
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Efficient sliding locomotion of three-link bodies
Silas Alben

Phys. Rev. E 103, 042414 — Published 16 April 2021
DOI: 10.1103/PhysRevE.103.042414

https://dx.doi.org/10.1103/PhysRevE.103.042414


Efficient sliding locomotion of three-link bodies

Silas Alben∗

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA∗

(Dated: March 23, 2021)

We study the efficiency of sliding locomotion for three-link bodies with prescribed joint angle

motions. The bodies move with no inertia, under dry (Coulomb) friction that is anisotropic (dif-

ferent in the directions normal and tangent to the links) and directional (different in the forward

and backward tangent directions). Friction coefficient space can be partitioned into several regions,

each with distinct types of efficient kinematics. These include kinematics resembling lateral undu-

lation with very anisotropic friction, small-amplitude reciprocal kinematics, very large amplitude

kinematics near isotropic friction, and kinematics that are very asymmetric about the flat state.

In the two-parameter shape space, zero net rotation for elliptical trajectories occurs mainly with

bilateral or antipodal symmetry. These symmetric subspaces have about the same peak efficiency

as the full space but with much smaller dimension. Adding the second or third harmonics greatly

increases the numbers of local optimal for efficiency, but only modestly increases the peak efficiency.

Random ensembles with higher harmonics have efficiency distributions that peak near a certain

nonzero value and decay rapidly up to the maximum efficiency. A stochastic optimization algorithm

is developed to compute optima with higher harmonics. These are simple closed curves, sharpened

versions of the elliptical optima in most cases, and achieve much higher efficiencies mainly for small

normal friction. With a linear (viscous) resistance law, the optimal trajectories are similar in much

of friction coefficient space, and relative efficiencies are much lower except with very large normal

friction.

I. INTRODUCTION

In this work we investigate sliding locomotion by three-link bodies. Such bodies are a benchmark system for

studying the basic physics of locomotion, for swimming microorganisms [1–13] and other locomoting bodies [14–16].

With only three links (and thus only two internal degrees of freedom, the interlink angles), it is easier to consider

the full range of possible motions. The low-dimensional configuration space also facilitates optimization studies, by

limiting the space of possible motions, and therefore perhaps the number of local minima in the optimized quantity

(typically efficiency—defined here as the average speed divided by the average input power). Three links are enough to

approximate perhaps the most common swimming and crawling motions: undulatory traveling-wave motions [1, 17].

With two links, time-periodic motions are limited to reciprocal, scallop-type motions. Here locomotion is possible

with fore-aft frictional anisotropy [15], buoyancy [18], change of shape [19], or when body inertia is considered for
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sliding bodies [20], in which case it may be relatively efficient. The main assumptions of this work—anisotropic

resistance forces, negligible body inertia, and prescribed joint angles—are common to most previous studies of n-link

microswimmers and crawling bodies mentioned here.
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FIG. 1: Left: Classification of local optima across friction coefficient space, presented in [21]. The triangles, crosses, and circles mark

locations where optima that are direct, standing, or retrograde waves were found, respectively. The solid lines mark interfaces between

regions containing a distinct type of wave optimum, while the dashed lines delineate a region with both standing- and retrograde-wave

optima. Right: Three sequences of snapshots of locally optimal motions giving examples of direct, standing, and retrograde waves. These

occur at particular friction coefficient ratios, listed above the snapshots and marked with green, red, and blue symbols in the panel at left.

The three sequences of snapshots are given over one period of motion, and displaced vertically to enhance visibility but the actual net

displacement is horizontal.

By considering bodies with more than three links [9, 22–24], studies have obtained some of the benefits of simplifying

the body’s spatial configuration while approaching the case of a smooth body. In an earlier work, we computed the

optimally efficient sliding motions of a smooth curvilinear body, using a quasi-Newton local optimization algorithm

starting from various random initial points in the space of time-periodic body kinematics [21]. We truncated the

number of shape degrees of freedom at 45 in most cases, superposing products of five spatial modes with nine

temporal modes. We computed optima across a space of friction anisotropy ratios (shown in figure 1), i.e. the ratios

of friction coefficients for sliding in the normal direction (values on the horizontal axis) and backward direction (values

on the vertical axis), relative to the coefficient of friction in the forward direction, which is generally the smallest

for real snakes [25]. Here forward and backward sliding means sliding tangent to the body axis (or backbone) in the

direction of the head or tail respectively, and normal sliding means sliding perpendicular to the body axis, to either

side. The model originated in previous experimental and theoretical studies of snake and snake-robot locomotion
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[25–29], analogous to resistive force theory for swimmers [17, 30]. Many of the optimal motions found in [21] could

be classified as direct, retrograde, or standing waves of body axis curvature, based on whether the local curvature

maxima propagate towards or away from the direction of locomotion, or remain stationary, respectively. In the

rightmost portion of the parameter space in figure 1 we have µn/µf � 1, a common regime for snakes and snake

robots [31, 32]. Here the optimally efficient motions are relatively smooth retrograde traveling wave motions, and

are relatively unchanged when the number of spatial and temporal degrees of freedom in the body kinematics are

approximately doubled (from five to ten, and nine to nineteen, respectively). In the limit µn/µf →∞, the retrograde

waves can achieve the upper bound for efficiency, corresponding to uniform sliding in the direction of lowest friction

[21]. The case µn/µf = +∞, corresponding to bodies mounted on knife edges or no-skid wheels [33], can result in

kinematic singularities that may be resolved physically by wheel slippage [16]. The central part of the parameter

space in figure 1, µn/µf ≈ 1 and µb/µf ≥ 1, includes two other common regimes for biological snakes: isotropic

friction and larger backward friction (due to snake scales). Here standing wave optima were found in [21]. The left

part of figure 1, µn/µf < 1, can be realized in wheeled snake robots by turning the wheels 90 degrees, so the wheel

axis of rotation is along the body tangent, and the wheels roll along the body normal. Here direct wave motions were

among the local optima identified in [21]. In the central and left regions of figure 1 there were many optima that

were difficult to classify, and it was difficult to obtain convergence from many of the random initial conditions, and

to identify global optima. Therefore, in this work we limit the number of spatial degrees of freedom by considering

three-link bodies. One advantage is easier visualization of the trajectories in the space of body shapes, which is

two-dimensional. With fewer degrees of freedom, optimization is also easier, and we can more completely describe

local optima throughout friction coefficient space. Another advantage is that we can go beyond optimization and

describe the entire space of possible kinematics to some extent, not just the kinematics that are optimally efficient.

At the end of the paper, we employ a stochastic optimization algorithm, which has some robustness advantages over

that in [21], to compute optimal three-link kinematics with many temporal modes. We also use it to compute optimal

three-link motions with a linear resistance law, corresponding to swimming in or sliding on a viscous medium, and

compare with the optima for dry-friction resistance. In [15], we computed optimal kinematics of three-link bodies

with up to two harmonics, at a particular choice of friction coefficient ratios motivated by the experiments in [29].

