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To what spatial extent does a single lipid affect the mechanical properties of the membrane that
surrounds it? The lipid composition of a membrane determines its mechanical properties. The
shapes available to the membrane depend on its compositional material properties, and therefore,
the lipid environment. Because each individual lipid species’ chemistry is different, it is important
to know its range of influence on membrane mechanical properties. This is defined herein as the
lipid’s mechanical extent. Here, a lipid’s mechanical extent is determined by quantifying lipid
redistribution and the average curvature that lipid species experience on fluctuating membrane
surfaces. A surprising finding is that, unlike unsaturated lipids, saturated lipids have a complicated,
non-local effect on the surrounding surface, with the interaction strength maximal at a finite length-
scale. The methodology provides the means to substantially enrich curvature-energy models of
membrane structures, quantifying what was previously only conjecture.

INTRODUCTION

Amphiphilic lipids form the foundation of the bilay-
ers that function as a physical barrier, surrounding and
protecting the living cell. Their collective mechanics de-
termine the rates of many critical biological processes, in-
cluding both viral entry and exit, as well as how the cell
recycles membrane signaling proteins as a fundamental
element of regulating its response to stimuli [1]. Biolog-
ical membranes are composed of hundreds of chemically
distinct lipid species [2], each with an individual effect
on surface mechanics [3–7]. Yet the spatial form of that
effect, and how it depends on the physical interactions
between lipids, is largely unknown.

Interactions between lipids (either individually or col-
lectively) determine the stable shapes and patterns [8, 9]
that critically influence biological processes. For exam-
ple, biological membranes sit close to a two-dimensional
compositional phase transition [10, 11] and experiments
suggest they tune their lipid composition to maintain
that proximity [12]. Material properties also determine
the shapes a biological membrane can support. Interme-
diates in membrane fusion and fission are prime examples
of curved structures that are favored by certain lipids.
To determine the energy of a membrane shape, and how
lipids affect its stability, the curvature (c) at a point on
the shape is compared to the spontaneous curvature (c0)
of the lipids at that point. A commonly employed elastic
energy functional, the Helfrich/Canham (HC) Hamilto-
nian [13, 14] is proportional to the squared deviation of
c and c0.

This model is able to describe a number of biologi-
cally relevant phenomena. The relative stability of flat
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and highly curved hexagonal phases is determined by
lipid headgroup and acyl chain chemistry [6, 15, 16].
Adding positively-curved lysolipids blocks fusion while
negatively-curved arachidonic acid favors fusion [17].
A lipid’s c0 determines how it segregates between the
leaflets of sonicated vesicles [18, 19]. These experimental
observations can be explained applying the HC model,
which, as typically applied, generally assumes heteroge-
neous lipid compositions. This assumption is frequently
well justified. However, it is an open question as to how
single lipids influence local material properties.

For example, consider a simple assumption (analyzed
in more depth below): that a lipid determines bilayer
mechanical parameters within a “footprint” of area Ap
around it (i.e., a local effect). Here, the subscript p refers
to treating an individual lipid as a particle diffusing in
the membrane surface. The local HC energy for the lipid
is:

Ep =
κm
2
Ap(c− c0)2, (1)

where κm is the bending modulus of the leaflet. Within
this model and assumptions, a force acts to move the
lipid to where c is equal to c0. Using common values for

the elastic constants (κm = 7.7 kcal/mol, Ap = 65 Å
2
,

c0 = [−29 Å]−1) applicable to high-curvature-favoring
phosphatidylethanolamine (PE) lipids [4], yields Ep =
0.30 kcal/mol on a flat surface, or a Boltzmann weight

of e−βEp = 60% compared to a small, highly curved
surface with curvature c0. For larger structures, enrich-
ment is even more modest and challenging to detect as a
single-lipid effect [20].

An alternative assumption is that the effect on spon-
taneous curvature is spread over the entire bilayer (i.e., a
longer-range effect). In this case, there is no force driv-
ing enrichment based on spontaneous curvature. We de-
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fine the spatial range of a single lipid’s influence on a
leaflet’s mechanical parameters as the “mechanical ex-
tent;” (ME) it is placed in mathematical terms below as
a spatial weight, w(x, y), which is in turn extracted from
molecular simulation data.

