at all scales
persist throughout the simulation, as will be shown in
energy spectra later in this work.

A. Bulk Properties

1. Evolution of energy reservoirs

Figure 2 shows the total kinetic, magnetic, and thermal
energies and the dimensionless RMS sonic Mach number
Ms, Alvénic Mach number MA, and plasma beta β of
the Ms0.2 simulations as a function of time. In this fig-
ure, we can see that in all simulations kinetic and mag-
netic energy convert into thermal energy over time. This
decay into thermal energy is not immediate; rather, it
requires at least one dynamical time to begin (i.e., it is

observed to occur at a minimum of t = 1T in all simula-
tions). In the Ma1 simulations, due to the initial condi-
tions there is even a small transient transfer of thermal
energy into kinetic and magnetic energies. After t = 2T ,
all simulations dissipate kinetic and magnetic energy into
thermal energy. The sonic Mach number generally de-
creases by less than a factor of 4 over time from its initial
0.2 value, and β remains high (from & 20 for Ms0.2 Ma1
to & 100 for Ms0.2 Ma10) throughout the simulations.

In all cases, the flow becomes dominated by magnetic
energy (i.e., become sub-Alfvénic with MA < 1) at dif-
ferent dynamical times depending on the initial ratio of
kinetic to magnetic energy and mostly independent of
the initial Mach number. In other words, even for the
simulations with initially 100 times more kinetic than
magnetic energy (Ma10), in the final state the magnetic
energy dominates over the kinetic energy. This already
highlights the importance of kinetic to magnetic energy
transfer. The initial growth of magnetic energy is charac-
teristic of the insulating magnetic field configuration and
is seen in other works on the TG vortex [12]. This be-
havior of the magnetic field is likely due to the magnetic
fields and vorticity beginning parallel to each other every-
where. All simulations experience a peak in the magnetic
energy evolution before t = 3T depending on the initial
magnetic energy. At t = 6T , all simulations are still los-
ing total kinetic and magnetic energy to thermal energy,
although the rate of energy dissipation is slowing by the
simulation end. The magnetic and kinetic energies also
become similar in magnitude, cf., MA ' 1.

The Ms0.2 Ma1 simulation displays notably different
behavior than those where the kinetic energy initially
dominates. In particular, we observe periodic exchanges
of energy between these two reservoirs before the bulk of
the energy is converted into heat, rather than a smooth
transfer of energy from the kinetic to magnetic reservoir,
followed by a decline of both as the flow thermalizes.
At approximately t = 1T , more than five times as much
energy is stored in the magnetic reservoir as compared to
the kinetic reservoir, which is in stark contrast with other
calculations. These results suggest that the large initial
magnetic field facilitates a more rapid transfer of kinetic
energy, which will be examined in more detail later in this
paper. For reference, we also plot the temporal evolution
of the energies in the incompressible, magnetized Taylor-
Green vortex with Ma=1 presented in Pouquet et al. [13]
in the top left panel of Fig. 2 next to our Ms0.2 Ma1
results. The evolution in [13] covers the first oscillation
and is in good agreement with our simulation. Finally,
the oscillations observed in the energy reservoirs for the
Ma1 simulations in general have a period that depends on
the initial Mach number, which can be seen in the figures
that we leave for the online supplements[21].
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FIG. 2. Mean energies over over time in the top row with kinetic energy (solid blue), magnetic energy (solid orange), the
sum of kinetic and magnetic energies (solid green), and the change in thermal energy since the simulation start (solid red),
and dimensionless numbers over time in the bottom row with RMS sonic Mach number Ms (blue), Alvénic Mach number
MA (orange), and plasma beta β (green) for the Ms0.2 simulations. Energy over time from the simulation from Fig. 3a in
Pouquet et al. [13] (adjusted to the normalization used here), which matches the setup of the Ms0.2 Ma1 simulation, is shown
with dashed lines in the upper left panel for reference. Energies and mach numbers for all nine simulations are shown in the
online supplements[21].

2. Energy Spectra

Figure 3 shows the temporal evolution of the kinetic
and magnetic energy spectra of the three Ms0.2 simu-
lations, compensated by k4/3, which demonstrates how
both the kinetic and magnetic energy spectra change
from the smooth initial large scale flow to fully developed
turbulence. The top row shows the three simulations ear-
lier in the evolution (t = 0.77T ), when the spectra are
still steep with large scale structure from the initial con-
ditions. In the case of the strongest initial magnetiza-
tion (Ma1), the magnetic energy is larger than the kinetic
energy on all scales and their spectral scaling is compa-
rable. For Ma3.2 and Ma10 the kinetic energy spectrum
is steeper than the magnetic one. The spectra cross at
k ' 7 and k ' 20, respectively, so that the kinetic en-
ergy is still dominant on large scales. The middle row
in Figure 3 shows intermediate times with Ms0.2 Ma1 at
t = 1.29T , which is the time that is discussed in Sec-
tion III B 2 and Ms0.2 Ma3.2 and Ms0.2 Ma10 simula-
tions at t = 1.81T , which is the time is discussed in
Section III B 1. Note that the spectra are still evolving

at this intermediate stage. In the Ms0.2 Ma10 simulation
at t = 1.81T , the magnetic spectra has reached a k−4/3

spectrum while the kinetic spectra shows a broken power
law with excess energy at larger length scales. In both
Ma1 and Ma3.2 the magnetic energy is now dominant on
effectively all scales (with the exception of the noisy part
of the spectrum at the largest scales, k . 4). The bottom
row shows all three Ms0.2 simulations at t = 5.16T . Here,
the magnetic energy is effectively dominant on all scales
in all simulations and the kinetic and magnetic spectra
exhibit a scaling close to k−4/3. The spectral indices still
fluctuate, which we explore in Section III A 3.

