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We revisit the indentation of a thin solid sheet of size Rsheet suspended on a circular hole of radius
R� Rsheet in a smooth rigid substrate, addressing the effects of boundary conditions at the hole’s
edge. Introducing a basic theoretical model for the Van-der-Waals (VdW) sheet-substrate attraction,
we demonstrate the dramatic effect of replacing the clamping condition (Schwerin model) with a
sliding condition, whereby the supported part of the sheet is allowed to slide towards the indenter
and relax the induced hoop compression through angstrom-scale deflections from the thermodynamic
equilibrium (determined by the VdW potential). We highlight the possibility that the indentation
force F may not exhibit the commonly anticipated cubic dependence on the indentation depth
(F ∝ δ3), in which the proportionality constant is governed by the sheet’s stretching modulus and
the hole’s radius R, but rather a pseduo-linear response, F ∝ δ, whereby the proportionality constant
is governed by the bending modulus, the VdW attraction, and the sheet’s size Rsheet � R.

I. INTRODUCTION

A. Background

The mechanics of a solid membrane is determined
by a balance between its rigidity for in-plane (strain)
and out-of-plane (bending) deformations. For Graphene
and other nanometer-thick crystalline two-dimensional
(2D) membranes (e.g. transition metal dichacogenides
and black phosphorus), the in-plane stretching modulus
Y is very large, whereas the bending modulus B is
small, such that the characteristic length `bend ≈

√
B
Y is

much smaller than the system size Rsheet [1–6]. Given
the huge characteristic values of the von-Karman ratio,
vK = (Rsheet/`bend)

2, it is commonly assumed that
the bending rigidity does not affect the mechanics, and
the response to exerted forces is determined solely by
the in-plane stiffness. While such an anticipation is
justified when the exerted loads are purely tensile (e.g.
isotropic stretching of the sheet), it is obviously wrong
to totally ignore the bending rigidity in the presence
of compressive loads, as can be easily demonstrated by
subjecting sheets to uniaxial compression [7–10]. Here,
the low bending rigidity underlies an instability of the
compressed planar state, and the consequent formation
of a strain-free buckled shape (if the sheet is suspended)
or a wrinkle pattern (if the sheet is supported on a
substrate) reflects the relevance of the bending energy
at scales much larger than `bend. In this paper we study
a conceptually similar, yet nontrivial effect of the low
bending rigidity in indentation problems, where radial
tension induces compression in the azimuthal (hoop)
direction, thereby making the weak bending energy a
crucial player in the mechanical response of the sheet.

Indentation experiments on suspended samples be-
came a primary tool for measuring the stretching mo-

dulii of 2D materials [1, 11–15]. In a typical set-up, the
sheet is supported on a thick, rigid substrate (e.g. SiO),
which contains a hole of radius R ∼ 1µm. A localized
force is exerted by an AFM tip at the center of the sus-
pended part of the sheet, and the force F is measured
as a function of the deflection δ. In most experiments
[1, 15] the stretching modulus, Y , is extracted by fit-
ting the force-displacement curve, F (δ), to a prediction
of a “membrane elasticity” model, whereby the suspen-
ded sheet is assumed to be clamped to the substrate
at the edge of the hole. This assumption implies that
the indentation-induced stress field in the sheet is purely
tensile, and consequently has a dramatic influence on the
estimated value of the stretching modulus [16]. Howe-
ver, an unequivocal, independent support for the validity
of the clamping assumption has been lacking. Further-
more, since layers of Graphene (like graphite) are known
to slide easily on each other (due to a very low inter-layer
shear modulus), one may suspect that the interaction of
graphene with a substrate is even weaker, such that the
“no-sliding” assumption may not be satisfied.

B. Sliding, wrinkling, and response to applied
forces.

In order to understand the substantial effect of
sliding on the indentation force, one must consider
also the strength of the normal force that the sub-
strate exerts on the supported part of the film. This
interplay can be demonstrated in a table-top example
(Fig. 1a) : attempting to push a tablecloth into a hole
in a frictionless table, one finds that the tablecloth
responds by changing its morphology - sliding towards
the indenter, and forming radially-oriented blisters
(by buckling out from the table’s plane) that release
the hoop compression induced by the inward sliding.
Obviously, in such an experiment the fabric is not



2

significantly stretched, indicating that the combined
effect of in-plane sliding and out-of-plane deflection may
undermine the use of indentation as a reliable probe
for measuring the stretching modulus Y of the sheet.
The theoretical model we introduce and analyze in
this paper addresses the question that follows naturally
from this simple observation : Under what conditions do
sliding and deflection from the substrate curb the effect of
the stretching modulus Y on the indentation force F (δ) ?

The mechanism for deflection from the substrate that
we consider here, however, does not consist of blisters
(which are penalized by surface energy and may be expec-
ted when the sheet-substrate attachment is sufficiently
weak), but rather of small-amplitude wrinkles, such that
the sheet-substrate distance d remains close to its equili-
brium value (see schematic Fig. 2d). A central conclusion
of our study is that when sliding and wrinkling are effec-
tive, the indentation force F scales as :

F ∼ γeff ·
Rsheet

R
· δ . (1)

Underlying Eq. (1), which we call a pseudo-linear res-
ponse (and is valid above a certain threshold), there is
a highly non-linear geometric effect, comprising a glo-
bal re-arrangement of the sheet in order to suppress
the indentation-induced strain. The global nature of the
pseudo-linear response underlies its dependence on the
overall size of the sheet, (Rsheet), in addition the hole’s
radius radius, R, and an effective tension, γeff , which is
independent on the stretching modulus Y , and may dif-
fer substantially from any pre-existing tension (σ0) in
the sheet. Specifically, γeff may reflect the bending rigi-
dity and the steepness of the substrate-membrane VdW
potential. In contrast, the standard linear response at
infinitesimal indentation depth is F ∼ (σ0/R)δ (up to
logarithmic corrections [16]), being fully determined by
the pre-tension σ0, and the size of the suspended portion.

Before delving into the details of our model, let us pro-
vide a heuristic argument for the mechanism by which
sliding and wrinkling give rise to a pseudo-linear res-
ponse (1). This argument is inspired by the example of
indenting an ultrathin polymer sheet that is floating on
a liquid bath [17–20].

C. Heuristic argument : stretching versus
asymptotically isometric response

Let us contrast the two limit cases in the above
example of pushing a tablecloth through a hole : (a)
perfect clamping of the sheet at the edge of the hole
(r = R) ; or (b) free sliding and “wrinkling” of the sheet
on the substrate.

(a) clamping : Assuming that prior to indentation the
sheet is subjected to a uniform tension σ0, the elastic
energy associated with the work F · δ of the indenter can

Figure 1. (a) Pushing a tablecloth into a hole does not cause
significant stretching of the fabric, but rather its sliding to-
wards the indenter, and the formation of a pattern of “ra-
dial buckles”. (b) Schematic sideview of indentation when a
sheet is clamped to the hole’s edge. The unavoidable stret-
ching of radial lines yields a tensile strain∼

√
R2 + δ2/R−1 ∼

δ2/2R2. (c) If the sheet can slide inwards, the radial strain can
be eliminated through a displacement ur∼−δ2/2R for r > R,
and the “bare" hoop compression thus acquired, −ur/r, is
relieved by undulations into the normal direction. (d) A sche-
matic top view of a small portion of a radially-wrinkled sheet.
Since wrinkles cause a collapse of the hoop stress, force ba-
lance in the radial direction implies that σrr ∝ 1/r ; Boundary
conditions at the far edge give : σrr ≈ σ0Rsheet/r.

be estimated as :

F · δ ∼ Uelas ∼ R2

[
σ0 + Y

(
δ

R

)2
](

δ

R

)2

, (2)

where the stress in the sheet is estimated as the sum of
the pre-tension σ0 and the indentation-induced stress,
Y (δ/R)2. Notice that the clamping assumption underlies
our estimate of the radial strain, εrr ∼ (δ/R)2, as the
indentation-induced extension of the radial distances
(see Fig. 1b). Note also that the bending energy is
neglected, since we expect it to contribute only at
some narrow, high-curvature zones, near the rim and
around the indenter’s tip. Equation (2) shows that
upon increasing δ, the force transforms from a linear
response, F/δ ∼ σ0 (Column 2 of Table I), to a nonli-
near, cubic response, F/δ3 ∼ Y/R2, which reflects the
stretching modulus Y [21] (Column 3 of Table I). Actual
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Figure 2. Schematic of our model system and key physical
mechanisms. (a) A sideview of a solid membrane (sheet), sup-
ported on a smooth, rigid substrate in R < r < Rsheet, and
suspended in r < R. A pointwise indenter pushes at the cen-
ter, causing the sheet to deflect downwards. Even though a
sheet with finite bending modulus B cannot accommodate a
discontinuity of the tangent to its plane, our model allows the
sheet to make a finite angle θ with the horizontal at the hole’s
edge. The reasoning is illustrated in panels (b) and (c), depic-
ting two possible scenarios at the vicinity of the hole’s edges
(see App. A). In both scenarios, the tangent “jumps” over
a short distance `∗bc, Eq. (A1), which constitutes a boundary
layer of negligible energy cost. (d) We assume that the attrac-
tive force exerted by the substrate on the sheet is described by
Zhang-Witten stiffness, Eq. (8), whereby the sheet-substrate
distance remains in the VdW potential well. Delamination of
the sheet from the substrate requires an energy barrier, and
is not addressed within our model (see Sec. V).

calculations [16] yield a quantitative description of the
transition between the two regimes (gray curve in Fig. 3).

(b) sliding and wrinkling : Let us assume now that
the sheet can slide freely on the substrate, such that
material circles at radius r undergo radial displacement
r → r + ur(r). An inward displacement (ur < 0) enables
the sheet to retain the length of radial lines, thus avoi-

ding the indentation-induced tensile strain (δ/R)2 in the
radial direction ; a simple calculation shows that reten-
tion of the original length of radials, Rsheet, requires a
constant radial displacement outside the hole (r > R) :

ur(r) ∼ −δ2/R (3)

(Fig. 1c). Clearly, such an inward sliding causes a com-
pression in the orthogonal planar (azimuthal) direction,
since hoops of radius r acquire a strain ur/r. If the normal
attractive force exerted by the substrate is very strong,
such a compression cannot be relieved, and the indenta-
tion force F (δ) is qualitatively similar to the clamping
case discussed in the above paragraph. However, if the
sheet can deflect even slightly from the substrate, then
the compressive strain ur/r can be eliminated by forming
azimuthal undulations whose characteristic wavelength
may be very small, being determined by the bending
modulus and the strength of sheet-substrate attachment.
This scenario is the essential mechanism by which the
table cloth in Fig. 1a responds to the indentation force.

The elimination of tensile radial strain (by sliding) and
compressive hoop strain (by deflection), suggests that
the indentation force is not sensitive to the stretching
modulus of the sheet. Understanding this type of res-
ponse, which involves only minute, asymptotically vani-
shing level of strain, and is thus called “asymptotically
isometric” [17, 22–24], is the essence of our manuscript.
At a heuristic level, one can make progress by conside-
ring a small tension σ0 pulling radially on the sheet at
its far edge, r = Rsheet, where Rsheet � R. The pre-
sence of boundary tension implies that the stress in the
sheet is not totally eliminated by sliding and wrinkling,
and the response becomes dominated by the dependence
of the residual stress on the indentation depth δ. Since
wrinkles eliminate the azimuthal component of the stress
tensor, force balance on infinitesimal annular zones im-
plies that there is a residual radial stress in the sheet
σrr(r) ≈ σ0Rsheet/r (Fig. 1d). The consequent divergence
at r → 0 is resolved by the presence of an unwrinkled
core of radius LI in which the stress saturates to its “ba-
re” value ∼ Y · (δ/LI)2. Continuity of radial stress at the
boundary, r = LI , between the wrinkled zone and the
unwrinkled core, gives :

LI ∼
σ0

Y

R2

δ2
Rsheet , (4)

(column 6 of Table II).
An interesting feature of such a sliding-wrinkling res-

ponse is that only a negligible part of the indenter’s
work, Winden = F · δ, is transmitted to the elastic
energy of the sheet. In other words, the near-absence
of strain, enabled by the combination of in-plane sli-
ding and out-of-plane deflection, underlies a soft mode
of an asymptotically-isometric deformation, which even-
tually controls the mechanical response to indentation.
This soft mode mechanics may be realized by recal-
ling that the only (finite) contribution to residual stress
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is the radial component σrr, whose integration yields
Uelas ∼

∫ Rsheet

LI
r drσ2

rr/Y ∼ σ2
0R

2
sheet/Y , where we

used Eq. (4) and neglected logarithmic corrections and
higher order terms associated with bending and other
components of the stress. In contrast, the work done by
the tensile load at the far edge against the indenter is
Wten ∼ 2πRsheetσ0ur(Rsheet) ∼ σ0δ

2Rsheet/R, where we
used Eq (3). Introducing dimensionless parameters for
the indentation depth and the sheet’s radius :

δ̃ =
δ

R

√
Y

σ0
; R =

Rsheet

R
, (5)

we find that Wten > Uelas if :

δ̃ > δ̃∗∗ where : δ̃∗∗ ∼
√
R (6)

For δ̃ > δ̃∗∗, the elastic energy stored in the sheet can be
neglected, and the indentation force is F ≈ ∂Wten/∂δ,
so that we readily obtain Eq. (1), with γeff = σ0.