The difference between local mechanical extent and
longer-range mechanical extent is critical for determin-
ing how a heterogeneous lipid environment [21], be it
transient or persistent, will support a membrane reshap-
ing process like endocytosis or viral budding. For local
extent, the influence of a lipid is independent of the fre-
quency q of the bilayer undulation; a concentration of
curvature sensitive lipids will strongly promote shapes
even at small length-scales. For well-distributed extent,
only low q modes will feel the influence of the lipid. A
third possibility, which we present evidence for below in
the case of saturated lipids, is that a lipid’s influence
is maximal at a particular value of q. Discussed below,
this physical mechanism favors modulation of the shape
of laterally-separated lipid phases, potentially explaining
how lipid composition can tune a length-scale in quater-
nary mixtures [22]. Previously, a finite length-scale was
predicted to emerge only as a result of the interplay be-
tween tension and compositional curvature-coupling [23–
26].

Ternary systems of dioleoyl (DO)-phosphatidylcholine
(PC, or DOPC), DOPE, and DO-phosphatidyl serine
(PS, or DOPS) are used to test the redistribution behav-
ior of known lipids. Of the simple lipids of the plasma
membrane (with two acyl chains and no carbohydrate
units), those with PE headgroups have the most signif-
icant curvature, c0 = [−29 Å]−1 [3, 4], and simulations
reproduce the curvature of PE accurately [27]. Extend-
ing the simulations to saturated lipids (palmitoyl sph-
ingomyelin, i.e., PSM and dipalmitoyl-PC, i.e., DPPC),
mixed with palmitoyl-oleoyl-PC (POPC) tests the effect
of acyl chain on ME. Generally, results indicate a lipid’s
ME is localized. However, an interesting effect emerges
for the saturated lipids as their fraction increases; simula-
tions indicate a finite length-scale of curvature preference
on the order of nanometers. As discussed below, this has
novel implications for why complex mixtures including
saturated lipids give rise to rich patterning as part of
liquid-liquid lateral phase separation.

THEORY AND METHODS

Continuum energetics and the definition of
mechanical extent

The following sections establish two curvature-related
quantities necessary to determine the mechanical extent
of a lipid’s influence on bilayer mechanics. The first is the
transverse curvature bias, 〈cq〉(z) (see Eq. 16), defined as
the apparent curvature sampled by a lipidic surface when
the positions of the constituent lipids are measured at a
height z above the bilayer midplane. This quantity is

necessary to correct for systematic bias determining the
local curvature around a lipid that is introduced when
choosing an internal coordinate for a lipid’s lateral posi-
tion.

The unbiased position is called the neutral surface [28,
29] and is determined by where in a lipid the transverse
curvature bias is zero. Once we demonstrate how to com-
pute curvature free from the bias of the lipid coordinate
system, we can define the spontaneous curvature spec-
trum, ∆c0(q) (see Eq. 28). The quantity ∆c0(q) is the
difference in spontaneous curvature of a lipid and the
surface background implied by the dynamic redistribu-
tion of the lipid on an undulation with wavevector q.
We demonstrate how the q dependence of ∆c0(q) deter-
mines the mechanical extent of the lipid, as we define
it.

1. Preliminary Fourier description of lipid surfaces

In this work, out-of-plane undulations, h(x, y), and
ME, w(x, y), will be described in Fourier space:

f(x, y) = A−1
∑
q

fqeı{qx, qy} · {x, y} (2)

where the coefficients, fq, are determined by

fq =

∫ Lx

0

dx

∫ Ly

0

dy f(x, y)e−ı{qx, qy} · {x, y} (3)

and where the function f can be h or w. For the Fourier
transform of the periodic bilayer, Eq. 2, only q-space
wavevectors compatible with the periodic boundary con-
ditions are non-zero, that is:

q = {qx, qy} =

{
2πm

Lx
,

2πn

Ly

}
, (4)

where m and n are integers and Lx and Ly are the pe-
riodic cell dimensions. Since these functions are real-
valued, the property fq = f∗−q must hold. Therefore,
only half of the modes are independent and a set of wave-
vectors can be defined using the shorthand “{q > 0}”
as [30]:

{q > 0} ≡ {qx, qy} (5)

such that{
0 < qx < qmax for qy = 0 (i.e., n = 0)

−qmax < qx < qmax for qy > 0 (i.e., n > 0)
.

