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We study analytically how noninteracting weakly active particles, for which passive Brownian
diffusion cannot be neglected and activity can be treated perturbatively, distribute and behave near
boundaries in various geometries. In particular, we develop a perturbative approach for the model
of active particles driven by an exponentially correlated random force (active Ornstein-Uhlenbeck
particles). This approach involves a relatively simple expansion of the distribution in powers of the
Péclet number and in terms of Hermite polynomials. We use this approach to cleanly formulate
boundary conditions, which allows us to study weakly active particles in several geometries: con-
finement by a single wall or between two walls in 1D, confinement in a circular or wedge-shaped
region in 2D, motion near a corrugated boundary, and finally absorption onto a sphere. We consider
how quantities such as the density, pressure, and flow of the active particles change as we gradually
increase the activity away from a purely passive system. These results for the limit of weak activity
help us gain insight into how active particles behave in the presence of various types of boundaries.

I. INTRODUCTION

Active particles consume fuel locally to propel and gen-
erate persistent motions [1, 2]. Examples of such self-
propelled particles range from humans [3] down to mi-
croorganisms [4, 5] and artificial swimmers [6–8]. The
propulsion and, most importantly, the persistence or cor-
relation time of the direction of propulsion are responsi-
ble for out-of-equilibrium phenomena such as phase sepa-
ration without attractive interactions [9] and preferential
motion through funnel-shaped walls [10] or around gear-
like objects [11, 12].

When an active particle collides with a solid boundary,
it often surfs along the boundary until eventually turning
around and propelling away [10, 13, 14]. This behavior is
difficult to analyze mathematically because it often leads
to singular behavior at a boundary. One approach is to
treat a system of active particles (without passive diffu-
sion) in the presence of a wall as two coupled populations
of particles: those stuck at the wall and those in the bulk
[15–17]. This results in additional terms in the equations
for density that capture the fluxes of particles from the
bulk to the wall and similarly, from the wall back into
the bulk. This formulation is related to a class of models
known as two-way diffusion equations in which one must
specify how particles at the wall reenter the bulk [18–
20]. An alternative approach is to represent boundaries
as soft confining potentials, which has been useful for
studying the pressure and distribution of active particles
[21–23]. However, compared to passive Brownian parti-
cles, for which we have the Boltzmann distribution, it is
considerably more difficult to determine the distribution
of active particles in arbitrary potentials.

To gain insight into how activity affects the behavior
of active particles near different types of boundaries, we
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consider the limit of weakly active particles, when passive
Brownian diffusion cannot be neglected and activity can
be treated pertubatively. Passive Brownian diffusion due
to thermal fluctuations is always present in any physical
system. As we will see from a mathematical perspec-
tive, including passive diffusion makes it easier for us to
deal with boundaries by allowing us to define familiar
Neumann, Dirichlet, or Robin type boundary conditions.
Physically, these may represent impenetrable or absorb-
ing boundaries. The limit of weak activity is also partic-
ularly useful because it allows us to apply perturbation
theory to known results in the limit of passive particles
or zero activity.

The paper is structured as follows. In Section II, we
introduce and summarize the active particle model of a
Brownian particle driven by an exponentially correlated
random force. In Section III, we show how the Fokker-
Planck equation describing the distribution of these ac-
tive particles can be solved perturbatively by expanding
the distribution in powers of the Péclet number and in
terms of Hermite polynomials. In Sections IV, V, and
VI, we use this approach to study several problems of
noninteracting weakly active articles near impenetrable
boundaries. This includes simple confinement in 1D,
confinement to a circular or wedge-shaped region, and
confinement by a corrugated boundary. Finally, in Sec-
tion VII, we consider an absorbing boundary problem of
weakly active particles around a spherical absorber. For
each example geometry, we start the section with a brief
description of the equations we solve and the boundary
conditions we apply to obtain the distribution of active
particles.
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II. ACTIVE PARTICLES DRIVEN BY AN
EXPONENTIALLY CORRELATED RANDOM

FORCE

We start by describing a Brownian particle driven by
an exponentially correlated random force. The equation
of motion for its position is given by the overdamped
Langevin equation

γṙ = η +
√

2Dpγ2ξr, (1)

where γ is the friction coefficient, Dp is the passive diffu-
sivity, and ξr is a zero mean Gaussian white noise with
〈ξr,α(t)ξr,β(t′)〉 = δαβδ(t− t′). Note that the passive dif-
fusivity can be related to temperature through the Ein-
stein relation Dpγ = kBT . The variable η is the active
force that propels the particle. We assume this force has
first and second moments

〈ηα(t)〉 = 0, (2a)

〈ηα(t)ηβ(t′)〉 = δαβ
γ2v2

d
exp

(
−1

τ
|t− t′|

)
, (2b)

where τ is the persistence time of the propulsion, v is
the swim speed, and d is the spacial dimension. In other
words, this propulsion force on average has no preferred
direction and is exponentially correlated in time. The
exponential correlation in time means that the active
particle will have memory of its propulsion direction for
roughly a time τ before orienting in a new direction. Note
that the magnitude of the correlations are chosen so that
the characteristic propulsion force is

√
〈η2〉 = γv, which

is simply the force needed to move through a viscous en-
vironment at a speed v.

One common way to generate an exponentially cor-
related random force is through an Ornstein-Uhlenbeck
process given by

τ η̇ = −η +

√
2v2τγ2

d
ξη, (3)

where ξη is a zero mean Gaussian white noise indepen-
dent of ξr with 〈ξη,α(t)ξη,β(t′)〉 = δαβδ(t − t′). Eqs. (1)
and (3) thus describe the dynamics of an active particle
driven by an exponentially correlated random force. The
mean-squared displacement of such a particle is given by

〈r2(t)〉 = 2dDpt+ 2v2τ2

[
t

τ
− 1 + e−

t
τ

]
(4)

There are two timescales: τ and dDp/v
2. The latter

is the crossover between passive diffusion and ballistic
motion. On timescales longer than the persistence time
t� τ , the propulsion force becomes uncorrelated and the
active particle effectively diffuses with 〈r2〉 ' 2dDefft,
where the effective diffusivity Deff = Dp + v2τ/d is
the sum of the passive and active diffusivities Dp and
Da = v2τ/d. For t � dDp/v

2, the particle undergoes
passive Brownian diffusion with 〈r2〉 ' 2dDpt. Finally

for dDp/v
2 � t� τ , the particle undergoes ballistic mo-

tion with 〈r2〉 ' v2t2. Note that this ballistic regime dis-
appears when τ � dDp/v

2 or equivalently vτ �
√
dDpτ ,

that is, when transport due to propulsion is much smaller
than transport due to passive diffusion. We refer to such
particles as “weakly active”, which will be our main focus
here.

The Langevin equations (Eqs. (1) and (3)) can be re-
cast into a Fokker-Planck equation. The distribution of
a noninteracting system of these active particles satisfies
the Fokker-Planck equation

∂ρ

∂t
= − 1

γ
η ·∇rρ+Dp∇2

rρ+
1

τ
∇η · (ηρ) +

γ2v2

dτ
∇2
ηρ

= −∇r · Jr −∇η · Jη,
(5)

where ρ = ρ(r,η, t) is the distribution of the active par-
ticles and

Jr =
1

γ
ηρ−Dp∇rρ, (6a)

Jη = −1

τ
ηρ− γ2v2

dτ
∇ηρ. (6b)

are the currents for positions and propulsions. Note that
passive diffusion introduces the spacial gradient ∇rρ in
Jr, which will be extremely useful for formulating bound-
ary conditions.

Our goal is to find a way to solve Eq. (5) for the distri-
bution of active particles. Note that in the bulk far from
any boundary, the spacial density of noninteracting ac-
tive particles should be uniform and the propulsion force
η for this model will be Gaussian distributed in steady-
state. The exact steady-state distribution in the bulk
satisfying Eq. (5) is

ρ(r,η) =
ρbulk

(2πγ2v2/d)d/2
exp

(
− η2

2γ2v2/d

)
. (7)

We wish to determine how this distribution changes near
a boundary given certain conditions on the current or
density at that boundary.

III. PERTURBATION THEORY AND
EIGENFUNCTION EXPANSION

To simplify the problem, let us define the dimensionless
position and propulsion force to be

r̃ =
r√

2Dpτ
=
r

λ
, (8a)

η̃ =
η√

2γ2v2/d
=
η

σ
, (8b)

where the length scale λ =
√

2Dpτ is how far the parti-
cle passively diffuses in a persistence time and the force
scale σ =

√
2γ2v2/d is roughly the force needed to move
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through a viscous environment at speed v. This length
scale λ is important and will show up again and again
in subsequent sections. In our context of boundaries, we
can interpret it as the distance over which active parti-
cles will be persistent and still interact with a boundary
through diffusion and propulsion. In other words, within
this distance, we will observe the influence of a bound-
ary on, for example, the distribution of active particles.
Beyond this distance, however, the active particles may
reorient many times without colliding with a boundary
and thus behave as if they are in bulk.

The resulting dimensionless Fokker-Planck equation in
steady-state is

∇2
rρ̃+∇2

ηρ̃+ 2∇η · (η̃ρ̃) = 2εη̃ ·∇rρ̃, (9)

where the dimensionless distribution is ρ̃(r̃, η̃) =
ρ(λr̃, ση̃)λdσd. Throughout the work, tildes will indi-
cate a dimensionless quantity. The only parameter that
remains is

ε =

√
v2τ

dDp
=
√

Pe, (10)

where Pe is the Péclet number which is the ratio of ad-
vective transport (swimming) to diffusive transport. This
parameter controls the level of activity of the particles;
for example, ε = 0 corresponds to a passive particle while
ε � 1, a strongly active particle. As mentioned earlier,
our main focus here will be on weakly active particles or
ε� 1.

To make further progress, we perform two expansions
on the distribution: an expansion in powers of ε and
an eigenfunction expansion in Hermite polynomials (Ap-
pendix A 1). To keep things simple here, we will only
show the series solution for 1D, though it should be em-
phasized that the result can easily be extended to arbi-
trary dimensions (Appendix B). We start by writing the
distribution in powers of ε as

ρ̃(x̃, η̃) =

∞∑
n=0

εnρ̃(n)(x̃, η̃), (11)

which gives us for each order

∂2ρ̃(n)

∂x̃2
+
∂2ρ̃(n)

∂η̃2
+ 2

∂

∂η̃

(
η̃ρ̃(n)

)
= 2η̃

∂ρ̃(n−1)

∂x̃
. (12)

The zeroth order solution ρ̃(0) is related to the density
of passively diffusing particles, which is usually easy to
find. Thus, we can determine the effect of activity by
iteratively computing higher-order terms starting from
the solution for passive Brownian particles.

There should be no active particles with an arbitrarily
large propulsion force η. In other words, the distribution
in η should decay sufficiently quickly as |η| → ∞. We
can therefore simplify the second and third terms on the
left-hand side of Eq. (12) by expanding the distribution

in terms of Hermite polynomials. By writing each order
of the distribution as

ρ̃(n)(x̃, η̃) =

∞∑
m=0

C(n)
m (x̃)e−η̃

2

Hm(η̃), (13)

we reduce the entire problem to solving for the coeffi-

cients C
(n)
m (x̃), which satisfy in 1D the simple ordinary

differential equation

d2C
(n)
m

dx̃2
− 2mC(n)

m =
d

dx̃

[
C

(n−1)
m−1 + 2(m+ 1)C

(n−1)
m+1

]
.

(14)
We will focus on two kinds of boundaries: impenetrable
and absorbing. At an impenetrable boundary, particles
cannot pass through it and so the current normal to the
boundary must be zero. At an absorbing boundary, par-
ticles are removed from the system and so the density
at the boundary is maintained to be zero. By writing
the current J̃x = 2εη̃ρ̃ − ∂ρ̃

∂x̃ or density ρ̃ in terms of the

coefficients C
(n)
m , we can use the orthogonality of Her-

mite polynomials to determine the boundary conditions
for the coefficients. We now illustrate this approach with
several examples of noninteracting weakly active parti-
cles in different geometries.

IV. PROBLEMS IN CARTESIAN
COORDINATES

A. Active particles on a line

Consider the simplest example of noninteracting
weakly active particles freely propelling left or right on a
line until they collide with an impenetrable wall. We are
interested in how the presence of such a wall modifies the
bulk distribution of active particles (Eq. 7). As outlined
in Section III, the dimensionless distribution in 1D can
be written as

ρ̃(x̃, η̃) =

∞∑
n=0

εn
∞∑
m=0

C(n)
m (x̃)e−η̃

2

Hm(η̃), (15)

where the coefficients satisfy Eq. (14). We consider the
cases of active particles confined by one solid wall and
between two walls.

1. 1D semi-infinite domain: one wall

We start with the case of an impenetrable wall at x = 0
that confines the active particles to the region x > 0. The
zero current condition at this wall Jx(0, η) = 0 gives us
the condition on the coefficients

dC
(n)
m (0)

dx̃
= C

(n−1)
m−1 (0) + 2(m+ 1)C

(n−1)
m+1 (0). (16)
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FIG. 1. Several of the geometries we consider: a) active particles near a single hard wall, b) active particles inside and outside
a circular boundary, c) active particles confined to a wedge-shaped region, d) active particles near a corrugated boundary, and
finally e) active particles near a spherical absorber.