Crucially, Eq. (6) shows that the depth δ required to
reach such a pseudo-linear response vanishes for a “nearly
inextensible” sheet (i.e. σ0/Y → 0). In this regime, the
combined effect of low energetic cost for bending and
avoidance of indentation-induced strain, makes the solid
sheet a “bad capacitor” of mechanical energy, and the
work Winden = F · δ done by the indenter is transmitted
almost entirely to the puller at the far edge [17, 22] :

δ̃ < δ̃∗∗ : F · δ −→ Wten + Uelas

δ̃ > δ̃∗∗ : F · δ −→ Wten . (7)

D. Overview

We introduce a minimal model to study the interplay
between stretching, sliding, and wrinkling, and the
dependence of the indentation force on actual physical
parameters – external tension, bending and stretching
modulii of the sheet, and the strength of sheet-substrate
attachment. Ignoring various effects which could be
non-negligible in realistic set-ups (e.g. frictional force
due to pinning of the membrane to the substrate,
spatial disorder in the membrane or the substrate,
and thermal fluctuations) enables us to obtain analytic
solutions of the model in various limit cases. More
importantly, the study of this “ideal” system elucidates
the key mechanical-geometrical interplay in indentation
experiments and the qualitatively different response
types at distinct parameter regimes.

1. Model and analysis

Our model is depicted schematically in Fig. 2. We
consider a disk-like sheet of radius Rsheet, with bending

rigidity B and Young modulus Y , which is suspended on
a flat rigid substrate with a hole of radius R � Rsheet

around it center (r=0), and a point-like indenter, which
induces an out-of-plane deflection of amplitude δ at r=0.
We assume that the sheet is subjected to radial tension σ0

at its far-edge r = Rsheet, to which we will refer as “pre-
tension”. This may be an actual pre-tension (σ0 = Tpre),
applied prior to clamping the far-edge, or be exerted di-
rectly, such that the far edge, r = Rsheet is load-controlled
rather than clamped. In our model, the normal force that
resists deviations of the supported sheet from a planar
state is characterized by a “stiffness” parameter Ksub.
Such a simplified response is known as Winkler founda-
tion in the solid mechanics literature [25]. The stiffness
parameter Ksub, together with the bending rigidity B of
the sheet, determine the deflections in the normal direc-
tion, which often take a periodic form that we call “wrink-
les” – the larger Ksub is, the smaller are the characteristic
amplitude and wavelength of the emerging wrinkle pat-
tern [26]. For our primary interest here – a highly rigid,
undeformable substrate – the stiffness Ksub was recogni-
zed by Zhang and Witten [27] as

Zhang−Witten stiffness : Ksub = V ′′(dmin) , (8)

where V (d) is the attractive substrate-sheet potential per
unit area, and dmin is the thermodynamic equilibrium
distance between the sheet and the substrate (Fig. 2d).
The Zhang-Witten stiffness assumes that the substrate
is infinitely rigid, and the energetic cost for forming
wrinkles (in addition to bending energy) is associated
with the slight deviation of the sheet-substrate distance
from its favorable value in the absence of any external
loads. The assumption underlying this picture is that
the VdW interaction is sufficiently strong, such that the
energy barrier (i.e. the depth of VdW potential well) that
is necessary for the sheet to delaminate from the sub-
strate cannot be reached. Instead, the small-amplitude
undulations keep the sheet everywhere within the VdW
potential well of the substrate, and the energetic penalty
∝ (d − dmin)2. In Sec. V we will elaborate on the im-
portant difference between the relaxation of compression
through such small-amplitude undulations and the for-
mation of delamination zones, for which the energy cost
per area is ∼ V (dmin), independent of the actual sheet-
substrate distance.

Our analysis is based on asymptotic analysis of the
Föppl–von Kármán (FvK) equations, which describe the
deformations of a thin solid sheet to exerted forces, assu-
ming that the local response is Hookean (namely, linear
stress-strain relationship), and that the deformed shape is
characterized by small slopes. The FvK equations are geo-
metrically nonlinear , namely, the nonlinearity is univer-
sal rather than material-dependent stemming from the
coupling of out-of-plane deflections to in-plane strain.

In order to understand the response of the sheet to
exerted loads, it is imperative to distinguish between the
response to compressive and tensile stresses. If the stress
exerted on a small piece of the sheet is (uniaxially or
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biaxially) tensile, the piece will stretch along the tension
direction(s) ; we call this tensile strain. In contrast, if
the piece is under a compressive stress, it may buckle to
reduce the compression level, and this mechanism gives
rise to wrinkle patterns. If the sheet is sufficiently thin, or
more precisely highly bendable, the residual compression
depends on the bending modulus and the exerted loads
through a dimensionless parameter, called bendability
[28]. The method by which the residual compression
level is found, along with geometric features of the
wrinkled state, has been called a [28] far from threshold
analysis ; this is an expansion of FvK equations around
the singular limit of tension field theory , which pertains
to a compression-free sheet with no bending resistance
(i.e. B = 0) [29–33]. It is thus crucial to understand
that despite the smallness of the amplitude, the mere
existence of wrinkles has a strong effect on the stress
field in the sheet, and therefore cannot be considered
as a perturbation to some compressed, pre-buckled state.

2. Classification of parameter regimes and central
predictions

Since the FvK equations are nonlinear, the stress can-
not be considered a superposition of independent sources.
Nevertheless, it is useful to identify three sources of stress
that underlie the mechanical response.

σ0 ; Y (
δ

R
)2 ; 2

√
KsubB (9)

The first source, σ0, contributes a uniform isotropic
tension to both radial and azimuthal (hoop) components
of the stress tensor. The second source, Y ( δR )2, which is
the only one that depends explicitly on the amplitude δ,
gives rise to radial tension (i.e. stretching radial lines)
and hoop compression (pulling latitudes inwards). The
last term, 2

√
KsubB, characterizes the residual hoop

compression in the presence of radial wrinkles, namely,
it is the minimal possible value, to which the hoop
compressive stress can be suppressed with the aid of
wrinkles [24, 34].

The characteristic scales of stress (9) form two dimen-
sionless groups, in addition to δ̃ and R (Eq. 5), that we
use to characterize the response to indentation at various
parameter regimes :

ε =
B/R2

Y (δ/R)2
; β =

2
√
BKsub

σ0
. (10)

The counterparts of the three dimensionless groups,
δ̃, ε,R, have been used to describe the indentation of a
floating ultrathin polymer sheet [17, 22], whereas the ad-
ditional parameter β, which describes the ratio between
the residual compression and isotropic pre-tension, has
received less attention in those studies. The parameter δ̃

– a renormalized indentation depth – is the ratio between
the bare indentation-generated strain and the isotropic
pre-tension in the sheet ; the parameter ε is the inverse
of the “geometric bendability” – the ratio between a (mi-
nimal) bending-related strain and the bare indentation-
induced strain ; the parameter R is the ratio between the
lateral sizes of the sheet and the hole.

Throughout our study we will assume a highly
bendable sheet, namely, ε � 1, such that in-plane
compression may be easily suppressed by wrinkling, and
its size is large in comparison to the hole, namely R � 1.
Our primary interest is to understand the mechanics
when δ̃ is increased above a finite threshold value,
δ̃c ∼ O(1), at which the indentation force is sufficiently
strong to pull latitudes inwards and cause compression
in part of the sheet. (Note that in the absence of pre-
tension δ̃c = 0). In the rest of this introductory section
we summarize the various types of response described
by this model in terms of the parameters δ̃, ε, β, and R.

Regime (i)

β � δ̃2 (11)

In this parameter regime, the sheet-substrate attachment
is so strong that the supported portion of the sheet can-
not relieve compression through wrinkling, even though
the sheet is highly bendable.

If the sheet is not clamped to the hole’s edge and can
freely slide on the substrate, we find that for δ̃ > δ̃c ≈ 3.3,
azimuthal (hoop) compression develops around r = R.
For δ̃ � δ̃c, the indentation-induced load dominates, and
the stress becomes highly nonuniform and anisotropic,
whereby the hoop-compressed zones extend upon increa-
sing δ. In the suspended part, the hoop compression can
be effectively suppressed through the formation of radial
wrinkles, but the supported part remains compressed.

The study of this parameter regime is the subject
of the first parts of Sec. II (A-C), and the results are
summarized in Table I. Here, the central prediction
of our study is a suppression of the force F (δ) due to
sliding and wrinkling (second and third rows in Table
I). Nonetheless, since the supported part of the sheet
cannot wrinkle, the qualitative behavior – transition
from F ∼ δ at δ̃ � 1 to F ∼ δ3 at δ̃ � 1 – is similar
to the indentation of a sheet clamped at the hole’s edge
(first row in Table I). Note that the prefactor of the δ3

term changes significantly as function of the boundary
conditions. Hence, even in this relatively simple regime,
the extraction of the value of the Young modulus from an
indentation experiment requires a careful consideration
of the boundary conditions.

Regime (ii)

β � 1 (12)
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Table I. Summary of central results under various types of conditions of clamping and sliding at the hole’s edge, upon increasing
indentation depth δ (left to right), assuming the substrate stiffness Ksub is sufficiently large (β � δ̃2), such that the supported
part of the sheet cannot wrinkle. The first row summarizes the response in the “no-sliding” case (σrr(R) = σ0) ; the second row
describes the “free sliding” case (σrr(Rsheet) = σ0), where compression develops above a threshold value, δ̃c ≈ 3.3. The third
row summarizes the effect of wrinkle formation in the suspended portion of the sheet.

linear constant cubic constant asymptotic slope asymptotic comments
F
δ

F
δ3

at core’s edge tensile core
normalized by δ

R

no sliding − 2π

log(δ̃)
σ0

0.166×2π
R2 Y 0.63 LI = R pure tension

(Sec. IIA)
sliding − 2π

log(δ̃)
σ0

0.101×2π
R2 Y 0.83 LI ≈ 0.6R wrinkling instability

no wrinkling δ̃ & 3.3 (Sec. II B)
sliding − 2π

log(δ̃)
σ0

0.098×2π
R2 Y 0.87 LI ≈ 0.49R stable if β � δ̃2

wrinkling inside hole (Sec. II C )

Table II. Summary of central results under various types of conditions of clamping and sliding at the hole’s edge, upon
increasing indentation depth δ (left to right), assuming β < O(δ̃2), such that the substrate stiffness Ksub is sufficiently small
to allow relief of compression by forming wrinkles on the supported portion of the sheet. The upper row describes the response
under the “sliding" BC (σrr(Rsheet) = σ0) in the parameter regime β � 1, where the explicit values of the bending rigidity B
and substrate stiffness Ksub barely affect the stress field and extent of the wrinkled zone. Here, δ̃∗∗ ≈ 2.43

√
R logR (Eq. 45)

characterizes the indentation depth above which wrinkles reach the far edge of the sheet. The middle row describes the response
when sliding is hindered by clamping the sheet at the far edge, such that ur(Rsheet) = (1−ν)σ0Rsheet. The bottom row describes
the response under sliding (or hindered sliding) conditions, but when 1 � β � δ̃2, such that the radial stress is governed by
the residual hoop compression, σθθ ≈ −2

