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Establishing formal mathematical analogies between disparate physical systems can be a powerful
tool, allowing for the well studied behavior of one system to be directly translated into predictions
about the behavior of another that may be harder to probe. In this paper we lay the foundations
for such an analogy between the macroscale electrodynamics of simple magnetic circuits and the
microscale chemical kinetics of transcriptional regulation in cells. By artificially allowing the induc-
tor coils of the former to elastically expand under the action of their Lorentz pressure, we introduce
nonlinearities into the system that we interpret through the lens of our analogy as a schematic model
for the impact of crosstalk on the rates of gene expression near steady state. Synthetic plasmids
introduced into a cell must compete for a finite pool of metabolic and enzymatic resources against a
maelstrom of crisscrossing biological processes, and our theory makes sensible predictions about how
this noisy background might impact the expression profiles of synthetic constructs without explicitly
modeling the kinetics of numerous interconnected regulatory interactions. We conclude the paper
with a discussion of how our theory might be expanded to a broader class of plasmid circuits and
how our predictions might be tested experimentally.

I. INTRODUCTION

Just as the functional state of a computer processor is
determined by the individual on/off states of its billions
of transistors, the biochemical state of a cell is defined
by the number of active copies of thousands of differ-
ent proteins that regulate the cell’s basic biological func-
tions and control its response to environmental changes.
And just as a computer hacker can install malicious code
onto a computer to redirect its processor’s functionality
towards the surreptitious mining of cryptocurrency, bi-
ologists can insert custom DNA “code” in the form of
synthetic plasmids into bacterial cells to repurpose their
metabolic resources towards the mass production of non-
native proteins, among other functions [1, 2]. There is
a limit to how much processor power a computer hacker
can siphon away before the computer becomes unable
to maintain its basic functions and crashes; and there is
similarly a metabolic limit [3] to the number of synthetic
plasmids that can be inoculated into a bacterial popula-
tion before the finite metabolic resources of the cells are
stretched so thin that they become unable to maintain
life-essential functions and die.

The mutual reliance of cellular processes on a shared
and limited pool of biochemical resources is one form
of biological crosstalk [4, 5]. Because this crosstalk for-
mally interconnects all of the numerous regulatory pro-
cesses controlling the cell’s internal state, its impact on
any particular process or set of processes can be dif-
ficult to model. Even an especially simple bacterium
like Escherichia coli has over three thousand processes
in its transcriptional network alone [6], and proteins like
RNA polymerase–the principal enzyme responsible for
the transcription of a gene into a strand of mRNA–must
be shared across all of them. This complexity is prob-
lematic, because synthetic biologists often want a way
to predict a priori how efficiently a recombinant plasmid

will execute its function inside a bacterial population and
to what extent the overall growth and resilience of the
population will be impacted in return. The traditional
modeling approach used to address these concerns is the
flux-balance model, in which a large set of rate laws gov-
erning the usage, production, and uptake of metabolic
resources by various cellular processes are taken into ac-
count and simultaneously solved numerically [7]. Mod-
ern computational resources have enabled some of these
models to exhaustively account for most or all relevant
processes (genome-scale models) [8], whereas older itera-
tions were forced to rely upon a coarse-grained approach
that empirically modeled the fluxes of a limited number
of key resource pools, such as amino acids, nucleotides,
etc [9, 10].

Chemical kinetics has also been employed to model the
effects of shared cellular resources [11, 12], typically by
using a more granular model of gene transcription that
accounts for limited concentrations of RNA polymerase,
ribosomes, and DNA binding sites. Both kinetics and
flux-balance modeling paradigms have typically focused
on making estimates of steady-state gene expression lev-
els or cellular growth rates, but synthetic biology has
increasingly focused on developing plasmid circuits with
dynamic expression signatures, such as oscillators [13–
15], which express a desired gene in periodic pulses, or
logic gates [16–18], which get expressed only under spe-
cific conditions. To understand how crosstalk impacts
the responsiveness or reliability of these more sophisti-
cated circuits, a good starting point is to characterize
how it changes their dynamic response to small fluctu-
ations that push the cell away from homeostasis. Even
with the simplifications of existing models, robustly char-
acterizing this response would still require probing the
topology of a rather high-dimensional dynamical mani-
fold. It would be ideal if the impact of crosstalk on the
proteins of interest could be treated in a manner that
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did not require modeling fluctuations in a large number
of extraneous chemical species.

Physics is replete with examples of disparate physical
processes that can be characterized by structurally simi-
lar mathematical models. The assumption that a rate of
flow is driven by a linear dependence on a spatial gradi-
ent, for example, results in Fourier’s law of heat trans-
fer, Ohm’s law of current flow, Fick’s law of diffusion,
and Poiseuille’s law of fluid flow. Similarly, the Ising
spin model can be used analogously to model the align-
ment of magnetic domains in a ferromagnet, the ther-
modynamic states of a binary alloy, or the dynamics of
a lattice gas. Inspired by these examples, we attempt
to characterize a much simpler, schematic description of
the dynamic response to cellular crosstalk by first pur-
suing a mathematical formalization of the vague analogy
often made between plasmid circuits and their electronic
counterparts.

Both electronic and genetic circuits involve closed
loops of specialized, interacting components, but making
any sort of generalized comparison has proven to be elu-
sive [19–21]. We make progress in resolving this difficulty
by drawing an analogy between chemical concentrations
and electric currents. In chemical kinetics, the time rate
of change in one chemical population is a function of the
concentrations of one or more others; in magnetic induc-
tion, an inverted mathematical structure holds wherein
the strength of an induced electric current is a function
of the time rates of change of one or more other currents.
We demonstrate that, so long as we restrict our atten-
tion to a linear regime and satisfy a couple additional
caveats, there is a one-to-one mapping between the dif-
ferential equations governing these two phenomena that
enables us to directly relate the linear response of pro-
tein concentrations near steady state to the dynamic loop
currents of a certain class of magnetic circuits.

Competition for resources in gene circuits has previ-
ously been modeled analogously to multiple resistors in
series [22, 23], but this formalism does not avoid the
problem of needing to know the dynamic concentrations
of a potentially prohibitive number of chemical species
in order to describe the response of a protein of inter-
est to a fluctuation in its concentration. We attempt to
sidestep this issue within our magnetic analogy by allow-
ing for inductor coils that elastically expand under their
own Lorentz pressure. This construction, though physi-
cally unrealistic in the electronics context, results in cur-
rent relaxation profiles that match our experimentally-
informed intuition [24] for how limited cellular resources
should impact the relaxation kinetics of a protein near
steady state. In two specific cases, we then show how to
qualitatively reproduce the resultant nonlinear current
dynamics with the kinetics of a sequence of elementary
chemical reactions, and we discuss how those reactions
can be meaningfully interepreted as schematic models
of cellular crosstalk that involve only a small number
of “virtual” chemical species. While these simplified ki-
netic models succeed in capturing the phenomonology of

crosstalk, it remains to be seen to what extent this frame-
work can be leveraged to make novel predictions about
the dynamical behavior of real biological circuits of in-
terest; so, with that in mind, we conclude by discussing
how some of our more restrictive assumptions might be
relaxed to extend our analogy to more complex dynam-
ical circuits, and we summarize the sort of experiments
that would be required to validate the predictive power
of our models.