Details of the solution can be found in Appendix C 1.
We are interested in how the presence of an impenetra-
ble wall affects the distribution ρ(x, η) and the currents
Jx(x, η), Jη(x, η) of the active particles. In the bulk, the

distribution is given by Eq. (7) with d = 1. As we ap-
proach the wall, the distribution will no longer be inde-
pendent of x. Up to ε2, the distribution is

ρ(x, η) ' ρbulk

σ
√
π
e−

η2

σ2

{
1− ε

√
2e−

√
2x
λ
η

σ
+ ε2

[
e−
√

2x
λ +

(√
2e−

2x
λ − e−

√
2x
λ

)(2η2

σ2
− 1

)]}
, (17)

where λ =
√

2Dpτ and σ =
√

2γ2v2. Integrating out the
active force η, we have for the spacial density

ρ(x)

ρbulk
' 1 + ε2e−

√
2x
λ

+ ε4
[
2
√

2e−
2x
λ + 2

√
2
( x

4λ
− 1
)
e−
√

2x
λ

]
.

(18)

The ε2 and ε4 contributions to this density are shown in
Figure 2. The density is elevated over the length scale λ,
which, as we discussed earlier, is the distance over which
the presence of the wall will be felt by the active particles.
Another way of thinking of this is that persistence of the
active particles causes them to spend more time near the
wall, thus elevating the density. The excess number of

particles near the wall is given by

Nexcess =

∫ ∞
0

[ρ(x)− ρbulk] dx

' ρbulk

√
Dpτ

[
ε2 − 4

√
2− 5

2
ε4

]
.

(19)

It is interesting to note that the ε4 correction does not
further increase the density near the wall and actually
depletes it, as there is a decrease in the excess number
of particles near the wall. This suggests that at higher
Péclet numbers, the accumulated density may become
steeper.

The currents in the position x and active force η are
given by

Jx(x, η) ' ελ
τ

(ρbulk

σ

) 1√
π

(
1− e−

√
2x
λ

) η
σ
e−

η2

σ2 , (20a)
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FIG. 2. ε2 (blue) and ε4 (orange) contributions to the density
of weakly active particles near a single impenetrable wall (Eq.
18). The ε2 contribution gives an elevated density while the
ε4 contribution slightly depletes the density near the wall.

FIG. 3. Currents Jx(x, η), Jη(x, η) (Eqs. (20a) and (20b)) re-
sulting from activity near a single impenetrable wall. The
circulation shows the simple behavior of active particles pro-
pelling towards the wall, spending time turning around, and
then propelling away.

Jη(x, η) ' εσ
τ

(ρbulk

σ

) 1√
2π
e−
√

2x
λ e−

η2

σ2 . (20b)

These characterize how the positions and propulsions of
our active particles change on average as they move near
a wall. There is circulation in the xη-plane (Figure 3), a
signature of out-of-equilibrium systems [24]. In this case,
the behavior is quite simple: active particles on average
swim towards the wall, spend some time turning, and
then swim away. It is interesting to note that while we
observe currents at order ε, we do not observe any devi-
ations from the passive density ρ(x) = ρbulk until order
ε2. The currents result in an asymmetric distribution in
η at the wall. Up to order ε, the distribution at the wall

is

ρ(0, η) ' ρbulk

σ
√
π
e−

η2

σ2

(
1− ε

√
2η

σ

)
. (21)

The correction shifts the mean to 〈η〉x=0 ' −εγv =

−γv
√

v2τ
Dp

. Physically, this occurs because particles with

η < 0 swim towards the wall and have an increased den-
sity when they are slowed while particles with η > 0
swim away and have a decreased density. The result for
〈η〉 can also be obtained from a simple balancing of cur-
rents. Recall that the density (Eq. (18)) is elevated by
ε2ρbulk over a length scale

√
Dpτ , which gives a diffusive

flux Jdiff ∼ Dp
ε2ρbulk√
Dpτ

away from the wall. Setting this

equal to the swim flux Jswim ∼ 1
γ 〈η〉ρbulk, we get an av-

erage propulsion of 〈η〉 ∼ γDp
ε2√
Dpτ

= γv
√

v2τ
Dp

towards

the wall. At higher Péclet numbers, we expect that the
distribution at the wall will shift more towards η < 0
and that the density ρ(0, η > 0) will become significantly
depleted. This occurs because the moment an active par-
ticle turns around, it immediately propels away from the
wall and no longer contributes to ρ(0, η > 0).

2. 1D finite domain: two walls

We now consider the case of active particles confined
between two walls located at x = ±L. Unlike for a sin-
gle wall, there is no bulk where the distribution of ac-
tive particles is unaffected by the wall. When there are
two walls, each wall can have an effect on the distribu-
tion at the other. The zero current boundary conditions
Jx(±L, η) = 0 give the following relation for the coeffi-
cients

dC
(n)
m (±L̃)

dx̃
= C

(n−1)
m−1 (±L̃) + 2(m+ 1)C

(n−1)
m+1 (±L̃). (22)

The steps for finding the solution (Appendix C 2) are
similar to those of the single wall. The main difference
is that we now have a finite number of particles trapped
between the two walls instead of an infinite bulk with
constant density. Taking ρ(x, η) and integrating out η,
we have for the density

ρ(x)

N/2L
= 1 + ε2

(
cosh

√
2x
λ

cosh
√

2L
λ

−
tanh

√
2L
λ√

2L
λ

)
, (23)

where N is the number of particles between the walls.
Note that as a result of the accumulation at walls, there
is a depletion of particles around the center of the con-
finement. This is captured by the second term in the
parenthesis, which vanishes in the limit of large separa-
tion of the walls.

For large separations, each wall should not influence
the other and we should obtain the result for a single
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wall in the previous section. Indeed, taking L � λ, we
find

ρ(x) ' N

2L

[
1 + ε2

(
e
√

2(x−L)
λ + e−

√
2(x+L)
λ

)]
, (24)

which is simply the sum of the accumulations due to each
wall if it were by itself. We can also examine the opposite
limit of two walls that are very close to each other (L�
λ), for which we find the the parabolic profile

ρ(x) ' N

2L

[
1 + ε2

(
x2

λ2
− L2

3λ2

)]
. (25)

We now look at the distribution of particles at each
wall to see how one wall may influence the other. The
distribution at the walls to order ε is

ρ(±L, η) =
N

2L
· e
− η

2

σ2

σ
√
π

(
1± ε

√
2η

σ
tanh

√
2L

λ

)
, (26)

which gives for the average propulsion at each wall

〈η〉(±L) ' ±εγv tanh

√
2L

λ
. (27)

Interestingly, we can interpret this average propulsion as
a weighted average 〈η〉(±L) ' ∓εγvPc ± εγvPf , where

Pc =
1

1 + e−
2
√

2L
λ

, Pf =
e−

2
√

2L
λ

1 + e−
2
√

2L
λ

, (28)

are the weights for the closest and farthest walls, respec-
tively. Note that these weights are proportional to how
much the closest and farthest walls contribute to the ac-
cumulation. When the two walls are far apart (L � λ),
we get back the single wall result 〈η〉(±L) ' ∓εγv since
the farthest wall contributes nothing (Pf � Pc ≈ 1).

3. Pressure on solid boundaries

One question of interest is how one relates the density
of active particles to the pressure they exert on walls.
For an equilibrium system of noninteracting particles,
the density is ρ(x) = ρ0 everywhere and the pressure
is simply the ideal gas pressure P = ρ0kBT . To com-
pute the pressures in our present case of noninteracting
active particles, we start by replacing the impenetrable
walls with soft confining potentials. This approach of
using soft potentials has been useful for computing the
mechanical properties of active particles near boundaries
[21–23, 25–27]. The idea is that a confining potential, just
like a wall, can prevent particles from moving a certain
direction. The pressure can then be computed by sim-
ply summing up the forces the potential exerts on the
particles. One can then take the limit as the potential
becomes steep to obtain the pressure for an impenetrable

wall. For our purposes, we consider the ramp potentials
(Appendix C 3)

U(x) =

{
−fx, x < 0

0, x > 0
(29)

for one wall at x = 0 and

U(x) =


−fx− fL, x < −L
0, −L < x < L

fx− fL, x > L

(30)

for two walls at x = ±L. The mechanical pressure for
both these cases is simply given by the integral

P = −
∫
U ′(x)ρ(x)dx. (31)

over one of the wall regions where U(x) 6= 0. The dis-
tributions and the pressures obtained for these ramp po-
tentials are left for Appendix C 3. We are interested in
the limit of impenetrable walls or f → ∞. In this limit,
we find the pressures

P = ρbulkDpγ(1 + ε2), (32)

for one wall and

P ' NDpγ

2L

[
1 + ε2

(
1−

tanh
√

2L
λ√

2L
λ

)]
, (33)

for two. We start by noting that the pressure for one
wall (Eq. (32)) is actually exact even though it was ob-
tained from perturbation theory. A proof of this can
be found in Appendix C 3. There are two interpreta-
tions of this pressure. The first interpretation is P =
ρbulk[Dp(1 + ε2)]γ = ρbulkDeffγ, which can be thought
of as the ideal gas pressure of particles with an effective
diffusivity Deff = Dp + v2τ . The second interpretation is
P = [ρbulk(1 + ε2)]Dpγ ' ρwallDpγ, where ρwall = ρ(0) is
the density at the boundary. This is just the the passive
pressure due to the elevated density of particles (Eq. (18))
close to the wall. For the case of confinement between
two walls, the situation is different as there is no longer
a bulk. However, notice that we still have the relation
P ' ρwallDpγ, where ρwall = ρ(±L). Using Einstein’s re-
lation Dpγ = kBT , we may write P ' ρwallkBT for non-
interacting active particles. While we have only shown
that this relation for pressure holds up to order ε2, it is
not inconceivable that it should hold in general. In Ap-
pendix C 4, we show that for the exactly solvable model
of noninteracting 1D run-and-tumble particles with pas-
sive diffusion, this relation for pressure holds without any
approximations. It is worth noting that a similar relation
has been shown to hold for noninteracting active Brow-
nian particles [27], a different model of active particles.
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B. Confinement in 2D: right-angled corner

In previous sections, we considered weakly active par-
ticles in 1D. Those results can easily be extended to flat
walls in higher dimensions such as an infinite line (2D)
or infinite plate (3D). In fact, the density profiles, par-
ticularly the exponential decays of density away from a
flat wall, are exactly the same as those obtained in 1D.

We are interested in going beyond these simple geome-
tries and studying cases where the walls may be curved
or are not parallel and meet at certain angles. In this
particular section, we will focus on the simpler case of
two flat walls that meet at a right angle and confine ac-
tive particles to a region x > 0, y > 0. We write the
dimensionless distribution as

ρ(r̃, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃)e−η̃

2

Hmx(η̃x)Hmy (η̃y),

(34)
Notice that going to higher dimensions simply requires
additional Hermite polynomials. The coefficients satisfy

∂2C
(n)
m

∂x̃2
+
∂2C

(n)
m

∂ỹ2
− 2(mx +my)C(n)

m =
∂wx
∂x̃

+
∂wy
∂ỹ

,

(35)

where

wx = C
(n−1)
mx−1,my

+ 2(mx + 1)C
(n−1)
mx+1,my

, (36a)

wy = C
(n−1)
mx,my−1 + 2(my + 1)C

(n−1)
mx,my+1. (36b)

The zero current boundary conditions Jx(0, y,η) =
Jy(x, 0,η) = 0 give the following conditions on the coef-
ficients

∂C
(n)
m (0, ỹ)

∂x̃
= wx(0, ỹ) (37a)

∂C
(n)
m (x̃, 0)

∂ỹ
= wy(x̃, 0) (37b)

Details of the solution can be found in Appendix C 5.
Integrating out η from ρ(r,η), we find the density near
the corner is

ρ(r)

ρbulk
' 1 + ε2

(
e−
√

2x
λ + e−

√
2y
λ

)
+ ε4

[
2
√

2e−
2x
λ + 2

√
2
( x

4λ
− 1
)
e−
√

2x
λ

]
+ ε4

[
2
√

2e−
2y
λ + 2

√
2
( y

4λ
− 1
)
e−
√

2y
λ

]
+ ε4e−

√
2(x+y)
λ

=
ρ1D(x) + ρ1D(y)

ρbulk
+ ε4e−

√
2(x+y)
λ ,

(38)

where ρ1D is the 1D density (Eq. (18)) if each wall were
by itself. The last term is new and enhances the accu-
mulation near the corner. This arises due to correlations

FIG. 4. Average propulsion 〈η〉 (Eq. (40)) near a right-angled
corner that confines active particles to x > 0, y > 0. This ori-
entation towards the corner leads to additional accumulation
given by the last term of the density Eq. (38).

between ηx, ηy near the corner. Indeed, if we study the
full distribution, we find at order ε2 the new term

ρ(r,η) ' single wall contributions

+ 2ε2
ρbulk

πσ2
e−

η2

σ2
ηxηy
σ2

e−
√

2(x+y)
λ ,

(39)

which gives a nonzero correlation 〈ηxηy〉 near the corner
and is responsible for the extra accumulation at order ε4.
If we consider the average propulsion 〈η〉 of the active
particles near the corner, which is given by

〈η〉(x, y) = −εγv√
2

(
e−
√

2x
λ , e−

√
2y
λ

)
, (40)

we also see that there is an increased tendency for active
particles to orient and propel towards the corner (Figure
4).

V. PROBLEMS IN POLAR COORDINATES

We have thus far considered simple examples of weakly
active particles near flat walls or a right-angled corner.
We now want to study how the curvature of a surface or
the sharpness of a corner affects the distribution of these
particles. We focus our attention on two cases: a circular
boundary and a corner with an angle other than π/2.