√
BKsub, rather than by the tensile load at the far edge. Here δ̃ =

√
Y/γeff ·R.

linear (sub) cubic pseudo-linear asymptotic slope asymptotic comments
constant constant constant at core’s edge tensile core

F
δ

F
δ3

F
δ

normalized by δ
R

(LI/R)

sliding − 2π

log(δ̃)
σ0 − 0.22×2π

log(δ̃)

Y
R2 ∼ 2πσ0R 1−O[1/log δ̃] (1 � δ̃ < δ̃∗∗) ∼1/logδ̃ (1 � δ̃ < δ̃∗∗) wrinkling instability

β � 1 (1 � δ̃ � δ̃∗∗) (δ̃ > δ̃∗∗) 1−O[Rδ̃−2] (δ̃ > δ̃∗∗) ∼Rδ̃−2
(δ̃ > δ̃∗∗) at δ̃ ≈ 3.3 (Sec. II)

hindered sliding − 2π

log(δ̃)
σ0 ∼ 1

logR
Y
R2 none 1−O [1/ logR] LI ∼ 1

logRR wrinkling instability
β � 1 at δ̃ ≈ 3.3 (Sec. IV)
sliding as above as above as above as above as above γeff = 2

√
BKsub

(hindered sliding)
1� β � δ̃2 σ0 → γeff σ0 → γeff σ0 → γeff σ0 → γeff σ0 → γeff (Sec. III)

In this parameter regime, described in Sec. II.E-F,
the sheet-substrate attachment is sufficiently low such
that it is energetically favorable to suppress hoop
compression through radial wrinkles in both suspended
and supported parts of the sheet. As a consequence,
the response to indentation is qualitatively different
from regime (i), and is summarized in the first two
rows of Table II. A central prediction is the emergence
of a pseudo-linear response, Eq. (1), at sufficiently
large indentation depth, δ̃ ≥ O(

√
R) � 1, which was

motivated by our heuristic discussion in Sec. I C. In
Sec. IV we discuss a situation where the sliding of the
sheet on the substrate is hindered by clamping at the
far edge, r = Rsheet. We find that far-edge clamping
implies bi-axial tension at the vicinity of Rsheet, even for
large indentation depth (δ̃ � R), and thus eliminates
the pseudo-linear response (second row of Table II).
Nevertheless, the ability to relax hoop compression

through wrinkling gives rise to dramatic suppression of
the cubic response, F ∼ δ3, when the clamping is at the
sheet’s edge (r = Rsheet) in comparison to clamping at
the hole’s edge (r = R). For δ̃ � 1, we find that the
asymptotic ratio F/δ3 is proportional to 1/ log(R).

Regime (iii)

1� β � δ̃2 (13)

In this parameter regime, the pre-tension σ0 is irrelevant,
and the substrate response is governed by a competition
between the characteristic stress, 2

√
BKsub, associated

with the residual hoop compression in the wrinkled zone,
and the bare indentation-induced stress, Y ( δR )2. We dis-
cuss this regime in Sec. III, and show that the residual
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hoop compression gives rise to a comparable, bending-
induced radial tension [24, 35]. This leads us to introduce
an “effective tension” [36] :

γeff ≡ max{σ0, 2
√
BKsub} . (14)

Redefining the dimensionless amplitude :

δ̃ =
δ

R

√
Y

γeff
, (15)

we can characterize the mechanical response in regime
(iii) through a simple generalization of the predictions
for regime (ii), upon substituting (in all expressions that
involve δ̃) : γeff =

√
BKsub, rather than γeff = σ0. This

is the content of the last row in Table II.

II. CLAMPING VERSUS SLIDING AND
WRINKLING

We start by considering a perfectly axisymmetric de-
formation in response to indentation, namely, no wrinkles
are allowed on the suspended or supported parts of the
sheet. In Subsec. II A and IIB we address two types of
boundary conditions (BCs). The first type is clamping
at the hole’s edge (r = R) with a “pre-tension” σ0. The
second type of BCs allows for sliding of the sheet on the
substrate, while a given tensile load, σrr(Rsheet) = σ0, is
exerted at the far edge of the sheet. We show that the
freedom to slide on the substrate significantly suppresses
the indentation force. Importantly, we find that if sliding
is allowed, the sheet becomes azimuthally compressed in
the vicinity of the hole’s edge, if the dimensionless inden-
tation depth, δ̃, exceeds a critical value δc ≈ 3.3. This in-
dicates an instability to the formation of radial wrinkles,
which we address in Subsec. II C, assuming a sufficiently
strong attachment to the substrate (regime (i), Eq. 11),
such that wrinkles can form only at the suspended part of
the sheet. We use this case to introduce the basic prin-
ciples of the far from threshold approach [28], through
which we characterize the emerging wrinkle pattern, and
show how the formation of wrinkles underlies further,
albeit modest suppression of the indentation force. In
Subsec. IID we relax the condition of infinitely strong
sheet-substrate attachment, and find a second threshold,
such that for δ̃ > δ̃∗(β), hoop compression is sufficiently
strong to give rise to radial wrinkles also on the suppor-
ted part of the sheet. In Subsecs. II E and II F we ad-
dress the parameter regime (ii) (Eq. 12), where wrinkles
expand throughout the supported part of the sheet and
further suppress the indentation force, culminating with
a transition to the pseudo-linear response, Eq. (1).

A. Clamping at the hole’s edge

Following Ref. [16], we address a circular sheet clam-
ped with pre-tension σ0 at the hole’s edge, r = R. The
axial symmetry of the set-up calls for the use of polar
coordinates. We denote the out-of-plane displacement by
z(r), and by ψ(r) the radial derivative of the Airy stress
function, where the stress components are :

σrr =
ψ

r
, σθθ = ψ′ . (16)

The hoop component of the strain tensor εθθ and the
consequent radial displacement field ur, satisfy :

εθθ =
ur
r

=
1

Y
(σθθ − νσrr) =

1

Y

(
ψ′ − ν ψ

r

)
⇒ ur =

1

Y
(rψ′ − νψ) (17)

whereas the radial strain is :

εrr =
∂ur
∂r

+
1

2
(
∂z

∂r
)2 =

1

Y
(σrr − νσθθ)

=
1

Y

(
ψ

r
− νψ′

)
, (18)

where ν is the material’s Poisson ratio.
The 2nd FvK equation, expressing in-plane force balance
(as well as compatibility of the stress and strain tensors
with the displacement field), is :

r
d

dr

[
1

r

d

dr
(rψ)

]
= −1

2
Y

(
dz

dr

)2

(19)

and the 1st FvK equation, which expresses force balance
in the normal direction (≈ ẑ) is :

1

r

d

dr

(
ψ
dz

dr

)
=

F

2πr
δ(r) . (20)

In the last equation we neglected a bending force,
B∂4z/∂r4, due to the radial curvature of the sheet. As
we explain in App. A, this term is significant only at the
vicinity of the hole’s edge, and its omission – together
with a suitable choice of BCs at the hole’s edge – is justi-
fied in all parameter regimes addressed in our paper (see
schematic Fig. 2b-c).

Let us turn now to describe the BCs at the vicinity of
the indenter (r → 0), and the hole’s edge :

r→0 : (i) z=−δ (ii) ur= lim
r→0

1

Y
(rψ′−νψ)=0

r=R : (iii) z=0 (iv) ur=
1

Y
(rψ′−νψ)=(1−ν)

σ0

Y
R .

(21)

Note that clamping at r = R in the presence of a
pre-tension, σ0, means that the radial displacement
ur(R) (rather than the load) is set to a fixed non-zero
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value, determined by the pre-indentation condition, as
reflected in BC (iv), Eq. (21).

Throughout this paper, we denote by ψ, r, z dimensio-
nal values of the potential, radial (in-plane) length, and
deflection (out-of-plane) length, respectively, and Ψ, ρ,
and ζ, for their dimensionless counterparts :

ρ =
r

R
, Ψ =

ψ

σ0R
, ζ =

√
Y

σ0

z

R
. (22)

Additionally, we define a dimensionless version of the
force F :

F =
1

2πR

√
Y

σ3
0

F . (23)

The dimensionless form of the FvK equations (19,20) is :

ρ
d

dρ

[
1

ρ

d

dρ
(ρΨ)

]
= −1

2

(
dζ

dρ

)2

, (24)

1

ρ

d

dρ

(
Ψ
dζ

dρ

)
=
F
ρ
δ(ρ) . (25)

The dimensionless version of the BCs (21) is :

ρ→ 0 : (i) ζ = −δ̃ (ii) lim
ρ→0

(ρΨ′ − νΨ) = 0

ρ = 1 : (iii) ζ = 0 (iv) (Ψ′ − νΨ) = 1− ν (26)

Although Eqs. (24,25) are nonlinear, there exists a
transformation [37], which allows an analytic solution
(up to integrals that can be evaluated numerically). The
analytic solution [16], which we repeat in App. B, enables
us to express the force, F , the shape, z(r), and the stress
components, σrr(r), σθθ(r), for any value of δ̃. These
are shown, respectively, in the gray curves in Figs. 3-8.
Let us discuss briefly some key features of of these results.

At sufficiently large values of δ̃, the force F (δ) ∼ δ3,
reflecting a transition from pretension-dominated stress
(for δ̃ � 1) to indentation-dominated stress : ∼ Y (δ/R)2

(for δ̃ � 1). The radial and hoop components of the
stress, shown, respectively, by the dashed and solid curves
in Fig. 5 (δ̃ = 3) and Figs. 6,7 (δ̃ = 10), indicate that an
indented sheet clamped at the hole’s edge is under pure
tension at any indentation depth, in agreement with the
discussion in Subsec. I C.

An interesting feature of the indentation force is the
absence of a true linear response (Fig. 3b). Instead, for
δ̃ � 1 the response is sub-linear, with F ∼ −1/ log(δ̃).
Such a sub-linear response appears also for the sliding
BCs, albeit with a different numerical pre-factor (blue
curve in Fig. 3). This peculiar feature emanates from the
assumption of a point-wise indentation, and is intimately
related to the (integrable) divergence of the stress compo-
nents at r → 0 (σrr, σθθ ∼ r−1/3 [16]), which is observed

in Fig. 5. For an indenter with a finite tip’s radius Rtip, a
linear response is recovered, with a numerical pre-factor
that scales as −[log(Rtip/R)]−1 [16].

Finally, it is noteworthy that the deformed shape
(Fig. 8) defers substantially from an ideal cone ; this is
signified by the slope in the vicinity of the hole’s edge
(dzdr )r=R, which is only 63% of the slope of an ideal cone
(first row of Table I). We will show later that the slope
at the vicinity of the edge depends strongly on the boun-
dary conditions and other physical parameters, and may
thus serve as an indirect experimental probe of the actual
boundary conditions associated with a given set-up.

B. Sliding at the hole’s edge and the buckling
threshold in the suspended zone

Now we address the axisymmetric (unwrinkled) state
of the indented sheet in a set-up, where sliding of the
sheet is allowed at the hole’s edge (and on the substrate).
Clearly, the only difference between this case and the
above analysis of clamping at r = R, is encapsulated
by the BC (iv) in Eq. (26). For simplicity, we assume a
fixed tensile load at the far edge, σrr(Rsheet) = σ0. We
note that, as long as Rsheet � R, replacing this BC with
clamping at the far edge (with pre-tension σ0), gives rise
to practically indistinguishable results.

In order to derive the appropriate BC at the hole’s
edge, we must consider the stress field in the supported
part of the sheet. In this annular zone, R < r < Rsheet,
the sheet is subjected to radial tension σ0 at r = Rsheet

and an unknown radial tension σrr(R) at r = R. This
problem is readily recognized as the Lamé problem, and
its classical solution yields the hoop and radial stress
components [25] :

R<r<Rsheet :

{
σrr(r) = σ0 + (σrr(R)− σ0)

R2

r2

σθθ(r) = σ0 − (σrr(R)− σ0)
R2

r2

(27)

(where we simplified the general solution for R =
Rsheet/R� 1), allowing one to express the radial displa-
cement, ur(r) as a function of Rsheet, r, σ0, and σrr(r) :

R < r < Rsheet : ur(r) =
r

Y
[2σ0 − (1 + ν)σrr(r)] . (28)

Obviously, integrity of the sheet requires continuity of
the radial displacement at the hole’s edge, namely :

ur(r → R+) = ur(r → R−) , (29)

and the analogous relationship for the radial component
of the stress reads :

σrr(r → R+) = σrr(r → R−) . (30)

In App. A we will elaborate further on the continuity of
radial displacement and stress at the hole’s edge and the
validity of the corresponding equations (29,30).
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Figure 3. Dimensionless “spring constant" F/σ0δ, versus dimensionless indentation amplitude δ̃ = δ
√
Y/σ0/R, Eq. (15).