Note that negative qy are only included implicitly in the
set through f−q = f∗q . This contains all the necessary in-
formation for the independent modes and allows for the
treatment of the real and imaginary components of the
Fourier amplitudes separately. Therefore, computations
can be done on a “per mode” or “per degree of freedom”
basis. Moving forward we use the “per mode” formalism;
however we do comment on the differences when neces-
sary.
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Fluctuations in planar membrane curvature

Consider a single undulating mode of a bilayer de-
scribed with Fourier amplitudes as in Eq. 3. Computing
the HC Hamiltonian energy density,

EHC =
κb
2

(c1 + c2 − c0)2 + κ̄c1c2, (6)

where κb (the bilayer bending rigidity) and κ̄ (the saddle-
splay modulus) require expressions for the principal cur-
vatures c1 and c2 in terms of hq. The principal curvatures
are quadratic coefficients describing the parabolic varia-
tion of the surface away from the tangent plane. Straight-
forward formulas are available for computing them for
general surfaces [31]. For nearly planar simulations with
small fluctuations, the use of the linearized Monge gauge
simplifies mathematical analysis. The Monge gauge pa-
rameterization begins with

r(x, y) = {x, y, h(x, y)}, (7)

and continues by dropping terms of higher order than h2q
when computing observables. This truncation is appli-
cable only to a small deformation, which includes most
thermally induced undulations at physiological tempera-
tures. The principal curvatures are now

c1 = −∂
2h(x, y)

∂x2

c2 = −∂
2h(x, y)

∂y2
(8)

c1 + c2 = −∇2h(x, y).

The leading signs are chosen so that curvature is posi-
tive if the upper (+z) leaflet headgroups are outside of a
convex surface. The energy as a function of hq is

EHC(hq) =

∫ Ly

0

dy

∫ Lx

0

dx
1

2
κb[−∇2h(x, y)]2.

=
∑
{q>0}

κbA
−1|hq|2q4, (9)

with A = LxLy. Terms potentially reflecting bilayer
spontaneous curvature c0 integrate to zero. The surface
normal to first order in hq is

n(x, y) = ẑ−
∑
{q>0}

qhqeı{qx, qy} · {x, y} (10)

where ẑ is the unit z direction normal to the flat mem-
brane. Auxiliary surfaces can then be defined that are
displaced along the membrane normal, n, a distance z:

r(x, y; z) = {x′, y′, z′} = r(x, y) + (δ + z)n(x, y), (11)

where δ is the so-called neutral surface at which curvature
and area-compression energetics are uncoupled [28, 32],
and at which the surface pivots at nearly constant area.

This definition will be used subsequently to describe vari-
ations in curvature at different transverse positions along
the bilayer normal. Notationally z is used as a parame-
ter, with each value defining a distinct surface (displaced
by z along the normal) with distinct curvature.

According to Eq. 9, the modes q do not couple ener-
getically, therefore the partition function Zq for a single
mode can be expressed as:

Zq =

∫ ∞
−∞

d Re (hq)

∫ ∞
−∞

d Im (hq) e(−βEc) =
πA

βκbq4
.