These examples are best studied using polar coordi-
nates. In polar coordinates, we write the dimensionless
distribution as

ρ̃(r̃, θ, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃, θ)e−η̃

2

Hmx(η̃x)Hmy (η̃y).

(41)
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The coefficients satisfy

1

r̃

∂

∂r̃

(
r̃
∂C

(n)
m

∂r̃

)
+

1

r̃2

∂2C
(n)
m

∂θ2
− 2(mx +my)C(n)

m

=
1

r̃

∂

∂r̃
(r̃wr) +

1

r̃

∂wθ
∂θ

,

(42)

where the components of w in polar coordinates are

wr =
[
C

(n−1)
mx−1,my

+ 2(mx + 1)C
(n−1)
mx+1,my

]
cos θ

+
[
C

(n−1)
mx,my−1 + 2(my + 1)C

(n−1)
mx,my+1

]
sin θ,

(43a)

wθ = −
[
C

(n−1)
mx−1,my

+ 2(mx + 1)C
(n−1)
mx+1,my

]
sin θ

+
[
C

(n−1)
mx,my−1 + 2(my + 1)C

(n−1)
mx,my+1

]
cos θ.

(43b)

A. Active particles around a circular boundary

Consider an impenetrable circular boundary of radius
R with active particles both inside and outside. We will
separately obtain the densities in both regions. The ra-
dial current on both sides of the boundary must be zero,
or Jr(R, θ,η) = 0. We thus have the boundary condition
for the coefficients

∂C
(n)
m (R̃, θ)

∂r̃
= wx(R̃, θ) cos θ + wy(R̃, θ) sin θ. (44)

Details of the solutions both inside and outside the region
can be found in Appendix D 1. The densities outside and
inside the boundary to order ε2 are

ρout(r, θ) ' ρbulk

1 + 2ε2
K0

(√
2r
λ

)
K0

(√
2R
λ

)
+K2

(√
2R
λ

)
 ,

(45a)

ρin(r, θ) ' N

πR2

1 + 2ε2

×
I0

(√
2r
λ

)
− I0

(√
2R
λ

)
+ I2

(√
2R
λ

)
I0

(√
2R
λ

)
+ I2

(√
2R
λ

)
 ,
(45b)

where Iµ,Kµ are the modified Bessel functions of the first
and second kinds and N is the number of particles inside
the circular region.

Let us consider some limiting behaviors as R →∞ or
R → 0. Defining δr = r − R as the radial distance from
the circular boundary and taking |δr| � R, we obtain for
the density near a large circular boundary (R→∞)

ρout(R+ δr, θ) ' ρbulk

(
1 + ε2e−

√
2δr
λ

)
, (46a)

ρin(R+ δr, θ) ' N

πR2

(
1 + ε2e

√
2δr
λ

)
. (46b)

Note that these are just the density profiles near a flat
wall (Eqs. (18) and (24)) since the curvature of the wall
becomes negligible as R→∞. In the opposite limit of a
small circular boundary (R→ 0), we have

ρout(r � λ, θ) ' ρbulk

[
1 +

2ε2R2

λ2

(
ln

√
2λ

r
− γem

)]
,

(47a)

ρin(r, θ) ' N

πR2

[
1 + ε2

(
r2

λ2
− R2

2λ2

)]
, (47b)

where γem ≈ 0.577 is the Euler-Mascheroni constant.
The weak dependence of ρout on r is a result of the par-
ticles outside interacting with a small circular boundary,
which should not affect the density much. Finally, just as
in the one dimensional case, the density inside the small
region ρin takes on a parabolic profile.

We are interested in how the curvature of a boundary
affects the accumulation of weakly active particles. Let
us consider the densities both inside and outside the cir-
cular boundary at r = R and compare them with the
density at a flat wall. We focus on R� λ when the cur-
vature is small. To start, recall that the density at a flat
wall (Eq. (18)) is ρflat ' ρbulk(1 + ε2). For outer part of
the circular boundary, we have

ρout(R, θ)− ρflat ' −ε2ρbulk
λ√
2R

. (48)

For the inner part of the circular boundary, we have to
be a bit more careful since there is not an infinite bulk.
We can mimic a bulk inside the region by maintaining
the density at the center r = 0 to be equal to the bulk
density outside or ρin(0, θ) = ρbulk. The resulting density
profile inside the circular boundary is

ρin(r, θ) ' ρbulk

1 + 2ε2
I0

(√
2r
λ

)
− 1

I0

(√
2R
λ

)
+ I2

(√
2R
λ

)
 . (49)

When compared to the flat wall, we have

ρin(R, θ)− ρflat ' ε2ρbulk
λ√
2R

. (50)

The ε2 contributions to the densities inside (Eq. (49)) and
outside (Eq. (45a)) the circular boundary are shown in
Figure 5. On both sides of the circular boundary, the cor-
rection to density is proportional to R−1, the curvature
of the boundary. In addition, the sign of the correction
tells us that active particles accumulate more on concave
surfaces than on convex ones. This preference to accu-
mulate on concave rather than convex surfaces is shown
by a discontinuous drop in density going from inside to
outside the circular boundary.

The key observation here is that our approach, even
though applied to weakly active particles, can recover
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FIG. 5. ε2 contributions to the density inside (Eq. (49)) and
outside (Eq. (45a)) an impenetrable circular boundary where
the density inside the boundary at r = 0 is maintained to
be ρbulk. Here, R = 10λ. Active particles prefer to accumu-
late on concave surfaces such as the inner side of the circular
boundary rather than convex surfaces such as the outer side.
This gives rise to a discontinuous drop in density between the
inner and outer parts of a circular boundary that is propor-
tional to the curvature R−1.

some results beyond the weak limit such as the curvature
dependence of the density of active particles near curved
boundaries [27–32].

B. Active particles inside a wedge-shaped region

In Section IV B, we considered active particles confined
by two walls meeting at a right angle. We here consider
a more general and difficult problem of two walls meet-
ing at an arbitrary angle 2α (Figure 1c). This problem
is inspired by experiments and simulations [10, 33] that
showed that active particles could be trapped or directed
by wedge-shaped obstacles. For simplicity, we will focus
on the particular case of weakly active particles trapped
within a single wedge whose sides extend indefinitely.
The zero current boundary conditions Jθ(r,±α,η) = 0
along the walls of the wedge give the following condition
on the coefficients

1

r̃

∂C
(n)
m (r̃,±α)

∂θ
= wθ(r̃,±α). (51)

In order to make any progress on finding the coefficients
in this geometry, we have to make use of the Kontorovich-
Lebedev and Mellin transforms (Appendix A 3). Details
for computing the coefficients up to ε2 can be found in
Appendix D 2. We will focus on two quantities: the aver-
age propulsion 〈η〉(r, θ) and the density ρ(r, θ) within the
wedge. The general expressions for arbitrary wedge an-
gle 2α are quite cumbersome. Note that 2α = π and
2α = π/2 correspond to a single wall and two walls
meeting at a right angle, respectively. We have already
considered these in Section IV and it is quite easy to
check that the general solution Eq. (D23) reduces to those
cases. From here on, we will consider angles of the form
2α = π/2l−1 with l = 3, 4 . . . , for which we can make
some analytical progress.

To start, the components of the average propulsion
〈η〉(r, θ) = (〈ηx〉(r, θ), 〈ηy〉(r, θ)) within the wedge are
given by

〈ηx〉(r, θ) ' −
εγv√

2
sin

π

2l

2l−2−1∑
k=0

{
e−
√

2r
λ sin[ (2k+1)π

2l
−θ] + e−

√
2r
λ sin[ (2k+1)π

2l
+θ]
}
, (52a)

〈ηy〉(r, θ) '
εγv√

2
cos

π

2l

2l−2−1∑
k=0

(−1)k
{
e−
√

2r
λ sin[ (2k+1)π

2l
−θ] − e−

√
2r
λ sin[ (2k+1)π

2l
+θ]
}
. (52b)

The average propulsion 〈η〉 for l = 4 or 2α = π/8 is
shown in Figure 6a. Note the interesting combination of
exponentials in the expressions for 〈ηx〉 and 〈ηy〉. For
the simple case of a right-angled corner (Section IV B),
we found that we could essentially treat each wall as in-
dependent up to ε2, that is, each wall contributed a single

exponential decay e−
√

2x
λ or e−

√
2y
λ away from itself. Here,

for wedge angles smaller than π/2, the walls near the tip
will influence each other and we find a multitude of ex-
ponentials with different length scales. This has some

consequences on the propulsion and accumulation of the
active particles. Let us focus on the propulsion along the
center of the wedge θ = 0 on which we have 〈ηy〉(r, 0) = 0
and

〈ηx〉(r, 0) = −εγv√
2

sin
π

2l

2l−2−1∑
k=0

e−
√

2r
λ sin

(2k+1)π

2l . (53)

This is plotted in Figure 6b for l = 4 or 2α = π/8. The
longest length scale is λ

sinπ/2l
, which grows with decreas-
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FIG. 6. a) Average propulsion 〈η〉 within a wedge-shaped region with angle 2α = π/8. b) x-component of the average
propulsion 〈ηx〉 along the center of the wedge θ = 0, also for 2α = π/8. This propulsion towards the tip decays rapidly over a
length scale λ

sinπ/2l
.

ing wedge angle. Beyond this distance, the active parti-
cles along the center will be at least a distance λ from
the sides of the wedge and will effectively not interact
with the boundaries. Within this distance, however, the
boundaries will on average orient the active particles to-
wards the tip. Thus, as the wedge angle decreases, active
particles farther and farther from the tip will have some

orientation towards it, which in turn should increase the
density near the tip.

To study the effect of wedge angle on the density
near the tip, we write the density as ρ(r, θ) ' ρbulk[1 +
ε2∆(r, θ)]. The correction to the density ∆(r, θ) is given
by

∆(r, θ) =

∫ ∞
−∞

a(s) cosh sθ
( r
λ

)−is
ds

+

2l−2−1∑
k=0

(−1)k cos

{
[2k + 1− (−1)k]π

2l

}{
e−
√

2r
λ sin[ (2k+1)π

2l
−θ] + e−

√
2r
λ sin[ (2k+1)π

2l
+θ]
}
,

(54)

where

a(s) =

√
2
−is

Γ(is+ 1)

2πs sinh sπ
2l

1 + 2

2l−2−1∑
k=1

(
sin2 π

2l
+ (−1)k cos2 π

2l

)(
sin

kπ

2l−1

)−is+1
 . (55)

For angles 2α = π/2l−1 with l ≥ 3, there is no known
closed form solution and we have to numerically evaluate
the integral in Eq. (54). Let us focus on how the density
at the tip of the wedge ∆tip = lim

r→0
∆(r, θ) depends on

the angle of the wedge 2α. This dependence is shown in
Figure 7.

There are a couple of features to note. The first is
the increase in the density at the tip as we decrease the
angle of the wedge, as shown in Figure 7a. This is due
to the effect of the sides of the wedge on the average
propulsion 〈η〉 discussed earlier (Eq. 53). As the wedge
angle decreases, active particles farther and farther from
the tip are on average directed towards it, thus increasing
the density. In addition to the increase in density for
small wedge angles, we find that when the wedge is nearly
a flat wall (2α ≈ π), the density has a linear dependence
given by ∆tip ≈ 1− 0.44(2α− π). We will show how this

is obtained using an approach developed in Section VI.

The second feature is the scaling of the tip density
∆tip with the wedge angle 2α. As shown in Figure
7b, we find an interesting weak dependence of the form
∆tip ∼ ln(2α)−0.50. This weak dependence is due to
passive Brownian diffusion and can actually be obtained
through a relatively simple scaling argument. This ar-
gument goes as follows. As we discussed earlier, there
is a length scale λl ∼ λ

sinπ/2l
over which the active

particles on average propel towards the tip. This in-
creases the density at the tip by ρbulkε

2∆tip. Thus, the
diffusive flux over this length scale away from the tip

goes as Jdiff ∼ Dp
ρbulkε

2∆tip

λl
. To estimate the advec-

tive flux, we compute a characteristic propulsion towards
the tip by averaging 〈ηx〉(r, 0) (Eq. 53) over the region
0 < r . λl. Thus the advective flux towards the tip

goes as Jswim ∼ 1
γ

∣∣∣ 1
λl

∫ λl
0
〈ηx〉(r, 0)dr

∣∣∣ ρbulk. To a good
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FIG. 7. a) Dependence of the correction to wedge tip den-
sity ∆tip = lim

r→0
∆(r, θ) on the wedge angle 2α = π/2l−1 for

l = 1, 2, . . . , 15. The black dotted line shows the linear depen-
dence close to 2α = π, which was obtained using the approach
developed in Section VI. b) Weak scaling of ∆tip with 2α for
small wedge angles.

approximation, we can take the upper limit of the inte-
gral to ∞ since 〈ηx〉(r, 0) decays rapidly over 0 < r . λl
(Figure 6b). Finally, the diffusive and advective fluxes
in steady-state should balance (Jdiff ∼ Jswim) and so we
obtain

∆tip ∼
1

γDpε2

∣∣∣∣∫ ∞
0

〈ηx〉(r, 0)dr

∣∣∣∣
= sin

π

2l

2l−2−1∑
k=0

1

sin (2k+1)π
2l

≈ 1

2

∫ π
2

π

2l

du

sinu
≈ −1

2
ln

π

2l+1
,

(56)

where we assumed that 2l � 1 for small wedge angles
and approximated the sum as an integral. Thus, up

to a constant shift, we see that ∆tip ∼ ln
(

π
2l−1

)−1/2
=

ln(2α)−1/2, in close agreement with our numerical esti-
mates in Figure 7b.