Different colors (described in the following from top to bottom) represent different boundary conditions and physical parameters.
Gray (topmost) : clamping at the hole’s edge. Blue : sliding of the sheet on the substrate, assuming the deformed shape is
perfectly axisymmetric. Brown : sliding of the sheet on the substrate, where wrinkles are allowed to relax hoop compression only
in the suspended part of the sheet (Regime (i), Eq. 11). Green : sliding is hindered by clamping at the far edge, r = Rsheet (≈
90R), and wrinkles are allowed to relax hoop compression in both suspended and supported parts of the sheet (Regime (ii),
Eq. 12). Red : sliding throughout the whole sheet (same value of Rsheet ≈ 90R), where wrinkles are allowed to relax compression
in both suspended and supported parts of the sheet (Regime (ii), Eq. 12). For the problems that assume clamping (at the
hole’ edge (gray (topmost) curve) or the sheet’s edge (green (second from bottom) curve)), σ0 is the “pretension" in the sheet,
whereas for the sliding problems (blue (second from top), brown (third from top), and red (bottom) curves), σ0 is the tensile
load exerted at the far edge. The curves that correspond to sliding at the hole’s edge (i.e. all except the gray (topmost))
overlap for δ̃ < 3.3, at which range the axisymmetric state is purely tensile. The red (bottom) and green (second from bottom)
curves, corresponding to wrinkling on the supported part with tensile load and clamping at the far edge, respectively, are nearly
identical for δ̃ < δ̃∗∗(R = 90) ≈ 41, at which range wrinkles do not reach the far edge of the sheet. Regardless of the various
BCs, the “linear” response at δ � R

√
σ0/Y , shown in panel B, is actually sub-linear, whereby F/δ ∼ 1/| log δ| → 0 [16]. When

wrinkles are not allowed on substrate the asymptotic response at δ � R
√
σ0/Y is cubic (F/δ ∼ δ2). When wrinkles can form

on the substrate, the response become eventually “pseudo-linear” (F/δ ∼ const) after wrinkles can reach the sheet’s edge (red
(bottom) curve), and sub-cubic (F/δ ∼ δ2/| log δ|) if the sheet’s edge is clamped (green (second from bottom) curve).
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Figure 4. The radial stress at the hole’s edge, σrr(R), normalized by σ0, versus the dimensionless indentation amplitude
δ̃ = δ

√
Y/σ0/R, Eq. (15). Colors (equivalently, order from top to bottom) of curves represent different boundary conditions

and physical parameters, as in Fig. 3.

Equations (28,29,30), together with Eqs. (16,17) yield :
ψ/R+ψ′ = 2σ0. Turning to dimensionless representation

we obtain the BCs :

ρ→ 0 : (i) ζ = −δ̃ (ii) lim
ρ→0

(ρΨ′ − νΨ) = 0

ρ = 1 : (iii) ζ = 0 (iv) Ψ + Ψ′ = 2 (31)

The solution of the FvK equations (24,25), with the
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BCs (31) can be obtained in a similar way to the so-
lution in the preceding subsection (see App. D), allowing
us to express the force, F , the shape, z(r), and the stress
components, σrr(r), σθθ(r), for any value of δ̃. These are
shown, respectively, in the blue curves in Figs. 3-8.

One may notice that the qualitative behavior of the
axisymmetric state with sliding BC’s is very similar to
the edge-clamped set-up. Considering the stress and force
as functions of the dimensionless parameter δ̃ (Figs. 3,4,
respectively), their magnitudes scale similarly in both
set-ups, for δ̃ � 1 as well as for δ̃ � 1, whereas the
numerical pre-factors become smaller once sliding is al-
lowed. Intuitively, sliding allows the sheet to moderately
relax the stretching in the suspended part at the expense
of more stretching at the supported part. An interes-
ting observation is the pronounced effect of the change
in BCs on the shape (Fig. 8). Specifically, we found that
for δ̃ � 1, the contact angle of the membrane at the edge
approaches the asymptotic value : (dzdr )r=R → 0.83 δR – an
increase of over 25% of the slope under clamped BC’s.

A dramatic feature of the stress profile is the emer-
gence of an annular zone on both sides of the edge, where
the hoop stress is compressive (blue curve in Fig. 6), for
δ̃ & 3.3. While a compressive stress may not be relieved
in the supported part due to a strong attachment to the
substrate (regime (i), Eq. 11), the existence of compres-
sion in the suspended part of a thin sheet clearly gives
rise to a wrinkling instability. Understanding the wrinkle
pattern under such physical conditions is the subject of
the next subsection.

C. Wrinkling in the suspended zone

We come to study the simplest case in which wrinkles
affect the mechanical response, where the hoop compres-
sion induced by sliding at the hole’s edge gives rise to
wrinkles in the suspended portion of the sheet (r < R),
but not at the supported part (r > R). In order to study
the effect of wrinkles on the stress and thereby on the
indentation force, we employ tension field theory (TFT)
[29–33]. In this approach, one assumes that wrinkles sup-
press almost entirely compressive stress, such that one of
the two principal components of the stress tensor in the
wrinkled zone is positive, corresponding to tensile stress
along wrinkles, whereas the other principal component
vanishes, signifying the direction along which wrinkles
undulate. The stress field in the whole sheet is then
obtained by matching the displacement field and the
compression-free stress in the wrinkled zone to the ad-
jacent, purely tensile zones, where both principal stress
components are non-negative.

Applying the TFT methodology to our indentation
problem, the axial symmetry of the set-up suggests that
for δ̃ > 3.3, confinement of latitudes occurs in an annular
zone, LI < r < Lout, where LI < R, and Lout > R. In
this subsection we assume that in the supported part,
R < r < Lout, the large effective stiffness Ksub, Eq. (8),
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Figure 5. (a) The hoop stress (solid) and radial stress (da-
shed) for a sheet that is clamped (gray (top)) or slide (blue
(bottom)) at the hole’s edge. Here, the value of the dimen-
sionless indentation depth δ̃ = 3, for which in both cases the
sheet is under pure tension, and the axisymmetric response is
stable. Both stress components are normalized by a constant
σ0 (see text). (b) The profile of the suspended sheet. Here, ra-
dial distances are normalized by the hole’s radius R, whereas
vertical distances are normalized by the indentation depth δ.
Note the deviations in both cases from a perfect conical shape.

prohibits the formation of wrinkles, such that the sheet
must accommodate the indentation-induced hoop com-
pression ; however, in the suspended part, LI < r < R,
the formation of radial wrinkles underlies collapse
of hoop compression. Hence, the sheet is naturally
divided into three parts : (i) R < r < Rsheet – where
the supported sheet undergoes a planar axisymmetric
deformation ; (ii) LI < r < R – where the suspended
sheet is wrinkled ; (iii) r < LI – where the suspended
sheet is unwrinkled and the stress is purely tensile. In
the sequel, we will describe the stress and deformation
in each zone and the matching among them.

Zone (i) R < r < Rsheet : Similarly to Subsec. II B, the
state of the sheet in this part is determined by solving the
planar Lamé problem, subject to radial tensile load at the
far edge, σrr(Rsheet) = σ0, and a radial tension σrr(R),
which must be determined by matching the three zones.
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In this zone, the stress components are given by Eq. (27)
through the unknown σrr(R), and the ratio between the
radial displacement and stress is given by Eq. (28), which
we repeat here for completeness :

ur(r) =
r

Y
[2σ0 − (1 + ν)σrr(r)] . (32)

Zone (ii) LI < r < R : Here, the formation of wrinkles
underlies a collapse of the hoop compression, such that
we need to solve the radial force balance equation with
σθθ = 0. (More precisely, a TFT solution is the leading
order in a “high bendability” expansion, ε → 0, of the
FvK equations [28], rather than a standard expansion
around the compressed, axisymmetric state [25]). Tech-
nically, in the wrinkled zone radial force balance is obtai-
ned by satisfying Eq. (16) with ψ(r) = constant, whereas
the relationship εθθ = ur/r (17) between the hoop strain
and radial displacement is “ignored” since it merely de-
termines a comparable contribution to the hoop strain
(εθθ = −νεrr), which is missing from the RHS of Eq. (17)
due to the excess length in the wrinkly undulations [28].
Equation (19) also relies on (17) and its validity is thus
limited to an axisymmetric, unwrinkled state, hence it is
likewise ignored. Requiring continuity of radial displace-
ment and stress, Eqs. (29,30), as well as continuity of the
deflection z(R) = 0, and employing Eqs. (16,18,20), we
obtain the stress components, deflection z(r) and radial
displacement in the wrinkled zone :

σrr(r) = σrr(R)
R

r
, σθθ(r) = 0 ⇒ ψ(r) = R · σrr(R)

z(r) = arctan θ · (r −R) ≈ θ · (r −R) ,

ur(r) =−1

2
θ2 · (r−LI)+

1

Y
σrr(R)R log

(
r

LI

)
+ ur(LI) (33)

where θ � 1 is the angle between the suspended sheet
and the planar substrate at r = R, and ur(LI) is the
radial displacement at the edge of the wrinkled zone,
r = LI . We re-emphasize that although both radial
displacement and Airy potential in the wrinkled zone
are given by axisymmetric functions, the presence of
symmetry-breaking wrinkles is reflected in the violation
of the relationship (17) between , ur(r) and ψ(r).

Zone (iii) 0 < r < LI : In the purely tensile core the
state is again axisymmetric, and the FvK equations there,
expressed through the dimensionless functions ζ(ρ) and
Ψ(ρ) (Eq. 22) are correspondingly given by Eqs. (24,25),
with the strain-displacement relationship for both parts
of the strain tensor (17,18). Exploiting once again the
continuity of the radial stress σrr(r) = ψ(r)/r and the
deflection z(r), we obtain the BCs :

ζ(0) = −δ̃ ; lim
ρ→0

(ρΨ′ − νΨ) = 0

ζ(L̃I) = ã(L̃I − 1) ; Ψ(L̃I) = Ψ(1) =
σrr(R)

σ0
(34)

where L̃I and ã are dimensionless versions of the core
radius and the slope at the hole’s edge :

L̃I = LI/R ; ã =
√
Y/σ0θ . (35)

Similarly to the previous subsections, we find that the
nonlinear Eqs. (24,25) with the BCs (34) can be solved
analytically. Namely, for a given value of the control para-
meter δ̃ and given values of the three unknowns, Ψ(1), θ,
and L̃I , there is a single analytic solution that fully cha-
racterizes the function Ψ(ρ), the related components of
the stress (16), and the deflection ζ(ρ), in the interval
0 < ρ < L̃I . Since the state in this core zone is axi-
symmetric (unwrinkled), Eq. (17) implies that the radial
displacement at r = LI satisfies :

ur(LI) =
1

Y
(LIψ

′(LI)− νψ(LI))

=
σ0

Y
R
(
L̃IΨ

′(L̃I)− νΨ(L̃I)
)
. (36)

Matching conditions : In addressing the zones (i-iii), we
only used the continuity of radial stress (hence Ψ(ρ)),
and the deflection ζ(ρ). In order to determine the three
unknown variables, Ψ(1), θ, and L̃I , we must invoke three
other matching conditions. Two of them are continuity
of the slope, ζ ′(ρ), and hoop stress, σθθ(r) = ψ′(r) =
σ0Ψ′(ρ), at the borderline between the tensile core and
the wrinkled zone, yielding two equations :

ζ ′(L̃I) = ã ; Ψ′(L̃I) = 0 . (37)

(As was noted in the similar problem of indenting a floa-
ting sheet [17], these two equations do not follow from
local force balance at r = LI per se, but rather from mi-
nimization of the total energy of a wrinkled state, which
is realized when the hoop stress is continuous throughout
the sheet). The last matching condition is the continuity
of radial displacement at the hole’s edge, ρ = 1, which is
obtained through Eqs. (32,33,36, 37), yielding :

Ψ(1) · (1− log L̃I)−
1

2
ã2 · (1− L̃I) = 2 . (38)

With the three equations (37,38), and the four BCs (34),
the FvK equations (24,25), which are two coupled 2nd

order ODEs, yield a single solution for Ψ(ρ), ζ(ρ) in the
interval 0 < ρ < L̃I , as well as the three unknowns,
L̃I , ã,Ψ(1). The details of the analytic solution are given
in App. E. Together with Eqs. (27,32,33,35), this solution
fully characterizes the displacement and stress fields for
any value of the dimensionless control parameter δ̃ > δ̃c.