(12)
where the integral is taking over the real and imaginary
parts of a single Fourier amplitude, hq. The whole system
partition function Z for the independent modes is the
product of the individual functions:

Z =
∏
{q>0}

Zq. (13)

The transverse curvature bias 〈cq〉(z)

Embedded in the linearized Monge gauge is the as-
sumption that the lipids are evenly distributed on the
bilayer surface [33]. Under this assumption, the aver-
age curvature of the surface (zero) is also the average
curvature experienced by a lipid (for a single compo-
nent bilayer). However, this assumption is only valid
if a lipid’s position is measured at δ (notationally defined
here as z = 0, see Eq. 11). For example, in the case
of negative curvature, lipids will appear to be more con-
centrated above the neutral surface as a consequence of
this systematic biased sampling of their position. The
lipid normal tends to point toward negative curvature.
This leads to systematic bias of the sampled curvature in
terms of which internal coordinate of the lipid is used to
track the lipid. The top panel of Figure 1 depicts the ori-
gin of the bias graphically. The assumption of a uniform
distribution of lipids will be broken.

Transverse curvature bias only applies to molecular
motions that are correlated with collective undulation;
the magnitudes of tilt (i.e., orientational noise distributed
around the normal) and protrusion (lipids sliding along
the normal) will not influence the observed curvature
when averaged over sufficient time.

Without loss of generality, consider a mode with height
variation along only the x direction (qy = 0). For an
arbitrary atom i in a lipid, its location will be measured
at position r(x; z), where z is the average displacement of
atom i from δ. As previously mentioned, the density of
the lipid will not be uniform (in general) when measured
by the position of atom i. Instead, a spatially varying
metric factor

m(x; z) =

[
∂rx(x; z)

∂x

]−1
, (14)

again parameterized by z and with rx(x, z) as the first
component of the vector defined in Eq. 11, quantifies the
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change in density. Here the ratio of a change in rx to
a change in x is the relative area of the displaced sur-
face at z to the base surface. The inverse relationship
of area to density determines the inverse proportional-
ity in Eq. 14. While this appears to define a full three-
dimensional model of the leaflet similarly to Ref. [34],
the goal is to determine the proper definition of the two-

dimensional surface model where curvature should be
measured. Three-dimensional mechanical properties can
be determined by tracking the deformation of a leaflet’s
atoms, for example, to determine Poisson’s ratio [35].

The expected curvature sampled by an atomic site i for
some mode q = {qx, 0}, integrated over the patch area,
is

〈cq〉(z) = Z−1q

∫ ∞
−∞

d Re (hq)

∫ ∞
−∞

d Im (hq) e−βEc(hq)
∫ Ly

0

dy′
∫ Lx

0

dx′
[
− ∂2h(x, y)

∂x2

]
m(x; z)

=
−2z

βκb
. (15)

Where, consistent with the linearized Monge gauge,
terms of order h2q and higher have been dropped. Per
unit area, the curvature will thus be

〈c̄q〉(z) =
−2z

Aβκb
(16)

where 〈c̄q〉 is the curvature per mode (per area, as de-
noted by the bar). Note that there is no expected de-
pendence on q for the curvature per mode; the subscript
serves to indicate that this is a “per mode” value. This
is the definition of the transverse curvature bias.

Per degree-of-freedom, the value is halved; that is, there
are two degrees of freedom denoted by q. Note that δ
in Eq. 7 does not appear when limiting the expansion
to O[h2q]. The logic above dictates that the reference
surface should have a uniform distribution of lipids as it
is deformed. In practice, some distribution ρ(x) of lipid
position will be sampled at atom j. This distribution can

be written as ρ(x) = ρ0m(x; z′ − δ), where the position
of the neutral surface δ may be unknown (here z′ = z +
δ). By plotting 〈cq〉(z′) against z′, δ can be determined
by finding where 〈cq〉(z′) is zero. This is the basis for
the transverse curvature bias profiles plotted below in
Figure 1.

The spontaneous curvature spectrum, ∆c0(q) of a single lipid

Consider an individual lipid with spontaneous curva-
ture c0,i in a bilayer composed of lipids with spontaneous
curvature c0. We model the ME of a lipid by a function
w(x, y) that is the fractional impact of the lipid as a dis-
tance from the internal coordinate chosen by analysis of
the bias above. The HC energy is then modified by a
change ∆Ep based on the lipid’s parameters:

EHC,p = EHC + ∆Ep

EHC,p = EHC +

∫ Ly

0

dy

∫ Lx

0

dxw({x, y} − {xp, yp})[
κm
2

(c({x, y} − c0,i)2 −
κm
2

(c({x, y})− c0)2 − κm
2

(c0,i
2 − c02)]