Fast computations of locomotion without inertia are facilitated by precomputing “velocity maps,” maps from shape

change to displacements and rotations in physical space [14, 15, 34]. In [34–36], velocity maps were used to predict

swimming motions that give large net displacements with zero net rotation. In [37], we developed the iterative method

for computing velocity maps with Coulomb friction resistance that is used here, and computed optimal motions of

three-link bodies with isotropic friction and a single harmonic. Now, we develop a stochastic optimization algorithm

that allows us to compute optimal kinematics with many harmonics (up to nine are used here), in a large portion of

the two-dimensional space of friction coefficient ratios. We also describe properties of the full space of kinematics,

both optimal and nonoptimal. Among the alternatives to the continuous and stochastic optimization methods we have

used are geometric variational formulations [11, 38, 39], which provide additional geometric insights into properties

of the optima.
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The overall goal in this paper is to describe the range of possibilities for sliding motions across friction coefficient

space more thoroughly than has been done previously, with an emphasis on those that are optimally efficient, locally

and globally. This is made possible by restricting to the case of three-link bodies. In section II, we briefly review the

model, which is the same as in many previous studies. We then restrict to single-harmonic (elliptical) trajectories in

Section III, and define ten clusters that represent the typical optimal motions that occur across friction coefficient

space. The optima with highest relative efficiency occur with a large backward friction coefficient and the normal and

forward friction coefficients about equal. Those with lowest relative efficiency occur when the ratio of normal to forward

friction coefficients is very small or large. We find that symmetric motions achieve efficiencies as high as nonsymmetric

motions in most cases. In section IV we consider the spaces of trajectories with up to three harmonics. They allow

large increases in efficiency near isotropic friction, and in regions with either small normal friction coefficients or large

backward friction coefficients. In section V we employ a stochastic optimization method to find efficiency-optimizing

trajectories with up to nine harmonics. Over friction coefficient space, about six types of motions are seen, and the

improvement over the elliptical trajectories is largest when the normal friction coefficient is small. With a viscous

resistance model, the optima are qualitatively similar to those with Coulomb friction when the resistance coefficients

have moderate-to-large anisotropy. Section VI summarizes the results.

II. MODEL

FIG. 2: A) Schematic diagram of a three-link body with changes in angles ∆θ1 (here positive) and ∆θ2 (here negative) between the links.

The body is parametrized by arc length s (nondimensionalized by body length), at an instant in time. The tangent angle and the unit

vectors tangent and normal to the curve at a point are labeled. Vectors representing forward, backward, and normal velocities are shown

with the corresponding friction coefficients µf , µb, and µn. B) Examples of body shapes in the (∆θ1, ∆θ2)-plane. Shapes that do not

self-intersect are shown in black; a few shapes at the threshold of self-intersection are shown in red.

We use the same Coulomb-friction model as [15, 25, 29] and other recent studies. The body is thin compared

to its length, so for simplicity we approximate its motion by that of a polygonal curve X(s, t) = (x(s, t), y(s, t)),

parametrized by arc length s and varying with time t. A schematic diagram is shown in figure 2A.

The basic problem is to prescribe the time-dependent shape of the body in order to obtain efficient locomotion.

The shape is described by ∆θ1(t) and ∆θ2(t), the differences between the tangent angles of the adjacent links. A set
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of possible body shapes is plotted at the corresponding (∆θ1, ∆θ2) locations in figure 2B. The region inside the gray

polygonal boundary consists of shapes that do not self-intersect. Five examples of shapes that lie on the boundary are

shown in red (along the upper right portion of the boundary). In this work we will consider time-periodic kinematics,

which are represented by closed curves in the (∆θ1, ∆θ2)-plane.

To write the dynamical equations (Newton’s laws), we first write the body tangent angle as θ(s, t); it satisfies

∂sx = cos θ and ∂sy = sin θ. The unit vectors tangent and normal to the body are ŝ = (∂sx, ∂sy) and n̂ = (−∂sy, ∂sx)

respectively. We write

θ(s, t) = θ0(t) + ∆θ1(t)H(s− 1/3) + ∆θ2(t)H(s− 2/3) (1)

where H is the Heaviside function and θ0(t) is the tangent angle at the “tail” (the s = 0 end), an unknown to be

solved for using Newton’s equations of motion. The body position is obtained by integrating θ:

x(s, t) = x0(t) +

∫ s

0

cos θ(s′, t)ds′, (2)

y(s, t) = y0(t) +

∫ s

0

sin θ(s′, t)ds′. (3)

The tail position X0(t) = (x0(t), y0(t)) and tangent angle θ0(t) are determined by the force and torque balance for

the body, i.e. Newton’s second law [25, 29]: ∫ L

0

ρ∂ttxds =

∫ L

0

fxds, (4)∫ L

0

ρ∂ttyds =

∫ L

0

fyds, (5)∫ L

0

ρX⊥ · ∂ttXds =

∫ L

0

X⊥ · fds. (6)

Here L is the body length, ρ is the body’s mass per unit length, and X⊥ = (−y, x). For simplicity, the body is

assumed to be locally inextensible so L is constant in time. f is the force per unit length on the body due to Coulomb

friction with the ground:

f(s, t) ≡ −ρgµn
(
∂̂tXδ · n̂

)
n̂− ρg

(
µfH(∂̂tXδ · ŝ) + µb(1−H(∂̂tXδ · ŝ))

)(
∂̂tXδ · ŝ

)
ŝ, (7)

∂̂tXδ ≡
(∂tx, ∂ty)√

∂tx2 + ∂ty2 + δ2
, (8)

and g is gravitational acceleration. Again H is the Heaviside function, and ∂̂tXδ is the normalized velocity, regularized

with a small parameter δ = 10−3 here. Nonzero δ avoids nonsolvability of the equations in a small number of cases

where static friction comes into play, but δ has little effect on the solutions as long as it is much smaller than the

scale of body velocities (typically O(1)), as detailed in [37] in the isotropic case. We find empirically that there is

little change in the results (less than 1% in relative magnitude) when δ is decreased below 10−3.

According to (7) the body experiences friction with different coefficients for motions in different directions with

respect to the body. The frictional coefficients are µf , µb, and µn for motions in the forward (ŝ), backward (−ŝ),

and normal (±n̂) directions, respectively. If µb 6= µf , we define the forward direction so that µf < µb, without loss

of generality. In general the body velocity at a given point has both tangential and normal components, and the
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frictional force density has components acting in each direction. A similar decomposition of force into directional

components occurs for viscous fluid forces on slender bodies [40].

We assume that the body shape (∆θ1(t),∆θ2(t)) is periodic in time with period T , as is typical for steady locomotion

[29]. We nondimensionalize equations (4)–(6) by dividing lengths by the body length L, time by T , and mass by ρL.

Dividing both sides by g we obtain:

L

gT 2

∫ 1

0

∂ttxds =

∫ 1

0

fxds, (9)

L

gT 2

∫ 1

0

∂ttyds =

∫ 1

0

fyds, (10)

L

gT 2

∫ 1

0

X⊥ · ∂ttXds =

∫ 1

0

X⊥ · fds. (11)

In (9)–(11) and from now on, all variables are dimensionless. If the body accelerations are not very large, as is often

the case for robotic and real snakes [29], L/gT 2 � 1, which means that the body’s inertia is negligible. By setting

inertia—and the left hand sides of (9)–(11)—to zero, we simplify the equations considerably:∫ 1

0

fxds =

∫ 1

0

fyds =

∫ 1

0

X⊥ · fds = 0. (12)

Similar models were used in [15, 21, 25, 28, 29, 41, 42], and the same model was found to agree well with the motions

of biological snakes in [29].

