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We studied the Soret effect in binary dimer-monomer mixtures using non-equilibrium molecular
dynamics simulations and investigated the pure contribution of the internal degree of freedom of
flexible molecules to the Soret effect. We observed that the thermal diffusion factor tends to decrease
and change its sign as the molecules become softer. We proposed two possible mechanisms of our
observations: change of the molecule structures with the temperature, causing bulkier molecules to
migrate to the hotter region; asymmetry of the restitution between rigid and flexible molecules, due
to which flexible molecules show larger restitution when placed at the hotter region.

I. INTRODUCTION

When a fluid mixture is subjected to a temperature
gradient, concentration gradients build up. This phe-
nomenon is the Soret effect or thermal diffusion [1-4],
which is widely observed in mixtures of small molecules
[5, 6], polymers [7-12], colloids [10, 13], and biomolecules
[14, 15]. Since the 19 th century, many experimental, the-
oretical and numerical studies have been reported [16-
26]. However, its physical mechanisms are still not un-
derstood completely.

The Soret effect is caused by some factors; its ori-
gin is often considered the equilibrium thermodynamics
[16, 22]. If the chemical potential of each species de-
pends on the temperature, the concentration gradient
is induced under the temperature gradient to homog-
enize this potential. The isotope effect, in which the
mass difference causes the concentration gradient, is diffi-
cult to explain based on the equilibrium thermodynamics
[17, 18, 23-26]. The heavier molecules tend to migrate to
the cold side, while the lighter ones move to the hot side.
It is also known that differences in diameter, moment of
inertia, interaction between the solute and the solvent,
and/or those among the solutes contribute significantly
in the Soret effect [2].

When considering the Soret effect, the molecules are
usually treated as rigid objects, while the internal de-
grees of freedom of the molecules are ignored. If flexible,
the molecules are thermalized and adapt their structures
to the local environment (the temperature, the pressure,
and the concentration). These changes may influence
the Soret effect. Polymers are examples of molecules
that have large internal degrees of freedom [7-12]. If
a polymer is much longer than its persistent length, it
behaves as a flexible chain; it behaves as a rigid rod if
it is shorter than the persistent length. It was reported
that the Soret coeflicient of the polymer solutions changes
with the chain length when it is short. However, when
it is sufficiently long, the Soret coefficient is saturated to
a value that is independent of the chain length. For the
polymers, the mass and the moment of inertia change
with the chain length. Although some theoretical stud-
ies on the Soret effect of the polymer systems have been

reported, the pure contribution of the flexibility of the
molecules to the Soret effect is still unclear. The aim of
this work is to investigate the roles of the internal degrees
of freedom in the Soret effect by employing the simplest
molecular model.

II. MOLECULAR DYNAMICS SIMULATION

We perform molecular dynamics simulations of mix-
tures of two molecular species in three dimensional rect-
angular boxes (V = L,L,L.). One species is the sim-
plest molecule, which consists of a single spherical par-
ticle; the other is a dimer, which consists of two iden-
tical spherical particles. The particles in the monomers
and dimers interact mutually with the Weeks-Chandler-
Andersen (WCA) potential [27], which is given by

st = {1 A 52

(1)

where ¢(= 1) and o(= 1) represent the strength and
range of the WCA potential. n is a parameter for char-
acterizing the hardness of the WCA potential. If we do
not mention explicitly, we set n = 6. The two particles
in each dimer are bounded by a harmonic potential,

Usp(r) = k(r —m0)?, (2)

where k is the spring constant, while ry is the natural
length of the bond, and we set rg = 2'/"¢. The WCA
potential between the particles in each dimer is not in-
cluded. The mass of the particles is given by m; thus the
mass of the dimer is 2m. The numbers of the monomer
and dimer molecules are given by Ny, and N4q. The parti-
cle packing fraction is defined by ¢ = mo® N, /(6V), where
N is the total particle number, Ny = Ny, + 2N4. The
mixing ratio of the dimer is given by x = 2Nq/N;.