II. METHODS

The basic analogy that we propose can be derived in
general terms rather straightforwardly. Let {[Xi]t} be a
set of relevant, time-dependent biomolecular concentra-
tions, indexed 1, . . . , N , that are related to one another
by the following set of coupled differential equations:

d[Xi]t
dt

= fi({[Xi]t}), (1)

where each fi({[Xi]t}) is some generally nonlinear func-
tion of the various concentrations in the set. For dynam-
ics consisting of sufficiently small fluctuations near steady
state, we can linearize Eq. (1) into a matrix equation of
the following form:

d

dt
δ[X]t = Kδ[X]t, (2)

where the ith component of the vector δ[X]t is the devia-
tion of concentration [Xi]t from its steady-state average
and K is a matrix of linearized kinetic rate constants.
For a set of independent loop currents coupled to each

other only through magnetic induction, we can write a
similar matrix equation, assuming we restrict our atten-
tion to linear circuits:

δI(t) = L d

dt
δI(t). (3)

In the above, δI(t) is now the vector of current fluctua-
tions from steady state, and L is the matrix whose diag-
onal elements are proportional to the linear inductances
Li and whose off-diagonal elements are proportional to
the mutual inductances Mij . So long as detL 6= 0, this
matrix will be invertible, and we can express Eq. (3) in
a form analogous to that of Eq. (2):

d

dt
δI(t) = L−1δI(t), (4)

and we can map one set of equations to the other by
identifying δ[Xi]t = δIi(t) and requiring that Kij = L−1

ij

for all i, j = 1, . . . , N .
In the subsections that follow, we apply this formalism

to two simple plasmid circuits and their proposed mag-
netic analogues, explicitly deriving the parameter map-
pings necessary for equivalence in each case. We then
proceed to introduce our conception of what we term an
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“elastic” inductor and discuss how its nonlinear behav-
ior is representative of a kind of magnetic crosstalk that
is phenomenologically similar to what we expect to see
from genetic crosstalk in cells.

A. The Simplest Plasmid Circuit

The first gene circuit we consider consists of a plasmid
ring containing only a single gene encoding some protein
X and a promoter site. We assume that X is regulated
constitutively at a constant rate kX and degraded at a
rate proportional to its concentration [X ]. The time-
dependent concentration [X ]t consequently obeys the fol-
lowing linear, ordinary differential equation:

d[X ]t
dt

= kX − kD[X ]t, (5)

where kD is the degradation frequency. Recognizing that
the steady-state concentration 〈[X ]〉 must equal kX/kD,
we can recast this equation in terms of the concentration
fluctuation δ[X ]t ≡ [X ]t − 〈[X ]〉:

dδ[X ]t
dt

= −kDδ[X ]t. (6)

Given an initial fluctuation away from steady state,
δ[X ]0, this equation is trivial to solve, yielding a sim-
ple exponential decay back towards steady state over a
characteristic time scale 1/kD:

δ[X ]t = δ[X ]0e
−kDt. (7)

We now proceed to demonstrate that the above kinet-
ics are completely analogous to the current dynamics of
a simple RL-circuit consisting of a voltage source V , a
resistor with resistance R, and an inductor with induc-
tance L connected in series. According to Kirchhoff’s
Voltage Law, the total voltage V must equal the sum of
the voltage drops across the resistor and the inductor,
leading to the following equation:

V = RI(t) + L
dI(t)

dt
, (8)

where I(t) is the dynamic current of the circuit loop. The
above can be immediately manipulated into the form of
Eq. (6) by defining δI(t) ≡ I(t)− V/R:

dδI(t)

dt
= −R

L
δI(t), (9)

and an equivalence can be established by setting δI(t) =
δ[X ]t and R/L = kD. See Fig. 1 for a pictorial compari-
son of these two circuit analogues.

B. A Mutually Regulating Plasmid Circuit

The next plasmid we consider consists of two genes
that encode proteins called X and Y , along with their

FIG. 1. Analogous circuits. (A) A schematic representation of
a simple plasmid circuit consisting of a single, constitutively
regulated gene and (B) a schematic diagram of its equivalent
magnetic circuit, drawn using standard linear circuit notation
for its various components.

corresponding promoter sites. We assume that protein
X can bind to the promoter site of the Y gene to regu-
late its transcription, and we likewise assume that protein
Y can regulate protein X in a similar fashion. Assuming
that proteins X and Y have respective basal transcrip-
tion rates kX and kY and respective degradation frequen-
cies kD and k′D, their concentrations should each obey a
pair of coupled differential equations with the following
general form:

d[X ]t
dt

= GXY ([Y ]t) + kX − kD[X ]t

d[Y ]t
dt

= GYX([X ]t) + kY − k′D[Y ]t. (10)

In the above, GXY ([Y ]) and GYX([X ]) are general func-
tions representing the typically nonlinear binding kinetics
of the transcription factors X and Y to their respective
promoter sites. Oftentimes, these functions are well ap-
proximated as Hill functions [25], but we will only be
concerned with the dynamics of this system near steady
state, in which case we can linearize the kinetics of Eq.
(10) to obtain the following matrix equation:

d

dt

(
δ[X ]t
δ[Y ]t

)

=

(
−kD ±kXY

±kY X −k′D

)(
δ[X ]t
δ[Y ]t

)

. (11)

The linearized rate constant for the transcriptional regu-
lation of protein X by protein Y is kXY ≡ |G′

XY (〈[Y ]〉)|,
i.e., the absolute value of the derivative of the function
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GXY evaluated at 〈[Y ]〉. The other linearized rate con-
stant, kY X , is defined analogously. For each of these rate
constants, the plus sign is chosen in Eq. (11) if the regu-
lation is promoting, and the negative sign is chosen if it
is inhibiting.
For simplicity, we have assumed that this chemical sys-

tem has only a single, stable fixed fixed point, about
which the concentrations of X and Y will fluctuate dur-
ing homeostasis, and this imposes restrictions on the pa-
rameters of the model. First, the steady state is defined
by the following pair of equations:

〈[X ]〉 = 1

kD
[GXY (〈[Y ]〉) + kX ]