(17)

where w(x, y) is normalized such that∫ Ly

0

dy

∫ Lx

0

dxw(x, y) = Ap. (18)

Here A is the area of the surface integrated over, and Ap
is the area of the single lipid. Note that a constant term,
κm

2 (c0,i
2− c02) has been subtracted that would influence

only the chemical potential. The spontaneous curvature
difference c0,i − c0 here models the difference in sponta-
neous curvature between the lipid i and the background

c0.
To compute the partition function now requires inte-

grating over the surface of the membrane while including
the contribution from the particle at {xp, yp}:

Zp =

∫ ∞
−∞

d{Re (hq)}
∫ ∞
−∞

d{ Im (hq)}

×
∫ Ly

0

dyp

∫ Lx

0

dxp e−βEHC,p , (19)

where here EHC,p depends on the Fourier amplitudes
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({hq}) and the lipid position (xp, yp). The integral is
taken over the single particle position and the set of hq
Fourier coefficients. As before, the membrane modes are
separable, therefore we can write the partition function
for a single mode and single particle as:

Zp;q =

∫ ∞
−∞

d Re (hq)

∫ ∞
−∞

d Im (hq)

×
∫ Ly

0

dyp

∫ Lx

0

dxp e−βEHC,p . (20)

In this model, lipids are not directly coupled to each
other, and so only couple through membrane fluctuations
and so would be similarly separable in the case of multi-
ple particles.

Inserting the Fourier series representation of w into

Eq. 17 yields

∆Ep =
1

2

∑
{q>0}

κmq
2∆c0hqwqe−ı{qx, qy} · {xp, yp}

(21)
where ∆c0 = c0,i − c0. The expectation value for curva-
ture is then

〈c〉 = ∆c0
∑
{q>0}

1

2
(wq + w∗q)A−1 (22)

The average curvature sampled depends on the wave-
length of the undulation based on w(x, y).

Now consider the simplest case of point-wise (local)
ME,

wlocal({x, y} − {xp, yp}) = Apδ({x, y} − {xp, yp})
= Apδ(x− xp)δ(y − yp)

= Ap(2π)−1
∫

dqy

∫
dqx eı{qx, qy} · {xp, yp}, (23)

that is,

wq,local = Ap(2π)−1 (24)

The single-particle, single-mode partition function Zq;p,
to second order in ∆c0, is:

Zq;p = ZqA
(
1 +

βκm
Ap

A (∆c0)2

2

)
. (25)

The average curvature sampled by the lipid is

〈c〉 =
∑
{q>0}

Ap
A

∆c0 +O[∆c20, (
Ap
A

)2] (local ME) (26)

The curvature sampled using a local extent function,
wlocal, is q independent.

The integration steps necessary to arrive at the parti-
tion functions and average curvatures are variations on∫ L

0

dxhsq sin(qx)e−βλ sin(q′x) ={
hsq

1
2βλL+O[λ3] if q = q′

0 if q 6= q′
(27)

where q = 2πmL−1, q′ = 2πnL−1 with integer m and n,
hsq is the magnitude of a sinusoidal undulation, and λ is a
coupling constant, e.g., ∆c0. The sin function in the ex-
ponential is the weight due to curvature energetics, while
the pre-exponential factor is the magnitude of curvature
itself.

The ME can be extracted from the spontaneous cur-
vature spectrum:

∆c0(q) = A−1p A〈cq〉(δ) (28)

= A−1p ∆c0wq,

where 〈cq〉 indicates the expectation value of curvature
sampled along mode q. The simulated area A and sam-
pled curvature 〈cq〉 depend on simulation size, whereas
the spectrum itself does not. Note that when wq is in-
cluded in the definition of ∆c0(q), a constant ∆c0 enters
the formula. This reflects the normalization of wq in
Eq. 18. With this definition, wq may be negative if, for
example, the sign of the spontaneous curvature switches
at a particular value of q.