The brown curves in Figs. 3-4 show the force, F , and
the radial stress at the hole’s edge, σrr(R), upon increa-
sing δ above δ̃c ≈ 3.3, and the brown curved in Figs. 6-8
show the hoop and radial stresses, σθθ(r), σrr(r), and the
shape, z(r), at the suspended part, for δ̃ = 10. One may
notice that for any δ̃ > 3.3, wrinkling in the suspended
part of the sheet reduces slightly further the force (in
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comparison to the unstable, axisymmetric deformation
with sliding, represented by the blue curve). Note also
that the formation of wrinkles acts to slightly increase the
angle θ at the hole’s edge in comparison to an unwrink-
led deformation and to extend the azimuthally-confined
zone (fourth and fifth columns in Table 1, respectively).
Intuitively, since wrinkles suppress the energetic cost of
hoop strain, it is favorable to extend this zone.

One should note the discontinuity exhibited in Fig. 6
by the hoop stress at the hole’s edge. Such a discontinuity
does not violate any force balance, and is therefore phy-
sically allowed. More precisely, while this discontinuity
emerges naturally in TFT, which describes the infinite
bendability limit (of a hypothetical sheet with no ben-
ding rigidity, i.e. ε=0), we do expect the formation of a
“boundary layer” at the vicinity of the hole’s edge, whose
length vanishes as ε → 0, over which the “jump” in the
hoop stress occurs (similarly, but not identically, to the
boundary layer that regularizes a “jump” in the radial
stress, see App. A). Nevertheless, the consequent effect
on the elastic energy is negligible, i.e. “sub-dominant” in
the terminology of the far-from-threshold approach [28].

Taken together, these results demonstrate the
wrinkles-assisted suppression of the energetic cost of the
deformation induced by indentation, and consequently
a reduction of the force constant F (δ)/δ3 in compari-
son to the analogous nonlinear force constant for the un-
wrinkled state. These observations reinforce our qualita-
tive discussion in Sec.I C, indicating that the formation of
wrinkles implies a non-perturbative modification to the
stress field, and thereby to the indentation force.

D. Buckling threshold in the supported zone

In the previous subsection we let wrinkles suppress
hoop compression only in the suspended part of the sheet,
whereas the supported part of the sheet remains unwrink-
led. In order to identify the parameter regime at which
such a scenario may be realized, we note that the suppor-
ted sheet is subjected to hoop compression at the vici-
nity of the hole’s edge that keeps increasing in magnitude
and spatial extent upon increasing the indentation depth.
Physically, such a state is mechanically stable if the hoop
compression is below the threshold value, ≈ 2

√
BKsub =

βσ0 (Eq. 10), at which the supported sheet buckles. This
criterion is well known for uniaxial deformations [7–10]
and was shown to be relevant also for more complicated,
non-uniaxial confinement problems [24, 38]). Considering
our solution in Subsec. II C, we note that the hoop com-
pression at the edge (σθθ(R) = ψ′(r → R+)) is approxi-
mately 0.11 · Y (δ/R)2 = 0.11σ0δ̃

2 (where we assumed
δ̃ � 1 for simplicity). Hence, we obtain that the inden-
tation depth, δ̃∗(β), at which the supported part of the
sheet becomes wrinkled is given by :

δ̃∗(β) ≈
{ √

0.11 · β1/2 β � 1

δ̃c ≈ 3.3 β � 1
(39)

Note that for β < 1, the resistance to buckling in the
supported part is sufficiently low, such that both suppor-
ted and suspended parts of the sheets become wrinkled
almost simultaneously, as soon as indentation-induced
hoop compression emerges at δ̃ & δ̃c ≈ 3.3.

Equation (39) shows that the analysis in Subsec. II C
describes the parameter regime β � 1 & δ̃c < δ̃ � δ̃∗(β),
namely, where the sheet-substrate attachment is suffi-
ciently strong to prevent wrinkling in the supported part,
for sufficiently small indentation depth. This is precisely
regime (i) we described in Subsec. ID.

In the rest of this section, we will turn our attention
to regime (ii), β � 1 & δ̃ > δ̃c, at which both suspen-
ded and supported parts of the sheet become wrinkled
at δ̃ & δ̃c, and the sheet-substrate attachment does not
affect the residual stress field. In Sec. III we will address
regime (iii), β � 1 & δ̃ � δ̃∗(β), at which the residual
compression in the wrinkled, supported part of the in-
dented sheet must be taken into consideration.

E. Wrinkling in both suspended and supported
zones

Considering the parameter regime (ii), β � 1 and δ̃ >
δ̃c ≈ 3.3, we follow our analysis in Subsec. II C, noting
that since β � 1, the direct effect of the sheet-substrate
attachment on the stress field in the sheet is negligible,
and therefore the standard TFT approach of Subsec. II C
can be employed also here. Namely – in the wrinkled
zone, LI < r < LO, the stress field is given by a tensile
radial stress, σrr(r) > 0, and negligible hoop and shear
stresses, σθθ(r), σrθ(r) ≈ 0.

Similarly to Subsec. II C, we proceed by considering
the displacement and stress fields in the three parts of
the sheet : (i) R < r < Rsheet – where the sheet is
nearly planar, but (unlike Subsec. II C) it develops ra-
dial wrinkles in R < r < LO and is axisymmetrically
deformed only at LO < r < Rsheet, where both radial
and hoop stress components are tensile ; (ii) LI < r < R
– where the suspended sheet is wrinkled ; (iii) r < LI –
where the suspended sheet is unwrinkled and both hoop
and radial stresses are tensile. For the last two parts, we
notice that the displacement and stress are given by ex-
pressions identical to their counterparts in Subsec. II C,
namely, Eqs. (33) and the BCs (34) for the nonlinear FvK
equations (24,25) in the unwrinkled core, albeit with a
different triplet of constants Ψ(1), ã, L̃I , that must be de-
termined by matching the radial displacement and stress
at the hole’s edge with the wrinkled portion of the sheet
at r > R. Thus, among the three equations that specify
the constants Ψ(1), ã, L̃I , the two equations that reflect
these continuity conditions are identical to their counter-
parts in Eq. (37).

In order to find the remaining equation that relates
the constants Ψ(1), ã, L̃I , we turn to discuss the exterior
zone, r > R. Once again, we find a direct mapping to the
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Figure 6. The hoop stress for a dimensionless indentation depth δ̃ = 10 ((A) –suspended part, (B) – supported part). Distances
are normalized by the hole’s radius R and stress is normalized by σ0 (see text). The colors (equivalently, order of curves from
top to bottom) correspond to the various types of BCs, noted already in the caption of Fig. 3 : gray (clamping at the hole’s
edge) ; blue (axisymmetric (unstable) response under sliding at the hole’s edge) ; brown (wrinkling at the suspended part of the
sheet only) ; green (wrinkling in both suspended and supported parts of the sheet, for a sheet with R ≈ 90 (δ̃∗∗(R = 90) < 10,
Eq. (6)) ; red (wrinkling in both suspended and supported parts of the sheet, for a sheet with R = 6 (δ̃∗∗(R = 6) > 10)). Note
that all but two curves have zero values at r ∈ (LI , R) in the suspended zone. (Curves are slightly shifted vertically in the zone
r ∈ (LI , R) in order to make them visually discernible). Only the brown curve (middle one in panel A) is discontinuous at the
hole’s edge.
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Figure 7. Same as Fig. 6, but for the radial stress. Note that all curves are continuous at the hole’s edge.

Lamé problem of an annulus under co-axial, co-planar
tensile loads, σrr(R) = Ψ(1) · σ0 and σrr(Rsheet) = σ0.
For R � 1 and Ψ(1) > 2 (for which the Lamé solution,
Eq. (27) is unstable), the TFT solution is given by [28] :

R<r<LO

{
σrr(r)=σrr(R)Rr

σθθ(r)=0
(40)

LO<r<Rsheet

{
σrr(r)=σ0 + (σrr(LO)− σ0)

L2
O

r2

σθθ(r)=σ0 − (σrr(LO)− σ0)
L2
O

r2

(41)

where : LO =
σrr(R)

2σ0
R =

Ψ(1)

2
R , (42)

and the radial displacement at the wrinkled zone, R <

r < LO, is given by :

ur(r) = r
σrr(r)

Y
[−ν − log(

LO
r

)] . (43)

Comparing Eq. (43) with its counterpart, Eq. (28) in Sub-
sec. II C, reveals a dramatic effect associated with the
expansion of wrinkles on the supported part upon in-
creasing indentation depth, δ̃. While Eq. (28) shows that
ur(R) is proportional to the radial stress at the hole’s
edge, σrr(R), Eqs. (42,43) show that in the presence of
wrinkles the ratio ur(R)/σrr(R) ∝ log(σrr(R)/σ0). As we
will show now, this effect has a strong impact on indenta-
tion mechanics, associated with the continuity equation
for radial displacement at the hole’s edge :

Ψ(1) · log
Ψ(1)

2L̃I
− 1

2
ã2 · (1− L̃I) = 0 , (44)
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Figure 8. A side view of the deformation in the suspended
part for δ̃ = 10. (Only the wrinkled portion, which starts at
a distance LI from the center, is shown). Radial distances
are normalized by the hole’s radius R, and vertical distances
are normalized by the indentation depth δ. The colors (equi-
valently, order of curves from top to bottom) represent the
same types of BCs as in previous figures.

which follows from Eqs. (43) and (36)).
Let us inspect Eq. (44), contrasting it with its coun-

terpart, Eq. (38) in Subsec. II C. Considering the asymp-
totic limit δ̃ → ∞, one may easily notice that a solu-
tion of the form Ψ(1) ∼ δ̃2 , ã ∼ δ̃ , L̃I ∼ O(1) is
consistent with Eq. (38), but not with Eq. (44). Instead, a
consistent asymptotic solution of Eq. (44) has the form :
Ψ(1) ∼ δ̃2/ log(δ̃) , ã ∼ δ̃ , L̃I ∼ 1/ log(δ̃). Obtaining
the numerical values of the pre-factors in these asymp-
totic relations requires the use of Eqs. (33,34,24,25), and
the detailed calculation is described in App. E.

The results are shown in the green curves in Figs. 3,4
and Figs. 6-8. We note that the presence of wrinkles on
the substrate underlies a sub-cubic asymptotic response,
namely F/δ3 ∼ 1/ log(δ̃) → 0 as δ̃ → ∞, reflecting a
logarithmic suppression of the radial stress at the hole’s
edge with respect to the bare indentation-induced stress :
σrr(R) ∼ 1

log δ̃
·Y · (δ/R)2. The invasion of wrinkles into

the supported zone of the sheet affects strongly also the
displacement field, where the slope at the hole’s edge now
approaches asymptotically the “natural” cone angle : a→
δ
R · [1− O(1/ log δ̃)], and the size of the unwrinkled core
vanishes, LI = R · L̃I ∼ R/ log δ̃, as is described in the
first row of Table II.