In Figure 4 we show the kinetic and magnetic energy
at specific wavenumbers and compensated by k4/3 plot-
ted over time. At early times (before t = 2T ) the large
scale (k = 8) kinetic energy shows the fastest growth
rate compared to smaller scales as expected from an ini-
tial entirely large scale configuration. The kinetic energy
at k = 8 peaks between t = 1T and t = 2T with larger
initial magnetic field leading to an earlier peak. The
magnetic energy at k = 8 in the Ms0.2 Ma1 simulation
oscillates throughout the duration of the simulation, with
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FIG. 3. Kinetic energy spectra (in solid blue) and magnetic energy spectra (in solid orange) compensated by k4/3, with black
dashed lines showing the power law fit to the spectral to obtain a spectral index. In the left column we show the Ms0.2 Ma1

simulation, in the middle column we show the Ms0.2 Ma3.2 simulation, and in the right column we show the Ms0.2 Ma10

simulation. In the top row we show all simulations at t = 0.77T , in the middle row we show the three simulations at different
times (t = 1.29, t = 1.81T , t = 1.81T ) when the simulations are displaying interesting behavior discussed in sections III B 2
and III B 1, and in the bottom row we show all simulations at t = 5.16T when the initial flow has completely decayed into
turbulence and both energy spectra fluctuate around a k−4/3 spectrum.
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FIG. 4. The kinetic energy (top) and magnetic energy (bottom) at wavenumbers k = 8, 22, 64, 128 plotted separately in

different colors versus time, where the energy at each wavenumber has been compensated by k4/3 to make them comparable.
In the left column we show the Ms0.2 Ma1 simulation, in the middle column we show the Ms0.2 Ma3.2 simulation, and in the
right column we show the Ms0.2 Ma10 simulation. Energy at the smallest length scales in both reservoirs saturates at t ' 1T ,
t ' 1.5T , and t ' 2.5 in the Ms0.2 Ma1, Ms0.2 Ma3.2, and Ms0.2 Ma10 simulations respectively, showing approximately when
the turbulence has developed at all scales.

the kinetic energy oscillating once. No oscillatory behav-
ior is observed in Ms0.2 Ma3.2 and Ms0.2 Ma10 for these
quantities. From this plot we can also see that the small
scale (k = 128) energies saturate at t ' 1T , t ' 1.5T ,
and t ' 2.5T , respectively.

3. Spectral Index

We measured the spectral indices of the kinetic and
magnetic energy spectra α by fitting a power-law E ∝ kα
to the energy spectra of each reservoir at each time step.
For the inertial range of wavenumbers across which we
fit the power-law to the spectra, we used wavenumbers
k = 10 to k = 32. We chose this inertial range because
very little large scale structure persists below k = 10 and
wavenumbers above k = 32 are not entirely free of nu-
merical dissipation any more. The kinetic and magnetic
spectral indices measured across the inertial range are
not fixed in time across the different simulations, with
the most variation being due to initial magnetic energy.
Figure 5 shows the spectral indices of the kinetic, mag-

netic, and sum of kinetic and magnetic energy spectra
over time for the Ms0.2 simulations. In all simulations,
the spectral index evolves over time, decaying from the
initial steep spectral index (α . −2) as energy is trans-
ferred to small scales. The kinetic and magnetic spectral
indices evolves separately in the calculations until the
magnetic energy exceeds the kinetic energy, after which
the spectral indices of the separate and combined reser-
voirs fluctuate within ∆α ' 0.2. The crossover of ki-
netic and magnetic energies happens immediately in the
Ms0.2 Ma1 simulation, early in the Ms0.2 Ma3.2 simula-
tion before t = 2T , and later in the Ms0.2 Ma10 simula-
tion at t ' 4T . After the kinetic and magnetic spectral
indices reach rough parity and the magnetic field becomes
dominant, both spectral indices reach comparable values
and reach a rough constant 1− 2 dynamical times later,
although they continue to vary over time. Since the mag-
netic fields in the Ma1 simulations immediately become
dominant, the spectral indices reach a rough constant
at t ' 2T , while in the Ma3.2 simulations they reach a
rough constant at t ' 4T and in the Ma10 simulations this
happens at t ' 5T . The Ms0.2 Ma3.2 simulation experi-
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FIG. 5. Evolution of the spectral indices of the kinetic (blue), magnetic (orange), and sum of kinetic and magnetic energy
(green) spectra over time for the Ms0.2 simulations. The slope is computed from a least squares fit of the energy spectra limited
to wavenumbers k ∈ [10, 32] which is approximately the inertial range. Shaded bands show how the fitted slope differs if a
range k ∈ [8, 34], k ∈ [10, 32], or k ∈ [12, 30] is used. Note that the spectral index using the range k ∈ [10, 32] is not guaranteed
to be bounded by the spectral indices obtained using k ∈ [8, 34], k ∈ [10, 32] and k ∈ [12, 30], which is especially evident in
the Ms0.2 Ma3.2 and Ms0.2 Ma10 simulations from t ' 2T to t ' 4T . Horizontal dashed lines show −4/3 and −5/3 spectral
indices. The slope is only shown after t = 1T as the initial flow conditions dominate the spectra at early times, leading to steep
spectra. We include the spectral indices versus time for all nine simulations in the online supplements[21]