VI. ACTIVE PARTICLES NEAR A
CORRUGATE WALL

We now turn to one last example involving impenetra-
ble walls. We study how active particles behave near a
corrugated wall (Figure 1d) and show how we can for-
mulate the boundary condition for such a wall. This ex-
ample is inspired by experiments on asymmetric gears in
bacterial baths showing that active particles can generate
tangential forces on an asymmetric boundary [11, 12], in
addition to simulations showing that asymmetric bound-
aries can transport active particles [36–38]. Thus, we
expect that a combination of asymmetry and activity
should lead to directional motion of either the bound-
ary or the particles. However, one of the counterintu-
itive results we will find here is that there is actually no
net transport of noninteracting active particles along an
asymmetric corrugated wall if the amplitude of the cor-
rugation is too small. More precisely, the net tangential
current of noninteracting active particles near an asym-
metric corrugate wall does not decrease to zero linearly
as the wall becomes flatter and flatter.

To set up the problem, suppose we have a boundary
with a shape y = h(x) with period 2L and characteristic
amplitude δ such that |h(x)| . δ. We can decompose the
shape into Fourier modes as

h(x) = δ

∞∑
k=−∞

hke
iπkx
L , (57)

where hk=0 = 0, that is, the shape of the boundary os-
cillates around y = 0. Assuming that the amplitude of
the shape is small compared to the length scale of accu-
mulation or δ � λ, we can write the distribution as

ρ̃(r̃, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃)e−η̃

2

Hmx(η̃x)Hmy (η̃y),

(58)
where we now expand the coefficients as

C(n)
m (r̃) ' a(n)

m (ỹ) + δ̃

∞∑
k=−∞

b
(n)
m;k(ỹ)e

iπkx̃
L̃ . (59)

The functions a
(n)
m (ỹ) are simply the solutions for a flat

wall with no corrugation, which we have already com-
puted in Section IV. The resulting equation for the un-

known coefficients b
(n)
m;k(ỹ) is

d2b
(n)
m;k

dỹ2
−
[
2(mx +my) +

π2k2

L̃2

]
b
(n)
m;k =

iπk

L̃
wx +

dwy
dỹ

,

(60)
where

wx = b
(n−1)
mx−1,my ;k + 2(mx + 1)b

(n−1)
mx+1,my ;k, (61a)

wy = b
(n−1)
mx,my−1;k + 2(my + 1)b

(n−1)
mx,my+1;k. (61b)



12

For the boundary condition, we require the normal com-
ponent of the current to be zero at the boundary or

J(x, h(x))·n̂ = 0, where n̂ is the normal to the boundary.
Assuming that δ � λ, we can linearize this boundary
condition to get (see Appendix E)

−
[
a

(n−1)
mx−1,my

(0) + 2(mx + 1)a
(n−1)
mx+1,my

(0)
] iπk
L̃
hk +

[
da

(n−1)
mx,my−1(0)

dỹ
+ 2(my + 1)

da
(n−1)
mx,my+1(0)

dỹ
− d2a

(n)
m (0)

dỹ2

]
hk

+ b
(n−1)
mx,my−1;k(0) + 2(my + 1)b

(n−1)
mx,my+1;k(0)−

db
(n)
m;k(0)

dỹ
= 0.

(62)

Determining the coefficients b
(n)
m;k(ỹ) is quite straightfor-

ward and the expressions can be found in Appendix E.
Let us start with the simplest case of h(x) = δ cos πxL or

hk=±1 = 1
2 . In particular, consider the density ρ(x, h(x))

along the boundary when the amplitude of the bound-
ary is small δ � λ and the wavelength is large L � λ.
For this slow varying boundary, the density along the
boundary to linear order in the amplitude is

ρ(x, h(x)) ' ρbulk

[
1 + ε2 − ε2δ π2λ√

2L2
cos

πx

L

]
. (63)

Notice that the last term, which captures the effect of

corrugation, is proportional to d2h
dx2 . Thus, the change in

density is related to the local curvature of the bound-
ary with more active particles accumulating on the con-
cave sections than on the convex sections. The correc-
tion due to the corrugation can be written as ε2ρbulk

λ√
2R

,

where R =
[
1 +

(
dh
dx

)2] 3
2
∣∣∣d2hdx2

∣∣∣−1

' L2

π2δ is the radius of

curvature at the maxima and minima of the corrugated
boundary. Note that this is in exact agreement with the
result for the densities outside and inside a large circular
boundary with radius R� λ (Eqs. (48) and (50)).

Let us now consider a more complex example. Sup-
pose we have a sawtooth-shaped boundary (Figure 8,
top) given by

h(x) =

{
−δ + 2δ

(1+ζ)L (x+ L), −L < x < ζL

δ − 2δ
(1−ζ)L (x− ζL), ζL < x < L

. (64)

The asymmetry is controlled by ζ, where ζ = 0 cor-
responds to a symmetric sawtooth. Unlike the simple
case of a cosine-shaped boundary, the sawtooth is not
twice differentiable near the sharp tips, and so curva-
ture is not well-defined. In Section V B, we studied how
the density at the tip of a wedge depended on the an-
gle of the wedge. Using a sawtooth-shaped boundary,
we can obtain the dependence of the density on angles
near 2α = π. Taking the slow-varying symmetric saw-
tooth with δ � λ and L � λ, the active particles
near the tip at x = 0 effectively see a wedge with an-
gle 2α ' π + 4δ

L , where δ > 0 and δ < 0 correspond

to convex and concave, respectively. Writing the density
as ρ(x, y) = ρbulk

[
1 + ε2∆(x, y)

]
, just as we did for the

wedge, we find that the correction to density at the tip
is (see Appendix E)

∆tip = ∆(0, δ) ≈ 1 +
4δ

L
S ' 1− 0.44(2α− π). (65)

Before we conclude this section, we briefly discuss the
currents of noninteracting weakly active particles in the
presence of a corrugated wall. The explicit forms of the
currents can be found in Appendix E. For a boundary
with an asymmetric shape, one expects there to be a net
flux of active particles along the boundary. For example
in suspensions of bacteria, it has been seen that swim-
ming bacteria can be directed by funnels and can rotate
gears with asymmetric teeth [10–12]. However, for our
case of an asymmetric sawtooth boundary and noninter-
acting weakly active particles, we find the surprising re-
sult that there is no net drift along the wall to linear order
in the amplitude δ of the corrugation. Mathematically,
this is easily explained by noticing that the coefficient
equation (Eq. (60)) and boundary condition (Eq. (62))
are all independent for each mode k. Since each mode is
a symmetric sine or cosine wave, none of them contribute
to a net drift. In addition, there is also no net tangential
force on the boundary by the same reasoning.

In order to get a net tangential drift or force along
the boundary, we need to couple modes with different k,
which can be done by introducing nonlinearities. There
are two possible ways to do this. The first way is go-
ing beyond the linearized boundary condition (Eq. (62))
and considering higher orders in the amplitude δ. In
fact, noting that the transformation δ → −δ should sim-
ply flip the direction of drift, the drift of noninteracting
weakly active particles due to an asymmetric corrugated
boundary should scale as δ3 for small amplitudes of cor-
rugation. This nonlinear scaling with amplitude of cor-
rugation has been seen in simulations of noninteracting
active particles [36]. The calculation for going beyond
the linearized boundary condition is rather involved and
will be reserved for a future work. The second possible
way is including interactions such as alignment between
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the active particles. Interactions may make it easier for
an asymmetric boundary to induce net fluxes. In fact, it
has been seen in simulations of aligning active particles
in corrugated channels that the net currents along the
channels can actually be linear in the amplitude of cor-
rugation [38], contrasting our result for noninteracting
active particles.

Note that while there is no net tangential drift to linear
order δ, there is still a local circulation of active particles
(Figure 8, bottom). These local fluxes of active parti-
cles towards the concave parts and away from the convex
parts of the boundary are responsible for the increases
and decreases of the densities in those parts, respectively.

VII. A PROBLEM IN SPHERICAL
COORDINATES: ABSORPTION OF ACTIVE

PARTICLES AROUND A SPHERE

For the final case, we will consider an absorbing bound-
ary as opposed to a impenetrable boundary, which has
been our focus thus far. In particular, let us consider
a uniform bath of weakly active particles in which we
place an absorbing sphere (Figure 1e). We are interested
in determining the steady-state rate at which these ac-
tive particles are absorbed and how that rate differs from
that of passive Brownian particles. For the absorption of
passive Brownian particles, this is known as the Smolu-
chowski problem [34].

In spherical coordinates, we write the dimensionless
distribution as

ρ̃(r̃, θ, φ, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃, θ, φ)

× e−η̃
2

Hmx(η̃x)Hmy (η̃y)Hmz (η̃z)

(66)

The coefficients satisfy

1

r̃2

∂

∂r̃

(
r̃2 ∂C

(n)
m

∂r̃

)
− 2(mx +my +mz)C

(n)
m

+
1

r̃2 sin θ

∂

∂θ

(
sin θ

∂C
(n)
m

∂θ

)
+

1

r̃2 sin2 θ

∂2C
(n)
m

∂φ2

=
1

r̃2

∂

∂r̃
(r̃2wr) +

1

r̃ sin θ

∂

∂θ
(sin θwθ) +

1

r̃ sin θ

∂wφ
∂φ

,

(67)

where the components of w in spherical coordinates are

wr = wx sin θ cosφ+ wy sin θ sinφ+ wz cos θ, (68a)

wθ = wx cos θ cosφ+ wy cos θ sinφ− wz sin θ, (68b)

wφ = −wx sinφ+ wy cosφ, (68c)

and

wx = C
(n−1)
mx−1,my,mz

+ 2(mx + 1)C
(n−1)
mx+1,my,mz

, (69a)

wy = C
(n−1)
mx,my−1,mz

+ 2(my + 1)C
(n−1)
mx,my+1,mz

, (69b)

wz = C
(n−1)
mx,my,mz−1 + 2(mz + 1)C

(n−1)
mx,my,mz+1. (69c)

If the sphere has a radius R, then the absorbing boundary
condition at r = R gives us the condition on the coeffi-

cients C
(n)
m (R̃, θ, φ, η̃) = 0. Details of the solution can be

found in Appendix F. Taking ρ(r, θ, φ,η) and integrating
out η, we obtain to order ε2 the density

ρ(r, θ, φ)

ρbulk
' 1− R

r
+ ε2

λ

λ+
√

2R

[
1− e−

√
2(r−R)
λ

] R
r
,

(70)

where ρbulk is the uniform density far from the sphere.
The first part is the familiar r−1 solution for passive
Brownian particles while the second part is the correc-
tion due to activity, which elevates the density near the
absorbing sphere. The radial current is

Jr(r, θ, φ) ' −ρbulkDpR

r2

(
1 + ε2

√
2R

λ+
√

2R

)
, (71)

from which we calculate the capture rate κ =
|
∫
Jr(R, θ, φ)R2 sin θ dθ dφ | as

κ ' κ0

(
1 + ε2

√
2R

λ+
√

2R

)
, (72)

where κ0 = 4πρbulkDpR is the well-known capture rate
for passive Brownian particles [34], which depends on the
radius and not the surface area of the sphere.

The correction due to activity is a new result. There
are two limits: a large target R � λ and a small tar-
get R � λ. For a large target, the time it takes the
weakly active particles to passively diffuse over a dis-
tance comparable to the radius of the absorber is much
longer than the persistence time (τ � R2/Dp). On this
time scale, the active particles appear effectively diffusive
and we find the capture rate κ ' 4πρbulkR(Dp + v2τ/3),
which can be interpreted as just that of a diffusing par-
ticle with effective diffusivity Deff = Dp + v2τ/3. For a
small target, however, the time it takes to diffuse over
the radius of the absorber is much shorter than the per-
sistence time (τ � R2/Dp). On this time scale, the
propulsions of the active particles appear persistent. We
find κ ' 4πρbulkR(Dp + v2τ

√
2R/3λ). Note that the

correction to the rate due to activity scales as R2, which
is related to the surface area or cross-sectional area of
the absorber. This is reminiscent of the capture rate
κ ∼ ρbulkvR

2 for a spherical absorber in an ideal gas of
ballistic particles [35], whose mean free paths are longer
than the radius of the sphere. One key difference of
course is that while the propulsions of our weakly active
particles appear persistent, their motions are still domi-
nated by passive Brownian diffusion. To summarize, in
both cases of a small and large target, we find that ac-
tivity increases the density and enhances capture rate of
active particles near an absorbing boundary.
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FIG. 8. Top: Sawtooth-shaped boundary defined by Eq. (64). Bottom: Currents J(x, y) = (Jx(x, y), Jy(x, y)) due to
sawtooth-shaped boundaries with asymmetry ζ = 0 (left) and ζ = 0.5 (right) computed using the first 20 modes of h(x).

VIII. DISCUSSION AND CONCLUSION

We studied how noninteracting weakly active parti-
cles, for which activity can be treated perturbatively, be-
have near various types of boundaries in different geome-
tries; for example, active particles moving on a line or
in a wedge-shaped region, interacting with a corrugated
wall, or absorbing around a sphere. The key to making
progress on this problem is to include passive Brownian
diffusion, which allows us not only to cleanly formulate
boundary conditions for the different types of boundaries
but also to solve the problem systematically. In other
words, by treating activity perturbatively, we can take
the solutions for passive Brownian particles, which are
often known, and use them to iteratively compute the
corrections due to the activity. We formulated a rela-
tively simple series solution for the distribution of active
particles that consists of an expansion in powers of the
Péclet number, which characterizes the strength of activ-
ity, and an expansion in terms of Hermite polynomials.
This series solution reduces the Fokker-Planck equation
for the distribution of active particles to a simpler partial
differential equation and in some cases, to an even sim-
pler ordinary differential equation. We summarize below
some of our main results for the different geometries.