F. The geometric limit : pseudo-linear response

In the preceding section we saw that if the sheet-substrate
attachment is sufficiently weak (β � 1), radial wrinkles
expand in the supported part of the sheet, occupying an
annular zone whose external radius, LO ∼ R · δ̃2/ log δ̃.
If δ̃ is sufficiently large, wrinkles approach the edge of
the sheet, causing yet another dramatic change in the

distribution of stress in the sheet and its response to the
indentation force. (A similar phenomenon has been found
for the indentation of a floating sheet [19, 20]). For a
given value of the parameter R, our numerical results in
the preceding section allow us to estimate the value δ̃∗∗
at which wrinkles reach the far edge :

R ≈ 0.12(δ̃∗∗)2/ log δ̃∗∗ ⇒

δ̃∗∗(R) ≈ 2.43
√
R logR · [1 +O(logR)] . (45)

For δ̃ > δ̃∗∗, the supported part of the sheet is fully wrink-
led, and the stress field for any R < r < Rsheet is descri-
bed by Eq. (40). Together with the BC σrr(Rsheet) = σ0,
we find that :

σrr(r) = σ0
Rsheet

r
; σθθ(r) = 0 , (46)

as we described already in the introductory section IC.
In this regime, the value of the unknown Ψ(1) is directly
given by Eq. (46) :

Ψ(1) = R , (47)

and the deformed state is fully described by solving the
FvK equations (24,25) with the BCs (34), along with re-
placing Eq. (44) by (47), and the two additional equations
in (37). The solution of these equations is described in
App. E. We note that this solution merely determines
the numerical pre-factors in the scaling laws we already
found in Subsec. I C, specifically the pseudo-linear res-
ponse, F (δ) ∝ δ, Eq. (1, with γeff = σ0).

The results of this calculation, for a dimension-
less indentation depth δ̃ = 10 and R = 6 (such that
δ̃ > δ̃∗∗(R), are shown through the red curves in Figs. 3,4
and Figs. 6-8. As we noted already in Subsec. I C, the
pseudo-linear response reflects an asymptotically-
isometric mechanics, whereby the indentation force
“decouples” from the stretching modulus of the sheet,
transmitting work to the puller at the far edge of the
sheet, r = Rsheet. Echoing an observation made already
for indenting floating polymer sheets [19, 20], our results
show that after wrinkles reach the far edge the shrinkage
of the tensile core zone with δ̃ becomes much more
pronounced (L̃I ∼ δ̃−2 vs. L̃I ∼ 1/ log δ̃ for δ̃ < δ̃∗∗(R)).
In the asymptotically isometric regime, δ̃ � δ̃∗∗(R) the
suspended portion approaches the shape of a perfect
cone, with a slope δ

R , superimposed with radial wrinkles.

III. THE ROLE OF SHEET-SUBSTRATE
ATTACHMENT

In the previous section we avoided the need to address
explicitly the effect of sheet-substrate attachment by
considering the two opposite limits of strong and weak at-
tachment, namely, the parameter regimes (i) (β� δ̃2�1)
and (ii) (β� 1), respectively. Notwithstanding the stri-
king difference between these regimes, (compare brown
vs. green and red curves in Figs. 3-4 and Figs. 6-8), in
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each of them the mechanical response is not affected by
the actual values of the bending modulus B and stiff-
ness Ksub, but only by the tensile load σ0 exerted at the
far edge, the stretching modulus Y , and the indentation
depth δ (as well as R). In contrast, in the intermediate
regime (iii), 1�β� δ̃2, the stress and indentation force
depend explicitly on B and Ksub.

In order to elucidate this distinction let us consider
a narrow annulus of radius r as an elastic ring of ben-
ding modulus B that is forced to contract due to radial
displacement ur(r) < 0 (which is given for each para-
meter regime by the corresponding expressions in Sub-
secs. II C,II E,II F). If the contracted ring is forced to re-
tain a circular shape, it must acquire a “bare” hoop strain,
εθθ = ur(r)

r <0, and thereby a compressive stress,

σ
(bare)
θθ (r) ≈ Y ur(r)

r
∼ −Y (δ/R)2 , (48)

and correspondingly an energetic penalty ∼ Y (ur(r)/r)
2.

If out-of-plane deflections are allowed, the ring may re-
spond as an elastica – developing wrinkles of wavelength
λ and amplitude A, such that (πA/λ)2 ≈ −ur(r)

r . Such a
deformation retains the arclength nearly intact, suppres-
sing the hoop stress to a residual value [18, 24].

σ
(res)
θθ (r) ≈ −2B/λ2 , (49)

whose magnitude will be shown to be much smaller than
σ

(bare)
θθ (r). The wavelength λ and consequently the resi-

dual hoop stress, is determined by a “local λ law” [18, 34] :

λ ≈ 2π(B/Keff)1/4 , (50)

where Keff is an “effective stiffness”, which may be as-
sociated with the resistance of the supporting substrate
(Keff ∼ Ksub) or with the presence of radial tension that
resists a large wrinkle amplitude (Keff ∼ σrr(r)/r2). Im-
plementing this rule we find different values of λ (and
consequently the residual stress and energy) in the sus-
pended and supported parts of the sheet

r>R : λ ∼ (B/Ksub)
1/4

r < R : λ ∼ (
BR4

Y δ2
)1/4 ∼ R

√
t/δ (51)

[39]. For the suspended part, r < R, Eqs. (48,49,51)
show that the residual, wrinkle-induced hoop com-
pression σ

(res)
θθ (r) is much smaller than its counterpart

σ
(bare)
θθ (r) ∼ Y (δ/R)2, and therefore the formation of

wrinkles is energetically favorable in r < R, regardless of
the value of β. Turning now to the supported part, and
addressing first the parameter regimes (i) (β� δ̃2� 1),
and (ii) (δ̃ > δ̃c & β � 1), an analogous comparison
of σ(res)

θθ (r) and σ
(bare)
θθ (r) ∼ Y (δ/R)2 yields precisely

the same conclusion we reached already in Subsec. IID,
namely, the stress in the supported part is given by the
axisymmetric Lamé solution in the former regime and by

the TFT solution in the latter. However, when inspecting
regime (iii), δ̃2 � β � 1, we find that the supported
portion, r>R, consists of a zone close to the hole’s edge,
where |σ(res)

θθ (r)|� |σ(bare)
θθ (r)|, and another zone, away

from the hole’s edge, where |σ(res)
θθ (r)|�|σ(bare)

θθ (r)|. This
observation reflects the complexity of the mechanical
response in this parameter regime, where the value of
the residual hoop compression, σ(res)

θθ (r), must be taken
explicitly into account through Eqs. (49, 51), in order
to reliably evaluate the stress field and thereby the
indentation force.

One may find the stress and indentation force in re-
gime (iii) by applying a generalized version of tension
field theory [24]. Rather than neglecting the contribution
of the residual hoop compression to the radial stress alto-
gether, Eq. (49) is taken as a non-homogenous source in
the radial force balance equation (19), yielding for r > R :

ψ(r) = ψ0 − 2
√
KsubBr ⇒ Ψ(ρ) = Ψ0 − βρ , (52)

where Ψ0 is a constant determined through matching
conditions with the unwrinkled zones at r < LI and
r > LO, similarly to the analysis in Sec. II. The Airy
potential (52) describes a bending-induced radial tension
[24, 35, 36], which can be conveniently expressed as :

σrr(r) = (σrr(LO) + 2
√
BKsub)

LO
r
− 2
√
KsubB . (53)

Recalling that we focus here on regime (iii), 1� β �
δ̃2, and expecting that σrr(LO) ∼ σ0 (since the region
r > LO is under nearly isotropic tension), Eq. (53) can
be simplified in R < r < LO to σrr(r) ≈ 2

√
BKsubLO/r.

Contrasting this simplified expression with Eq. (40) or
Eq. (46), we notice that the stress field and thereby the
indentation force in regime (iii) may be determined in
an analogous manner to the analysis of regime (ii) in
Subsecs. II E,II F, upon replacing in the definition of the
dimensionless variable Ψ, Eq. (22) :

σ0 → βσ0 = 2
√
BKsub . (54)

Hence, at this level of approximation, expected to be va-
lid up to corrections of O(β−1) � 1, the mechanics in
regime (iii) δ̃2�β�1, is described by the mechanics of
regime (ii) (β� 1 & δ̃� 1, with the replacement (54).
This observation underlies the last row of Table II.

IV. HINDERED SLIDING : CLAMPING THE
SHEET’S EDGE

In the previous sections, we assumed that the far-edge,
r = Rsheet, is subjected to a fixed tensile load, σ0. Here we
consider another basic boundary condition, which may
be of interest to an experimenter, whereby the far edge
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is clamped. Mathematically, this amounts to replacing
the BC σrr(Rsheet) = σ0, with :

ur(Rsheet) = (1− ν) · σ0

Y
·Rsheet , (55)

where σ0 is now understood as an isotropic pre-tension in
the sheet prior to clamping its far edge, r = Rsheet (and
prior to indenting its center) [22]. Clamping the sheet at
its far edge hinders its sliding inwards, which is neces-
sary to release the radial strain induced by indentation.
Thus, for a given δ̃ � 1, the in-plane stress in this ver-

sion of the problem is larger in comparison to a sheet
under fixed tensile load, σrr(Rsheet) = σ0, and so is the
indentation force. This effect is elucidated by contrasting
the corresponding versions of the Lamé problem. In the
first version, which was the basis for our analysis in the
preceding sections, the far edge is under a given radial
tension, σrr(Rsheet) = σ0, but otherwise is free to slide
on the substrate (ur(Rsheet) < 0), the stress field of the
planar, unwrinkled state, is given by Eq. (27), and the
tension field solution of the wrinkled state is given by
Eqs. (40-42). In the second version of the Lamé problem,
the BC at the far edge is given by Eq. (55), the stress
field of the planar (unwrinkled) state is :

σrr(r) =
R2

R2(1− ν) + (1 + ν)
·
{

[σ0(1− ν) + σrr(R)(1 + ν)] + [(1− ν)[σrr(R)− σ0](
R

r
)2

}
(56)

≈ 1

1− ν
·
{

[σ0(1− ν) + σrr(R)(1 + ν)] + [(1− ν)[σrr(R)− σ0](
R

r
)2

}
σθθ(r) =

R2

R2(1− ν)+(1 + ν)
·
{

[σ0(1− ν)+σrr(R)(1 + ν)]−[(1− ν)[σrr(R)−σ0](
R

r
)2

}
. (57)

≈ 1

1− ν
·
{

[σ0(1− ν)+σrr(R)(1 + ν)]−[(1− ν)[σrr(R)−σ0](
R

r
)2

}
,

where the second lines in the above equations are valid
for R � 1. As a result, the TFT solution is characterized
by a compression-free stress in the wrinkled zone :

R < r < LO :

{
σrr(r) = σrr(R)Rr

σθθ(r) = 0
(58)

with

LO=R
(√

1−ν
1+ν ·

√
1+( RΨ(1) )2 1−ν

1+ν ·R −
R2

Ψ(1)
1−ν
1+ν

)
(59)

≈ 1

2
RΨ(1) (for R � 1) ,

where Ψ(1) = σrr(R)/σ0, and the stress components
in the unwrinkled zone, LO < r < Rsheet, are given
by Eqs. (56,57) upon replacing : R → LO, σrr(R) →
σrr(LO)=σrr(R)·R/LO, and R→Rsheet/LO=R·R/LO.

The primary effect of the BC (55) is elucidated by
considering a fixed R� 1, and using the above expres-
sions to evaluate σrr(Rsheet) for Ψ(1) =σrr(R)/σ0→∞.
For both planar state and wrinkled state, we find that the
far-edge stress σrr(Rsheet) it proportional to the stress at
the hole’s edge σrr(R). More specifically, we find that
for the planar state σrr(Rsheet)/σrr(R) ∝ R−2, whereas
for the wrinkled state σrr(Rsheet)/σrr(R) ∝ R−1. This
means that in order to keep the far edge from sliding
inwards under the influence of the large radial stress

σrr(R) that pulls at the inner edge, the clamp must
exert a comparable radial load on the far edge, hence
σrr(Rsheet) ∼ σrr(R) � σ0. This observation is rather
intuitive, indicating that the elastic energy needed to de-
form a sheet clamped at its far edge is much larger than
the energy required to deform a sheet whose far edge
is free to slide. As a consequence, the indentation force
F (δ) is larger in comparison to the response we found
in the preceding sections for a sheet subjected to a fixed
boundary load.