A temperature gradient is imposed along the z-axis
by using boundary driven non-equilibrium molecular dy-
namics simulation. The thermostatting regions are set
up at the edges (z = 0 and x = L,) and at the center
(x = L,/2) of the rectangular cell, while their width is



0.03L,. The temperatures in these thermostatting re-
gions are imposed to T" = T}, at the edges and T = T,
at the center (T, > T¢) by means of the Langevin ther-
mostat. In the other bulk regions, the particle position
and velocity are updated without any thermostat. The
equations of motion are solved with velocity Verlet al-
gorithm using LAMMPS [28], in which the time incre-
ment is 6t = 0.0005/¢/(mo?). We fix the cell width
as L, = 800, while L, and L, are changed to adjust
the packing fraction ¢. The total particle number is
N; = 64000, and the packing fraction is changed from
¢ = 0.037 to 0.234. If we do not mention explicitly, we
set the mixing ratio to y = 1/2. With the SHAKE algo-
rithm [29], we also consider dimers, in which the particle
separations are fixed to r = ry. To observe the pure effect
of the dimers, we also study the Soret effect in mixtures
of two monomers A and B, among which the masses or
the radii differ.

III. 3D SIMULATION RESULTS

Figure 1(a) shows the profiles of the kinetic energies
along the z-axis. The temperatures in the thermostatted
regions are set to Ty, = 5e and T, = €. We divide the cell
into 100 slabs along the x-axis, and then, we calculate the
local densities of the monomer particle py,(z) and the
dimer particle pq(x), and the kinetic energies averaged
per particle in each thin slab. Here, [dzpq(z) = 2Ny
and [dzpm(z) = Ny are held. We plot the transla-
tional kinetic energies of the monomer K?® and the
three modes (translational K, rotational K°*, and vi-
brational KY®) of the kinetic energies of the dimer. In
the equilibrium state, K, K K and K" should
agree with 37/2, 3T/2, T, and T'/2, respectively. It can
be seen that all the averaged kinetic energies collapse on
a master curve after appropriate scalings (see the inset of
Fig. 1(a)). The kinetic energies in the thermostated re-
gions are consistent with the target temperatures 73, and
T. and vary linearly with x in the bulk regions. Thus,
the temperature is controlled well in our system.

Figure 1(b) plots the local density profiles of the dimer
pa(x) and the monomer py(x). The spring constant is
k = 400¢/0?, while the packing fraction is ¢ = 0.073.
Both densities are higher in the colder than in the hotter
regions. It is also indicated that the density of the dimers
is slightly higher than that of the monomers in the cold
region. The Soret effect is induced in this mixture of
dimers and monomers.

Figure 2(a) illustrates the profiles of the concentration
field of the dimer in a dilute mixture, which is defined
as ¢(z) = pa(x)/(pm(x) + pa(x)). If the concentration
is homogeneous, its value agrees with the mixing ratio,
i.e., c¢(x) = x. The total packing fraction and the spring
constant are set to ¢ = 0.073 and k = 400¢/0?, respec-
tively. In Fig. 2(a), we change the temperature differ-
ence AT =Ty, — T, by fixing the average temperature to
(T)(= (Th, + T¢)/2) = 3e. In the absence of the temper-
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FIG. 1. (a) Profiles of the local kinetic energies of the
monomers (K*) and the dimers (K, K3'°, and K°") along

the temperature gradient. The average packing fraction and
the spring constant are ¢ = 0.073 and k = 4006/0’2, respec-
tively. The temperatures at the thermostatted regions are
Ty = 5¢ and T. = €. In the inset, the scaled kinetic energies
are replotted. (b) Profiles of the local densities of the dimer
pa and the monomer pn,,. The parameters are the same as
those in (a).

ature difference (AT = 0), the concentration is almost
constant in space (not shown here). As AT increases,
the concentration near the cold region increases, while
that near the hot region decreases. This means that the
dimers tend to migrate to the colder side. The degree of
dimer migration is almost proportional to the tempera-
ture difference. Figure 2(b) presents the profiles of the
concentration in a dense mixture (¢ = 0.234). In con-
trast to the dilute mixture, the dimers migrate to the
hotter region in the dense mixture. The degree of dimer
migration is almost proportional to the temperature dif-
ference.