By considering the simple cases of noninteracting
weakly active particles confined by one or two impen-
etrable walls in 1D (Section IV A), we found that the

active particles on average propel towards nearby walls.
This leads to accumulation and an increase in pressure
exerted on the walls. In particular, we found that the
pressure follows the ideal gas law but instead of being
proportional to the density in the bulk, it is proportional
to the increased density at the walls.

We also determined how the curvature of a boundary
affects the accumulation of weakly active particles (Sec-
tion V). For the case of a circular boundary, we found
that the accumulation is proportional to the curvature of
the boundary. This last result has been shown to hold
in the limit of strong activity [27–32]. Thus, our ap-
proach for studying the limit of weakly active particles
can potentially gain us insight into the opposite limit.
For the case of a wedge-shaped region, we found that as
the wedge angle decreases, active particles farther and
farther from the tip gain on average some propulsion to-
wards it. Interestingly, while this propulsion does in-
crease the density near the tip, we found that the ac-
cumulation has a rather weak dependence on the wedge
angle. This is due to passive Brownian diffusion which
tends to smooth out variations in density.

Finally, we have also obtained novel results for weakly
active particles near a corrugated boundary and around
an absorbing sphere. Near a corrugated boundary (Sec-
tion VI), particularly one shaped like an asymmetric saw-
tooth, we found that there is surprisingly no net trans-
port of noninteracting weakly active particles along the
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boundary to linear order in the amplitude δ of the cor-
rugation. This is due to the linearity of the boundary
condition and the Fourier modes that make up the shape
of the wall. We argued that in order to observe net cur-
rents we have to introduce nonlinearities such as going
beyond the linearized boundary condition or including
interactions between the active particles. For our case
of noninteracting weakly active particles, we expect to
see net currents at order δ3. A nonlinear dependence
on δ has been seen in simulations of noninteracting ac-
tive particles [36]. For interacting active particles, it is
more difficult to determine the dependence. However, it
has been observed in simulations that for active particles
with aligning interactions, the net current is linear in δ
[38], suggesting that interactions may enhance the trans-
port of active particles. For an absorbing sphere placed in
a bath of active particles (Section VII), we computed the
rate at which the weakly active particles are absorbed.
This is the active version of the Smoluchowski problem
[34] for passive Brownian particles. We found that activ-
ity elevates the density near the sphere and enhances the
absorption rate. Thus, activity may be useful in enhanc-
ing the self-assembly of colloidal structures [39].

Before we end this story, there are some interesting fu-
ture directions to consider. The first direction is finding
the exact solution for the distribution of noninteracting
active particles near the simplest case of a flat wall. By
“exact”, we mean a closed-form expression for the distri-
bution or, at a minimum, for all the coefficients in our
series solution. With the current approach, one can sys-
tematically compute higher and higher orders. However,
the expressions, though straightforward, become increas-
ingly cumbersome to write down. The goal would be to
find a pattern in the coefficients that one can exploit.
Finding a clean way to do this could aid us in finding
more exact solutions in other interesting geometries.

The second direction is going beyond the linearized
boundary condition for a corrugated boundary. As we
found, there is no net transport of noninteracting active
particles or net tangential force along an asymmetrically-
shaped boundary to linear order in the amplitude of the
corrugation. In order to observe net tangential currents
or forces, one will need to consider higher orders in the
amplitude. It would be interesting to perform this calcu-
lation and to analytically compute how fast active parti-
cles are transported by an asymmetric wall or how fast an
asymmetric wall is pushed like a gear by active particles.

Finally, it would be interesting to extend the approach
developed here to more realistic models of active parti-
cles. This includes studying other models of active par-
ticles such as active Brownian particles, which typically
model many types of self-propelled colloids [6, 7], and
run-and-tumble particles, which typically model bacteria
[4]. More generally, it may be interesting to study models
where the correlations are not exponential or the persis-
tence times have a broad distribution, as has been seen
in some bacterial systems [40]. An important question is
whether there are critical differences between the many

models of active particles, for example, when interacting
with boundaries. In addition to studying different models
of active particles, it would also be interesting to include
interactions between particles in our approach. It has
been seen that a simple repulsive interaction can have
significant effects on the density and pressure of active
particles [9, 41]. Similarly, as was discussed, interactions
may affect the transport of active particles in corrugated
channels [36, 38].
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Appendix A: Mathematical preliminaries

1. Hermite polynomials

The dynamics of the active force η (Eq. 3) can be
mapped to an overdamped particle in a quadratic po-
tential. Naturally, Hermite polynomials should come in
handy. Consider the ODE

d2F

dη̃2
+ 2

d

dη̃
(η̃F ) + κ2F = 0. (A1)

Note that the first two terms are the active parts of the
Fokker-Planck equation for the distribution active parti-

cles (Eq. (5)). Taking F (η̃) = e−η̃
2

H(η̃), we have

d2H

dη̃2
− 2η̃

dH

dη̃
+ κ2H = 0. (A2)

The solutions satisfying the condition that F (η̃) decays
sufficiently quickly as |η̃| → 0 are Hermite polynomials
Hm(η̃) with eigenvalues κ2 = 2m. The first few are

H0(η̃) = 1 (A3a)

H1(η̃) = 2η̃ (A3b)

H2(η̃) = 4η̃2 − 2 (A3c)

H3(η̃) = 8η̃3 − 12η̃ (A3d)

H4(η̃) = 16η̃4 − 48η̃2 + 12 (A3e)

These satisfy the orthogonality relation∫ ∞
−∞

dη̃ e−η̃
2

Hn(η̃)Hm(η̃) =
√
π 2nn! δn,m. (A4)

A few useful recursion relations are

2η̃Hm(η̃) = Hm+1(η̃) + 2mHm−1(η̃), (A5)
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and

dHm

dη̃
= 2mHm−1. (A6)

For higher dimensions, we will instead have the PDE

∇2
η̃F + 2∇η̃ · (η̃F ) + κ2F = 0, (A7)

the eigenfunctions of which are simply

F (η̃) = e−η̃
2
d∏
i=1

Hmi(η̃i) (A8)

with eigenvalues κ2 = 2(m1 + · · ·+md). This easy gen-
eralization to higher dimensions is one benefit of our ap-
proach.

2. Modified Bessel functions

For problems in polar coordinates, the coefficient equa-
tion will often be of the form

1

r̃

∂

∂r̃

(
r̃
∂F

∂r̃

)
+

1

r̃2

∂2F

∂θ2
− κ2F = 0, (A9)

where κ2 = 2(mx +my). Writing F (r̃, θ) = G(r̃)eiµθ, we
have the ODE

1

r̃

d

dr̃

(
r̃
dG

dr̃

)
−
(
µ2

r̃2
+ κ2

)
G = 0, (A10)

The solutions to this ODE are the modified Bessel func-
tions of the first and second kinds Iµ(κr̃),Kµ(κr̃). A few
useful recursion relations are

2µ

κr̃
Iµ(κr̃) = Iµ−1(κr̃)− Iµ+1(κr̃), (A11a)

2

κ

dIµ(κr̃)

dr̃
= Iµ−1(κr̃) + Iµ+1(κr̃), (A11b)

−2µ

κr̃
Kµ(κr̃) = Kµ−1(κr̃)−Kµ+1(κr̃), (A11c)

− 2

κ

dKµ(κr̃)

dr̃
= Kµ−1(κr̃) +Kµ+1(κr̃). (A11d)

There are some useful asymptotic forms. For κr̃ � 1, we
have

Iµ(κr̃) ' 1√
2πκr̃

eκr̃
(

1− 4µ2 − 1

8κr̃

)
, (A12a)

Kµ(κr̃) '
√

π

2κr̃
e−κr̃

(
1 +

4µ2 − 1

8κr̃

)
. (A12b)

For κr̃ � 1, we have

Iµ(κr̃) ' 1

Γ(µ+ 1)

(
κr̃

2

)µ
, (A13a)

Kµ(κr̃) '

{
− ln

(
κr̃
2

)
− γ, µ = 0

Γ(µ)
2

(
2
κr̃

)µ
, µ > 0

. (A13b)

For problems in spherical coordinates, modified spher-
ical Bessel functions will instead be used. The PDE we
will be dealing with is of the form

1

r̃2

∂

∂r̃

(
r̃2 ∂F

∂r̃

)
− κ2F

+
1

r̃2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

r̃2 sin2 θ

∂2F

∂φ2
= 0,

(A14)

where κ2 = 2(mx + my + mz). Defining F (r, θ, φ) =
G(r)Y ml (θ, φ), where Y ml are spherical harmonics, we ob-
tain the ODE

1

r̃2

∂

∂r̃

(
r̃2 ∂G

∂r̃

)
−
[
l(l + 1)

r̃2
+ κ2

]
G = 0. (A15)

The solutions to this ODE are the modified spher-
ical Bessel functions of the first and second kinds
il(κr̃), kl(κr̃). For our purposes, we only use the latter,
the first few of which are

k0(κr̃) =
e−κr̃

κr̃
, (A16a)

k1(κr̃) =
e−κr̃(κr̃ + 1)

κ2r̃2
, (A16b)

k2(κr̃) =
e−κr̃(κ2r̃2 + 3κr̃ + 3)

κ3r̃3
. (A16c)

Two useful recursion relations are

−2l + 1

κr̃
kl(κr̃) = kl−1(κr̃)− kl+1(κr̃), (A17a)

−2l + 1

κ

dkl(κr̃)

dr̃
= lkl−1(κr̃) + (l + 1)kl+1(κr̃). (A17b)

3. Kontorovich-Lebedev and Mellin transforms

In wedge-like geometries 0 < r < ∞ and θ1 < θ < θ2,
we no longer have periodicity in θ. In addition, the den-
sity must remain finite as r → 0 or r →∞. This requires
the use of modified Bessel functions with purely imag-
inary order Kiν . This gives rise to the Kontorovich-
Lebedev (KL) transforms, which are often used for
various problems in wedge-shaped geometries [42–46].
The pair of transforms is given by

F (ν, θ) =

∫ ∞
0

f(r, θ)Kiν(κr̃)
dr̃

r̃
, (A18a)

f(r̃, θ) =
2

π2

∫ ∞
−∞

F (ν, θ)Kiν(κr̃)ν sinh(πν)dν. (A18b)

A table of such transforms can be found in [47]. It is use-
ful to note that Kiν satisfies the same recursion relations
as Kµ (Eqs. (A11)). To use the transforms, we start by
noting that Kiν(κr̃) satisfies

1

r̃

d

dr̃

(
r̃
dKiν

dr̃

)
−
(
κ2 − ν2

r̃2

)
Kiν = 0. (A19)
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Thus, given a PDE of the form

1

r̃

∂

∂r̃

(
r̃
∂C

∂r̃

)
+

1

r̃2

∂2C

∂θ2
− κ2C = 0, (A20)

the KL transform reduces this PDE to the simple ODE

d2Ĉ

dθ2
= ν2Ĉ, (A21)

which has the general solution

Ĉ(ν, θ) = a(ν)eνθ + b(ν)e−νθ. (A22)

The functions a(ν), b(ν) can be determined by applying
the KL transform to the boundary condition on C(r, θ).
A useful identity [44] for doing so is∫ ∞

0

Kiν(κr̃)dr̃ =
π

2κ cosh νπ/2
, (A23)

which can be derived from the integral definition

Kiν(κr̃) =

∫ ∞
0

e−κr̃ cosh t cos(νt)dt. (A24)

Another transform is the Mellin transform, which is
applicable to the case of κ = 0 in Eq. (A19). The pair of
transformations is

F (z, θ) =

∫ ∞
0

f(r̃, θ)r̃z−1dr̃, (A25a)

f(r̃, θ) =

∫ c+i∞

c−i∞
F (z, θ)r̃−z

dz

2πi
, (A25b)

where c is chosen such that there are no poles for Re(z) >
c. Since for our situation density must be finite, we can
set c = 0 for physical reasons; otherwise we will have
divergences as r̃ → 0. A table of Mellin transforms can
be found in [48].

Appendix B: Series solution in arbitrary dimensions

We show here the series solution in d dimensions. Just
as before, we expand the density in powers of ε as

ρ̃(r̃, η̃) =

∞∑
n=0

εnρ̃(n)(r̃, η̃). (B1)

Substituting this into the dimensionless Fokker-Planck
equation (Eq. (9)), we arrive at

∇2
rρ̃

(n) +∇2
ηρ̃

(n) + 2∇η ·
(
η̃ρ̃(n)

)
= 2η̃ ·∇rρ̃

(n−1). (B2)

The expansion in Hermite polynomials is the same as in
1D, except now we have a Hermite polynomial for each
component of η̃. Thus, writing each order of the density
as

ρ̃(n)(r̃, η̃) =
∑
m

C(n)
m (r̃)e−η̃

2
d∏
i=1

Hmi(η̃i), (B3)

we reduce the problem to solving for the coefficients

C
(n)
m (r̃) = C

(n)
m1,...,md(r̃), which satisfy a Helmholtz-type

equation

∇2
rC

(n)
m − 2

(
d∑
i=1

mi

)
C(n)
m = ∇ ·w, (B4)

where the components of w are

wα = C
(n−1)
m;mα−1 + 2(mα + 1)C

(n−1)
m;mα+1. (B5)

Here, C
(n−1)
m;mα−1 denotes the coefficient C

(n−1)
m1,...,mα−1,...,md

.