The q = 0 limit from the lateral pressure profile

Spontaneous curvature is typically inferred from
molecular simulations using the lateral pressure profile
(LPP) method [28, 36]. When integrated over a single
leaflet the calculation yields the derivative of the leaflet
free energy with respect to curvature,

−
∫ ∞
0

dzzp(z) =
∂F

∂c

∣∣∣
c=0

, (29)

evaluated at zero curvature, similarly to how a virial ex-
pression yields the derivative of the free energy with re-
spect to volume, i.e., the pressure. Interpreting the sim-
ulated free energy derivative through the HC model of
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an individual lipid’s effect on bilayer mechanics, Eq. 17, yields:

∂F

∂c

∣∣∣
c=0

=
∂

∂c

(
− kBT log

(∫ ∞
−∞

d Re (hq)

∫ ∞
−∞

d Im (hq)

∫ Ly

0

dyp

∫ Lx

0

dxp e−βEHC,p

))∣∣∣
c=0

= Zp
−1
∫ ∞
−∞

d Re (hq)

∫ ∞
−∞

d Im (hq)

∫ Ly

0

dyp

∫ Lx

0

dxp
∂EHC,p

∂c

∣∣∣
c=0

e−βEHC,p

= −κbc0 + Zp
−1
∫ ∞
−∞

d Re (hq)

∫ ∞
−∞

d Im (hq)

∫ Ly

0

dyp

∫ Lx

0

dxp w(xp, yp)(−κm∆c0)e−βEHC,p

= −κbc0 − 2A−1w0κm∆c0 (30)

where here we have assumed that the ME has no ex-
plicit curvature dependence, which is consistent with the
formulation in Eq. 17. The last line follows because all
non-zero-frequency contributions to wq average to zero
at net zero curvature:∫ Ly

0

dy

∫ Lx

0

dxw(x, y) = 2w0 = Ap (31)

The single point at zero in the spontaneous curvature
spectrum is computed from the standard form:

∆c0(0) = κ−1m ∆F
′
c(0), (32)

where ∆F
′
c(0) is the difference of F

′
c(0) between the lipid

under consideration and the average value of the total bi-
layer (average values may be weighted by Ap if differences
can be estimated).

2. Interpretation of w(x, y)

If w(x, y) is assumed to be radially symmetric, its
Fourier transform can be written as a one dimensional
Hankel transformation [37]:

w(q) = 2πH0[w(r)]

= 2π

∫ ∞
0

drw(r)J0(qr)r (33)

where here w(q) is similarly symmetric with respect to
the orientation of q and so only depends on magnitude,
and J0 is a Bessel function of the first kind. The inverse is
equivalent, with the exception of the accumulated factors
of 2π:

w(r) = (2π)−1
∫ ∞
0

dqw(q)J0(qr)q (34)

Qualitatively, we interpret the spectrum in terms of
three observations. First is how the curvature spectrum

attenuates at high q. If the spectrum is fit well by an
exponential decay, the ME in q and real space will be:

w(q) = Ape
−2παq

w(r) =
Ap
2π

α

(α2 + r2)3/2
(35)

where α is the decay coefficient for q (see p. 6 of Ref. [38]),
this is a Lorentzian. Similarly, if the spectrum more
closely matches a Gaussian distribution,

w(q) = Ape
−σ2q2/2

w(r) =
Ap

2πσ2
e
−α r2

2σ2 (36)

the ME is also a Gaussian. To distinguish between
the two is not critical, rather, it is useful to extract a
qualitative measure of the ME, such as the Gaussian or
Lorentzian width.

Second is whether the spectrum meets the zero-q limit
established by the LPP, c0,q=0. Large systems are neces-
sary to simulate long modes with slow relaxation times
that would inform on the low q behavior of w(x, y). How-
ever, if the simulated spontaneous curvature spectrum is
inconsistent with c0,q=0, we infer that a component of the
spontaneous curvature effect is below the q range of the
spectrum. That is, the simulation was too small to detect
the full ME, or too short to capture the slow relaxation
of small q modes with reliable statistics.