〈[Y ]〉 = 1

k′D
[GY X(〈[X ]〉) + kY ] , (12)

which, by assumption, must have a unique, nontrivial
solution. Furthermore, in the case where both transcrip-
tional regulations are either promoting or inhibiting, the
condition kDk′D > kXY kYX must hold; otherwise, the
fixed point at steady state will become unstable, and any
small fluctuation will rapidly grow without bound. There
are of course some two-component kinetic systems whose
nonlinearities give rise to multiple stable fixed points [26],
and we shall discuss briefly in the conclusions section how
our analogy might be extended to consider a more com-
plex case like this.
In order to have a consistent analogy, the magnetic

analogue circuit corresponding to this mutually regulat-
ing plasmid must decouple into a pair of independent RL-
circuit loops, like that shown in Fig. 1(B). The coupling
between these two circuits will be achieved by connecting
their inductors with a loop of ferromagnetic material, re-
sulting in a simple transformer circuit. A diagram of this
circuit can be found alongside a schematic of its plasmid
analogue in Fig. 2. Once again invoking Kirchhoff’s Volt-
age Law, we can express the coupled current dynamics
of this circuit by the following pair of equations:

V1 = R1I1(t) + L1
dI1(t)

dt
±M

dI2(t)

dt

V2 = R2I2(t) + L2
dI2(t)

dt
±M

dI1(t)

dt
, (13)

where indices 1 and 2 differentiate the components of the
two RL-circuits and M is the mutual inductance between
them. Noting once more that 〈Ii〉 = Vi/Ri, these differ-
ential equations can be rewritten in the matrix form of
Eq. (3):
(
δI1(t)
δI2(t)

)

=

(
−L1/R1 ∓M/R1

∓M/R2 −L2/R2

)
d

dt

(
δI1(t)
δI2(t)

)

. (14)

This equation can be in turn converted to the form of
Eq. (11) by inverting the 2× 2 induction matrix:

d

dt

(
δI1(t)
δI2(t)

)

=

(

− R1

L1(1−k2) ± kR2

(1−k2)
√
L1L2

± kR1

(1−k2)
√
L1L2

− R2

L2(1−k2)

)(
δI1(t)
δI2(t)

)

.

(15)

FIG. 2. Mutually regulating circuits. (A) A schematic repre-
sentation of a plasmid circuit in which two genes act as tran-
scriptional regulators for each other. The arrows indicate reg-
ulatory interactions, with the pointed arrowhead representing
positive, promotional regulation, and the flat arrowhead rep-
resenting negative, repressive regulation. (B) A schematic
diagram of the equivalent magnetic circuit, which is a simple
transformer. As drawn, the circuit is analogous to the case
of mutual repression; the case of mutual promotion can be
obtained by reversing the transformer polarity.

In the above, we have made use of the standard defini-
tion that M ≡ k

√
L1L2, where 0 ≤ k < 1 is a coupling

parameter gauging the strength of the inductive interac-
tions between the circuits.

Although it is now clear how to relate the kinetic rate
constants of the mutually regulating plasmid circuit to
the parameters of the simple transformer circuit, there
are a few irreconcilable differences between Eq. (11) and
(15) that must be addressed. Perhaps most distressing is
the fact that the matrix elements of the inverted induc-
tion matrix are all proportional to a factor of (1− k2)−1,
which will cause them to diverge as k → 1. This limit
corresponds to a perfectly coupled transformer for which
a fluctuation in the current of one circuit loop can cause
an instantaneous adjustment in the current of the other.
There is no meaning to Eq. (15) in this case because
such a transformer has no dynamics. Although no such
divergence is possible in Eq. (11), there is an analo-
gous regime in the chemical kinetics case. Oftentimes
short-lived chemical intermediates like enzyme-substrate
complexes are approximated as existing always at steady
state, even when the overall chemical system is not. This
so-called quasi-steady state assumption (QSSA) results
in the concentrations of enzyme and free substrate in-
stantaneously determining at all times the concentration
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of bound substrate.
A second important difference between the genetic and

magnetic systems is that the plus/minus signs in Eq. (15)
are determined by the polarity of the transformer, i.e.,
whether the two loop currents flow in the same or oppo-
site directions. Because the magnetic induction between
two current loops is always symmetric, these two signs
cannot be chosen independently and must instead always
be the same (both positive or both negative). In the ge-
netic case, one could certainly construct a mutually reg-
ulating plasmid in which protein X positively regulates
protein Y , but protein Y negatively regulates X . This
places an important restriction on the regulatory topol-
ogy of plasmid circuits to which our inductive analogy
can be applied.
One final observation is that the stability condition

kDk′D > kXY kYX can be shown to reduce in the mag-
netic case to the condition k2 < 1, which is, for real
materials, always true. The fact that a transformer cir-
cuit cannot be dynamically unstable seems to suggest
that we must also restrict our analogy to plasmid cir-
cuits whose dynamics consist of stable fluctuations about
a single steady state; but, since our analogy is ultimately
a mathematical and not a physical one, we are free to
artificially choose k > 1, which converts the fixed point
of the transformer circuit into a saddle point instabil-
ity. In the conclusions section we will briefly outline how
this can be used to extend our analogy to chemical sys-
tems with multiple steady states. As the next subsection
will demonstrate, this kind of physically implausible but
mathematically permissible manipulation will also be our
means for introducing crosstalk into the magnetic system.

C. The Elastic Inductor

Our basic intuition for the impact crosstalk will have
on relaxation kinetics is that an excess of protein will
place a greater strain on the shared pool of cellular re-
sources, resulting in a slower transition back to the home-
ostatic steady state. This effect has been observed exper-
imentally, and it has been found that, far from a detri-
ment, this slowdown is actually leveraged by some bacte-
ria in beneficial ways. In the stress response network of
E. coli, for example, a stress-induced increase in protein
misfoldings places a strain on the limited supply of the
clean-up protease enzyme ClpXP. This strain results in
a depressed degradation rate of the sigma cofactor σS ,
which then accumulates and enhances the transcription
rate of stress-reducing proteins [24].
We shall build this phenomonology into our magnetic

circuits by exaggerating the magnitude of a second-order,
nonlinear feedback mechanism that is peculiar to induc-
tor coils. We begin by assuming that each inductor ele-
ment in our circuits consists of a solenoid of length ℓ with
N turns; but, as is standard in linear-circuit theory, we
shall approximate the magnitude of the magnetic field B
within this coil as if the inductor were an infinite solenoid

FIG. 3. Conceptual illustration of the elastic inductor.
As current flows through the solenoid, a magnetic field is
produced that exerts an outward Lorentz pressure on the
coil. This causes it to expand radially, increasing the cross-
sectional area of its turns and the total magnetic flux pass-
ing through the coil. This additional flux induces an even
larger electromotive force to oppose any changes to the cur-
rent, making the elastic inductor more slowly relaxing than a
normal, rigid inductor–especially for larger currents.