ences a brief peak in the spectral index around t ' 1.5T
while the flow is still in transition. This is also reflected
in the large uncertainty of the spectral index during that
time, e.g., the index of the kinetic energy spectrum varies
between −1 and −2.25 by choosing slightly different fit-
ting ranges (as indicated by the shaded blue bands in
Fig. 5). Note that in the Ma10 case, the magnetic spec-
trum flattens and the spectral index reaches a roughly
constant value much sooner than in the other two cases,
at t ' 2T when the kinetic energy still dominates. Later
on in the Ma10 simulations, the kinetic spectral index be-
comes comparable to the magnetic spectral index. For
the high initial magnetic field simulations, the spectral
index levels out at about α ' −5/3 while the initially
kinetically dominated simulations level out at α ' −4/3.

The final spectral indices depend on the initial ratio
of kinetic to magnetic energy, with more magnetic en-
ergy leading to shallower magnetic spectra. The Ma1
simulations end with α ' −1.7 (close to −5/3), Ma3.2
ends with α ' −1.3 (close to −4/3), and Ma10 ends with
slightly lower values of α ' −1.2. In the presence of the
stronger magnetic fields in the Ma1 simulations, the flat-
tening of the spectra seems to be suppressed. Before the
kinetic and magnetic spectral indices become compara-
ble in each simulation, there is also greater variance in
the spectral slope when measured using different inertial
ranges. This indicates that a power-law might be a poor
fit for the spectra at those early times, showing that the

spectra is not fully developed until the magnetic energy
is dominant. For example, as seen in Figure 3, the kinetic
energy spectra appears as a broken power law at interme-
diate times, which is especially evident in the Ms0.2 Ma10
simulation at t = 1.81T to a lesser extent the Ms0.2 Ma1
simulation at t = 1.29T and the Ms0.2 Ma3.2 simulation
at t = 1.81T . Oscillations in the spectral index of the Ma1
simulations also appear, whose period seems to be linked
to the initial Mach number, with larger Mach numbers
leading to a smaller period of oscillation.

We note that between the three values ofMA, the sim-
ulations shown here exhibit a wide variety of behaviors,
highlighted by the spectral indices in Fig. 5. More simula-
tions with intermediate values of MA would be required
to determine if the transition between these behaviors is
smooth or abrupt.

B. Energy Transfer

While the total energy and spectra of the kinetic and
magnetic reservoirs can broadly describe the isolated
behavior of the different energy reservoirs, examining
the energy transfer within and between reservoirs us-
ing the analysis described in Section II C can provide
deeper insights into the physical phenomena, including
demonstrating the mechanisms that are responsible for
the transfer of energy. The shell-to-shell energy trans-
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fer fluxes examined in this section demonstrate the flux
from wavenumber Q to wavenumber K within and be-
tween energy reservoirs via different pathways.

Figure 6 shows the energy transfer within the kinetic
(left) and magnetic (right) energy reservoirs via advec-
tion and compression in the Ms0.2 Ma1 simulation at t =
0.77T (top) and at t = 5.16T (bottom). This plot encap-
sulates the energy transfer of a turbulent cascade. Near
the beginning of the simulation in the top panels, most
of the energy is in large scale modes, with energy from
larger Q wavenumbers moving to smaller K wavenum-
bers. Note that the energy transfer is constrained to the
diagonal because the bulk of the energy transfer is local,
occurring between comparable scales of Q to K. White
space fills the off-diagonals because very little nonlocal
energy transfer occurs internally within reservoirs. The
energy transfer shown in this figure is solely within the ki-
netic and magnetic reservoirs – there is no energy transfer
shown between these reservoirs (although it is occurring,
as will be discussed in the next paragraph). In the simu-
lation shown here, the magnetic energy transfer is larger
in magnitude than the kinetic energy transfer. In all sim-
ulations, the magnetic energy transfer extends to higher
wavenumbers more rapidly than the kinetic energy. Af-
ter the flow has decayed into turbulence (as shown in the
bottom panels), energy transfer to smaller local scales
happens across the resolved modes down to numerical
dissipation scales. At large wavenumbers (Q > 16), the
energy transfers are scale-local and of comparable mag-
nitude. This phenomenon continues to at least Q ' 200
in both the kinetic and magnetic energy transfer – i.e.,
to much larger wavenumbers than an inertial range is ob-
served (see, e.g., Figure 3). Thus, the effective (numeri-
cal) viscosity and resistivity are not affecting the turbu-
lent cascade encoded by these transfers to a significant
degree.