Third is whether a particular length-scale emerges
from the mid-q variation of the spontaneous curvature
spectrum. This is indicated by a peak or valley in the
spectrum, and as discussed further below, would sug-
gest a mechanism for curvature-coupled modulation of
the shape and size of lateral compositional inhomogene-
ity.
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Molecular Dynamics

Build and simulation parameters

Two sizes of systems were built and simulated: i) large
systems with an elongated y-axis for computing sponta-
neous curvature spectra including the effect of low q un-
dulations and ii) small, square-patch systems for comput-

ing F
′
c(0) via the LPP. Large-patch systems (1,320 total

lipids – 660 lipids / leaflet) were divided into three main
groups: i) DOPC:DOPE:DOPS at 55:0:45, 25:30:45,
and 0:55:45 mole fractions; PSM:POPC at 10:90, 20:80,
and 30:70 mole fractions; and DPPC:POPC at a 20:80
mole fraction. Additionally, small-patch systems (200
total lipids – 100 lipids / leaflet) were simulated: i)
80:0:20 DOPC:DOPE:DOPS; ii) PSM:POPC at 0:100,
5:95, 10:90, 12:88, 15:85, 17:83, 20:80, 30:70, and 40:60
mole fractions. Simulations are referred to by their main
lipid constituents in bold face, with DO lipids short-
ened to their headgroup chemical acronym. For example,
DOPC:DOPE:DOPS at 25:30:45 relative composition is
PC25PE30PS45.

All systems were built using the CHARMM-GUI Mem-
brane Builder protocol [39–43]. Minimization and initial
relaxation steps were performed using NAMD [44] as pre-
scribed by CHARMM-GUI. All systems were simulated
with a constant temperature of 310.15 K, anisotropic
pressure (x and y coupled; zero surface tension) of 1
bar, and used the CHARMM all-atom force field [45, 46].
Non-bonded interactions were switched off between 10–
12 Å, and long-range electrostatics were handled by PME
with a spacing of less than 1 Å. All bond lengths involv-
ing hydrogen were constrained [47, 48].

Large-patch simulations with Amber for spontaneous
curvature spectra

Following the initial relaxation steps, the large patch
systems were converted into AMBER format [49, 50] us-
ing ParmEd. The simulations were run using the Amber
18 GPU implementation of PMEMD [51–53]. The tem-
perature was controlled by a Langevin thermostat with
a friction coefficient of 1 ps−1. Constant pressure was
maintained by a Monte Carlo barostat. A 2 fs time step
was used with coordinates saved every 200 ps.

Small-patch simulations with NAMD for ∆c0 at q = 0

The small patch systems had constant temperature
maintained by a Langevin thermostat with a 1 ps–1

damping frequency, and constant pressure was main-
tained by a Nosé-Hoover Langevin piston [54, 55] with a
50 fs oscillation period and a 25 fs damping time scale. A
1 fs time step was used and coordinates were saved every
200 ps for analysis. LPPs were obtained post-simulation

using 250 slabs along z using a patched version [56] of
NAMD (v2.12).

Computation of hq and 〈c〉q

The instantaneous Fourier spectrum is computed by
resolving the height h(x, y) of the all-atom membrane on
a discretized grid of bins, with a maximum spacing of 15
Å (qmax = 0.21). The number of bins for a particular
dimension was computed using ceil(L/15 Å). The height
is initially computed on a per-leaflet basis. The final
height ha of a grid point labeled by a was taken as the
mean of the two leaflet heights.

The Fourier amplitude hq of a particular mode q was
computed as

hq =
∑
a

ha∆x∆yeı{qx, qy} · {xa, ya} (37)

where ha is the height of grid point a with lateral coor-
dinates xa and ya, and ∆x∆y is the area of the patch
that contributes to grid point a. As the trajectory was
processed to compute hq, the x and y coordinates of each
lipid were also recorded.