Instead of the Soret coefficient Sp, we analyze the
Soret effect with the thermal diffusion factor ap = T'S7p.
We evaluate it from the local thermal diffusion factor,

a(x) - _LM7 (3)

e(l—¢)0T/0x

and average a(x) over the system to get ar =
J dza(z)/L,. A positive value of g implies the dimer
migrates to the cold side. Figure 3(a) shows the depen-
dences of o against the packing fraction ¢. The spring
constant in the dimers is changed from k = 10¢/0? to
500¢/0?. ar for the rigid dimer is also given in the same
figure. In Fig. 3(b), we replot ar as functions of the



o AT/e=1
m AT/e=2

0.49 A AT/ec3
v AT/e=4
0.48 ‘ ‘ ‘
0 20 40 60 80
x/o
¢ =0234
k = 400¢/0? 3
o AT/e=1
m AT /e=2 ]
A AT/e=3 va
v ATje=4 @

20 40 60 80

FIG. 2. (a) Profiles of the concentration of the dimers
¢ = pa/(pa + pm) in a dilute mixture of ¢ = 0.073. The
temperature difference AT = Ty, — 1. is changed. (b) Pro-
files of the concentration of the dimers in a dense mixture of
¢ = 0.234.

spring constant k for several densities.

In dilute systems, the thermal diffusion factors are pos-
itive for any k, which indicates that the dimers migrate
to the colder side, as illustrated in Fig. 2(a). As the
packing fraction ¢ increases, the thermal diffusion fac-
tors decrease. Here the decreasing rate of ar against ¢
is larger in the mixture of smaller £ than in that of larger
k. For smaller k, the thermal diffusion factor changes its
sign from positive to negative with ¢. In contrast, the
thermal diffusion factor for the rigid dimer remains pos-
itive in the simulated range of ¢. The molecule becomes
more rigid, and the thermal diffusion factor is likely to
converge for the rigid molecules when the spring con-
stant is increased. In Fig. 3(b), the thermal diffusion
factor changes its sign with the spring constant &k in the
intermediated mixtures (¢ = 0.146). Our results clearly
demonstrate that the internal degrees of freedom in the
molecules can influence the Soret effect, which is usually
considered to be an inter-molecular phenomenon.

IV. DISCUSSION

First, we consider the mechanism of the Soret effect
in terms of the isotope effect. In Fig. 4, we plot the
thermal diffusion factor in mixtures of two monomers
A and B (black circles). In these mixtures, the inter-
actions among the particles are given by Eq. (1), while
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FIG. 3. (a) Plots of the thermal diffusion factor ar against
the packing fraction ¢. The spring constant is changed. ar
for the mixture of the rigid dimer, and monomer is also pre-
sented. (b) Plots of ar with respect to the spring constant k.
The packing fraction is changed.

the mass of the A monomer is twice larger than that
of the B monomer, i.e., cAp = 0B = 0aAB = 0, with
ma = 2m and mp = m. In Fig. 4, the positive values
of the thermal diffusion factor agree with the isotope ef-
fect; heavier particles A migrate to the colder region. In
contrast to the decreasing thermal diffusion factor in the
dimer-monomer mixtures (Fig. 3(a)), the thermal diffu-
sion factor is increased with the packing fraction in the
monomer-monomer mixtures. Thus, it is concluded that
the Soret effect in the dimer-monomer mixtures is essen-
tially different from the isotope effect. It is also known
that molecules of larger inertia moments migrate to the
colder region [17, 23, 24]. If the Soret effect observed in
this study is due to the inertia effect, the thermal dif-
fusion factor would be increased by using longer natural
length of the bond interaction in the dimers (Eq. (2)).
However, we confirmed that the thermal diffusion factor
is increased when the natural length in the bond inter-
action is shortened (not shown here). In particular, if
we set 79 = 0 in Eq. (2) and use larger k, the thermal
diffusion factor is close to that due to the isotope effect.
Thus, we believe that the Soret effect in our mixtures is
not due to the inertia effect.