with fixed turn density N/ℓ:

B =
µ0NI

ℓ
. (16)

In the above, µ0 is the permeability of free space and I
is the current running through the coil. This current will
cause each infinitesimal length element of the coil, ds, to
experience a Lorentz force, dF, from the magnetic field
generated by the rest of the inductor:

dF = Ids×B, (17)

which points in the outward direction everywhere along
the coil. The magnetic field in the above expression must
be evaluated at the boundary between the inside and out-
side of the coil, where its strength, under our assump-
tions, discontinuously drops from the expression given
in Eq. (16) to zero. For simplicity, we shall treat the
strength of the field right at the boundary as the average
of its values just inside the coil and just outside, which
will make it equal to half the value of Eq. (16). For-
mally we must also subtract out the contribution of the
B-field generated by the element ds itself, but this will
make a negligible difference, since we have assumed that
the element is infinitesimal in length.
Assuming the turns of the inductor coil are circular

with radius r, we find that the total Lorentz pressure,



6

PB, exerted on each turn is

PB =
µ0NI2

2ℓ
. (18)

The elastic deformation caused by this pressure is neg-
ligibly small for most known conductive materials under
sustainable current loads; but, for the purpose of intro-
ducing crosstalk into our magnetic circuit analogues, we
shall perform a gedankenexperiment in which we con-
ceive of an inductor that is both metallically conductive
and sufficiently elastic to expand under its own Lorentz
pressure (see the schematic in Fig. 3). For small defor-
mations, we assume a linear stress-strain relation of the
form:

PB = E

(
r − r0
r0

)

, (19)

where E is the elastic modulus of the uniform expansion
and r0 is the radius of each coil loop in the absence of
current. Solving this relation for r and substituting it
into the expression for the total magnetic flux passing
through the inductor, φ = πr2NB, we ultimately find:

φ = LI

(

1 +
L

ǫ
I2
)2

. (20)

In the above, the linear self-inductance is defined as L ≡
πr20µ0N

2/ℓ, and ǫ ≡ 2πr20NE is an elastic energy scale.

As conceptualized, the elastic inductor houses two lin-
ear processes: the induced current flowing through the
coil grows linearly with the magnetic flux passing through
its cross section (Faraday’s law), and the extent of the
coil deformation varies linearly with the Lorentz pres-
sure. These processes are clearly not independent of one
another, as the magnetic flux is a function of the square
of the coil radius, and the Lorentz pressure depends upon
the square of the current. The result of this nonlin-
ear interdependence is a slowdown in the relaxation of
the current back to its steady value: a reduction in cur-
rent results in a larger change in magnetic flux, due to
the larger cross-sectional area of the elastically expanded
coil, and this drives a larger electromotive force to oppose
the change in current. This effect will be exacerbated
for larger currents, consistent with our expectation that
larger protein concentrations will cause a greater resource
strain in the cellular context.

Thus far we have restricted our considerations to how
cellular crosstalk will impact the relaxation of protein
expression levels back towards steady state after a per-
turbation, but the sharing of limited resources will also
shift the position of the steady state itself [12, 23]. How-
ever, since our kinetics model is derived from a linear
order expansion about steady state, the actual values of
the steady protein concentrations are irrelevant and can
always be set at experimentally verified levels through
appropriate choices of the model parameters.

III. RESULTS AND DISCUSSION

We proceed to examine how elastifying the inductor
coils in the magnetic circuits of the previous section (see
Figs. 1(B) and 2(B)) modifies their dynamic current pro-
files. In each case we relate the dynamics to what one
would anticipate from the analogous plasmid system, and
we then complete the analogy by devising sets of coupled
elementary reactions whose kinetics schematically repro-
duce this behavior.

A. Schematic Model for Protease-mediated

Catabolism

To assess the impact of placing our hypothetical elas-
tic inductor into the RL-circuit loop of Fig. 1(B), we
must determine how the circuit voltage will drop across
it. Faraday’s law should still hold, so the voltage drop
should equal the time derivative of the flux. The differ-
ence is that instead of the flux depending linearly on the
current as φ = LI, the flux through the elastic induc-
tor will be related nonlinearly to the current through Eq.
(20). Differentiating that equation with respect to time,
we can then proceed to use the Kirchhoff Voltage Law
to derive a differential equation for the dynamic current
profile of the circuit:

dI(t)

dt
=

V −RI(t)

L
(
1 + L

ǫ I(t)
2
) (

1 + 5L
ǫ I(t)2

) . (21)

The numerator of the right-hand side ensures that I =
V/R is still a stable fixed point of the system, but the
denominator will cause the relaxation time of the circuit
to grow monotonically with the current. This assessment
is borne out in Fig. 4, where we have solved Eq. (21)
numerically and plotted its current profile for two differ-
ent initial conditions. The corresponding dashed lines of
each color represent the relaxation of the standard RL-
circuit loop. As surmised, the feedback of the elastic
inductor retards the relaxation for all currents, but the
relaxation is asymmetric about steady state, relaxing far
more slowly from above than from below. We now argue
that this behavior is precisely what we would anticipate
as the leading order impact of cellular crosstalk on the
analogous gene circuit in Fig. 1(A).
In our assessment of the kinetics of this plasmid cir-

cuit (see Eq. (5)), we treated the degradation of the
protein concentration as a Poisson process, with every
protein behaving like an unstable radioactive isotope,
modeled to spontaneously decay at any moment with fre-
quency kD. In reality, the degradation or catabolism of
each protein molecule is facilitated by an enzyme called
a protease. Because the variety of proteins in a cell far
exceeds the number of different protease enzymes, each
type of protease is responsible for catabolizing many dif-
ferent proteins. This resource-sharing of a finite protease
pool across multiple protein populations will universally
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FIG. 4. The time-dependent current profile of the elastified
RL-circuit for two different initial conditions, one above the
steady-state current V/R (in red) and one below it (in blue).
All parameter values (V , R, L, etc.) were set to unity for
simplicity. Dashed lines indicate the behavior of the standard
RL-circuit initialized from the same two initial conditions (in
matching colors). The inset plots the same curves over a
shorter time scale to better illustrate the exponential decay
of the standard circuit.

depress the relaxation of [X ]t back to steady state, and
this kinetic slowdown will be more acute when there are
moreX molecules to strain the protease population. This
is, of course, precisely the dynamic behavior described by
Eq. (21).