We find the indentation force F (δ) by following the
tracks of our analysis in Subsecs. II C,II E, assuming
the sheet is wrinkled in an azimuthally-confined zone,
LI < r < LO (with LI < R and LO > R) and un-
wrinkled in r < LI and LO < r < Rsheet. Considering
the first two zones, we notice that the displacement and
stress are given by expressions identical to Eqs. (33) and
the BCs (34) for the nonlinear FvK equations (24,25)
in the unwrinkled core, albeit with a different triplet of
constants Ψ(1), ã, L̃I , that must be determined by mat-
ching the radial displacement at the hole’s edge ur(R)
with the wrinkled state at the exterior of the hole. Thus,
exactly as we found in Subsec. II E, two equations among
the three that specify the constants Ψ(1), ã, L̃I , are iden-
tical to their counterparts in Eq. (37), and the third equa-
tion reflects a continuity of the radial displacement at
r = R. Employing Eqs. (56-59) and Eq. (36) we obtain
an equation that replaces Eq. (44) :
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Ψ(1) · log

(
− R2

Ψ(1)L̃I

1− ν
1 + ν

+
R
L̃I

√
1− ν
1 + ν

√
1 +

1− ν
1 + ν

(
R

Ψ(1)
)2

)
− 1

2
ã2 · (1− L̃I) = 0 , (60)

=⇒ Ψ(1) · log

(
RΨ(1)

2L̃I

)
− 1

2
ã2 · (1− L̃I) ≈ 0 (for R � 1) .

The values of the unknowns Ψ(1), L̃I , ã, for any gi-
ven δ̃ > 3.3 are obtained from the numerical solution
of the three algebraic equations that are derived from
Eqs. (37,60) and the exact solutions of the FvK equa-
tions (24,25), under the BCs (34) ; see details in App. E.
As anticipated by the above discussion, we notice that if
the far-edge is clamped, the asymptotic response at large
indentation depth, δ̃ → ∞, is F ∼ (Y/R2) · δ3, hence
the system does not reach the extreme wrinkle-assisted
softening obtained upon exerting a fixed load at the far
edge. Nevertheless, the asymptotic value of the constant,
F/δ3, scales as 1/ log(R) (second row of Table II), so that
as R is increased, the wrinkle-induced suppression of the
indentation force becomes more and more effective.

V. WRINKLING VS. DELAMINATION

In our model we assume that relieving compression
in the supported part of the sheet does not require
the formation of delaminated zones, in which the sheet-
substrate distance d exceeds the width of the VdW po-
tential well (Fig. 2d), but merely tiny deviations of d from
the thermodynamic equilibrium value dmin. The cru-
cial distinction between these deformation types stems
from the respective energetic costs (per area) of sheet-
substrate attachment :

delamination : usub≈V (dmin) (61)

Zhang−Witten : usub(d)≈ 1
2V
′′(dmin)·(d−dmin)2 (62)

With the Zhang-Witten stiffness, Ksub = V ′′(dmin), a
rigid substrate that supports a thin sheet is merely an
example of a “Winkler foundation” [25], hence the res-
ponse of the sheet to compression is analogous to other
examples of this basic model, such as a sheet floating
on a liquid bath (where Ksub = ρliqg with ρliq being
the liquid’s mass density). For Winkler-like problems,
planar deformations are unstable to wrinkling – per-
iodic undulations characterized by a single wavelength
λ ∼ (B/Ksub)1/4 (see Eq. 50) – which emerges through
a supercritical (second order) instability of the planar
state, not involving any energy barrier.

In contrast, the finite, d-independent energy V (dmin)
associated with delamination, Eq. (61), which one may
view as a surface energy penalty, entails a strictly dif-
ferent instability of the planar state. This instability is
sub-critical (first order), and therefore requires the cros-
sing of an energy barrier, which in turn gives rise hys-
teresis loops. Furthermore, the basic deformation mode

[40, 41] is a single delaminated zone, which may ac-
commodate any excess length by increasing the sheet-
substrate distance d without further energy cost, as is
indicated by Eq. (61), rather than by forming multiple
delamination zones. Even though periodic delamination
patterns have been observed under certain circumstances
(such as uniaxial compression of a sheet attached to com-
pliant substrate [42]), those patterns are characterized
by two length scales, whereby the width of each delami-
nated zone is much smaller than the distance between
them (where the sheet remains fully laminated). Hence,
even if the indentation-induced hoop compression leads
to delamination instability, the number of blisters at a
given distance r should be � 2πr/λ, where λ is the ave-
rage width of an individual blister. This suggests that
a recent attempt to describe such a delamination pat-
tern by a wrinkling-like sinusoidal profile, characterized
by single wavelength λ [43], is nonphysical.

In order to determine which of the two deformation
types, described by Eqs. (61) and (62), is likely to relieve
hoop compression in a given indentation experiment, we
note two necessary conditions for a wrinkle pattern to be
physically realizable.
(i) The wrinkle wavelength λ (Eq. 50, with Keff =

Ksub, Eq. 8) must exceed the length `bend =
√
B/Y ,

otherwise the bending energy would be too large, rende-
ring wrinkles energetically unfavorable. In terms of the
parameters of our model this condition reads :

`bend � `V dW , (63)

where we defined the length scale :

`V dW ≡
√
Y/V ′′(dmin) , (64)

(ii) The wrinkle amplitude d must not exceed a length
dmax above which the sheet “escapes” from the attractive
zone of the VdW potential (see schematic Fig. 2d), and
the energetic cost transitions from Eq. (62) to Eq. (61).
Noting that the ratio between the wrinkle amplitude
and wavelength is “slaved” to the excess hoop length,
(|d − dmin|/λ)2 ∼ −ur/r (such that the wrinkly un-
dulations “waste” just the right arclength necessary to
suppress hoop compression [28]), and using the estimate
ur ∼ −δ2/R (Eq. 3), we obtain the second condition :

δ

R
� |dmax − dmin|√

`bend · `V dW
. (65)

The two conditions (63,65) define a parameter regime in
which we expect the wrinkle patterns assumed in our
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model to be a feasible, energetically-favorable mecha-
nism for relaxing the hoop compression induced by in-
dentation and sliding. If condition (63) is violated, an
axisymmetric (unwrinkled) deformation in the suppor-
ted portion of the sheet (SubSec. II B) is stable against
wrinkling, and delamination may occur, through a sub-
critical instability, at some large indentation depth di-
rectly from the planar state. If condition (63) is satis-
fied, the supported portion of the sheet becomes unstable
to wrinkling at δ̃∗(β) (Eq. 39), and delamination is ex-
pected to occur when the indentation depth δ reaches
R(dmax − dmin)/

√
`bend · `V dW .

A crude estimate of the various lengths in the condi-
tions (63,65) may be obtained by assuming V ′′(dmin) ∼
V (dmin)/d2

min, and 0.1nm < dmin < dmax < 1nm.
For Graphene (on SI or BN), we use the values Y ∼
300N/m , `bend ∼ 0.1nm, and V (dmin) ∼ 0.1N/m. With
these values, we find that both conditions (63) and (65)
are satisfied for δ/R < 0.1, suggesting the relevance of
a wrinkle-assisted compression-relieving mechanism for
experiments, at least at indentation depths δ . 100 nm.

VI. DISCUSSION

A. The non-perturbative macroscale effect of
bending rigidity

Employing standard TFT (Secs. II,IV) or its recently
generalized version (Sec. III) we showed that, as long
as there is compressive stress somewhere within the in-
dented sheet, the ability to relax it by energetically-
inexpensive wrinkles acts to suppress considerably the
elastic energy. Our results, summarized in Tables I and II,
show that the wrinkle-assisted reduction of elastic energy
and the consequent suppression of the indentation force
F (δ) is a non-perturbative phenomenon, which is not sen-
sitive to the specific value of the bending modulus, but
rather stems from its mere smallness (i.e. ε � 1). That
is, for specific BCs (e.g. sliding at r = R and a constant
tensile load at r = Rsheet), we find that the error incur-
red by ignoring the effect of wrinkles on the indentation
force is O(Y/R2)δ3, as one can see by comparing the se-
cond row of Table I (which ignores the effects of wrinkles,
describing a mechanically-unstable state for δ̃ > δ̃c) with
the third row of Table I or the first two rows of Table II.

While we focused our study on the pointwise indenta-
tion problem, the above lesson is general and applies to
any situation in which a confining geometry or loading
conditions give rise to compressive stress within a thin,
highly bendable sheet. One example, which has attracted
some interest lately, is the strain induced in a 2D solid
sheet, supported on a smooth substrate, by high-pressure
“bubbles” confined between the sheet and the substrate
[44]. Such bubbles cause radial stretching of the sheet
around the bubble axis, and – similarly to the indenta-
tion problem (with sliding BCs) – a hoop compression
emerges in the sheet at the vicinity of the bubble’s edge.

While a wrinkle-assisted suppression of hoop compres-
sion may not have a pronounced effect on the bubble’s
shape or the pressure within it [44], the strain compo-
nents in the sheet are strongly affected by the presence
of wrinkles. This effect, however, has been overlooked in a
recent paper [45], where the authors computed the strain
tensor by assuming a mechanically-unstable (unwrinkled,
axisymmetric) deformation of the sheet.

B. Beyond ideal mechanics – substrate roughness
and thermal fluctuations

Our model assumes a smooth, homogeneous substrate,
such that the only energetic cost of sliding stems from
the consequent hoop compression. From a pure mecha-
nical perspective, a roughness of the substrate may give
rise to localized or extended zones in which the sheet is
pinned to the substrate, hindering its sliding inwards. A
simple, effective-medium-theory approach to incorporate
surface roughness into our model may be to replace the
control parameters γeff and R in the last two rows of
Table II with effective parameters that account for the
excess radial tensile and clamping (away from the hole’s
edge), associated with the hindrance of sliding. A more
thorough study of the effects of surface roughness, as well
as thermal fluctuations, on the indentation force, should
account for the anomalous elasticity[46–49] that has been
predicted for 2D solid membranes such as Graphene at
room temperature [50–52].

C. Summary

The main purpose of the ideal model we introduced
in this paper is to elucidate the crucial assumptions one
has to make in order to extract the stretching modulus
of a suspended sheet from indentation experiments. In
this context, the central outcome of our analysis is that
sliding and wrinkling of the sheet affect significantly the
commonly-assumed cubic dependence of the indentation
force, F/δ3 ∝ (Y/R2) ; the assumption of clamping at the
edges of the suspended sheet gives a lower bound to the
value of the Young modulus. If the membrane can slide
over the non suspended zone, the force required to achieve
a given deformation can be significantly lower than in the
case of clamping. This message is illustrated most conspi-
cuously in the geometry-dominated nature of the pseudo-
linear response, Eq. (1), where F/δ may depend on a pre-
tension σ0 or a bending-induced tension γeff = 2

√
BKsub,

as well as on the radii R (of the hole) and Rsheet (of the
whole sheet), but not on the stretching modulus Y ! Such
a stretching-independent response may be avoided if the
attachment to the substrate is sufficiently strong, or if the
sheet is clamped at the far edge (r = Rsheet � R). But
also in such cases sliding and wrinkling have a significant
effect on the indentation force, which must be considered
in order to properly extract the stretching modulus Y
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from the measured response.
Our theoretical model is quite elementary and does not

include effects which may be important for experimen-
tal set-ups of 2D membranes, such as pinning, spatial
disorder, and thermal fluctuations. We suspect that fur-
ther theoretical progress is required, possibly along the
directions outlined above, in order to render our model
applicable for a quantitative description of actual experi-
ments. Nevertheless, some basic predictions may be suffi-
cient to test the relevance (or lack thereof) of sliding and
wrinkling. Specifically, measuring the slope (≈ θ) of the
suspended sheet in the vicinity of the hole’s edge may
provide a robust, indirect probe for this purpose. A slope
that is close to 63% should indicate that the sheet is prac-
tically clamped at the hole’s edge. A larger slope should
indicate a substantial sliding and wrinkling of the sheet
in the suspended part and possibly also on the substrate.