Next we consider the contribution of the thermody-
namic chemical potential to the Soret effect in our simu-
lations. The linear non-equilibrium thermodynamic the-
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FIG. 4. The thermal diffusion factors in the mixtures of two
monomers A and B are plotted against ¢. black circle: mix-
tures of monomers with different masses; red square: mixtures
of monomers with different radii.

ory gives the particle flux J; (i =d or m) as [1]
Jo= LV gLy s (4)
i = —pPilai T Pilo2q T

where Ly; and Lo; are phenomenological kinetic coeffi-
cients, and fi; is an effective chemical potential. In the
steady state, it should vanish, i.e., J: =0. If Ly; =0, the
Soret effect is determined by the thermodynamic prop-
erties of the chemical potential against xy and 7. In
Figs. 5(a), (b) and (c¢), we represent the effective chemical
potential of the dimer fiq against the mixing ratio y, the
temperature 7', and the packing fraction ¢, respectively.
In Fig. 5(a), we changed the mixing ratio x with fixing
the total number N;. The effective chemical potential
is given as fiqa = ftd — (V4/Um)im, where p; and v; are
the chemical potential and partial molecular volume of
the i-component. In Fig. 5, we assume vq /vy, = 2, for
simplicity. The chemical potentials ugq and p,, are are
obtained through the Widom insertion method [30] in
the simulations without the temperature difference. As
indicated in Fig. 5(a), the chemical potential difference
is almost independent of the mixing ratio x, while fiq/T
is an increasing function of 7" in Fig. 5(b). The chemical
potential modulation induced by the temperature gra-
dient cannot be compensated by the chemical potential
change with the mixing ratio. This means that the Soret
effect in our system is not caused by the thermodynamic
chemical potentials, and it is purely a non-equilibrium
behavior. The chemical potential difference also depends
on the packing fraction in Fig. 5(c). 9(a/T)/0T is com-
pensated roughly by 9(fia/T)/0¢ (see Fig. 1(b)).

As discussed above, we cannot understand our simu-
lation results with conventional knowledge of the Soret
effect, i.e., the contributions of the mass, inertia mo-
ment and chemical potential. Here, we propose possible
mechanisms of the Soret effect in our dimer-monomer
mixtures. In Fig. 6(a), we present the probability dis-
tribution P(r) of the bond length 7 of the dimers in the
mixtures of ¢ = 0.036 and 0.234. The spring constant
is k = 10¢/0? and the temperature is changed. When
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FIG. 5. The differences of the chemical potentials between the
dimers and monomers Ay are plotted against the temperature
(T'), the mixing ratio y, and the packing fraction ¢ in (a),
(b) and (c), respectively. In (a) and (c), the temperature is
T = 3e.

we obtain P(r), the temperature gradients are not im-
posed. As the temperature is increased, not only the
distribution width is broadened, but also the peak posi-
tion is shifted to large r. We plot their average lengths
(r) against the temperature in Fig. 6(b). Those for
k = 500¢/0? are also plotted. The dimer molecule is
more stretched at the high temperature. In other words,
the dimer becomes bulkier. The degree of the stretching
is large when k is small, so that the corresponding ef-
fective volume of the dimer is increased more largely for
small k. In the dilute mixtures (¢ = 0.036), the probabil-
ity distribution agrees well with the Boltzmann distribu-
tion (47r? x exp[—Ugp(r)/T]). In the dense mixtures, on
the other hand, the probability distribution is inconsis-
tent with the Boltzmann distribution. The average bond
length in the dense mixture is shorter than that in the
dilute mixture as shown in Fig. 6(b). The molecules are



surrounded by other molecules, all of which are exerting
non-bonded forces of the molecules. The degree of the
bond stretching is suppressed more in the dense system.

In Fig. 4, we also plotted the thermal diffusion fac-
tor in other monomer-monomer mixtures as a function
of the packing fraction ¢ (red squares). In these mix-
tures, the masses of both monomers are the same, while
the size of the A-particle is set to be larger than that of
B-particle. We replace o in the WCA potential (Eq. (1))
to oaa = 0, oap = 0.80, and ogg = 0.60 for the A-A,
A-B and B-B pairs of the monomers, respectively. The
potential strength € is not changed. As the packing frac-
tion increases, the thermal diffusion factor decreases and
becomes negative eventually. The bulky A-monomers mi-
grate to the colder region in the dilute mixtures, while
they move to the hotter region in the dense mixtures.
These observations are consistent with a previous study
[23]. Although the physical mechanism of this Soret ef-
fect still remains unclear, we consider that the Soret ef-
fect in the dimer-monomer mixtures is related to that
in these monomer-monomer mixtures. When k is small,
the dimer molecules become bulkier. Then the bulky
dimers tend to move to the hotter region as that in the
monomer-monomer mixtures, although these dimers are
two times as heavy as the monomers. If k is large, the
dimer size does not change much, making this behavior
unremarkable.