The distance traveled by the body’s center of mass over one period is

d =

√(∫ 1

0

x(s, 1)− x(s, 0)ds

)2

+

(∫ 1

0

y(s, 1)− y(s, 0)ds

)2

, (13)

also equal to the time-averaged speed of the center of mass, ‖∂tX‖, where the overbar denotes time- and space- (t-

and s-) average. The work done by the body against friction over one period is

W =

∫ 1

0

∫ 1

0

−f(s, t) · ∂tX(s, t) ds dt, (14)

also equal to the time-averaged power expended against frictional forces, 〈P 〉. As in previous works [15, 21, 25, 29],

we define the efficiency of locomotion as

λ =
d

W
=
‖∂tX‖
〈P 〉

. (15)

Other definitions of efficiency that consider rotational motion (possibly useful for maneuverability) could also be

considered. The upper bound on efficiency is

λub =
1

min(µf , µb, µn)
, (16)

corresponding to uniform motion in the direction of least friction, and can be approached by a sequence of particular

concertina-like motions, as shown in [37]. In this work we take the relative efficiency λ/λub as the primary measure of

performance. For the case of zero body inertia considered here, we explained in [37] that d, W , λ, and the body motion

depend only on the path traced by the kinematics in the (∆θ1,∆θ2)-plane, and not on how the path is parametrized

by time. I.e., if t is replaced by any nondecreasing function α(t) that maps the unit interval to itself, d, W , λ are

unchanged (in the limit δ → 0; to a very good approximation for δ = 10−3).
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III. SINGLE-HARMONIC (ELLIPTICAL) KINEMATICS

FIG. 3: A) Examples of elliptical trajectories in the region of non-self-intersecting configurations (inside the black polygonal outline).

Examples of body configurations at the boundary of the region are shown at upper right. The gray ellipse has center A10, A20 and shape

given by {A11, A21, B11, B21}. B) (∆θ1(t), ∆θ2(t)) for a three-link body, symmetric about the line ∆θ1 = −∆θ2. A0 is the average of

∆θ1 over the ellipse and
√

2A1 and
√

2|B1| are the semi-major and semi-minor axes of the ellipse. The sign of B1 gives the direction in

which the path is traversed.

We begin by considering body kinematics given by a single harmonic, corresponding to elliptical trajectories in the

(∆θ1, ∆θ2)-plane:

∆θ1(t) = A10 +A11 cos(2πt) +B11 sin(2πt), ∆θ2(t) = A20 +A21 cos(2πt) +B21 sin(2πt), 0 ≤ t ≤ 1. (17)

An example is the gray ellipse in figure 3A, with the coefficient values shown as vectors. For any path (17), the path

is unchanged when t is shifted by an arbitrary constant phase. Although the path is unchanged, the net displacement

of the body over a period, and hence the efficiency of the motion, depend on the phase if the body undergoes net

rotation over a period.

As in previous works [3, 24], we pay particular attention to the subset of paths that yield no net rotation of the body

over one cycle, because these are the kinematics that yield nonzero net locomotion over a long-time average. If there

is a nonzero net rotation, points on the body move along circles over large times, so the long-time average velocity is

zero. However, such kinematics could still yield efficient locomotion over short-to-medium times, particularly if the

net rotation is small. We consider this possibility later. In [37] we showed that no net rotation occurs for paths that

have a certain bilateral symmetry, under reflection in the line ∆θ1 = −∆θ2, e.g. the blue ellipse in panel B. In that

work we discussed the case µb = µf , but the same argument holds if µb 6= µf . The rotation that occurs as the body

traverses the half-ellipse above the line ∆θ1 = −∆θ2 is cancelled by the rotation that occurs on the half-ellipse below
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the line. Ellipses with bilateral symmetry can be parametrized as

∆θ1(t) = A0 +A1 cos(2πt) +B1 sin(2πt), ∆θ2(t) = −A0 −A1 cos(2πt) +B1 sin(2πt), 0 ≤ t ≤ 1. (18)

with only three parameters versus six (counting the phase) for general ellipses. We may take A1 ≥ 0 without loss of

generality, by shifting t → t + 1/2 if necessary, which leaves the path unchanged. For motions with no net rotation,

this change of phase does not change the displacement or efficiency.

Another set of paths that yield no net rotation are those with antipodal symmetry, i.e. symmetry with respect to

reflection in the origin, such as the green ellipse in panel A. At antipodal points, ∆θ1 and ∆θ2 are reversed in sign,

and so are ∂t∆θ1 and ∂t∆θ2. Therefore, the shapes and kinematics of the body are mirror images when viewed in the

body frame—defined here as the frame in which the tail lies at the origin, with zero tangent angle. The equations

(12) are solved by equal and opposite values of dθ0(t)/dt and mirror image vectors dX0/dt in the body frame, because

they result in mirror-image distributions of f in the body frame, which both satisfy equations (12). Hence the body

rotations at antipodal points cancel, and the net rotation over a full path is zero. Ellipses with antipodal symmetry

are also parametrized by three parameters

∆θ1(t) = A11 cos(2πt) +B11 sin(2πt), ∆θ2(t) = −A11 cos(2πt) +B21 sin(2πt), 0 ≤ t ≤ 1. (19)

where A21 has again been set to −A11 to fix the arbitrary phase.

The lack of net rotation for trajectories with bilateral and antipodal symmetry was also shown by [43]. A third

special case that we discuss later is reciprocal kinematics—kinematics that are the same under time reversal. These

are degenerate ellipses that reduce to straight line segments, e.g. the red line in panel A. These yield no net locomotion

if µb = µf but can yield efficient locomotion in other cases.

A. Efficient single-harmonic kinematics

We begin by studying the performance of trajectories given by ellipses with bilateral symmetry (e.g. figure 3B). We

consider (A0, A1, B1) ranging over a three-dimensional grid in which A0 and B1 range from −1.2π to 1.2π, and A1

from 0 to 1.2π, each in increments of π/20. Outside these coefficient ranges, elliptical trajectories are generally not

valid because they contain self-intersecting body shapes. We thus obtain a set that fills the space of kinematically-

valid ellipses somewhat densely. For the ellipses that lie entirely in the non-self-intersecting region (about 8000), we

compute the body motions, work done against friction, and the relative efficiency λ/λub using precomputed velocity

maps, as described in [37]. We compute the results for the friction coefficient ratios (µn/µf , µb/µf ) ranging over a

12-by-8 grid with values ranging widely in magnitude, shown on the axes of figure 4A. For each (µn/µf , µb/µf ) pair,

we compute the top two local optima for efficiency, obtaining 12×8×2 = 192 optima in total. We then use a k-means

clustering algorithm (the kmeans function in Matlab) to partition the optima into ten clusters based on location in

(A0, A1, B1)-space. With just ten clusters we reduce the number of optima to consider while approximating each of

the 192 optima well by the nearest cluster centroid. In figure 4, the clusters corresponding to the best (panel A) and

second best (panel B) optima are shown by numbered and colored squares at the corresponding (µn/µf , µb/µf ) pairs.
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Panel C shows trajectories for the optima closest to the centroid of each cluster, shown by outlined squares in panel

A. Panel D shows snapshots of the body motions corresponding to each of the 10 ellipses in panel C. Each sequence

of snapshots in panel D starts from the thin colored line, proceeds from light gray to dark gray, and ends with the

thick colored line. An animation of these motions is shown in the supplemental material.

FIG. 4: Cluster classification of the best (panel A) and second best (panel B) local optima in efficiency for elliptical trajectories across a

grid of (µn/µf , µb/µf ) values. The set of 192 local optima are used to define 10 clusters based on proximity in (A0, A1, B1) space. At

each (µn/µf , µb/µf ) pair, the color of the square denotes the cluster to which it belongs. C) The elliptical trajectory of the optimum

closest to the centroid of each cluster, with color corresponding to that cluster. The cluster number of each ellipse is located along the

right side of the panel, at the minimum vertical position of the corresponding ellipse. Each ellipse corresponds to a square in panel A that

is outlined in black or purple. D) For each ellipse in C, snapshots of the body motion at five instants spaced 1/4-period apart, starting

from the thin colored line, proceeding from light to dark gray, and ending with the thick colored line. The friction coefficient ratios for

each motion are labeled, with the abbreviations µn/f and µb/f in place of µn/µf and µb/µf .