Crosstalk should also have an effect on the transcrip-
tion rate of protein X , which we assumed to be constant
in our previous analysis. In fact, we expect that this rate
should fluctuate as a function of the availability of RNA
polyermase and other shared transcription initiation fac-
tors. As we shall see shortly, reproducing the nonlinear
dynamics of Eq. (21) will require us to account for vari-
ability in both the transcription and degradation rates of
protein X .

While it is possible to construct a sequence of elemen-
tary reactions that exactly reproduce the functional form
of Eq. (21), the result is not terribly illuminating. Since
we only really wish to schematically reproduce the phe-
nomenology of asymmetric relaxation, we will instead
aim for a simpler functional target:

d[X ]t
dt

=
Vmax (kX − kD[X ]t)

1 +KA[X ]nt
, (22)

where n ≥ 2 and Vmax and KA are constants (with ap-
propriate units to make the above dimensionally correct).
Aside from the factor in the numerator that stabilizes
the system at the desired steady-state concentration of
kX/kD, the above is essentially a Hill function [25], which
is frequently employed in modeling enzyme kinetics.

A set of elementary chemical reactions whose overall
kinetics can be described by Eq. (22) is straightforward

to construct:

X + S
kD−−⇀↽−−
kX

S

nX + S
k+−−⇀↽−−
k−

SXn (QSSA). (23)

Note that the latter pair of reactions is assumed to equili-
brate so rapidly that it can be treated as always being at
a quasi-steady state. It then follows that Vmax = [S]tot,
where [S]tot ≡ [S]t+[SXn]t is presumed to be a constant
independent of time, and KA = k+/k−.

Our desire to reproduce the behavior of Eq. (21) in the
schematic form of Eq. (22) forced us to introduce a vir-
tual chemical species S into the kinetics. This species can
be identified as a protease enzyme by the forward reac-
tion X+S −−→ S, but the reverse reaction simultaneously
identifies it as RNA polymerase or some other transcrip-
tion initiator that constituitively controls the transcrip-
tion of X . This dual identification is not problematic,
since S is ultimately a mathematical construct used to
phenomenologically account for the impact of crosstalk
on the kinetics of X . The remaining pair of reactions use
the formation of a virtual complex SXn to model S as a
limited resource. There will always be some fraction of S
that is busy degrading other proteins, and we represent
this fraction as [SXn]. Note that this concentration will
tend to grow with [X ], thereby modeling the strain the
X population places upon the protease pool.

While introducing a virtual molecular population
might seem troubling at first blush, it must be empha-
sized that by doing so we have succeeded in phenomono-
logically capturing the impacts of two different types of
crosstalk on the kinetics of the protein of interest with
only a marginal increase in mathematical complexity. It
remains to be seen how accurately this schematic model
can be fit to data from real biological systems, and the
experiments required to make that assessment will be
discussed in the conclusions section.

B. Schematic Model for Crosstalk-driven

Tristability

We next consider the effect of elastifying the inductors
in the simple transformer circuit of Fig. 2(B). In addition
to the flux-current relation of Eq. (20), we also need to
know how the magnetic flux through one inductor coil
will be affected by the current running through the other.
In the standard transformer circuit, this relation would
be linear: φ12 = MI2, where φ12 is the contribution to
the flux through inductor 1 as a result of the current in
inductor 2. In the elastic transformer, the flux through
one coil depends on the magnetic field generated by the
other coil as usual, but now it also depends upon the first
coil’s cross-sectional area. The result is that the magnetic
flux through one coil depends linearly on the other coil’s
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current but nonlinearly upon its own current:

φ12 = MI2

(

1 +
L1

ǫ1
I21

)2

. (24)

Note that quantities like L1 are now formally defined in
terms of the permeability µ of the ferromagnetic mate-
rial around which each solenoid is wrapped rather than
the permeability of free space µ0, and we have further
assumed that the enwrapped ferromagnetic material ex-
pands and contracts so as to always fill the interior of
each solenoid, without impacting the material’s magnetic
properties.
Applying the Kirchhoff Voltage Law to the elastic

transformer circuit thus yields the following coupled pair
of equations:

V1 =

(

1 +
L1

ǫ1
I21

){[

L1

(

1 +
5L1

ǫ1
I21

)

±M
4L1

ǫ1
I1I2

]
dI1
dt

± M

(

1 +
L1

ǫ1
I21

)
dI2
dt

}

+R1I1

V2 =

(

1 +
L2

ǫ2
I22

){[

L2

(

1 +
5L2

ǫ2
I22

)

±M
4L2

ǫ2
I1I2

]
dI2
dt

± M

(

1 +
L2

ǫ2
I22

)
dI1
dt

}

+R2I2.

(25)

In the above, the time argument of the currents has been
suppressed for compactness. As with Eq. (13), the ±
signs must all be either plus or minus. This sign choice
results in only minor differences to the phase portrait
of the standard transformer circuit, due to its guaran-
teed dynamic stability, but polarity has a much more
pronounced effect on the behavior of the elastic trans-
former.
In the case where the plus signs are chosen in Eq. (25),

corresponding to the two RL-circuits of the transformer
having their currents rotating in the same direction, the
pair of equations can be algebraically solved for the time
derivatives of the currents, and a representative phase
portrait of this system is plotted in Fig. 5(A). This por-
trait exhibits a single, stationary fixed point at the steady
state (I1, I2) = (V1/R1, V2/R2); however, just as with the
single, elastic RL-circuit, relaxation back to this steady-
state is dramatically slower from above than from below.
This leads to four distinct dynamical regimes.
When both currents fluctuate below their steady val-

ues (lower-left quadrant of the phase plot), the relaxation
trajectories curve inwards, decaying in an exponential-
like fashion back towards the fixed point. When one
current fluctuates below and the other above (upper-left
and lower-right quadrants), the return trajectories bend
into L-shapes, relaxing completely in one direction before
having substantially relaxed in the other. Finally, when
both currents fluctuate above their steady-state values
(upper-right quadrant), the phase curves bow outwards,
and inductive feedback greatly frustrates the return to
equilibrium for both loop currents.

3.02.52.01.51.00.50
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I2
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FIG. 5. Phase portraits of the elastic transformer. (A) A
dynamical phase portrait for the elastic transformer circuit in
the case where the two loop currents rotate in the same direc-
tion. All parameters were set equal to unity for convenience,
except for the coupling parameter k, which was set equal to
1/2. The red dot at (I1, I2) = (1, 1) marks the single, stable
fixed point of the system. (B) For the same set of parameter
values, the phase portrait for the oppositely polarized elastic
transformer is plotted. The same stable fixed point exists, but
now there are two additional saddle points that lie along the
curves defined by the sets of current values that reduce one
or the other of the bracketed terms in Eq. (25) to zero. Two
phase trajectories that illustrate the behavior of the dynamics
near these curves are plotted in green and blue, illustrating,
respectively, how these saddle points either deflect the cur-
rents away towards a trivial fixed point at infinity or back
towards the stable fixed point at (1, 1).