V. 1D SIMULATION

In this section, we propose another possible mecha-
nism of the Soret effect, with one-dimensional (1D) sim-
ulations [21]. The motions of the two particles in a
dimer and a monomer particle are constrained in the -
axis. We prepared initial dimer and monomer, which
obey the Maxwell-Boltzmann distributions at T = Ty
and T = Ty, respectively. The 1D dimer has three
types of energies (K, K}, and spring potential Usp,),
the statistical averages of which are set to Ty/2. The
translational kinetic energy of the monomer is set to
(K = T,,/2. The monomer particle and one dimer
particle, which we call as the first particle (and the
other as the second one), interact via the WCA potential
(Eq. (1)) with n = 6. If the dimer and the monomer col-
lide and bounce, we calculate the coefficient of restitution
e from the velocities of the dimer and monomers. The
collision between the dimer and the monomer is inelas-
tic, since the sum of the translational kinetic energies,
K + K is not conserved after the collision. In par-
ticular, when the energy due to the internal degrees of
freedom (K3 + Uy,) is transferred to the translational
kinetic energies (Ki® 4+ K?), the coefficient of resti-
tution is likely to exceed unity [31]. The coefficient of
restitution is scattered statistically, so that we obtain its
average with 107 samples.

In Fig. 7(a), we present the coefficients of restitution
with respect to the spring constant k£ in two cases, X:
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FIG. 6. (a) Probability distributions P(r) of the bond length
r in the dimer-monomer mixtures of » = 0.036 and 0.234. The
spring constant is k = 10e/c?. The temperature 7' is changed.
(b) Plots of the averaged bond length (r) with respect to the
temperature AT in the dimer-monomer mixtures.

(Ta, Tm) = (5e,€), and Y: (Tgq,Tm) = (€,5¢). In both
cases, the coeflicient of restitution is larger than unity
when k is small, and it approaches to unity when k is
large. It can be observed that the dimer and monomer
bounce asymmetrically, i.e., ex > ey over the entire
range of k. In case X, the coefficient of restitution is
decreased monotonically to unity as the spring constant
is increased. In case Y, on the other hand, the coefficient
of restitution changes non-monotonically with k. When k
is small, ey is decreased with k£ and becomes smaller than
unity. Then, it turns to increase and approaches unity
for large k. In case X, the dimer is likely to have larger
internal energy than the sum of the translational kinetic
energies (KJ" + Uy, > K + K%?) before the collision.
Upon the collision, the internal energy changes to the
translational energy, increasing the coefficient of restitu-
tion. In case Y, on the other hand, the internal energy is
comparably small (K} + Uy, < K 4+ K), allowing
the translational energy transferred to the internal en-
ergy. As a result, the coefficient of restitution in case Y
is likely to be smaller than that in case X, ex > ey. When
the dimer is “hotter” than the monomer, the molecules
bounce more, resulting in the negative thermal diffusion
factor, with which the dimers migrate to the hotter re-
gion.

In Fig. 7(b), we plot the difference between the coeffi-
cients of restitution in two different cases, Ae = ex —ey.



Here, we show Ae for several different values of n(=
3,6,12, and 24) in the WCA potential (Eq. (1)). In any
n, Ae is positive and it decays with k. With small n, the
particles are soft, so that the collision time increase, and
the monomer and the first particle in the dimer interact
via the WCA potential slowly. If the intra-particle inter-
action is strong enough (with large k), the energy and
the momentum are well transferred to the second par-
ticle in the dimer during the collision. Meanwhile, the
collision becomes more elastic when n is small and & is
large, making the coefficients of restitution ex and ey
converge to unity and Ae goes to zero. When n is large,
on the other hand, the collision time is shortened. If the
intra-molecule interaction is weak (with small k), the sec-
ond particle is negligible upon the collision. Since we set
the particle masses to be same, the kinetic energies and
momenta are exchanged between the monomer and the
first particle during the collision. However, after the col-
lision, the translational and vibrational kinetic energies
are redistributed within the dimer. If T4 = 0 in case Y,
in particular, the coefficient of restitution is ey = 1/2 in
this limit of large n. As a result, the difference between
ex and ey tends to zero more gradually when n is large.