We see in panels A and B that each cluster (i.e. color) tends to occur in a few distinct regions of (µn/µf , µb/µf )
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space. In other words, the friction coefficient ratios tend to select certain types of motions as optima. In figure 1

(from results in [21]), we sorted the optima for smooth bodies into three wave-like motions. It was difficult to obtain

convergence to local optima at many (µn/µf , µb/µf ) values in the smooth case. Also, many of the optima in [21]

were difficult to classify, and did not correspond to the wave-like classification. With the smaller parameter space

represented by elliptical trajectories of three-link bodies, here we are able to identify all local optima, and sort them

more precisely. Unlike the three wave-type categories, the ten clusters here cover all of kinematic parameter space

(given by (A0, A1, B1)). In panels A and B, the ten clusters overlap in multiple ways, but seven major regions in

(µn/µf , µb/µf )-space can be identified:

1. µn/µf � 1, represented by optima 1, 3, and 8 (shown in panel D). Optima 3 and 8 have very small amplitudes

about motions that are nearly flat or completely folded, respectively, and move with a slight motion mainly in

the normal direction when µn/µf � 1.

2. 0.1 < µn/µf < 1, represented by optimum 2. This is a somewhat larger amplitude version of optimum 3, and

translates in both normal and tangential directions.

3. In the vicinity of isotropic friction, µn/µf ≈ 1, µb/µf ≈ 1, is a heterogeneous region in which two large-amplitude

motions (4 and 6) predominate.

4. µn/µf ≈ 1, µb/µf > 1. The brown optimum (5) is the most common here. It is a large-amplitude motion that

translates roughly tangent to the body’s mean flat state. This is a heterogeneous region with both small and

large-amplitude motions (3, 6, and 9);

5. µn/µf > 1, µb/µf > 1 but not � 1. The optima are mainly 5 and 10, both large-amplitude motions;

6. µn/µf > 1, µb/µf � 1. Here the optima are mainly 7 (a large amplitude motion) and 9 (a very small amplitude

motion);

7. µn/µf � 1. Here 1, 3, and 10 predominate, and the body moves mainly in the tangential direction. 10 roughly

resembles concertina motion of snakes, in which the front and rear of the body contract and expand alternately,

while 1 resembles lateral undulation, i.e. a traveling wave along the body.

Like the smooth case, the three-link case shows a rough partition based on small, medium, and large values of

µn/µf , with additional divisions based on µb/µf . It is interesting that at most (µn/µf , µb/µf ) values, the colors in

panels A and B differ, so the top two optima come from different clusters. One might have expected the top two

optima to be nearby motions within the same cluster. This is the case in most of the region where yellow squares

are found, but is rarely true elsewhere. This could result from a relatively smooth efficiency landscape in most cases,

without large numbers of closely spaced optima. Six of the ten optimal paths in panel C are symmetric or nearly

symmetric about the origin, meaning they oscillate about a flat mean shape. The remaining four (6, 8, 9, and 10)

oscillate about mean shapes that are folded to a large extent. We also find that the undulatory optimum 1 is common

both at µn/µf � 1 and� 1, but not at intermediate values (similar kinematics give zero net locomotion with isotropic

friction [37]). The small amplitude motions 3 and 8 also appear where µn/µf is very small and very large.
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FIG. 5: Relative efficiencies of the global (A) and second-best optima (B) among elliptical trajectories with bilateral symmetry.

Figure 5 shows the relative efficiencies of the global (panel A) and second-best optima (panel B) in these regions.

The corresponding A0, A1, and B1 values are plotted in figure 15 of the appendix. The maximum relative efficiency,

nearly 0.6, is achieved at µn/µf = 1 and µb/µf = 20, the top center of panel A, by kinematics in the cluster

represented by motion 9 in figure 4D—a very small amplitude reciprocal kinematics. The second best optimum at

the same friction coefficient ratios (top center of panel B), is nearly as good, but corresponds to a very different

kinematics—number 5 in figure 4D. The motion shown there is for an optimum at the same µn/µf but a much

smaller µb/µf (1.2). The maximum relative efficiencies decline smoothly and monotonically in all directions moving

away from the top center of panel A. At the bottom center of panel A is isotropic friction, with maximum relative

efficiency 0.26. The kinematics are given by the large red ellipse in figure 4C and the motion is number 4 in panel

D. Moving to the lower left corner of figure 5A, µn/µf = 0.01 and µb/µf = 1, the relative efficiency drops to 0.06,

its minimum over the panel, given by motion 3 in figure 4D. Here, even a small amount of tangential motion causes

a large drop in relative efficiency. At the other extreme, µn/µf = 100, the relative efficiency is 0.1, and is achieved

by a small-amplitude circular trajectory about the origin (the flat state), similar to the kinematics of motion 3 in

figure 4D, but now resulting in mainly tangential motion. For both µn/µf � 1 and � 1, the single harmonic and

the three-link body do not permit sufficiently fine scale motions to come close to the upper bound of efficiency. We

will see later that adding more harmonics allows a large improvement in efficiency for µn/µf � 1, but less so for

µn/µf ≥ 1, for three-link bodies.

The relative efficiencies of the second-best optima, shown in figure 5B, are 70–99% of those of the best optima over

most of the middle parts of the panels, but drop to 30–60% of the best values at the most extreme values of µn/µf ,

0.01 and 100. The values have a general pattern of decrease from a peak at the top center that is similar to panel A,

but with a bit less monotonicity. We discuss corresponding patterns in the variation of the coefficients {A0, A1, and

B1} in the appendix.

So far we have considered elliptical trajectories with bilateral symmetry, a three-parameter space. We now enlarge

to the full six-parameter space of arbitrary elliptical trajectories, most of which have nonzero net rotations. We

investigate to what extent efficient locomotion can occur with nonzero, but small (possibly very small) net rotation.

If some nonsymmetric motions have negligible rotation and greatly outperform the symmetric cases with zero net
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FIG. 6: Relative efficiency (λ/λub) versus net rotation (|∆θ0|, in radians) for elliptical trajectories that are bilaterally symmetric (blue

dots), antipodally symmetric (green dots), or reciprocal (red dots). Values for other trajectories are shown by gray dots. Each panel shows

data at a given pair of friction coefficient ratios, labeled along the top and left of the figure.

rotation (exemplified by the green and blue ellipses in figure 3), we should consider the larger space of nonsymmetric

motions further. We consider the general ellipse in (17), first reducing to a five-dimensional space by fixing the phase

(which does not change the path), and then varying the phase for each path. We fix the phase by taking A21 = −A11

and A11 ≥ 0. Each parameter in (17) varies from −1.2π to 1.2π (except A11, varying from 0 to 1.2π) in increments

of π/20. Restricting to paths in the region of non-self-intersecting bodies, we obtain 4.7 ×106 ellipses (compared

to about 8000 in the bilaterally symmetric case), a large increase due to exponential growth with parameter space

dimension. For each path, we vary the phase from 0 to 2π because the phase affects the displacement and hence the

efficiency when there is nonzero net rotation. In figure 6, we plot the relative efficiency versus net rotation (in radians)

for the general elliptical trajectories, for various friction coefficient ratios. Each panel has a different set of friction

coefficient ratios (labeled along the left and top of the figure), on a 5-by-3 grid that is a subset of the 12-by-8 grid

considered earlier. Each trajectory is represented by a dot, gray for nonsymmetric, blue for bilaterally symmetric,

green for antipodally symmetric, and red for reciprocal (as in the examples of figure 3).