Figure 7 shows the energy transfer within the kinetic
(top) and magnetic (bottom) energy reservoirs in the
Ms0.2 Ma1 simulation at t = 1.29T (just before the
magnetic energy peaks). Energy transfer within the ki-
netic and magnetic reservoirs briefly reverses directions
and moves energy from smaller local scales to larger lo-
cal scales (note the purple color indicating energy loss
above the diagonal and orange color below the diagonal,
which is in contrast to Fig. 6). This constitutes a tran-
sient inverse cascade. Additionally, the inverse cascade
is present throughout most scales of the magnetic energy
(K,Q . 100) but only apparent at large scales in the
kinetic energy (K,Q . 16). As seen in Figure 4, at this
early time the turbulent flow is just beginning to saturate
the smallest scales while the large scale energy oscillates,
so the energy transfer inversion lasts less than a dynami-
cal time (see Section III B 2 for further exploration of the
duration).

Figure 8 shows the energy transfer between the kinetic
to magnetic energy reservoirs due to magnetic tension
at t = 1.81T in the Ms0.2 Ma10 simulation. This Fig-
ure displays nonlocal transfer from kinetic to magnetic

energy. Unlike the advection- and compression-driven
modes within the magnetic and kinetic energy reser-
voirs, energy transfers from kinetic to magnetic reser-
voirs via tension can support nonlocal energy transfers.
The nonlocal transfer happens from large kinetic scales
to much smaller magnetic scales, spanning more than
an order of magnitude downward in spatial scale from
the largest kinetic modes. The nonlocal energy transfer
between kinetic and magnetic energy was significant in
simulations with lower initial magnetic energy, and espe-
cially in the Ma10 simulations where the magnetic field is
dynamically unimportant at early times. Kinetic energy
moves significant energy to all magnetic scales from early
times at t ' 1.5T to intermediate times at t ' 4T in these
simulations, although some energy continues to flow via
this mechanism at later times. Additionally, since the
transfer of energy via tension is between two different
reservoirs, the energy transfer can transfer at equivalent
scales from one reservoir to the other. This is shown as
non-zero transfer along the diagonal of the plot.

1. Nonlocal Energy Transfer

Like in some driven turbulence simulations [20, 27],
these decaying turbulence simulations also demonstrate
significant nonlocal energy transfer between kinetic and
magnetic energy reservoirs. Unlike in driven simulations,
the energy transfers in this work are solely due to the fluid
flow and not due to externally-applied driving forces.
Figure 9 shows the total local, nonlocal, and equivalent-
scale energy transfers via magnetic tension in the Ms0.2
simulations over time. We obtain these quantities by
integrating the transfer functions over different sets of
scales:

Nonlocal lower
∑
Q

∑
K∈[1,2−`Q)

TXY (Q,K)

Local-Lower
∑
Q

∑
K∈[2−`Q,Q)

TXY (Q,K)

Equivalent
∑
Q

∑
K=Q

TXY (Q,K)

Local-Higher
∑
Q

∑
K∈(2`Q,Q]

TXY (Q,K)

Nonlocal Higher
∑
Q

∑
K∈(2`Q,∞]

TXY (Q,K)

where ` is a parameter for differentiating local versus
nonlocal separation of wavenumbers in log space. In
Figure 9, we show the analysis using ` = 5/4 with a solid
line, which corresponds to 5 logarithmic bins above or
below Q (see II C for the description of the binning), and
show the extent of the fluxes if ` = 5/4 ± 1/4 is used
in shaded regions. As seen in this figure from the red
line, the nonlocal energy transfer from large scale ki-
netic modes to small scale magnetic modes (“downscale”
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FIG. 6. Shell-to-shell energy transfer plots for the energy transfer within the kinetic (left) and magnetic (right) energy
reservoirs via advection and compression at t = 0.77T (top) and t = 5.16T (bottom) from the simulations with Ms0.2 Ma1,
showing the development of the kinetic and magnetic turbulent cascades. Annotations on the figure highlight key features of
the energy transfer that are characteristic of a developing turbulence cascade. Each bin shows the flux of energy from shell Q to
shell K, where orange with white circles showing a positive flux of energy, so that K is gaining energy, and purple with white
x’s showing a negative flux, so that K is losing energy. The energy flux in each bin is normalized by ε = maxQ,K |TXY (Q,K)|
so that a higher ε means a higher energy flux. The solid black line shows equivalent scale transfers. As the turbulent cascade
develops in the magnetic and kinetic energy reservoirs, more energy transfers along the diagonal fill out the energy spectrum
down to numerical dissipation scales.