If the minus signs are instead chosen in Eq. (25), solv-
ing for the current derivatives is complicated by the fact
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that the quantity in the square brackets in each equa-
tion can now be zero. The bracketed term in the first
equation, for example, is a quadratic polynomial in the
current I1 that will be zero under the following condi-
tions:

I1(t) =
2M

5L1
I2(t)±

√

4M2

25L2
1

I2(t)2 −
ǫ1
5L1

≡ I1±(t)

I2(t) >
1

2

(
5L1ǫ1
M2

)1/2

. (26)

The inequality in the above is required to make I1±(t) a
real-valued current. Substituting I1 = I1± back into the
first equation of Eq. (25), we get the following differential
equation:

dI2(t)

dt
=

R1I1±(t)− V1

M
(

1 + L1

ǫ1
I1±(t)2

)2 (27)

Note that since I1± is a function of I2 alone, this differ-
ential equation is uncoupled from the dynamics of I1 and
can be solved independently. The resultant dynamics of
I2(t) then define those of I1(t) through Eq. (26). The
functional form of Eq. (27) also makes it clear that this
system has an additional fixed point when I1± = V1/R1.
A similar analysis can be performed if instead it is the
square-bracketed term in the expression for V2 that is
zero, and analogues to Eqs. (26) and (27) that swap the
indices 1 and 2 are the result. It is not possible for both
bracketed terms to be zero simultaneously.
The corresponding phase portrait for this choice of po-

larization is plotted in Fig. 5(B) for the same parameter
values as in panel (A). For most values of the currents,
the vector field (dI1/dt, dI2/dt) is determined by alge-
braically inverting Eq. (25). For values that fulfill either
Eq. (26) or its index-swapped analogue, however, the dy-
namics are constrained to one of two convex curves, each
of which contains a hyperbolic fixed point. These special
curves actually serve as attractors for large swaths of the
phase portrait, with trajectories along one side of the
fixed point ultimately being funneled back towards the
stable fixed point at (I1, I2) = (V1/R1, V2/R2) and those
along the other getting shunted off towards infinity. Rep-
resentative trajectories illustrating these two dynamical
outcomes are highlighted in the figure. They were com-
puted by numerically integrating Eq. (25) with a time
step of ∆t = 0.1, taking care to switch to using Eqs. (26)
and (27) for time intervals where the trajectory follows
the convex curve they define.
When the loop currents of the elastic transformer ro-

tate in the same direction, the negative feedback mech-
anism of each elastic inductor synergizes with the other
to frustrate the relaxation dynamics even further; when
the currents flow in opposite directions, the individually
negative feedback mechanisms actually provide positive
feedback to one another, making it possible for the en-
tire system to become destabilized when I1 > V1/R1

and I2 ≫ V2/R2 (or vice versa). This destabiliza-
tion drives both currents towards infinity, leading to cir-
cuit failure or overload. Even for arbitrarily large cur-
rents, however, stability will be maintained so long as
(V2/R2)I1 ≈ (V1/R1)I2, although the competition be-
tween stabilizing negative and destabilizing positive feed-
back results in the already slow relaxation dynamics of
each elastic inductor becoming even slower.

The divergent behavior of the elastic transformer seems
to disqualify it as a model for cellular crosstalk, since
it is hard to imagine mutual transcriptional regulation
driving unbounded growth; but recall that our analogy
between genetic and magnetic circuits was predicated
upon an assumption of linearized chemical kinetics near
steady state. Concentrations that diverge away from
their steady-state values violate that assumption of lin-
ear stability, invalidating our analogy in the problematic
region of the phase portrait of Fig. 5(B). Of course, if
our analogy between magnetic and genetic crosstalk is to
have any value, this breakdown in linearity must al least
be assigned some plausible physical significance in our
biochemical system.

The oppositely polarized transformer configuration is
equivalent to mutual transcriptional repression in our
analogy, and the genetic circuit consisting of two genes
whose encoded proteins X and Y repress each other’s
transcription can be shown to behave as a so-called “ge-
netic toggle switch” when the kinetics of repression are
sufficiently nonlinear [26]. Essentially, when the maximal
rate of repression is weak, the system exhibits a single
stable fixed point for 〈[X ]〉 = 〈[Y ]〉 (assuming symmetric
repression rates); but when the repression rate passes a
critical threshold, the original stable fixed point becomes
unstable, pushing the concentrations towards one of two
new stable fixed points–one for which 〈[X ]〉 > 〈[Y ]〉 and
the other for which 〈[Y ]〉 > 〈[X ]〉. Appropriate inducers
can then be used to push the system from one of these
fixed points to the other–hence the reason for calling this
gene circuit a toggle switch.

Phenomenologically, the two phase portraits in Fig. 5
resemble this kind of switch from a unimodal to a mul-
timodal system, where the true nonlinear kinetics would
have to move the two attractors at infinity in Fig. 5(B) to
finite positions within the phase portrait. Since the orig-
inal fixed point remains stable in both cases and merely
has its basin of attraction circumscribed in the latter,
this system would be a tristable switch. A more crucial
difference here is that the transition between the number
of fixed points is not achieved by smoothly tuning the
coupling strength between the two circuits, but rather
by flipping their relative polarity. The character of tran-
scriptional regulation, i.e., promoting versus inhibiting
interactions, is set by the biology of the system and can-
not be toggled freely. Consequently, the tristability of
the repressive circuit should be understood instead as a
fundamental consequence of the nonlinearities imposed
on the kinetics by crosstalk.

We emphasize that at this point we are merely spec-
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ulating that tristability is the most plausible biochem-
ical interpretation of the divergences observed in Fig.
5(B), but this speculation is supported by the findings
of more biologically detailed models of transcriptional
circuits that have previously identified crosstalk as a po-
tential source of multistability [27, 28]. Experimental
evidence that crosstalk can specifically cause a unimodal
system to become trimodal has even been found for a
synthetic gene circuit inoculated into the bacterium Es-

cherichia coli [29].
In order to devise a set of elementary chemical reac-

tions that schematically reproduce the behavior of Eq.
(25), we once again make some helpful simplifications.
By neglecting crossterms proportional to I1I2 as well as
any terms of order M2, we can invert Eq. (25) into the
following form:

dI1
dt

=
V1 −R1I1

L1

(

1 + L1

ǫ1
I21

)(

1 + 5L1

ǫ1
I21

)

︸ ︷︷ ︸

Circuit 1

∓
M
(

1 + L1

ǫ1
I21

)

L1

(

1 + 5L1

ǫ1
I21

)
V2 −R2I2

L2

(

1 + L2

ǫ2
I22

)(

1 + 5L2

ǫ2
I22

)

︸ ︷︷ ︸

Circuit 2

.