The currents J̃r = 2εη̃ρ̃ −∇rρ̃ and J̃η = −2η̃ρ̃ −∇ηρ̃
are

J̃r =

∞∑
n=0

εn
∑
m

[
w −∇rC

(n)
m

]
e−η̃

2
d∏
i=1

Hmi(η̃i),

(B6a)

J̃η,α =

∞∑
n=0

εn
∑
m

[
−2(mα + 1)C

(n)
m;mα+1

]
× e−η̃

2
d∏
i=1

Hmi(η̃i).

(B6b)

It is worth noting that for most of the problems we
solve here, we only need to consider a few coefficients. We
briefly summarize the general procedure in 1D. Passive

particles are characterized by C
(0)
0 . Using this, we can

determine the next nonzero coefficient C
(1)
1 . Continuing,

we will have C
(2)
0 , C

(2)
2 followed by C

(3)
1 , C

(3)
3 , and so on.

In other words, the nonzero coefficients C
(n)
m for most of

our problems will often alternate between even and odd
m as we go to higher and higher orders n.

It is also worth noting that if we are interested in,
for example, the density ρ̃(r̃), then integrating out the
active force η̃ and using the orthogonality of Hermite
polynomials will leave us with only the m = (0, 0, . . . , 0)
terms or

ρ̃(r̃) = πd/2
∞∑
n=0

εnC
(n)
0,0,...,0(r̃). (B7)

Appendix C: Cartesian coordinates

To summarize for 1D, we expand the density as

ρ(x̃, η̃) =

∞∑
n=0

εn
∞∑
m=0

C(n)
m (x̃)e−η̃

2

Hm(η̃), (C1)

where the coefficients C
(n)
m (x̃) satisfy the ODE

d2C
(n)
m

dx̃2
− 2mC(n)

m =
d

dx̃

[
C

(n−1)
m−1 + 2(m+ 1)C

(n−1)
m+1

]
.

(C2)
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The current J̃(x̃, η̃) along x is

J̃x =

∞∑
n=0

εn
∞∑
m=0

[
C

(n−1)
m−1 + 2(m+ 1)C

(n−1)
m+1 −

dC
(n)
m

dx̃

]
× e−η̃

2

Hm(η̃).

(C3)

1. 1D semi-infinite domain: one wall

By setting J̃(x̃, η̃) = 0 and using the orthogonality
of Hermite polynomials, we find that the zero current
boundary condition for a single wall at x̃ = 0 gives the
following condition on the coefficients

dC
(n)
m (0)

dx̃
= C

(n−1)
m−1 (0) + 2(m+ 1)C

(n−1)
m+1 (0). (C4)

To start, we note that the n = 0 order corresponds to a
passively diffusing particle whose spacial density will be
constant everywhere and the dimensionless active force
η̃ will be Gaussian distributed in steady state. Thus, we
have

C(0)
m (x̃) = N δm,0, (C5)

where N = ρbulk

√
2Dpτ/π is the normalization. Using

the zeroth order solution, we can compute the next order
n = 1 to get

C(1)
m (x̃) = −N

√
2

2
e−
√

2x̃δm,1. (C6)

For n = 2, we have

C(2)
m (x̃) = N e−

√
2x̃δm,0 +

N
2

[√
2e−2x̃ − e−

√
2x̃
]
δm,2.

(C7)
For the next two orders, we will only show the solutions
necessary for obtaining the ε4 correction to density in Eq.
(18). For n = 3, we have

C
(3)
1 (x̃) = N

[(√
2

4
+ 1− x̃

2

)
e−
√

2x̃ − 2
√

2e−2x̃

]
.

(C8)
At this order, the other nonzero solution is for m = 3.
For n = 4, we have

C
(4)
0 (x̃) = 2N

√
2

[(
x̃

4
− 1

)
e−
√

2x̃ + e−2x̃

]
. (C9)

At this order, the other nonzero solutions are for m =
2, 4.

2. 1D finite domain: two walls

The approach here is the similar to Section C 1. The
only difference is we now have zero current boundary

conditions at the two walls at x̃ = ±L̃ or

dC
(n)
m (±L̃)

dx̃
= C

(n−1)
m−1 (±L̃) + 2(m+ 1)C

(n−1)
m+1 (±L̃),

(C10)
and a finite number of particles N between the walls. For
n = 0 we have

C(0)
m (x̃) = N δm,0, (C11)

where N = N
2L

√
2Dpτ
π . For n = 1, we get

C(1)
m (x̃) =

N
√

2 sinh
√

2x̃

2 cosh
√

2L̃
δm,1. (C12)

For n = 2 and beyond, we have to enforce that the num-
ber of particles between the two walls does not change as
we go to higher orders. This condition is∫ L̃

−L̃
C

(n)
0 (x̃)dx̃ = 0, (C13)

for n > 0. Thus, we have for m = 0

C
(2)
0 (x̃) = N

(
cosh

√
2x̃

cosh
√

2L̃
− tanh

√
2L̃√

2L̃

)
. (C14)

The other nonzero solution is for m = 2.

3. Ramp potentials and pressure

To compute the pressure on solid walls, we start by
representing the boundaries as soft confining potentials
(Figure 9) and then taking the limit as those potentials
become steep. We will focus on the case of two walls at
x = ±L since the case of one wall can be obtained from
the limit L→∞. Consider the confining potential

U(x) =


−f(x+ L), x < −L
0, −L < x < L

f(x− L), x > L

(C15)

We split the density into three pieces ρ̃A, ρ̃B , and ρ̃C
for the regions x̃ < −L̃, −L̃ < x̃ < L̃, and L̃ < x̃,
respectively. We write the densities in the form

ρ̃A(x̃, η̃) =

∞∑
n=0

εn
∞∑
m=0

A(n)
m (x̃)e−η̃

2

Hm(η̃), (C16a)

ρ̃B(x̃, η̃) =

∞∑
n=0

εn
∞∑
m=0

B(n)
m (x̃)e−η̃

2

Hm(η̃), (C16b)

ρ̃C(x̃, η̃) =

∞∑
n=0

εn
∞∑
m=0

C(n)
m (x̃)e−η̃

2

Hm(η̃). (C16c)

The coefficient equations corresponding to each region
are

d2A
(n)
m

dx̃2
− f̃ dA

(n)
m

dx̃
− 2mA(n)

m =
dwA
dx̃

, (C17a)
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FIG. 9. Representation of solid boundaries as ramp potentials

d2B
(n)
m

dx̃2
− 2mB(n)

m =
dwB
dx̃

, (C17b)

d2C
(n)
m

dx̃2
+ f̃

dC
(n)
m

dx̃
− 2mC(n)

m =
dwC
dx̃

, (C17c)

where f̃ = 2fτ

γ
√

2Dpτ
and

wA = A
(n−1)
m−1 + (m+ 1)A

(n−1)
m+1 , (C18a)

wB = B
(n−1)
m−1 + (m+ 1)B

(n−1)
m+1 , (C18b)

wC = C
(n−1)
m−1 + (m+ 1)C

(n−1)
m+1 . (C18c)

The boundary conditions (continuity in density and cur-

rent) at x̃ = ±L̃ are

A(n)
m (−L̃) = B(n)

m (−L̃), (C19a)

f̃A(n)
m (−L̃)− dA

(n)
m (−L̃)

dx̃
= −dB

(n)
m (−L̃)

dx̃
, (C19b)

B(n)
m (L̃) = C(n)

m (L̃), (C19c)

−dB
(n)
m (L̃)

dx̃
= −f̃C(n)

m (L̃)− dC
(n)
m (L̃)

dx̃
.

(C19d)

Just as before, n = 0 corresponds to a passive particle
diffusing within the confining potential and the coeffi-
cients are

A(0)
m (x̃) = N ef̃(x̃+L̃)δm,0, (C20a)

B(0)
m (x̃) = N δm,0, (C20b)

C(0)
m (x̃) = N e−f̃(x̃−L̃)δm,0, (C20c)

which is related to the Boltzmann distribution. For
n = 1, we get

A(1)
m (x̃) =

[
a

(1)
1 eκ1,+(x̃+L̃) − N f̃

2
ef̃(x̃+L̃)

]
δm,1, (C21a)

B(1)
m (x̃) = b

(1)
1 sinh

√
2x̃δm,1, (C21b)

C(1)
m (x̃) =

[
c
(1)
1 e−κ1,+(x̃−L̃) +

N f̃
2
e−f̃(x̃−L̃)

]
δm,1,

(C21c)

where

a
(1)
1 = −c(1)

1 =
N f̃
√

2

2(
√

2− κ1,− tanh
√

2L̃)
, (C22a)

b
(1)
1 = − N f̃κ1,−

2(
√

2 cosh
√

2L̃− κ1,− sinh
√

2L̃)
, (C22b)

and

κ1,± =
1

2

(
f̃ ±

√
f̃2 + 8m

)
. (C23)

For n = 2, we will focus on the m = 0 contribution since
we are only interested in the pressure, which only requires
knowing the density. We have the general solutions

A
(2)
0 (x̃) = a

(2)
0 ef̃(x̃+L̃) −N f̃(x̃+ L̃)ef̃(x̃+L̃)

+ κ1,+a
(1)
1 eκ1,+(x̃+L̃),

(C24a)

B
(2)
0 (x̃) = b

(2)
0 + b

(1)
1

√
2 cosh

√
2x̃, (C24b)

C
(2)
0 (x̃) = c

(2)
0 e−f̃(x̃−L̃) +N f̃(x̃− L̃)e−f̃(x̃−L̃)

− κ1,+c
(1)
1 e−κ1,+(x̃−L̃),

(C24c)

where we wish to determine a
(2)
0 , b

(2)
0 , c

(2)
0 . In addition

to continuity in density and current, we require that all
higher orders n > 0 do not change the number of particles
between the walls. This condition is

∫ −L̃
−∞

A
(2)
0 (x̃)dx̃+

∫ L̃

−L̃
B

(2)
0 (x̃)dx̃+

∫ ∞
L̃

C
(2)
0 (x̃)dx̃ = 0.

(C25)
Thus, we find

a
(2)
0 = c

(2)
0

= − N
2(1 + f̃ L̃)

[
2 + f̃2 +

√
2f̃3L̃√

2− κ1,− tanh
√

2L̃

]
,

(C26a)

b
(2)
0 = − N

1 + f̃ L̃

[
1− f̃2κ1,− tanh

√
2L̃

2(
√

2− κ1,− tanh
√

2L̃)

]
.

(C26b)

Knowing the density, we can then compute the pressure,
say for the wall at x = L, to obtain
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P =

∫ ∞
L

fρ(x)dx ' Nf

2(1 + fL
kBT

)

1 +
ε2

1 + fL
kBT

 fL

kBT
−

2f2τ
kBTγ

tanh
√

2L
λ√

f2τ
kBTγ

+
√

f2τ
kBTγ

+ 4 + 2 tanh
√

2L
λ

 , (C27)

where we used the Einstein relation Dpγ = kBT . Note
that for a finite sized system, the pressure depends on
the confining potential (in this case, on f). This depen-
dence disappears if we take L → ∞, that is, when we
have a bulk where active particles are unaffected by the
boundary. In the limit of a solid boundary (f →∞), this
pressure becomes

P '
f→∞

N

2L
kBT

[
1 + ε2

(
1− tanh

√
2L̃√

2L̃

)]
. (C28)

4. Exactly solvable model of 1D run-and-tumble
with passive diffusion

In the main text, we found that the pressure of active
particles on a solid boundary is approximately given by
P ' ρwallkBT . We show here, using an exactly solvable
model of run-and-tumble particles, that this relation for
pressure is exact. The steady-state Fokker-Planck equa-
tions for 1D run-and-tumble particles with passive diffu-
sion are

0 =
d

dx

[(
−v +

U ′

γ

)
ρ+

]
+Dp

d2ρ+

dx2
− αρ+ + αρ−,

(C29a)

0 =
d

dx

[(
v +

U ′

γ

)
ρ−

]
+Dp

d2ρ−
dx2

+ αρ+ − αρ−,

(C29b)

where ρ+, ρ− are the densities of left- and right-moving
particles, v is the swim speed, α is the tumble rate, and
U is a confining potential that is zero in a region −L <
x < L between the walls. To determine the pressure, we
manipulate Eqs. (C29a) and (C29b) a bit. We start by
adding the two equations to get

0 =
d

dx

[
−v̄(x)ρ+

U ′

γ
ρ

]
+Dp

d2ρ

dx2
, (C30)

where v̄ρ = v(ρ+ − ρ−) and ρ = ρ+ + ρ−. In 1D, the
current in x must be zero, and so we have the relation

v̄ρ =
U ′

γ
ρ+Dp

dρ

dx
. (C31)

Multiplying Eqs. (C29a) and (C29b) by −v and subtract-
ing, we have

0 =
d

dx

(
v2ρ− U ′

γ
v̄ρ

)
−Dp

d2

dx2
(v̄ρ) + 2αv̄ρ. (C32)

Substituting in the relation (Eq. C31) for v̄ρ, we have

0 =
d

dx

[
v2ρ−

(
U ′

γ

)2

ρ− U ′

γ
Dp

dρ

dx

]

−Dp
d2

dx2

(
U ′

γ
ρ+Dp

dρ

dx

)
+ 2α

(
U ′

γ
ρ+Dp

dρ

dx

)
.