The gray dots can have very small rotations, as small as 10−8 in some cases. However, the green and blue dots’

rotations are generally orders of magnitude smaller, ∈ [10−18, 10−10]. These rotations are not precisely zero due to

numerical round-off error. In most panels, the green and blue dots achieve top efficiencies that are essentially the

same as those of the much larger sets of gray dots. However, in the top two panels of the first column (µn/µf = 0.1),

the gray dots reach efficiencies that are 20–30% higher. Excluding those with net rotations > 10−2 decreases this

advantage substantially. Among the gray dots there is a decline in relative efficiency as net rotation tends to zero,

and the gray dots with highest efficiencies usually have net rotations & 10−3. Some of the gray dots are only slight
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perturbations of symmetric cases, so we would expect similar efficiencies with small but nonzero net rotations. The red

dots (reciprocal motions) achieve zero net locomotion, and hence zero relative efficiency, in the bottom row (µb = µf ).

They underperform the other groups in the middle row, but are equal or close to the top performers in the top row,

particularly the right side (µn/µf ≥ 1). In the middle and top rows, most reciprocal motions have nonzero, and

sometimes large rotations. However, a small group of red dots can be seen (by zooming in), distinct from the blue

and green dots, with very small rotations (≤ 10−15), and with high efficiencies. These are nonsymmetric versions

of motions 8 and 9 in figure 4. Because the green and blue dots achieve nearly the same peak relative efficiencies

as the gray dots, and are fewer in number by many orders of magnitude, we consider only these symmetric cases

when we add higher harmonics. It rapidly becomes impractical to compute all periodic trajectories with coefficients

on the aforementioned grids as the number of coefficients increases above five. Nonsymmetric paths with up to two

harmonics are described by nine coefficients. Using the same coefficient grids as for the nonsymmetric ellipses (with

a single harmonic), an estimate of the factor of increase in computing time for the nine-dimensional space relative

to the five-dimensional space is 494 ≈ 6 × 106. Many coefficients lead to self-intersecting paths, but even after

eliminating these, the factor of increase is many orders of magnitude and beyond our computing resources. Bilaterally

symmetric trajectories with a given number of harmonics are described by half the coefficients of the nonsymmetric

ones, allowing us to consider the full bilaterally symmetric trajectory parameter space with higher harmonics, but

only a small number of them.

IV. MULTIPLE-HARMONIC KINEMATICS

We now add higher harmonics to elliptical trajectories, considering trajectories with bilateral symmetry here (e.g.

the blue ellipse in figure 3A), and both bilateral and antipodal symmetry later. Trajectories with bilateral symmetry

and harmonics up to k are given by

∆θ1(t) = A0 +

k∑
n=1

An cos(2πnt) +Bn sin(2πnt) ; ∆θ2(t) = −A0 +

k∑
n=1

−An cos(2πnt) +Bn sin(2πnt), 0 ≤ t ≤ 1,

(20)

while those with antipodal symmetry are given by

∆θ1(t) =

k∑
n=1
n odd

A1n cos(2πnt) +B1n sin(2πnt) ; ∆θ2(t) =

k∑
n=1
n odd

A2n cos(2πnt) +B2n sin(2πnt), 0 ≤ t ≤ 1. (21)

In both cases we have 2k+ 1 terms (when we use A21 = −A11 to set the arbitrary phase in (21)) compared to 4k+ 2

terms in the general nonsymmetric case, for k ≥ 1. Figure 7 shows examples of bilaterally symmetric trajectories

obtained by adding the second or third harmonics to the basic ellipse. In both rows, we start with example ellipses

shown in green. These have just the A1 and B1 terms in (20), with all other terms zero. We take the major axis

twice as long as the minor axis in these examples, so in A, C, E, and G, we have A1 = 0.5 and B1 = 1, while in

B, D, F, and H, we have the other symmetric orientation, given by A1 = 1 and B1 = 0.5. To these ellipses we add

just one additional nonzero mode, setting either A2 (in A and B), B2 in (C and D), A3 (E and F), or B3 (G and
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FIG. 7: Examples of the effect of adding higher harmonics to elliptical trajectories. The trajectories are given by (20). In A, C, E, and

G, we have A1 = 0.5 and B1 = 1; in B, D, G, and H, we have A1 = 1 and B1 = 0.5. To these ellipses we add just one additional nonzero

mode, setting either A2 (in A and B), B2 in (C and D), A3 (E and F), or B3 (G and H) to 0.2 (light blue lines) or 0.4 (dark blue lines).

H) to 0.2 (light blue lines) or 0.4 (dark blue lines), and the other coefficients to zero. These examples show that the

effects of the 4πt modes (top row) are approximately to dilate the path on one side and contract on the other, though

the change of shape is nonuniform and somewhat complicated. The 6πt modes (bottom row) approximately dilate

the path at one pair of opposite sides and contract at the other pair. The trajectories self-intersect in several cases

(which is separate from the question of whether the body self-intersects, determined by the location of the trajectory

in (∆θ1, ∆θ2)-space). Another, geometric interpretation of the terms in (20)–(21) was given by [44]: those with the

lowest harmonic (1) represent an ellipse; those with harmonic 2 (i.e. with coefficients A2 and B2) also represent an

ellipse, but one that is traversed twice within the unit period, and likewise for any harmonic n. Thus (20)–(21) can

be thought of as superpositions of ellipses which are traversed integer numbers of times within the unit period.

It is very expensive to solve for the body motions for trajectories of the form (20) with k > 2 with a dense grid of

coefficients, i.e. varying all 2k + 1 coefficients on the aforementioned grids with spacing π/20. Instead, we consider

two five-dimensional subspaces, the first consisting of ellipses plus second harmonics, varying {A0, A1, B1, A2, B2} on

the aforementioned grids, and the second consisting of ellipses plus third harmonics, i.e. varying {A0, A1, B1, A3, B3}

on the same grids. In figure 8 we plot the numbers of local optima for efficiency at various friction coefficient ratios.

This quantity gives a measure of the smoothness of efficiency space. The number of optima for bilaterally symmetric

ellipses, i.e. the space of {A0, A1, B1}, are shown in panel A; ellipses plus second harmonics are shown in panel B;

and ellipses plus third harmonics are shown in panel C. In panel A, the number of local optima has a minimum of
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FIG. 8: The numbers of local optima of efficiency at various friction coefficient ratios in the space of {A0, A1, B1} describing bilat-

erally symmetric ellipses (panel A), the larger space of {A0, A1, B1, A2, B2} with second harmonics added (panel B), and the space of

{A0, A1, B1, A3, B3} with third harmonics added (panel C).

two at the top, right of center, and a maximum of 45 at the top left. These are also locations where the relative

efficiency was large and small for the best elliptical trajectories, according to figure 15A. On the right side of figure

8A (µn/µf > 1), there are at most 10 optima, and about 2–4 times as many at points with the reciprocal value of

µn/µf , on the left side. In panels B and C, the numbers of local optima increase enormously at the top left to about

1000 in each case, while the minimum value of 2 in A increases modestly, to 4 and 6 in B and C, respectively. At

other points, the numbers of optima increase by factors of 4–8 typically, moving from A to B or to C. The numbers of

local optima plotted in figure 8 are found by comparing each value of efficiency on the mesh with those of its nearest

neighbors (numbering 33 - 1 in panel A, and 35-1 in panels B and C). The numbers of optima presented in figure 8

are mesh dependent, and increase as the meshes are refined. When we decrease the mesh spacing from π/20 to π/40,

the numbers of optima increase, with the largest increases where the numbers are highest in figure 8. At the smallest

values (. 10) there is little or no change. It is not computationally tractable to perform the computation on a mesh

that is fine enough to fully resolve all the optima in these spaces, but the qualitative trends shown by figure 8 become

stronger as the mesh is refined, and are expected to persist in the continuum limit.