(a) . pEL—
~ @ (@@
2 T =T. Ta=Th(>T.)
&2 ) Ty=T,
1 | \N -------------------

0 200 400 600 800 1000
ko? /e

FIG. 7. (a) The coeflicients of restitution between a dimer and
a monomer are shown against the spring constant k, which
are obtained in one-dimensional simulations for two cases. X:
(Ta, Twm) = (5€,€), Y: (Ta,Tm) = (¢,5€¢). (b) The differences
of the coefficients of restitution Ae = ex — ey is shown with
the spring constant. The exponent n in the WCA potential
is changed.

Although we consider that this asymmetry of the resti-
tutions can cause the Soret effect also in the actual sys-
tems, the relationship between the Soret effect in the

1D simulations and that in the above 3D simulations
should be considered carefully. The collisions among the
molecules in the 3D system are mostly oblique and not
head-on. Thus, it is considered that the asymmetric resti-
tution plays more minor roles in the three dimensional
mixtures, even if it is the case. Because of the asymmet-
ric restitution and the energy transfer, the thermalization
of the internal and kinetic degrees of freedom might be
violated. As shown in Fig. 1(a), however, we have not
observed any relevant difference between the kinetic and
vibrational temperatures. We consider that the linear
temperature gradient are formed well after the particle
heterogeneity due to the Soret effect is induced, although
we have no evidence supporting this claim.

Here we mention a previous study of Garriga et al.[21],
in which the authors have considered the Soret effect
in the 1D binary mixtures of light and heavy particles.
They found that the asymmetric collisions lead to the
strong Soret effect. Although their molecular description
is quite different from ours, their findings would support
our conjecture.

VI. SUMMARY

In this article, we numerically studied the Soret effect
in the dimer-monomer mixtures and found that the inter-
nal degrees of the freedom of the molecules can contribute
significantly the Soret effect, which is usually treated as
an inter-molecular phenomenon. In dense system, in par-
ticular, the rigid dimers migrate to the colder side, while
the flexible ones move to the hotter side.

To explain the Soret effect in our system, we pro-
posed two possible mechanisms. One regards to the
changes of the molecular shape; flexible molecules adapt
their volume depending on the local temperature, while
bulkier dimer molecules tend to migrate to the hotter
side, overcoming the isotope effect. The other regards
the asymmetry of the restitutions. If a molecule having
larger internal degrees of freedom is “hotter”, the coefli-
cient of restitution with the other “colder” molecule with
smaller internal degrees of freedom becomes larger than
that for the opposite case. To determine which of them
(and/or some other mechanisms) is more dominant, we
have to investigate them further through other types of
test molecules. The inter-molecular interactions would
be modified by the intra-structures of the molecules in
the non-equilibrium conditions.

In this work, we focused on dimer molecules consist-
ing of two particles. However, it should be noted that
diatomic molecules, such as O, are not considered with
this dimer model. The vibrational modes in a real di-
atomic molecule are quantised and the higher modes are
strongly quenched at room temperature. In this work, we
aimed to consider softer molecules; polymers are appro-
priate candidates for such soft molecules. However, the
changes of the degree of the polymerization accompany
those of the mass, the moment of inertia, and the inter-



actions, all of which influence the Soret effect. Thus, it is
difficult to observe the pure effect of the flexibility on the
Soret effect. It was numerically demonstrated that the
difference of the chain stiffness triggers the change of the
Soret effect [9]. When the degree of the polymerization
is the same, the Soret coefficient of more flexible poly-
mers, with short persistent length, tends to be smaller
than those of rigid polymers with long persistent length.

We believe that our findings can help us to further un-
derstand such mysterious behaviors of the Soret effect.
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