(28)

In the above, the time dependence of the currents has
been suppressed for compactness and the rate law for I2
has exactly the same form but with the indices 1 and
2 swapped. This simplified form is appealing because it
explicitly contains the contributions of the two individual
elastified RL-circuits (as given by Eq. (21)).
In the mutually repressive case, we can recover some

of the divergent character of the exact phase portrait by
creatively reducing Eq. (28) to the following schematic
rate law, now expressed in chemical kinetics terms:

d[X ]t
dt

=
Vmax(kX − kD[X ]t)

1 +KA[X ]nt

+
Umax(1 +KA[X ]nt )(kY − kD[Y ]t)

1 +QA[Y ]mt
. (29)

The corresponding differential equation for [Y ]t is:

d[Y ]t
dt

=
V ′
max(kY − kD[Y ]t)

1 +QA[Y ]mt

+
U ′
max(1 +QA[Y ]mt )(kX − kD[X ]t)

1 +KA[X ]nt
. (30)

A representative phase portrait for this system of equa-
tions is plotted in Fig. 6, demonstrating that this
schematic model retains the phenomenology of a cen-
trally stable region where [X ] ≈ [Y ] flanked by two un-
stable regions for [X ] ≫ [Y ] and [Y ] ≫ [X ].
We sensibly expect the kinetics of this system to re-

duce, in the absence of coupling, to the rate law given

0

2

4

6

0 2 4 6

[X]

[Y ]

FIG. 6. Phase portrait of the mutually regulating plasmid
circuit with crosstalk. The dynamical phase portrait defined

by Eqs. (29) and (30) is plotted for Umax = U
′

max
= 1/2 and

all other parameters equal to unity (an equivalent parameter
set to that used for the phase portraits in Fig. 5). Once again,
the red dot marks the fixed point at (1, 1).

by Eq. (22), meaning that the elementary reactions that
lead to Eq. (29) must, at bare minimum, include:

X + S
kD−−⇀↽−−
kX

S

nX + S
k+−−⇀↽−−
k−

SXn (QSSA)

Y + Q
kD−−⇀↽−−
kY

Q

mY +Q
q+−−⇀↽−−
q−

QYm (QSSA). (31)

In addition to the above, the coupling between proteins
X and Y will be mediated through the additional set of
reactions:

(QSSA)

{

Q
qA−−→ Q+A

SXn +A
kA−−→ SXn

(QSSA)

{

S
qB−−→ S + B

QYm +B
kB−−→ QYm

nX + A
kY−−→ (n + 1)X + A

nX +Y +A
kD−−→ (n− 1)X + Y +A

mY + B
kX−−→ (m + 1)Y + B

mY +X+ B
kD−−→ (m− 1)Y + X+ B. (32)

Though not immediately obvious, the above collec-
tion of elementary reactions do indeed produce the
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rate laws of Eq. (29) and (30), with KA ≡
k+/k−, QA ≡ q+/q−, Vmax ≡ [S]tot, V ′

max ≡
[Q]tot, Umax ≡ (qA/kA)([Q]tot/[S]tot), and U ′

max ≡
(qB/kB)([S]tot/[Q]tot). This looks rather complicated
and arbitrary, but the four virtual species we have in-
troduced all have reasonable interpretations.
The proteins S and Qmay still be interpreted dually as

both transcription initiators and protein degraders, and
the first set of bracketed reactions in Eq. (32) indicate
that species A represents one of the other proteins tran-
scribed by Q that S also degrades. Note that it is SXn

that degrades A because SXn is the fraction of S not oc-
cupied with the degradation or transcription of X . The
species B is, analogously, a virtual species transcribed by
S and degraded by Q (in the form QYm). Both virtual
species A and B are assumed to exist in a quasi-steady
state.
The remaining two reactions involving A describe its

role as an intermediary for the regulation of X by Y .
The species A is assumed to be a transcription factor
for X , and Y is modeled as repressing the transcription
of X principally by interfering with the binding of A.
The virtual species S is still the principal promoter of
X transcription, so the promoter site for protein X will
only be vacant for A or Y to bind if the concentration of
X is large, in which case S will be tied up acting in its
role as protease. This restriction is enforced by including
nX on the left-hand side of both reactions. The species
B promotes Y in an analogous manner and this process
is similarly frustrated by X .

IV. CONCLUSIONS

In this paper, we have established a mathematical anal-
ogy between the linearized kinetics of mutually regulat-
ing plasmid circuits near homeostasis and the current
dynamics of inductively interacting magnetic circuits.
Within this analogy, a protein concentration near steady
state is represented as a simple RL-circuit loop, and the
transcriptional regulation of two such proteins by each
other is represented by inductively coupling two RL cir-
cuits by a loop of ferromagnetic material, as in a trans-
former. By itself, this analogy is not terribly remark-
able, as nearly all physical systems exhibit similar phe-
nomenology when linearized about a stable fixed point
in their dynamics. What is noteworthy, however, is the
manner by which we meaningfully translate a nonlinear
feedback mechanism introduced into the magnetic sys-
tem into a schematic kinetic theory for the influence of
crosstalk on the stability of a cell’s biochemical state that
does not explicitly depend upon knowing the dynamic
concentrations of shared biomolecular resources. Instead,
our model introduces virtual chemical species whose pre-
sumed quasi-steady total concentrations serve as free pa-
rameters that modulate the strength of the crosstalk in-
teractions.
For a plasmid circuit with a single, constitutively reg-

ulated gene, we predict that its steady-state concentra-
tion should relax at vastly different rates depending upon
whether the relaxation is driven by further transcription
of the gene or by protein catabolism. This is consis-
tent with the fact that most transcription factors, which
regulate the rate of the former process, typically only
influence the production rates of a small number of dif-
ferent genes whereas protease enzymes, responsible for
the latter process, degrade a large number of different
gene products. As a result, we expect the protease sup-
ply of a cell to be more susceptible to crosstalk and,
consequently, the degradation of a protein excess to be
much slower than the recovery from a protein deficiency.
Our analogy suggests that we can model this asymme-
try by introducing a single virtual molecular species into
the model, which acts simultaneously as a transcriptional
promoter and a protease enzyme, the precise stoichiom-
etry of which can be used to tune the sensitivity of the
kinetics to fit experimental measurements.