One might expect that the cases with larger numbers of local optima, and larger changes in the numbers of local

optima when the higher harmonics are added, are more sensitive to small changes in body motions. One question is

whether the optimal efficiencies in these cases (e.g. the values on the left side of figure 5A) have larger increases when

higher harmonics are added.

Figure 9 shows the changes in peak efficiency when the parameter space is enlarged from smaller to larger sets of

harmonics in (20). First, we consider the improvement when motions that are biased with respect to the flat state (i.e.

those with nonzero A0) are considered, for elliptical trajectories. Panel A shows the factor of improvement in the peak

efficiency when modes with {A0, A1, B1} are considered compared to those with just {A1, B1}. At the smallest µn/µf ,

the A0 term allows for a large increase the peak relative efficiency. At most other friction coefficient ratios, there is

no improvement, except in a strip of values contained within 1 ≤ µn/µf ≤ 10, where the improvement is typically
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FIG. 9: The factor of improvement in maximum relative efficiency when the space of modes is enlarged from A) {A1, B1} to {A0, A1, B1};

B) {A0, A1, B1} to {A0, A1, B1, A2, B2}; C) {A0, A1, B1} to {A0, A1, B1, A3, B3}. The modes corresponding to these coefficients are listed

in equations (20). The factor is plotted at various friction coefficient values shown on the axes.

20–30%. Panel B shows the improvement obtained by expanding from {A0, A1, B1} to {A0, A1, B1, A2, B2}. It is

somewhat surprising that in most cases here, there is little improvement from considering these two additional modes.

There is little to no improvement except near isotropic friction and near 0.01 ≤ µn/µf ≤ 0.1 where the improvement

is at most 31%. Panel C shows the improvement from expanding from {A0, A1, B1} to {A0, A1, B1, A3, B3}. Here

too, the improvement is modest, with improvements up to 51% near isotropic friction, but less than 7.5% outside of

1/3 ≤ µn/µf ≤ 3. Taken together, these results suggest that in most cases ellipses, in particular ellipses centered at

the origin, may be good approximations to the optimal trajectories with large numbers of harmonics. Our stochastic

optimization results shown later will support this statement, except in some cases with µn/µf � 1.

As the number of modes increases above five, it becomes prohibitively expensive to compute results across a grid that

resolves all of the coefficient parameter space. We explore higher-dimensional spaces by instead selecting a random

ensemble of ≈ 106 points in coefficient space. For example, with harmonics up to k = 3, there are seven coefficients

in (20). A large ensemble of seven-component vectors is chosen, with each of the seven components (the coefficients)

drawn from a uniform distribution on [−1.2π, 1.2π]. Most points yield trajectories that include self-intersecting bodies

at certain times, and these are eliminated. The relative efficiency is computed for the non-self-intersecting cases, ≈ 106

in number. This is done for k = 2, 3, 4, and 5 harmonics, with coefficients in a 2k + 1-dimensional space, and ten

different random ensembles in each case. For each ensemble, we bin the data in small increments of relative efficiency,

and construct an estimate of the probability density of relative efficiency, plotted for each k in figure 10, on the five-

by-three grid of friction coefficient ratios used in figure 6. The maximum efficiencies (approximately the maximum

of the values labeled on the horizontal axis in each panel) vary widely among the panels, but the density distribution

shapes have certain common features. The densities typically have a peak at an efficiency that is some distance from

zero (except in the leftmost column), the typical efficiency magnitude for a random kinematics. After the peak, the

densities fall off exponentially (a linear behavior on this log-linear scale) or faster. They are many orders of magnitude

smaller near the maximum efficiencies, which are therefore rare events. There is some scatter among the ten different
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FIG. 10: Probability densities of relative efficiency, estimated from histogram data for various friction coefficient ratios (labeled at top

and left). Each color corresponds to bilaterally symmetric trajectories with a given maximum harmonic k, labeled at left, resulting in

2k + 1 modes. Each curve corresponds to a different random ensemble of about 106 trajectories.

random ensembles (the set of ten curves with the same color in each panel), particularly at the largest efficiencies.

Nonetheless, the curves of a given color tend to cluster together, and near the peaks the densities are not very sensitive

to the particular ensemble used. In most cases, k = 2 gives the best performance—the highest density of states at

large efficiencies—and the performance decreases with larger k. The spaces with lower k are nested in those at higher

k, so the maximum efficiency over all kinematics must occur in the space with largest k. However, figure 10 shows

that it is unlikely to arise in the samples chosen. The method of sampling (uniform sampling in each coefficient, with

self-intersecting motions discarded) could affect the increased prevalence of lower-efficiency states at larger k. For

example, many kinematics with large high-harmonic components may be ineffective for locomotion, and these are

likely to occur with the uniform sampling of each coefficient used here.

V. STOCHASTIC OPTIMIZATION

We have presented the relative efficiency for individual optima, their kinematics in the elliptical case, and some

of the features of trajectory spaces—numbers of optima, distributions of rotations and efficiencies, and incremental

improvements from enlarging the spaces of modes—with dimensions up to 11 (i.e. k up to 5). We now study the

features of optimal trajectories as the space of modes is increased further, by using a stochastic optimization method

with ensembles of trajectories. Compared to the quasi-Newton approaches used in [3, 21], the stochastic method is

gradient-free, and therefore simpler to implement—particularly given the constraint that trajectories remain in the



18

non-self-intersecting region. The main drawbacks are that more iterations are needed to obtain convergence, and

the stochastic algorithm requires parameters that are tuned heuristically, unlike the more standardized Newton-type

search algorithms [45].

Here we create a large number of populations (e.g. 250), each population with 50 trajectories, and evolve the

populations over many generations. At each generation, we evaluate the relative efficiency of each trajectory, select

the top 50% of trajectories, and replace the entire population with random perturbations of the top 50%. We add

perturbations to the coefficients, drawn from uniform or Gaussian distributions. The magnitude of each coefficient

in a given perturbation is a tuned parameter, typically 0.001–0.01 multiplied by the reciprocal of the harmonic

corresponding to the coefficient. If the perturbation magnitude is at the smaller end of the range, the population

converges slowly but directly to the nearest local optimum. If the perturbation magnitude is at the larger end, the

population converges more quickly and possibly to a wider range of optima, but fluctuates more around a given

optimum. Therefore, we start with a larger perturbation magnitude and progressively decrease it, as in simulated

annealing [45]. We run each population for 1000 generations, by which point convergence is obtained.

In figure 11 we plot the optimal trajectories thus obtained, among all the populations, in friction coefficient space.