transfer) is present in all simulations but is only domi-
nant when the initial kinetic energy exceeds the initial
magnetic energy – this nonlocal energy transfer is more
significant in the Ma3.2 and Ma10 simulations. Nonlocal
energy transfer downscale (red line) peaks depending on
the initial magnetic field and in all cases before the to-
tal magnetic energy peaks. The nonlocal transfer helps

fill out the magnetic energy spectrum faster than the
kinetic energy spectrum, especially in the Ma10 simula-
tions, which is consistent with the spectral index shown in
Figure 3 and the turbulent cascades shown in the shell-
to-shell energy transfer in Figure 6. By the time the
magnetic energy has exceeded the kinetic energy in the
Ma3.2 and Ma10 simulations, nonlocal energy transfer
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FIG. 7. Shell-to-shell energy transfer plots for the energy
transfer within the kinetic (top) and magnetic (bottom) en-
ergy reservoirs via advection and compression at t = 1.29T
from the Ms0.2 Ma1 simulation, showing a transient inverse
cascade within the magnetic energy reservoir (on all scales
K,Q . 100) and kinetic energy reservoir (on large scales
K,Q . 16). Annotations show where along the diagonal the
inverse cascade is present.

is largely diminished due to the lack of kinetic energy to
feed the transfer.

Local energy transfer downscale (orange line) depends
more strongly on the initial magnetic field, with local
transfer to smaller scales reaching double the nonlocal
transfer in the Ma1 simulation and being less than half
in other cases. Local energy transfer upscale (blue line)
is positive for some early times in the Ma1 and Ma3.2
simulations.

The Ma1 simulations also display two different oscilla-
tory behaviors, with a low frequency oscillation in the
local energy transfer and a high frequency oscillation
clearly visible in the equivalent energy transfer but also
present in local and nonlocal down scale transfer.
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FIG. 8. Shell-to-shell energy transfer plots for the energy
transfer from kinetic to magnetic energy via magnetic ten-
sion at t = 1.81T from the Ms0.2 Ma10 simulation, showing
the nonlocal energy transfer from large kinetic scales to many
smaller magnetic scales. Annotations show where the nonlo-
cal transfer is present.

2. Inverted Turbulent Cascades

At early times during the evolution of the Ma1 sim-
ulations, a temporary inverse cascade forms within the
kinetic and magnetic energy reservoirs where small scale
energy transfers to larger spatial scales. Figure 10 shows
the local and nonlocal energy transfers within the ki-
netic and magnetic energies to both smaller and larger
length scales. In the Ma1 simulations, the local energy
transfer from larger to smaller length scales temporarily
reverses into an inverse cascade in both the kinetic and
magnetic energy reservoirs shortly after peak magnetic
energy is reached. The inversion appears with all three
sonic Mach numbers simulated, with the longest inver-
sion appearing in the Ms0.1 Ma1 simulation for ' 1T and
shortest in the high Ms0.4 Ma1 simulation for ' 0.5T .
For the Ms0.1 Ma1 simulation, the kinetic energy reser-
voir briefly reverses to the normal configuration, moving
energy from large scales to scales while the magnetic en-
ergy is in an inverted cascade, before returning to the
inverted cascade, lingering longer than the magnetic field
in the inverted state and finally transitioning into a tur-
bulent cascade for the rest of the simulation. As seen in
Figure 7, the movement of energy to larger scales is not
limited to any region of the spectra – it is present at all
length scales. The Ma1 simulations, which are the only
simulations to exhibit an inverse cascade, are also the
only ones in which the total kinetic energy increases dur-
ing any period. After peak magnetic energy in the Ma1,
the magnetic energy increases while the kinetic energy
increases for ' 1T ; the inverse cascade appears during
this same period.
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FIG. 9. Integrated energy flux over time from kinetic to magnetic energy via tension from larger wavenumbers to smaller non-
local wavenumbers (purple), from larger wavenumbers to smaller local wavenumbers (blue), between equivalent wavenumbers
(green), from smaller wavenumbers to larger local wavenumbers (orange), and from smaller wavenumbers to larger nonlocal
wavenumbers (red) in the Ms0.2 simulations. We normalize the energy flux in each panel so that the absolute maximum of all
of the flux bins is 1.0, where ε is the normalization factor use in each panel. Comparisons of the relative strength of energy
fluxes in different simulations must consider ε. The inset plot in the lower right panel shows the color coded regions that
are integrated to calculate each line at a single time for the same shell-to-shell transfer from Figure 8. Solid lines show the
integrated flux if “local” wavenumbers as defined as 5 logarithmic bins away from the equivalent wavenumber. The shaded
regions show the integrated flux if 4 or 6 bins are used, showing that the behavior is robust if the range “local” wavenumbers
is defined closer or further away from transfer between equivalent scales. We include the integrated flux from kinetic to
magnetic energy via tension for all nine simulations in the online supplements[21]

3. Cross-Scale Flux

With additional analysis of the shell-to-shell transfer,
we can extract more insight into the movement of energy.
We can measure the cross-scale flux of energy from scales
below a wavenumber k to scales above a wave number k
by integrating the transfer function