For a plasmid circuit consisting of two mutually re-
pressive genes, we predict that crosstalk can prevent the
system from relaxing back to steady state at all if the
concentration of one gene product becomes too much
larger than the other. Because the nonlinear contribu-
tions to the model in this case violate our initial assump-
tion of linear stability, we cannot predict precisely what
becomes of the diverging trajectories, but it is reasonable
to assume they eventually reach new steady states. This
implies that resource limitations can render cells more
adaptable, able to switch between different biochemical
states depending upon how metabolic constraints impact
transcriptional rates. For this system, our analogy re-
quires we introduce two virtual species for each gene
product (four in total), with one species of each pair gov-
erning the crosstalk experienced from constitutive regu-
lation and catabolism (as in the previous case) and the
other characterizing the crosstalk associated with mutual
regulation.

Although our analogy between genetic and magnetic
circuits succeeds in reproducing much of our intuition
about how crosstalk should modulate gene regulation,
there are some fundamental incompatibilities between
the biochemistry of the former and the physics of the
latter that still need to be addressed. For starters, the
inherent symmetry of inductively coupled circuits seems
to preclude the extension of the analogy to a broad class
of plasmid circuits that are not mutually regulating or
that have mutual but asymmetric regulation, e.g., when
protein X promotes transcription of protein Y , but Y re-
presses transcription of X . Since the elastic inductor for-
malism we devised was merely a mathematical construct
used to incorporate crosstalk into our magnetic circuits,
with no regard for whether such a component was phys-
ically realizable, we could conceivably address this limi-
tation by introducing another fictitious component, such
as a ferromagnetic loop that only permits magnetic flux
to flow in one direction. While physically unreasonable,
such a construct might mathematically allow for asym-
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metrically coupled RL-circuit loops that could then map,
through our analogy, to gene circuits with unidirectional
regulation.

A second issue is the fact that linear circuit theory has
constrained our analogy to focus on dynamics close to
steady state, even though many plasmid circuits of in-
terest have dynamic behavior that switches or oscillates
between multiple stable fixed points. While one solution
might be to account for the higher order nonlinearities
in the electromagnetic circuit components, there is no
guarantee that our analogy with chemical kinetics will
hold up beyond linear order. A better solution is to do
what one often does with complex, nonlinear systems and
simply perform a separate linearization about each fixed
point. Once the dynamic behavior near each fixed point
is characterized, one can typically predict, at least quali-
tatively, how the system will behave in the regions in be-
tween. The fundamental stability of transformer circuits
would seem to make the characterization of the dynamics
near an unstable fixed point untenable, but this can be
resolved, as described earlier, by artificially choosing an
inductive coupling parameter k > 1.

A final drawback of note derives from the fact that
chemical kinetics is really only valid for descriptions of
large systems where discrete numbers of proteins can be
approximated as continuous concentrations. The tran-
scriptional regulation within a single cell is often better
modeled by discrete, stochastic master equations, which
only map to the continuous, deterministic rate laws of
chemical kinetics under certain circumstances (such as
when averaged over a large cellular population). While
it is straightforward to use the same set of elementary re-
actions to build either a discrete or a continuous chemical
model, the same cannot be said for a magnetic circuit.
While it is true that the continuous currents we have
identified as being analogous to protein concentrations
do in fact arise from the stochastic transport of discrete
charge carriers, there is a vast difference in scale between
a microscopic electron and a macroscopic circuit that is
not present in the biological context, where both discrete
and continuous models describe microscopic processes.
There is no obvious solution to this paricular weakness
of our analogy, other than to be grateful that most ex-
perimental measurements of protein expression are done
at the population level, where chemical kinetics provides
a reasonable description of expression profiles.

While the schematic kinetic models of resource-limited
crosstalk that we have derived make seemingly reason-
able predictions, their true sensibility must be validated
experimentally. Ideally, what we want to analyze is a bac-
terial population in homeostasis, i.e., steady state, that
has been inoculated with a plasmid circuit with several
important characteristics. First, we want the principal
gene product of the plasmid to be a fluorescent protein
whose concentration can be measured at different times
with optical microscopy. Second, we want the transcrip-
tion rate of the plasmid to be dependent upon the exter-
nal concentration of an inducer or inhibitor, so that the

experimentor has a means of pushing the protein concen-
tration away from its stable equilibrium value. Pulsing
this system with inducer, for example, and subsequently
measuring the amount of fluorescence in the population
at several later times would provide relaxation data that
could be directly compared with the predictions of our
model (specifically Eq. (22)).

The second constraint is easily met. The well-known
promoter pBAD, for example, can be leveraged to pro-
duce green fluorescent protein (GFP) at a rate that can
be manipulated by varying the concentration of the sugar
arabinose present in the bacterial medium [30, 31]. Main-
taining a cellular population in a homeostatic steady
state, on the other hand, presents a much greater obsta-
cle. When grown withinin a Petri dish or some other fi-
nite volume of nutrient-rich medium, for example, a bac-
terial population will eventually saturate at a stationary
level as its food source dwindles [32], but this so-called
“stationary” phase is a resource-starved survival state,
and is not representative of truly homeostatic behavior
[33, 34], preceding a precipitous population crash once
the pool of nutrients is fully depleted.

A long-lived steady state can be achieved within a
cellular population, however, by using the microfluidic
chemostat known colloquially as a mother machine [35].
In this device, cells are grown within channels so nar-
row that they are roughly constrained to lie in single file.
Once a channel is full, the addition of a new cell through
mitosis will force the topmost cell out of the channel into
a wider, perpendicular channel where it will be whisked
away by a constant flow of fresh medium. This medium,
meanwhile, can diffuse through the sidechannels to pro-
vide a continuous source of nutrients to the cells. Only
the “mother” cell at the very bottom of each channel
will be in a true state of homeostasis, since its proxim-
ity to the feeding channel will never change; but, so long
as the mother machine has a large number of growth
channels, the set of mother cells can be treated as the
homeostatic population whose time-resolved fluorescent
expression can be measured.

If the basic phenomenology of our crosstalk model can
be validated in the laboratory, then our framework can
be extended to predict the resource-limited dynamics of
more complex plasmid circuits. For any such circuit,
our approach requires a reasonable model of its isolated
chemical kinetics as input. After identifying the fixed
points of the presumably nonlinear kinetics, one would
then linearize the dynamics about each fixed point and
determine the topology of the analogous magnetic circuit.
After elasitifying the inductors in this circuit, one would
then analyze the nonlinear current dynamics near each
fixed point and map those behaviors schematically to sets
of elementary chemical reactions. Note that while in re-
ality crosstalk would also shift the positions of the fixed
points, that is something we would account for when fit-
ting the parameters of the model to experimental data.
For simply predicting the overall performance of the gene
circuit, however, we would merely need to combine the
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nonlinear phase portraits near each fixed point to pre-
dict the possible phase trajectories of the entire system
for various initial conditions.
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