The trajectories are plotted within the region of non-self-intersecting shapes, outlined in black at each pair of friction

coefficient ratios. We consider trajectories with bilateral symmetry here. Different colors correspond to different

maximum harmonics k in (20)—3 (red), 5 (green), 7 (light blue), and 9 (purple)—with 2k+1 modes in each case. As

for the elliptical trajectory optima in figure 4, certain types of trajectories are strongly correlated with certain regions

of friction coefficient space. There is generally very good agreement between the optima with different k. On the

left, µn/µf � 1, the optimal trajectories are very small, in most cases almost 45-45-90 right triangles with two sides

aligned with the ∆θ1 and ∆θ2 axes, and close to the upper left or lower right corners of each subregion. These are two

versions of the same motion (symmetric about the line ∆θ1 = ∆θ2, i.e. with ∆θ1 and ∆θ2 interchanged), with the

body executing very small motions about a mean shape than is nearly completely folded together as in motion 8 of

figure 4D. The triangles are largest and easiest to see at µn/µf = 0.33 and µb/µf = 1, and gradually become smaller

moving leftward and upward in friction coefficient space. There is a transition to much larger lenticular or oval-shaped

trajectories, centered at the origin at µn/µf = 0.5. These become larger, eventually filling the non-self-intersecting

region at µn/µf = 2 for some µb/µf . Here and at µn/µf = 3, triangular trajectories in the corners reappear, this time

more curved and larger than previously. For larger µb/µf and 1 ≤ µn/µf ≤ 10, small slit trajectories appear, very

similar to motion 9 in figure 4D, and occurring at similar friction coefficient values. At smaller µb/µf , as µn/µf ranges

from 5 to 20, the corner trajectories become larger and rounder, and at the largest µn/µf = 100, all the trajectories

become small circles at the origin, like kinematics 3 in figure 4D, but symmetric about the flat state, and moving

mainly tangentially at this pair of friction coefficient ratios. Most of these trajectories are simple closed curves that

can be approximated reasonably well by ellipses.

Figure 12 shows the results with the same optimization procedure but for the other main class of zero-net-rotation

trajectories—those with antipodal symmetry. The values of k are the same, but result in 2k+2 modes now using

(21). Except in a few cases (e.g. (5, 3), (10, 5)), these trajectories also have the bilateral symmetry of the previous
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FIG. 11: Efficiency-maximizing trajectories with bilateral symmetry, with different maximum harmonics k—3 (red), 5 (green), 7 (light

blue), and 9 (purple)—corresponding to 2k+1 modes in each case. The trajectories are plotted in the region of nonintersecting trajectories,

plotted at various friction coefficient ratios labeled at bottom and left. The trajectories are computed with the stochastic optimization

algorithm described in the text.

trajectories. Where the trajectories in figure 11 are centered at the origin, the two types of optima agree well. Where

they disagree, if the antipodally symmetric optima also have bilateral symmetry (as in nearly every case), they must be

inferior, or else they would also occur in figure 11. In general, the antipodally symmetric optima vary more smoothly

in parameter space.

For all friction coefficient ratios, we find that the optima with bilateral symmetry are at least as good as those

with antipodal symmetry, and often much better. The factors by which the efficiencies of the bilaterally symmetric

optima exceed those of the antipodally symmetric optima are plotted in figure 13A. The factor is about 12 at

µn/µf = 0.01, 2.4–2.7 at µn/µf = 0.1, and decreases to about 1 at µn/µf = 0.5 and 1. It then rises again to

1.2–1.3 for 2 ≤ µn/µf ≤ 10, and then drops back to 1 for larger µn/µf . The values of the relative efficiency for the

bilaterally symmetric optima are shown in panel B. They are fairly uniform, 0.34–0.42, on the left side of the panel,

0.01 ≤ µn/µf ≤ 0.5. On the right side of the panel, they are similar to the values for the elliptical optima in figure

5A, except near isotropic friction. There the bilaterally symmetric optima are about 60% more efficient, but the
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FIG. 12: Efficiency-maximizing trajectories with antipodal symmetry, with different maximum harmonics k—3 (red), 5 (green), 7 (light

blue), and 9 (purple)—corresponding to 2k+2 modes in each case. The trajectories are plotted in the region of nonintersecting trajectories,

plotted at various friction coefficient ratios labeled at bottom and left. The trajectories are computed with the stochastic optimization

algorithm described in the text.

advantage decreases rapidly moving to larger µb/µf and µn/µf . This is consistent with the fact that the trajectories

in figure 11 become either more rounded (at large µn/µf ) or flat (at large µb/µf ), in both cases closer to ellipses.

For µn/µf = 0.01, the bilaterally symmetric optima are about six times as efficient as the elliptical optima. Here the

efficiency is sensitive to the detailed shape of the trajectory (i.e. triangular versus flat), and the higher harmonics are

needed to approximate the optimal trajectory for a three-link body.

A. Linear resistance

Many previous works have considered the optimal motions of three-link swimmers at zero Reynolds number [1–13].

To compare with this important case, we now consider how the optimal trajectories change when the resistive force

is linear in velocity, instead of speed-independent as in the preceding results. This corresponds to resistive force

theory, which is the lowest-order approximation to the nonlocal viscous forces on a slender body [40]. Although
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FIG. 13: A) The factors by which the efficiencies of the bilaterally symmetric optima exceed those of the antipodally symmetric optima.

B) The relative efficiencies of the bilaterally symmetric optima.

nonlocal slender body theories have also been developed and used extensively [3, 30], resistive force theory gives a

sufficient representation of the physics for many swimming problems [46–50]. The anisotropy ratio for a long cylinder,

µn/µf = 2, has been used most often for a body swimming in a Newtonian fluid [2, 30, 40]. [51] mentions a value of

1.5 as more appropriate for undulating bodies; [52] mentions values between 1 and 2 in an empirical theory for shear-

thinning fluids; and [53] derives ratios both less than and greater than two for complex fluids. Ratios greater than 2

(of the order of 10) have also been used to model the crawling of microorganisms on wet surfaces [48, 54–56]. We are

unaware of studies that derive ratios smaller than 1 for biological or physical swimmers, though [17, 51] mention the

possibility for the marine worm Nereis, which have enhanced resistance along the body axis due to bristles, and use

direct wave locomotion. We are also unaware of swimmers that have been modeled with µb/µf different from 1, but

some difference would occur with bodies that are not fore-aft symmetric. For comparison with the sliding locomotion

results in this paper, we compute optimally efficient trajectories with the linear resistance law in the same space of

ratios of resistance (previously friction) coefficients.

For the case of linear resistance, we replace ∂̂tXδ by ∂tX in (7). Bilaterally and antipodally symmetric trajectories

still yield no net rotation; the cancellations in rotation are not affected by how the resistive force depends on the

velocity magnitude. The definition of efficiency is changed from (15) to λ = ‖∂tX‖2/〈P 〉, and is proportional to

measures of efficiency (e.g. the “Lighthill efficiency”) used in previous studies [2, 3, 57]. The same upper bound,

λub = 1/µmin, holds with resistance that is linear in velocity, as follows. We now have

〈P 〉 =

∫ 1

0

∫ 1

0

µn(∂tX · n̂)2 + (µfH(∂tX · ŝ) + µb(1−H(∂tX · ŝ))) (∂tX · ŝ)2ds dt ≥ µmin
∫ 1

0

∫ 1

0

‖∂tX‖2ds dt. (22)

We decompose ∂tX into its time-and-space average ∂tX plus the remainder ∂̃tX, which has zero time-and-space
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average:

∂tX = ∂tX + ∂̃tX ; ∂tX ≡
∫ 1

0

∫ 1

0

∂tXds dt. (23)

Therefore

〈P 〉 ≥ µmin
∫ 1

0

∫ 1

0

‖∂tX‖2ds dt = µmin

∫ 1

0

∫ 1

0

‖∂tX‖2 + ‖∂̃tX‖2ds dt+ 2µmin∂tX ·
∫ 1

0

∫ 1

0

∂̃tX ds dt (24)

= µmin

∫ 1

0

∫ 1

0

‖∂tX‖2 + ‖∂̃tX‖2ds dt ≥ µmin‖∂tX‖2. (25)

Therefore, for a given average speed ‖∂tX‖, 〈P 〉 is at least µmin‖∂tX‖2, which occurs when all points of the body

move uniformly in the direction of minimum resistance, at constant speed ‖∂tX‖. This provides the upper bound on

efficiency:

λub ≡
1

µmin
≥ ‖∂tX‖

2

〈P 〉
= λ. (26)

Figure 14A shows the trajectories (computed with the stochastic algorithm) that maximize relative efficiency, among

the class of trajectories with either bilateral or antipodal symmetry, when the resistance law is linear in velocity. At

large µn/µf , the trajectories are similar to those with Coulomb friction in figure 12. Near µn/µf = 2, the trajectories

are off-center, like those in figure 11, and like that proposed by [5] for high efficiency, but those in figure 14 are

rounder. At µn/µf = µb/µf = 1, all trajectories yield zero locomotion with linear resistance [37], so none is shown.