ΠX<
Y> (k) =

∑
Q≤k

∑
K≥k

TXY (Q,K) (9)

Figure 11 shows the cross-scale fluxes via different trans-
fer mechanisms for the simulations with Ms0.2. The top
row shows cross-scale fluxes early in the simulation at
t = 0.77T , when the large scale flow is still decaying
into smaller scales. The magnetic cross-scale flux at low
wavenumbers predictably depends on the initial magnetic
energy, while the kinetic energy cross-scale flux is largely
the same between simulations at a given sonic Mach num-
ber. For example, for Ma10 the cross-scale flux is strongly
dominated by ΠU<

U>, whereas for Ma3.2 it is still the most
significant contribution to the cross-scale flux, but sub-
stantial contributions are also seen from ΠU<

B> (' 60%

of ΠU<
U>(4)), ΠB<

B> (' 30%), and ΠB<
U> (' 20%). For the

strongest initial magnetization (Ma1) the early cross-scale
flux is dominated by magnetic tension-mediated transfers

from the kinetic-to-magnetic budget (ΠU<
B>) on all scales

having a non-zero cross-scale flux (k . 64), with a simi-
lar contribution by the magnetic cascade on intermediate
scales (9 . k . 64). The kinetic cascade is suppressed
on all scales, generally contributing less than 10% to the
total cross-scale flux.

At later times (t = 5.16T , bottom row of Fig. 11),
magnetic energy dominates both the energy budget and
cross-scale energy flux. Cross-scale energy flux via ki-
netic interactions is near zero across the inertial range of
the spectrum, and thus does not significantly contribute
to the total cross-scale energy flux. Only the magnetic
fields facilitate down scale cross-scale flux at intermediate
scales, both within the magnetic energy and from kinetic
to magnetic energy. Moreover, the relative contributions
of the individual transfer ΠU<

B>, ΠB<
B>, ΠB<

U>, and ΠU<
U> (in

order of decreasing contribution) on intermediate scales
(16 . k . 64) is the same independent of initial magneti-
zation. This continuous cross-scale flux is consistent with
the evolving spectral index discussed in Section III A 3.
Cross-scale flux through large physical scales is irregu-
lar, variable, and sometimes negative due to the lack of
structure and driving forces at large scales.
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FIG. 10. Integrated energy flux over time within the ki-
netic energy (top) and within the magnetic energy (bottom)
from larger wavenumbers to smaller nonlocal wavenumbers
(purple), from larger wavenumbers to smaller local wavenum-
bers (blue), between equivalent wavenumbers (green), from
smaller wavenumbers to larger local wavenumbers (orange),
and from smaller wavenumbers to larger nonlocal wavenum-
bers (red) in the Ms0.2 Ma1 simulation. The inset plot in
the lower middle panel demonstrates the color coded regions
that are integrated to calculate each line at t = 1.29T from
the shell-to-shell transfer from Figure 7. Solid lines show the
integrated flux if ”local” wavenumbers as defined as 5 log-
arithmic bins away from the equivalent wavenumber. The
results change very little if 4 or 6 bins are used. We in-
clude the integrated flux within the kinetic energy
and magnetic energy for all nine simulations in the
online supplements[21].

IV. DISCUSSION

A. Comparison to driven turbulence simulations

The Taylor-Green vortex provides an interesting study
of a freely evolving transition to decaying turbulence. In
other words, no external force is applied to the simula-
tion as is the case in driven turbulence simulations. This
external force may introduce unintended dynamics to the
flow [7]. For example, in a simulation that is mechanically
driven at large scales, energy may still be injected on in-

termediate scales both in the incompressible regime [29]
as well as in the compressible regime due to density cou-
pling [20]. Moreover, mechanical driving generally re-
sults in an excess of energy on the excited, kinetic scales
that presents a barrier for magnetic field amplification on
those scales in cases without a dynamically relevant mean
magnetic field. This barrier is often expressed in the lack
of a clear power law regime in the magnetic spectrum
and resembles an inverse parabolic shape. At the
same time, the magnetic energy spectrum drops
below the kinetic one on the driving scales (see, e.g., Fig-
ure 1 in [30] and references therein). In the simulations
presented here no such barrier is observed. Both kinetic
and magnetic energy spectra exhibit a (limited) regime
where power law scaling is observed once a state of de-
veloped turbulence is reached.

Another important question raised from driven turbu-
lence simulations pertains the locality of energy transfers.
While there is agreement that TUU and TBB mediated
transfers, i.e., within a budget, are highly local, the en-
ergy transfers between budgets (here, TUBT ) have been
observed to be weakly local and/or contain a nonlocal
component from the driven scales [19, 20, 27]. Here, we
show that in the absence of the driving force the energy
transfer mediated by magnetic tension contains both a
local component as well as nonlocal component. The
latter directly transfers large-scale kinetic energy to large
and intermediate scales in the magnetic energy budget.
Thus, the nonlocal component is not an artifact of an
external driving force.