(C33)

Finally, integrating from deep inside a wall to a point
−L < x0 < L between the walls, we find the mechanical
pressure on the left wall

P = −
∫ x0

−∞
U ′ρdx

=

(
Dp +

v2

2α

)
γρ(x0)−

D2
pγ

2α

d2ρ(x0)

dx2
.

(C34)

This is valid in the limit of hard walls since it is indepen-
dent of U(x), and so what remains is determining ρ(x)
between two hard walls at x = ±L with U = 0. The zero
current boundary conditions are

vρ+(±L)−Dp
dρ+(±L)

dx
= 0 (C35a)

−vρ−(±L)−Dp
dρ−(±L)

dx
= 0 (C35b)

Defining q± = ∂ρ±
∂x , Eqs. (C29a) and (C29b) can be

rewritten as

d

dx


ρ+

ρ−
q+

q−

 =


0 0 1 0

0 0 0 1
α
Dp

− α
Dp

v
Dp

0

− α
Dp

α
Dp

0 − v
Dp



ρ+

ρ−
q+

q−

 . (C36)

The eigenvalues of the matrix are 0, 0,± 1
Dp

√
v2 + 2αDp.

The general solutions obeying the symmetry ρ+(x) =
ρ−(−x) are therefore

ρ+(x) = c0 + c1e
x
λ + c2e

− xλ , (C37a)

ρ−(x) = c0 + c2e
x
λ + c1e

− xλ , (C37b)

where λ =
Dp√

v2+2αDp
. Applying the zero current bound-

ary conditions at x = ±L and fixing the number of par-
ticles as N , we find

ρ±(x) =
N

2L+ v2λ
αDp

tanh L
λ

×

[
1

2
+

v2 cosh x
λ

4αDp cosh L
λ

±
v sinh x

λ

4αλ cosh L
λ

]
.

(C38)



21

The density is thus

ρ(x) = ρ+(x) + ρ−(x)

=
N

2L+ v2λ
αDp

tanh L
λ

(
1 +

v2 cosh x
λ

2αDp cosh L
λ

)
,

(C39)

which gives us the pressure

P =
NDpγ

2L+ v2λ
αDp

tanh L
λ

(
1 +

v2

2αDp

)
= ρ(±L)Dpγ = ρwallDpγ

(C40)

Using Einstein’s relation Dpγ = kBT , we have P =
ρwallkBT .

5. 2D right-angled corner

In this case, we write the density as

ρ(r̃, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃)e−η̃

2

Hmx(η̃x)Hmy (η̃y).

(C41)
The coefficients satisfy

∂2C
(n)
m

∂x̃2
+
∂2C

(n)
m

∂ỹ2
− 2(mx +my)C(n)

m =
∂wx
∂x̃

+
∂wy
∂ỹ

,

(C42)
where

wx = C
(n−1)
mx−1,my

+ 2(mx + 1)C
(n−1)
mx+1,my

, (C43a)

wy = C
(n−1)
mx,my−1 + 2(my + 1)C

(n−1)
mx,my+1. (C43b)

The zero current boundary conditions for each wall are

∂C
(n)
m (0, ỹ)

∂x̃
= wx(0, ỹ), (C44a)

∂C
(n)
m (x̃, 0)

∂ỹ
= wy(x̃, 0). (C44b)

Note that part of the solution will be the sum of dis-
tributions of each wall if it were by itself since the the
coefficient equation and boundary conditions are linear.
This observation will help us get started. There are how-
ever additional terms due to the walls meeting near the
origin, which we highlighted in Section IV B. For n = 0,
we have the usual constant density

C(0)
mx,my (x̃, ỹ) = N δmx,0δmy,0, (C45)

where for 2D the normalization is N = ρbulk
2Dpτ
π . For

n = 1,

C(1)
mx,my (x̃, ỹ) =− N

√
2

2
e−
√

2x̃δmx,1δmy,0

− N
√

2

2
e−
√

2ỹδmx,0δmy,1.

(C46)

For n = 2,

C(2)
mx,my (x̃, ỹ) = N

(
e−
√

2x̃ + e−
√

2ỹ
)
δmx,0δmy,0

+
N
2

(√
2e−2x̃ − e−

√
2x̃
)
δmx,2δmy,0

+
N
2

(√
2e−2ỹ − e−

√
2ỹ
)
δmx,0δmy,2

+
N
2
e−
√

2x̃e−
√

2ỹδmx,1δmy,1.

(C47)

Note that the (mx,my) = (1, 1) term does not result
from the sum of solutions for the individual walls. For
the next two orders, we only show the terms necessary
for obtaining the density Eq. (38). For n = 3, we have

C
(3)
1,0(x̃, ỹ) = N

[(√
2

4
+ 2− x̃

2

)
e−
√

2x̃ − 2
√

2e−2x̃

]

− N
√

2

2
e−
√

2x̃e−
√

2ỹ,

(C48)

C
(3)
0,1(x̃, ỹ) = N

[(√
2

4
+ 2− ỹ

2

)
e−
√

2ỹ − 2
√

2e−2ỹ

]

− N
√

2

2
e−
√

2x̃e−
√

2ỹ.

(C49)

Finally, for n = 4,

C
(4)
0,0(x̃, ỹ) = 2N

√
2

[
e−2x̃ +

(
x̃

4
− 1

)
e−
√

2x̃

]
+ 2N

√
2

[
e−2ỹ +

(
ỹ

4
− 1

)
e−
√

2ỹ

]
+N e−

√
2x̃e−

√
2ỹ.

(C50)

Appendix D: Polar coordinates

For problems that require polar coordinates, we write
the distribution of active particles as

ρ̃(r̃, θ, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃, θ)e−η̃

2

Hmx(η̃x)Hmy (η̃y).

(D1)

The coefficient equation we want to solve in those cases
is of the form

1

r̃

∂

∂r̃

(
r̃
∂C

(n)
m

∂r̃

)
+

1

r̃2

∂2C
(n)
m

∂θ2
− 2(mx +my)C(n)

m

=
1

r̃

∂

∂r̃
(r̃wr) +

1

r̃

∂wθ
∂θ

,

(D2)
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where

wr =
[
C

(n−1)
mx−1,my

+ 2(mx + 1)C
(n−1)
mx+1,my

]
cos θ

+
[
C

(n−1)
mx,my−1 + 2(my + 1)C

(n−1)
mx,my+1

]
sin θ,

(D3a)

wθ = −
[
C

(n−1)
mx−1,my

+ 2(mx + 1)C
(n−1)
mx+1,my

]
sin θ

+
[
C

(n−1)
mx,my−1 + 2(my + 1)C

(n−1)
mx,my+1

]
cos θ.

(D3b)

The radial and tangential currents are given by

J̃r(r̃, θ, η̃) =

∞∑
n=0

εn
∑
m

[
wr −

∂C
(n)
m

∂r̃

]
× e−η̃

2

Hmx(η̃x)Hmy (η̃y),

(D4a)

J̃θ(r̃, θ, η̃) =

∞∑
n=0

εn
∑
m

[
wθ −

1

r̃

∂C
(n)
m

∂θ

]
× e−η̃

2

Hmx(η̃x)Hmy (η̃y).

(D4b)

1. Solution for a circular boundary

The zero current boundary condition for a solid circu-
lar boundary with radius R is

∂C
(n)
mx,my (R̃, θ)

dr̃
= wr(R̃, θ). (D5)

For n = 0, we have

C(0)
mx,my (r̃, θ) = N δmx,0δmy,0, (D6)

both inside and outside the circular boundary. Inside
the circular boundary, the normalization is N = N

πR2 ·
2Dpτ
π , where N is the number of particles. Outside, the

normalization is N = ρbulk
2Dpτ
π . For n = 1, we have for

r̃ < R̃

C(1)
mx,my (r̃, θ) =

N
√

2I1(
√

2r̃)

I0(
√

2R̃) + I2(
√

2R̃)

× (cos θδmx,1δmy,0 + sin θδmx,0δmy,1),

(D7)

and for r̃ > R̃,

C(1)
mx,my (r̃, θ) = − N

√
2K1(

√
2r̃)

K0(
√

2R̃+K2(
√

2R̃))

× (cos θδmx,1δmy,0 + sin θδmx,0δmy,1),

(D8)

where Iµ,Kµ are modified Bessel functions of the first
and second kinds, respectively. For n = 2, we focus on
(mx,my) = (0, 0) since we are only interested in the den-

sity. For r̃ < R̃, we must make sure that the number of
particles remains fixed. This condition is∫ R

0

∫ 2π

0

C
(2)
0,0(r̃, θ)r̃dr̃dθ = 0. (D9)

Thus, we have

C
(2)
0,0(r̃, θ) =

2N
[
I2(
√

2R̃)− I0(
√

2R̃) + I0(
√

2r̃)
]

I0(
√

2R̃) + I2(
√

2R̃)
.

(D10)

For r̃ > R̃,

C
(2)
0,0(r̃, θ) =

2NK0(
√

2r̃)

K0(
√

2R̃) +K2(
√

2R̃)
. (D11)

2. Solution for a wedge-shaped region

The zero current boundary condition for each wall of
the wedge is J̃θ(r̃,±α, η̃) = 0. In terms of the coefficients,
we have the condition

1

r̃

∂C
(n)
mx,my (r̃,±α)

∂θ
= wθ(r̃,±α). (D12)

For n = 0, we should have a uniform density of passive
particles or

C(0)
mx,my (r̃, θ) = N δmx,0δmy,0. (D13)

For higher orders, we have to make use of the
Kontorovich-Lebedev (KL) transform. The KL trans-
form of our coefficients is defined as (for mx +my > 0)

Ĉ(n)
m (ν, θ) =

∫ ∞
0

C(n)
m (r̃, θ)Kiν

(√
2(mx +my) r̃

)
dr̃

r̃
.

(D14)
For n = 1, the coefficient equation is

1

r̃

∂

∂r̃

(
r̃
∂C

(1)
m

∂r̃

)
+

1

r̃2

∂2C
(1)
m

∂θ2
− 2(mx +my)C(1)

m = 0.

(D15)
Applying the KL transform, this coefficient equation be-
comes

∂2Ĉ
(1)
m

∂θ2
= ν2Ĉ(1)

m . (D16)

The zero current boundary condition at this order is

1

r̃

∂C
(1)
m (r̃,±α)

∂θ
= N (cosαδmx,0δmy,1 ∓ sinαδmx,1δmy,0).

(D17)
Applying the KL transform and using Eq. (A23), the
boundary condition becomes

∂Ĉ
(1)
m (ν,±α)

∂θ
=

Nπ
2
√

2 cosh νπ/2

× (cosαδmx,0δmy,1 ∓ sinαδmx,1δmy,0).

(D18)

The solution is
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Ĉ(1)
m (ν, θ) =

Nπ
√

2 cosα sinh νθ

4ν cosh νπ
2 cosh να

δmx,0δmy,1 −
Nπ
√

2 sinα cosh νθ

4ν cosh νπ
2 sinh να

δmx,1δmy,0. (D19)

Taking the inverse KL transform, we have

C(1)
m (r̃, θ) =

N
√

2 cosαδmx,0δmy,1

π

∫ ∞
0

sinh νπ
2 sinh νθ

cosh να
Kiν(

√
2r̃)dν

−
N
√

2 sinαδmx,1δmy,0

π

∫ ∞
0

sinh νπ
2 cosh νθ

sinh να
Kiν(

√
2r̃)dν.

(D20)

For n = 2, we will focus on the (mx,my) = (0, 0) solution. Using the n = 1 solution and the recursion relations Eqs.
(A11), we have for the coefficient equation

1

r̃

∂

∂r̃

(
r̃
∂C

(2)
0,0

∂r̃

)
+

1

r̃2

∂2C
(2)
0,0

∂θ2
=

2N
π

∫ ∞
0

sinh
νπ

2

(
sinα

sinh να
+ i

cosα

cosh να

)
cos[(iν − 1)θ]Kiν−1(

√
2r̃)dν

+
2N
π

∫ ∞
0

sinh
νπ

2

(
sinα

sinh να
− i cosα

cosh να

)
cos[(iν + 1)θ]Kiν+1(

√
2r̃)dν,

(D21)

and for the boundary condition

1

r̃

∂C
(2)
0,0(r̃,±α)

∂θ
= ±2

√
2N
π

∫ ∞
0

sinh
νπ

2

(
sin2 α cosh να

sinh να
+

cos2 α sinh να

cosh να

)
Kiν(

√
2r̃)dν. (D22)

The solution is

C
(2)
0,0(r̃, θ) =

∫ ∞
−∞

a(s) cosh sθ r̃−isds+
N
π

∫ ∞
0

sinh
νπ

2

(
sinα

sinh να
+ i

cosα

cosh να

)
cos[(iν − 1)θ]Kiν−1(

√
2r̃)dν

+
N
π

∫ ∞
0

sinh
νπ

2

(
sinα

sinh να
− i cosα

cosh να

)
cos[(iν + 1)θ]Kiν+1(

√
2r̃)dν,

(D23)

where a(s) satisfies∫ ∞
−∞

a(s)s sinh sα r̃−is−1ds =
N
√

2

π

∫ ∞
0

sinh
νπ

2

(
sin2 α cosh να

sinh να
+

cos2 α sinh να

cosh να

)
d2

dr̃2
Kiν(

√
2r̃)dν. (D24)

We can in principle determine a(s) using the Mellin
transform. This can be done with a change of
variables by defining z = is + 1 and A(z) =
2πa

(
z−1
i

)
z−1
i sinh

(
z−1
i α

)
. The left-hand side integral

then becomes ∫ 1+i∞

1−i∞
A(z)r̃−z

dz

2πi
, (D25)

which can be inverted using the Mellin transform to ob-

tain A(z) and hence a(s).