For µb/µf > 1 and µn/µf = 1 and somewhat larger, small-amplitude reciprocal motions are optimal, similar to those

in the sliding case, figure 11. The symmetrical lenticular or oval shapes in the central parts of figures 11 and 12 do not

appear in figure 14. Here, rounded off-center trajectories appear at both µn/µf > 1 and < 1. Decreasing µn/µf to

0.1 and with µb/µf > 1.5, the trajectories become somewhat triangular, and very small in size as µn/µf is decreased

further to 0.01, roughly like those in figure 11, but not as small. In general, many of the optimal trajectories with

linear resistance resemble those with the Coulomb friction resistance law. The differences are most pronounced in

the vicinity of isotropic friction, where linear resistance yields no locomotion. Figure 14B shows the distribution of

optimal relative efficiencies corresponding to panel A. The distribution is similar to that of figure 13B. The maximum

occurs at the top center in both cases. Value decrease moving leftward and rightward, more to the right in figure 13B

but more symmetrically in figure 14B. The relative efficiency values are generally much lower for linear resistance—

about 0–30% of the values for Coulomb friction in the left half of figure 13B, µn/µf < 1. In the right half, they are

also generally much lower, but reach 50% of the Coulomb friction values when µn/µf increases to 10, and exceed the

Coulomb friction values by a few percent along the rightmost boundary, µn/µf = 100.

VI. SUMMARY AND CONCLUSIONS

We have investigated efficient sliding motions of three-link bodies with a Coulomb friction resistance law and various

frictional anisotropy ratios. We found that the reduced space of elliptical (single-harmonic) trajectories gives a good

representation of optimal motions when more harmonics are considered. Friction coefficient space can be partitioned



23

0.002

0.01 

0.03 

0.1  
0.2  

FIG. 14: A) Trajectories (with bilateral or antipodal symmetry) that maximize relative efficiency, with different maximum harmonics

k—3 (red), 5 (green), 7 (light blue), and 9 (purple)—when the resistance law is linear in velocity. B) The relative efficiencies corresponding

to the motions in panel A.

into distinct regions (about seven are suggested here for elliptical trajectories) where different types of motions are

optimal. Surprisingly, the top two elliptical optima usually belong to different clusters in trajectory coefficient space,

despite having similar relative efficiencies, showing that very different motions can be close to optimal for a given

choice of friction anisotropy ratios. Many of the elliptical optima bend symmetrically to either side of the flat state,

but several optima are strongly asymmetrical, including small-amplitude reciprocal motions. Some of the optima

resemble those seen previously in the smooth case—small-amplitude retrograde or direct wave locomotion with very

large or very small normal friction, reciprocal (or ratcheting) motions with large backward friction. But most of the
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optima are distinct from those seen previously.

The elliptical motions with zero net rotation belong to three groups: those with a certain bilateral symmetry,

antipodal symmetry, and a small subset of the reciprocal motions. For trajectories with harmonics up to a given

integer, the first two groups have about half the dimension of general trajectories, but achieve about the same

maximum efficiency, with a noticeable reduction only for very small normal friction.

Adding the second or third harmonic to bilaterally symmetric elliptical trajectories increases the number of local

optima by a factor of 4–8 in most of parameter space, but increasing to about 20 when normal friction is small.

Adding these modes increases the maximum efficiency by at most 50%, and usually much less. We then considered

random ensembles with uniformly distributed coefficients of up to five harmonics. The probability density of efficiency

has a peak at a nonzero efficiency in most cases, and falls off exponentially or faster up to the maximum efficiency

value. Ensembles that include higher harmonics are skewed towards smaller efficiencies.

We developed a stochastic optimization method to find optimal trajectories in larger spaces of modes, with up

to nine harmonics. We found rapid convergence with increasing numbers of modes. Bilaterally symmetric optima

outperform antipodally symmetric optima where they differ. With small normal friction, the optimal trajectories with

higher harmonics have the same general sizes and locations as the elliptical optima, but have a triangular shape that

increases efficiency by a factor as large as six at the smallest normal friction studied. At intermediate normal friction,

the higher-harmonic optima are similar to the elliptical optima, though sometimes with angular shapes, and efficiencies

are only moderately higher. In nearly all cases, the higher-harmonic optima are simple closed curves, even though

simple closed curves are a small subset of the full set of trajectories (including those with self-intersection). With a

linear resistance law, the peak relative efficiencies are much reduced, particularly near isotropic resistance where the

efficiency is always zero. The optimal trajectories are similar to the Coulomb friction case at large normal friction,

more off-center and rounded at moderate normal friction, and larger and more rounded triangular trajectories at very

small normal friction. As with Coulomb friction, nearly reciprocal motions with very small amplitude predominate

at large backward friction and moderate normal friction.

We mention as a possibility for future work the use of geometric techniques to visualize energy-optimal gaits by

using the energy as a Riemannian metric [38, 58]. Gaits (i.e. trajectories) that yield large displacements are those

that enclose a large amount of an appropriately defined curvature quantity. A “gait gradient” can be computed that

maximizes the net displacement of a gait subject to an energy constraint, and used to evolve the gait towards optimal

efficiency.
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FIG. 15: The left column (panels A, C, and E) gives the values of the kinematic parameters A0, A1, and B1, respectively, for the global

optimizers of efficiency among elliptical trajectories with bilateral symmetry. The right column (panels B, D, and F) gives the same values

for the second best local optimizers. The parameters are defined in (18) and shown in figure 3B.

Appendix A: Coefficients for elliptical optima

Figure 15 shows the values of the three coefficients—A0, A1, and B1—that define the top two local optimizers of

efficiency among bilaterally symmetric ellipses, via equation (18). The left column (panels A, C and E) shows the

A0, A1, and B1 values, respectively, for the top optimum. The mean shape is flat for A0 = 0 and more folded as

|A0| increases. The A0 values in panel A are close to 0 (a nearly flat mean shape) in most cases, except for some

very folded cases at top, left of center (i.e. motion 8 in figure 4D), and at bottom, right of center (i.e. motion 10 in

figure 4D). The amplitudes of the motions, described by A1 (panel C) and B1 (panel E), are typically close to 0 for

µn/µf � 1, large for µn/µf ≈ 1, and then very small again (for µb/µf � 1) or moderately small (for µb/µf ≈ 1)

when µn/µf ≥ 1. There is more heterogeneity among the parameters for the second best optima (right column,

panels B, D, and F). By tracking the parameters of the top several optima (not shown beyond the top two) across

friction coefficient parameter space, we have found that there are distinct branches of optima, with A0, A1, and B1

values that change gradually as the friction coefficient ratios are varied. Their ordering by relative efficiency switches

at certain friction coefficient ratios. This accounts for some of the sharp changes in the parameters of the first and

second columns at certain friction coefficient values, where the best or second-best optima switch from one branch of

optimal motions to another.
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