Finally, we recently showed that the kinetic energy
spectra in driven turbulence simulations follow a scaling
close to k−4/3, i.e., shallower than Kolmogorov scaling,
and explained this by the suppression of the kinetic en-
ergy cascade due to magnetic tension [30]. This is in
agreement with our findings in the work presented here,
where the same dynamics are observed at late times when
turbulence is fully developed.

Naturally, this does not demonstrate that the same
physical mechanisms are causing the similar slopes. Nev-
ertheless, the late time evolution of the simulations pre-
sented here is still comparable to a limited degree to
driven simulation of stationary turbulence. For exam-
ple, even at late times (see, e.g., t = 5.16T in Fig. 6),
energy is still cascading down from the largest scales
(k . 8) but the cascade is weaker than its initial magni-
tude. The reduction in strength of the cascade on large
scale is directly linked to the decay of the large initial
vortices. Nevertheless, even at late times the overall en-
ergy balance is still dominated by the largest scales, cf.,
the spectra shown in Fig. 3 when taking into account
the k4/3 compensation used in the plot. Overall, while
here the inertial range shrinks and becomes weaker (to
a limited degree) over time as the large scale modes lose
energy, the dynamics within the inertial range is similar
to driven turbulence simulations.
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FIG. 11. Cross-scale flux within the kinetic energy (blue line), within the magnetic energy (orange line), and from kinetic to
magnetic energy via tension (green line) in the three Ms0.2 simulations across columns and at dynamical time t = 0.77T (top)
and later at dynamical time t = 5.16T . Note that the cross-scale fluxes at later times are an order of magnitude less than early
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B. Comparison to previous results

In general, our results in the weakly compressible
MHD regime are in agreement with the α ' −2 spec-
trum reported by previous works on the TG vortex in
[12, 13, 15, 16] in the imcompressible MHD regime us-
ing the insulating magnetic field configuration. We see
the same α ' −2 spectrum early in the evolution be-
fore t = 2T , which corresponds to the time period near
maximum energy dissipation that these other studies fo-
cused on. In all cases that we simulated the spectra be-
came shallower at later times, independent of the ini-
tial magnetization (whereas these other works focused
on EU/EB = 1, i.e., MA,0 = 1, configurations, which
are in good agreement with the Ms0.2 Ma1.0 simulation
presented here, see top left panel of Fig. 2). As noted by
[15], the α ' −2 spectrum is likely due to discontinuities
in a small volume of the flow that can be disrupted by
symmetry breaking at either large or small scales [17].
According to [17], a simulated Taylor-Green vortex with
sufficiently high Reynolds number should show symmetry
breaking at the small scales at late times in the evolu-
tion, causing a break from the −2 power law at large
wavenumbers. Since our simulations do not impose sym-
metries on the flow, this is a possible explanation for the

observed behavior. However, we see an α ' −4/3 inertial
range scaling at late times, instead of the α ' −2 and
α ' −5/3 broken power law theorized by [17].

Finally, work done in [12, 14, 16] shows that the be-
havior of the magnetic field and spectra changes with the
initial magnetic field configurations. With the insulating
initial magnetic fields that we use, the vorticity begins
parallel to the magnetic field. This facilitates the early
energy flux from kinetic to magnetic energy. The insulat-
ing case tends towards stronger large magnetic fields com-
pared to the other magnetic field configurations. Both of
the other initial magnetic fields result in different energy
spectra, with the conducting magnetic field setup lead-
ing to a k−3/2 spectra and the alternative insulating field
setup leading to spectra interpreted as either a k−5/3 or
k−2 spectra as argued by [12] and [16] respectively.

C. Implication of results

In all of our simulations, we see magnetic fields and
effects facilitated by the magnetic fields dominating the
evolution of the decaying turbulence, even when the ini-
tial kinetic energy exceeds the magnetic energy by a fac-
tor of 100 in the Ma10 simulations. Energy transfer from
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kinetic to magnetic energy via tension and energy trans-
fer within the magnetic energy far exceed energy flux
via the kinetic turbulent cascade at later times. En-
ergy transfer from kinetic to magnetic energy at earlier
times leads to the magnetic energy dominating over ki-
netic energy in all cases in both total magnitude as well
as in terms of the scale-wise budget, cf., magnetic ver-
sus kinetic energy spectra. This is similar to what has
been found in incompressible [27] and compressible sim-
ulations [20, 30] of driven turbulence. Thus, even in
intermittently-driven systems one can expect the mag-
netic field to significantly influence the dynamics after a
few dynamical times.

Our simulations exhibit a magnetic energy spectra
with a measurable power law after the turbulent flow is
realized. The inertial range is short, from approximately
k = 10 to k = 32, due to the resolution of these simula-
tions. Nevertheless, within this region we can reasonably
fit a power law to both the kinetic and magnetic spectra,
which is often not possible in driven turbulence simula-
tion without a dynamically relevant mean magnetic field,
cf., Sec. IV A. Thus, freely evolving and driven turbulence
simulations complement each other and both are required
to disentangle environmental from intrinsic effects.