In the main text (Section V B), we are interested in
the average propulsion 〈η〉(r, θ) within the wedge and the
correction to density ∆(r, θ) near the tip of the wedge.

These can be determined from C
(1)
1,0 , C

(1)
0,1 , and C

(2)
0,0 after

restoring dimensions. We can obtain slightly more sim-
plified forms of these quantities if we consider angles of
the form 2α = π/2l−1. To do that, we make use of the
following identities for l ≥ 2

sinh νπ/2

sinh νπ/2l
cosh νθ =

2l−2−1∑
k=0

{
cosh ν

[
(2l−1 − 1− 2k)π

2l
+ θ

]
+ cosh ν

[
(2l−1 − 1− 2k)π

2l
− θ
]}

, (D26a)

sinh νπ/2

sinh νπ/2l
sinh νθ =

2l−2−1∑
k=0

{
sinh ν

[
(2l−1 − 1− 2k)π

2l
+ θ

]
− sinh ν

[
(2l−1 − 1− 2k)π

2l
− θ
]}

, (D26b)
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sinh νπ/2

cosh νπ/2l
sinh νθ =

2l−2−1∑
k=0

(−1)k
{

cosh ν

[
(2l−1 − 1− 2k)π

2l
+ θ

]
− cosh ν

[
(2l−1 − 1− 2k)π

2l
− θ
]}

, (D26c)

sinh νπ/2

cosh νπ/2l
cosh νθ =

2l−2−1∑
k=0

(−1)k
{

sinh ν

[
(2l−1 − 1− 2k)π

2l
+ θ

]
+ sinh ν

[
(2l−1 − 1− 2k)π

2l
− θ
]}

, (D26d)

in addition to [47]

∫ ∞
0

cosh aν Kiν(
√

2r̃)dν =
π

2
e−
√

2r̃ cos a, (D27a)∫ ∞
0

ν sinh aν Kiν(
√

2r̃)dν =
π

2

√
2r̃ sin a e−

√
2r̃ cos a.

(D27b)

Appendix E: Solution for a corrugated wall

We start with a boundary deformed around y = 0.
Suppose its shape is given by h(x), which has period
2L and characteristic amplitude δ. This shape can be
decomposed into Fourier modes as

h(x) = δ

∞∑
k=−∞

hke
iπk
L x, (E1)

where we assume that h0 = 0 and

hk =
1

2Lδ

∫ L

−L
h(x)e−

iπk
L xdx. (E2)

We can solve this particular case in Cartesian coordi-
nates. Just as before, we write the distribution as

ρ̃(r̃, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃)e−η̃

2

Hmx(η̃x)Hmy (η̃y),

(E3)

except now we expand the coefficients C
(n)
m as

C(n)
m (r̃) ' a(n)

m (ỹ) + δ̃

∞∑
k=−∞

b
(n)
m;k(ỹ)e

iπk
L̃
x̃, (E4)

where a
(n)
m is the solution for a flat boundary, the first

two orders of which are

a
(0)
0,0(ỹ) = N , (E5a)

a
(1)
0,1(ỹ) = −N

√
2

2
e−
√

2ỹ, (E5b)

a
(2)
0,0(ỹ) = N e−

√
2ỹ. (E5c)

The coefficients b
(n)
m;k(ỹ) satisfy the ODE

d2b
(n)
m;k

dỹ2
−
[
2(mx +my) +

π2k2

L̃2

]
b
(n)
m;k =

iπk

L̃
wx +

dwy
dỹ

,

(E6)
where

wx = b
(n−1)
mx−1,my ;k + 2(mx + 1)b

(n−1)
mx+1,my ;k, (E7a)

wy = b
(n−1)
mx,my−1;k + 2(my + 1)b

(n−1)
mx,my+1;k. (E7b)

Finally, for the boundary condition, we require that the
normal component of the current at the boundary to be
zero. Assuming that the function describing the shape of
the boundary is single-valued, the normal to the bound-
ary is

n̂ =
(−h̃′(x̃), 1)√

1 + h̃′(x̃)2

. (E8)

Therefore, the zero current boundary condition along the
wall, J̃(x̃, h̃(x̃), η̃) · n̂ = 0, is

−J̃x(x̃, h̃(x̃), η̃)
dh̃

dx̃
+ J̃y(x̃, h̃(x̃), η̃) = 0. (E9)

To make progress, we assume that the amplitude of the
corrugation is small compared to the accumulation of ac-
tive particles or δ̃ = δ/λ� 1 so that we can linearize the

boundary condition Eq. (E9). The currents J̃x(x̃, h̃, η̃)

and J̃y(x̃, h̃, η̃) are given by

J̃x(x̃, h̃, η̃) =

∞∑
n=0

εn
∑
m

[
C

(n−1)
mx−1,my

(x̃, h̃) + 2(mx + 1)C
(n−1)
mx+1,my

(x̃, h̃)− dC
(n)
m (x̃, h̃)

dx̃

]
e−η̃

2

Hmx(η̃x)Hmy (η̃y), (E10a)

J̃y(x̃, h̃, η̃) =

∞∑
n=0

εn
∑
m

[
C

(n−1)
mx,my−1(x̃, h̃) + 2(my + 1)C

(n−1)
mx,my+1(x̃, h̃)− dC

(n)
m (x̃, h̃)

dỹ

]
e−η̃

2

Hmx(η̃x)Hmy (η̃y). (E10b)
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Substituting these currents into the boundary condition Eq. (E9) and using the orthogonality of Hermite polynomials,
we obtain for each order n

−

[
C

(n−1)
mx−1,my

(x̃, h̃) + 2(mx + 1)C
(n−1)
mx+1,my

(x̃, h̃)− dC
(n)
m (x̃, h̃)

dx̃

]
dh̃

dx̃

+

[
C

(n−1)
mx,my−1(x̃, h̃) + 2(my + 1)C

(n−1)
mx,my+1(x̃, h̃)− dC

(n)
m (x̃, h̃)

dỹ

]
= 0

(E11)

Finally, inserting the expansion of C
(n)
m (x̃, h̃) in terms

of a
(n)
m (h̃) and b

(n)
m;k(h̃) (Eq. E4) and Taylor expanding

everything about δ̃ = 0, we can collect all terms of order δ̃
and use the orthogonality of the Fourier modes to obtain

the boundary condition for the coefficients b
(n)
m;k(ỹ) shown

in the main text (Eq. 62). Note that the zeroth order
boundary condition, which corresponds to that of a flat
wall, is already satisfied.

Solving for b
(n)
m;k(ỹ) is straightforward. We find

b
(0)
0,0;k(ỹ) = 0 (E12a)

b
(1)
1,0;k(ỹ) =

iNπkhk
L̃
√

2 + π2k2

L̃2

e
−
√

2+π2k2

L̃2 ỹ
(E12b)

b
(1)
0,1;k(ỹ) = − Nhk

√
2√

2 + π2k2

L̃2

e
−
√

2+π2k2

L̃2 ỹ
(E12c)

b
(2)
0,0;k(ỹ) =

Nπ|k|hk
L̃

1−
√

2√
2 + π2k2

L̃2

 e−
π|k|
L̃
ỹ

+Nhk

√2− π2k2

L̃2
√

2 + π2k2

L̃2

 e
−
√

2+π2k2

L̃2 ỹ

(E12d)

For the asymmetric sawtooth in the main text, the
Fourier amplitudes are h0 = 0 and

hk =
2
[
e−iπkζ − (−1)k

]
π2k2(1− ζ2)

. (E13)

The spacial currents described in the main text (Section
VI and Figure 8) can be written as

J̃x(x̃, ỹ) = πε2δ̃

∞∑
k=−∞

[
2b

(1)
1,0;k(ỹ)− iπk

L̃
b
(2)
0,0;k(ỹ)

]
e
iπk
L̃
x̃,

(E14a)

J̃y(x̃, ỹ) = πε2δ̃

∞∑
k=−∞

[
2b

(1)
0,1;k(ỹ)−

db
(2)
0,0;k(ỹ)

dỹ

]
e
iπk
L̃
x̃.

(E14b)

Since h0 = 0 and there is no k = 0 contribution to the
currents, it is easy to see that averaging over a period 2L̃
gives zero net flux along the wall.

As discussed in the main text, we can obtain the den-
sity at the tip of a wedge with angle close to 2α = π.
Consider a symmetric sawtooth-shaped boundary (ζ = 0)
with a small amplitude (δ � λ) and a long wavelength
(L � λ). Writing the density as ρ(x, y) = ρbulk[1 +
ε2∆(x, y)], we can compute the density at the tip ∆(0, δ)
up to order δ. We find

∆tip ' 1 +
4δ

πL

∞∑
k=1

[1− (−1)k]

k

×

1−
√

2√
2 + π2k2λ2

L2

− πkλ

L
√

2 + π2k2λ2

L2


(E15)

For L� λ, the summation weakly depends on L and can
be well approximated by an integral. We thus have

∆tip ≈ 1 +
4δ

πL

∫ ∞
0

dt

t

[
1−

√
2√

2 + t2
− t√

2 + t2

]
≈ 1− 0.44(2α− π),

(E16)

where we used 2α ' π + 4δ
L .

Appendix F: Solution for a spherical absorber

For problems requiring spherical coordinates, we write
the density as

ρ̃(r̃, θ, φ, η̃) =

∞∑
n=0

εn
∑
m

C(n)
m (r̃, θ, φ)

× e−η̃
2

Hmx(η̃x)Hmy (η̃y)Hmz (η̃z).

(F1)

The coefficients C
(n)
m satisfy

1

r̃2

∂

∂r̃

(
r̃2 ∂C

(n)
m

∂r̃

)
− 2(mx +my +mz)C

(n)
m

+
1

r̃2 sin θ

∂

∂θ

(
sin θ

∂C
(n)
m

∂θ

)
+

1

r̃2 sin2 θ

∂2C
(n)
m

∂φ2

=
1

r̃2

∂

∂r̃
(r̃2wr) +

1

r̃ sin θ

∂

∂θ
(sin θwθ) +

1

r̃ sin θ

∂wφ
∂φ

,

(F2)
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where the components of w in spherical coordinates are

wr = wx sin θ cosφ+ wy sin θ sinφ+ wz cos θ, (F3a)

wθ = wx cos θ cosφ+ wy cos θ sinφ− wz sin θ, (F3b)

wφ = −wx sinφ+ wy cosφ, (F3c)

and

wx = C
(n−1)
mx−1,my,mz

+ 2(mx + 1)C
(n−1)
mx+1,my,mz

, (F4a)

wy = C
(n−1)
mx,my−1,mz

+ 2(my + 1)C
(n−1)
mx,my+1,mz

, (F4b)

wz = C
(n−1)
mx,my,mz−1 + 2(mz + 1)C

(n−1)
mx,my,mz+1. (F4c)

For the absorbing boundary condition, we have

C
(n)
m (R̃, θ, φ) = 0. For n = 0, we have the usual density

profile for passive particles around an absorbing sphere
given by

C(0)
m (r̃, θ, φ) = N

(
1− R̃

r̃

)
δmx,0δmy,0δmz,0, (F5)

where N = ρbulk(2Dpτ/π)3/2. For n = 1, we have

C
(n)
1,0,0(r̃, θ, φ) =

N
2R̃

[
k1(
√

2r̃)

k1(
√

2R̃)
− R̃2

r̃2

]
sin θ cosφ,

(F6a)

C
(1)
0,1,0(r̃, θ, φ) =

N
2R̃

[
k1(
√

2r̃)

k1(
√

2R̃)
− R̃2

r̃2

]
sin θ cosφ,

(F6b)

C
(1)
0,0,1(r̃, θ, φ) =

N
2R̃

[
k1(
√

2r̃)

k1(
√

2R̃)
− R̃2

r̃2

]
cos θ, (F6c)

where kµ is the modified spherical Bessel function of
the second kind. For n = 2, we will only write the
(mx,my,mz) = (0, 0, 0) term since we are only interested
in the density and current. We have

C
(2)
0,0,0(r̃, θ, φ) =

N
√

2k0(
√

2R̃)

2R̃k1(
√

2R̃)

[
R̃

r̃
− k0(

√
2r̃)

k0(
√

2R̃)

]
. (F7)

Integrating out η̃, we have for the density

ρ̃(r̃, θ, φ) ' π3/2C
(0)
0,0,0(r̃, θ, φ) + ε2π3/2C

(2)
0,0,0(r̃, θ, φ)

= Nπ3/2

(
1− R̃

r̃

)

+ ε2
Nπ3/2

1 +
√

2R̃

[
1− e−

√
2(r̃−R̃)

] R̃
r̃
.

(F8)

The radial current is given by

J̃r(r̃, θ, φ) ' −
∂C

(0)
0,0,0

∂r̃
π3/2 + ε2π3/2

(
wr −

∂C
(2)
0,0,0

∂r̃

)
,

(F9)
where

wr = 2C
(1)
1,0,0 sin θ cosφ+ 2C

(1)
0,1,0 sin θ sinφ+ 2C

(1)
0,0,1 cos θ.

(F10)
Substituting everything in, we arrive at

J̃r(r̃, θ, φ) = −Nπ
3/2R̃

r̃2

(
1 + ε2

√
2R̃

1 +
√

2R̃

)
. (F11)
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