Beyond its relevance to metrology and to studying sli-
ding and wrinkling phenomena, our model highlights the
complexity that is often ignored by one’s perception of
2D solid membranes as being “nearly inextensible, highly
bendable” objects, whose resistance to bending can be
ignored in analyzing macro-scale, tension-dominated de-
formations. Instead, our study illuminates the subtle role
played by both stretching and bending rigidity in the res-
ponse to such external stimuli.
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Annexe A: Boundary conditions at the hole’s edge
and the negligibly of radial curvature

In order to elucidate the neglect of the radial bending
force B∂4z/∂r4 in Eq. (20), often referred to as a “mem-
brane approximation”, as well as the BCs at the hole’s
edge, let us recall that for a sheet with finite (albeit small)
bending modulus B the tangent t̂ to the sheet’s plane
must be a continuous function of the radial distance r.
A discontinuity of t̂ implies a divergence of the radial
curvature, κrr ≈ |∂t̂/∂r|, and hence an infinite bending
energy, regardless of how small B is. In fact, the vicinity
of the hole’s edge, where the tangent t̂ varies sharply, is

the only zone where the radial curvature has to be consi-
dered, since it is required to regularize this divergence.
Specifically, the characteristic length over which occurs
the necessary change from t̂(r → R−)=cos θr̂−sin θẑ to
t̂(r → R+)= r̂, is the “local bendo-capillary” length [22] :

`∗bc ≈
√
B/σrr(R) ∼

√
B/Y R

δ , (A1)

where σrr(R) is the radial tensile stress at the hole
edge, whose dependence on the indentation depth δ̃ un-
der various BC’s and membrane-substrate interaction
was found in Sec. II. For simplicity of the discussion,
in Eq. (A1) we estimated `∗bc through the maximal value,
σrr(R) ∼ Y (δ/R)2. On one hand, we have that `∗bc � R,
since the sheet is highly bendable (i.e. ε� 1, see Eq. (24)
and the following paragraphs) ; on the other hand we as-
sume `∗bc is much larger than the atomic scale (over which
the corner in the substrate is “smoothed out”), see sche-
matic Fig. 2b-c.

In our analysis of the FvK equations, either of the un-
wrinkled state in Subsec. II B or the wrinkled state in
Subsec. II C and the rest of the paper, we exploited the
fact that `∗bc � R, and considered the narrow annulus,
R − `∗bc < r < R, as a “boundary layer”, whose energetic
cost may be ignored. More precisely, this excess energy
can be estimated as ∼ Bκ2

rr∆A, where the radial curva-
ture κrr ∼ θ/`∗bc and ∆A ∼ 2πR`∗bc is the highly-curved
area at the vicinity of the hole’s edge, yielding an ex-
cess energy ∼

√
BY δ3/R2 (where we used Eq. (A1) and

θ ∼ δ/R), and an inspection of Tables I-II reveals that
it is smaller by a factor

√
ε, Eq.( 10), than the elastic

energy evaluated in Secs. II-IV. Hence, neglecting the
explicit energetic cost of that boundary layer amounts to
evaluating the leading order of the elastic energy (and
the indentation force derived from it) in an expansion
whose small parameter is

√
ε. Mathematically, since the

radial bending force, B∂4z/∂4r, is significant only in this
narrow zone, our analysis has been greatly simplified by
omitting this term from the 1st FvK Eq. (20), rendering
it – along with Eq. (19) – a coupled set of 2nd order
ODEs for ψ(r) and z(r), and allowing for a discontinuity
of z′(r) at r = R.

The boundary layer approach implies that the radial
and vertical components of the displacement may be
considered continuous at r = R yielding the BCs (29)
and (31iii), while the derivative of the latter is allowed
to be discontinuous ([z′(r)]R+

R− ≈ θ). At the same time,
the mere existence of the boundary layer underlies the
continuity of the radial stress component (even though
one may naively view it as a violating a force balance
in the horizontal direction at r = R), as is illustrated in
the schematic Fig. 2. We note that these continuity BCs
remain valid even if a small portion of the sheet slides ver-
tically in order to gain some surface energy by contacting
the hole’s walls (contrast panels b and c in Fig. 2), as long
the sheet does not get pinned to the substrate. A detailed
discussion of this effect will be discussed elsewhere.



20

Annexe B: General analysis of the unwrinkled core

Here we describe the steps underlying an analytic
solution for an axisymmetric (unwrinkled) solution the
nonlinear FvK equations (24,25). This solution, with
distinct types of BCs, is used to characterize a purely
tensile “core” around the indenter, which exists under all
various conditions (clamping/sliding at the hole’s edge,
and various parameter regimes, Eqs. (11,12)). Our ex-
position follows closely Ref. [16] and the Supplementary
Information of Ref. [17]

We start by integrating the 1st FvK equation (25), and
obtain :

Ψ
dζ

dρ
= F (B1)

Next, we introduce the variable transformation [37] :

Φ = ρΨ , η = ρ2 , (B2)

such that : Ψ = Φ√
η , and

dΨ
dρ =

(
2dΦ
dη −

Φ
η

)
. With this

transformation, the 2nd FvK equation (24) becomes :

Φ′′ = − F
2

8Φ2
, (B3)

which can be integrated once, obtaining :

Φ′ =
F
2

√
1 +AΦ√

Φ
(B4)

where A is a constant of integration. Evaluating Eq. (B4)
at η = 1, we obtain a first equation that involves the
unknowns Φ′(1),Φ(1), A, and F :

Φ′(1) =
F
2

√
1 +AΦ(1)√

Φ(1)
(B5)

Integrating now Eq. (B4), we obtain an explicit expres-
sion between the variable η and the function Φ(η) :√

Φ(1 +AΦ)

A
− 1

A3/2
sinh−1[

√
AΦ] =

F
2
η , (B6)

(where we used the BC Φ(0) = 0, which is valid for all
cases addressed here). Evaluating the above equation at
the hole’s edge (η = 1), we obtain a second equation that
involves the unknowns Φ(1), A, and F :√

Φ(1)(1 +AΦ(1))

A
− 1

A3/2
sinh−1[

√
AΦ(1)] =

F
2
.

(B7)

Turning to the integrated form of the 1st FvK Eq. (B1),
we re-parametrize the function ζ(ρ)→ ζ[Φ(η)]. With the
aid of Eq. (B4), and integration (over Φ), we obtain an
explicit form for the shape :

ζ(Φ)− ζ(0) =
2√
A

sinh−1[
√
AΦ] . (B8)

Equations (B5,B7) constitute two equations for the
four unknowns : Φ′(1),Φ(1), A, and F . These two equa-
tions are common to all cases we study in this paper. The
other two equations must come from the BCs that reflect
the various physical conditions discussed in our paper
(clamping/sliding at the hole’s edge, absence/presence
of wrinkles).

Once the four constants (Φ′(1),Φ(1), A,F) are deter-
mined, Eqs. (B6,B8) provide implicit expressions for the
functions Φ(η), ζ(Φ), which can be directly transformed
(through Eqs.B2,16) to the shape, ζ(ρ), and the stress
components : σrr(r), σθθ(ρ).

Annexe C: Clamping at the hole’s edge

For the clamped case, Subsec. IIA, the BCs (26) be-
come :

η = 0 : (i) ζ = −δ̃ (ii)Φ = 0

η = 1 : (iii) ζ = 0 (iv) 2Φ′ = (1− ν) + (1 + ν)Φ .
(C1)

Among these BCs, (ii) was used already to obtain
Eq. (B6). Since the FvK equations (24,25) are invariant
under : ζ → ζ + c, only the difference ζ(1) − ζ(0) can
affect the physics, and hence the three remaining BCs in
(C1) give rise to two equations that involve the unknowns
(Φ′(1),Φ(1), A,F). The first equation is simply BC (iv) :

2Φ′(1) = (1− ν) + (1 + ν)Φ(1) , (C2)

and the second equation is obtained by evaluating
Eq. (B8) at Φ(1), and substituting for the difference :
ζ(Φ(1))− ζ(Φ(0)) = δ̃ :

δ̃ =
2√
A

sinh−1[
√
AΦ(1)] . (C3)

Solving the four algebraic equations (B5,B7,C2,C3), is
straightforward (e.g. using Mathematica’s “FindRoot"),
and allows us to obtain the constants Φ′(1),Φ(1), A,F ,
as a function of the single dimensionless parameter δ̃.
The response function F(δ̃), the deformed shape, and
the stress profile (which are evaluated with the aid of
Eqs. (B6,B8,B2,16), are shown in the gray curves in
Figs. 3-8.

Annexe D: Sliding (no wrinkling)

The BCs that corresponds to an axisymmetric (un-
wrinkled) state, for which the sheet can slide on the sub-
strate were derived in Subsec. II B. The difference bet-
ween clamped-edge and sliding boils down to replacing
the BC (iv) in Eq. (26) with the corresponding BC in
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Eq. (31). Hence, the algebraic equations for the four unk-
nowns Φ′(1),Φ(1), A,F are Eqs. (B5,B7,C3), and :

Φ′(1) = 1 . (D1)

The response function F(δ̃), the deformed shape, and the
stress profile that correspond to this solution, are shown
in the blue curves in Figs. 3-8.

Annexe E: Sliding and Wrinkling

If the sheet can slide at the hole’s edge, hoop com-
pression evolves around the hole’s edge and the compres-
sed zone expands upon increasing indentation depth, in
a manner that depends on the sheet-substrate attach-
ment (through the parameter β, Subsecs. II C,II E), the
sheet’s size (through the parameter R, Subsec. II F), and
the boundary conditions at the far edge (Sec. IV). Cen-
tral to all of these cases is the presence of a purely ten-
sile, unwrinkled core, 0 < r < LI , around the indenter,
where the deformation is described by solving the axi-
symmetric FvK equations (24,25), subject to Eq. (33)
and the BCs (34), that yield two equations (37) for the
three unknowns Ψ(1), ã, L̃I . The various cases in Sub-
secs. II C,II E,II F, and Sec. IV differ only in the final
equation that connects Ψ(1), ã, L̃I , which stems from
the continuity of radial displacement at the hole’s edge
(Eqs. 38, 44,47,60, respectively). In the following, we ob-
tain the first two algebraic equations for Ψ(1), ã, L̃I , that
are common to all of these cases.

Following Ref. [17] (Sec. 3 of Supplementary informa-
tion), it is convenient to replace the dimensionless va-
riables (22) with :

ρ̄ =
r

LI
=

ρ

L̃I
; Ψ̄ =

ψ

σrr(R)R
=

Ψ

Ψ(1)
;

ζ̄ =
z√
RL

√
Y

σrr(R)
=

ζ√
L̃IΨ(1)

(E1)

and the dimensionless force F (23) with :

F̄ =
1

2πR

√
LI
R

√
Y

σrr(R)3
F = F

√
L̃I

Ψ(1)3
, (E2)

such that the BCs in (34,37) that involve explicitly the
function Ψ̄(ρ̄) are :

Ψ̄(ρ̄ = 1) = 1 ; Ψ̄(ρ̄ = 0) = 0 ; Ψ̄′(ρ̄ = 1) = 0 . (E3)

Using a similar manipulation to the one employed earlier,
we make the additional transformation :

Φ = ρ̄Ψ̄ ; η = ρ̄2 , (E4)

with which the BCs (E3) become Φ(η = 0) = 0 , Φ(η =
1) = 1 , Φ′(η = 1) = 1

2 , and the implicit expression
for Φ(η), Eq. (B6), is fully satisfied by the numerical
constants A, F̄ , through the algebraic equations (B5,B7).
Solution of these equations yield the numerical values :

A ≈ −0.697 ; F̄ ≈ 1.815 , (E5)

which were found already in [17]. Equation (B8), with
ζ → ζ̄, together with the BCs for ζ in Eq. (34) yield :

(
ã · (L̃I − 1) + δ̃

)
·
(
L̃I ·Ψ(1)

)−1/2

=
2√
A

sinh−1(
√
A) ≈ 2.367 , (E6)

and the BC for the slope (37) becomes :

ã ·
(
L̃I/Ψ(1)

)1/2

= (1 +A)−1/2 ≈ 1.815 . (E7)

For any value of the control parameter δ̃ & 3.3,
Eqs. (E6,E7), together with Eq. (38) for Subsec. II C,
or Eq. (44) for Subsec. II E, or Eq. (47) for Subsec. II F,
or Eq. (60) for Sec. IV, form a set of 3 nonlinear alge-
braic equations for the three unknowns, Ψ(1), L̃I , ã. The
solutions of these equations fully characterize the shape
and stress of the deformed sheet in each case, and the
corresponding indentation force is obtained with the aid
of Eqs. (E2,E5).
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