From an observational point of view, we demonstrated
that the spectral indices evolve over time and fluctuate
even for similar parameters. Therefore, the derived spec-
tral indices from observation (e.g., velocity maps in as-
trophysics), which represent individual snapshots in time,
need to be interpreted with care when trying to infer the
“nature” of turbulence (e.g., Kolmogorov or Burgers) in
the object of interest.

Finally, the observed nonlocal energy transfer has im-
plications on the dynamical development of small scale
structures from intermittent or singular energy injection
events. Within the context of natural astrophysical and
terrestrial plasmas, the nonlocal energy transfer from ki-
netic to magnetic energies suggests that small magnetic
field structures develop before small scale kinetic struc-
tures.

D. Limitations

While our analysis showed that the results are gener-
ally robust (e.g., with respect to varying the fitting range
in the spectral indices or varying range in the definition
of scale-local in the energy transfers), higher resolution
simulations are desirable. With higher resolution in an
implicit large eddy simulation (ILES) the dynamic range
is increased and, thus, the effective Reynolds numbers of
the simulated plasma are raised.

Similarly, due to the nature of ILES the effective mag-
netic Prandtl number in all simulations is Pm ' 1. How-
ever, in natural systems (both astrophysical and terres-
trial/experimental) Pm is either � 1 or � 1, motivating
the exploration of these regimes in the future as well.

All of our simulations started with subsonic initial

conditions, leaving the supersonic regime unexplored.
The additional shocks, discontinuities, and strong den-
sity variations that may arise in a supersonic flow could
alter the energy transfer as the flow transitions into tur-
bulence. In the simulations we present here, the Mach
number generally did not significantly affect the growth
and behavior of the turbulence. In a supersonic flow,
however, the transitory effects such as the nonlocal en-
ergy transfer and inverse cascade may be altered or sup-
pressed in addition to generally richer dynamics related
to compressive effects and effective space-filling of turbu-
lent structures [31].

Figure 5 indicates that the spectral index of both the
kinetic and magnetic energy cascades evolves as a func-
tion of magnetic field strength (i.e., initial MA.) It is
unclear whether there is a threshold ofMA above which
the spectra become shallower, or whether there is a con-
tinuum of behavior as the initialMA is increased. While
we would like to engage in a more thorough exploration
of the dependence of these behaviors on MA, the simu-
lations in question are computationally expensive and it
is infeasible to do so at present. Exploration of this tran-
sition is a promising venue for future work. Finally, the
shell decomposition used here to study energy transfer
has been shown to violate the inviscid criterion for de-
composing scales in the compressible regime [32]. How-
ever, this only pertains to flows with significant density
variations and, thus, is effectively irrelevant for the sub-
sonic simulations presented here.

V. CONCLUSIONS

We have presented in this work nine simulations of the
Taylor-Green vortex using the insulating magnetic field
setup from [11] to study magnetized decaying turbulence
in the compressible ideal MHD regime using the finite
volume code K-Athena. As a first for the Taylor-Green
vortex, we have also presented an energy transfer analy-
sis to show the movement of energy between scales and
energy reservoirs as facilitated via different mechanisms.
Our key results are as follows:

• Magnetic fields significantly affect the evolution of
the decaying turbulence, regardless of initial field
strength. Energy flux from kinetic energy to mag-
netic energy leads to the magnetic energy dominat-
ing the energy budget, even in simulations where
the magnetic energy is initially very small.

• The Taylor-Green vortex simulations explored here
display a power law in both the kinetic and mag-
netic energy spectra with a measurable spectral in-
dex, which is in contrast with the lack of a power
law in the magnetic energy spectrum seen in
driven turbulence calculations without a signifi-
cant mean field.

• Decaying turbulent flows do not exhibit a spectral
index that is constant in time in either the kinetic
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nor magnetic energy reservoirs – these spectra con-
tinually evolve over time. The spectral indices of
the kinetic and magnetic energies become compa-
rable and roughly constant around 1−2 dynamical
times after the magnetic energy has become dom-
inant. This can happen as early as t = 2T when
the initial magnetic energy equals initial the kinetic
energy, and as late as t = 5T when initial kinetic
energy exceeds the magnetic by a factor of 100. For
simulations with more initial kinetic energy than
magnetic energy, the spectral indices reach a rough
constant slightly steeper than α ' −4/3.

• Before the turbulent flow fully develops, an inverse
cascade within the kinetic and magnetic energy
reservoirs is intermittently observed. This inter-
mittent behavior moves energy from smaller scales
to larger scales, and is possible when the magnetic
energy is comparable to the kinetic energy.

• Analysis of energy transfer within and between
reservoirs indicates that within fully-developed tur-
bulence, the cross-scale flux of energy in both the
kinetic and magnetic cascades are dominated by
energy transfer mediated by the magnetic field.

• Magnetic tension facilitates nonlocal transfer from
larger scales in the kinetic energy to smaller scales
in the magnetic energy, and is particularly promi-
nent in simulations where the magnetic field is ini-
tially weak.
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