The instantaneous curvature at a lipid was then com-
puted as ∇2h(x, y):

c(x, y) =
∑
{q>0}

A−1hq|q|2eı{qx, qy} · {xp, yp}, (38)

which is real by virtue of h(x, y) being real as stated
above. The q-dependent curvature is:

〈cq〉 = 〈hq|q|2eı{qx, qy} · {xp, yp}〉 (39)

where 〈〉 indicates sampling over the trajectory of the
simulation; it depends on the correlation of hq and the
lipid’s position, {x, y}.

I. RESULTS AND DISCUSSION

The transverse curvature bias determines where to
measure lipid position on an undulating surface

Figure 1, at bottom, shows the transverse curvature
bias, 〈cq〉(z) computed from Eq. 16, for DOPC, DOPE,
and DOPS, including the average over all lipids. The
lateral positions of the lipids were measured separately
using the heavy atom positions of the forcefield. Each
atom has a corresponding ∆z computed from the nearly
flat initial condition (the first ten nanoseconds, follow-
ing the standard CHARMM-GUI pre-equilibration se-
quence). As expected, when measuring the lateral posi-
tion using atom sites near the acyl chains (bilayer middle)
the observed curvature is biased to positive values, while
the opposite is true when position is measured with head-
group atoms, consistent with the cartoon. The neutral
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FIG. 1: Top: A cartoon illustrating the curvature-sampling bias created by tracking a lipid’s position away from the
neutral surface. Colored arrows indicate how measuring a lipid’s position off the neutral surface (dashed black line)
biases either toward negative curvature when sampled too close to the head groups (red arrows) or toward positive

curvature when sampled too far into the acyl chain region (blue arrows). Bottom: Transverse curvature bias profiles,
〈cq〉(z), for mixtures including DOPC, DOPE, and DOPS. Profiles including all lipids are shown in black. The
average curvature per lipid (vertical axis) is reported as a function of the atom used to measure a lipid’s lateral

position. The atom’s identity is mapped to its height in a nearly planar initial state (horizontal axis). The lipid’s
average curvature is recorded at the neutral surface determined using the average over all lipids. The arrow for

DOPE in the center panel indicates the shift due to lipid spontaneous curvature. The red and blue colors indicate
the sign of curvature according to the cartoon above. Note that the data points for each lipid’s profile are not

independent; they are correlated by being spatially fixed by the molecular geometry. Error bars are standard errors
of the mean.

surface, δ, where the lateral distribution is uncoupled to
curvature, is shown with a vertical line intersecting the la-
beling of the horizontal axis. This analysis yields the ap-
propriate atom for computing the spontaneous curvature
spectrum. Note that the neutral surface atom appears to
be q dependent, moving closer to the water interface at
higher q.

The difference in average curvature sampled implies
the lipids’ c0. For a dilute mixture of a lipid like PE in

PC or PS, Eq. 16 would provide the difference in spon-
taneous curvature, ∆c0, between the target lipid and the
background. For PE mixtures like those simulated here,
the effect will wane as PE becomes the majority species
and is forced to regions of positive curvature simply by
self-exclusion. Additionally, mode amplitudes will be en-
hanced by this weak dynamic redistribution of the lipids
to their preferred curvature.

The transverse curvature bias may also be used for ro-
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bust estimates of the bending modulus; this is described
below in the Appendix.

A. The q = 0 point of the spontaneous curvature

spectrum computed from F
′
c(0)

Values of F
′
c(0) are available for DOPC (0.061±0.0025

kcal/mol/Å) and DOPE (0.2281 ± 0.0036 kcal/mol/Å)
in tandem with bending moduli (for both lipids, 17.0
kcal/mol) from Ref. [57]. For DOPS, highly anionic bi-
layers require a correspondingly large ion concentration
for counterbalance. Along with this is the necessity for a
sufficiently large water layer to dissipate the layer effects
of high salt concentration [58]. Accordingly, the value of

F
′
c(0) for DOPS was inferred from a relatively low cov-

erage 20% DOPS/20% DOPC mixture.

The value of F
′
c(0) for PSM is determined by fitting

the linear coefficient of F
′
c(0) for mixtures of PSM and

POPC as the fraction of PSM goes to zero. This is nec-

essary because the value of F
′
c(0) for 100% PSM is not

necessarily equal to the contribution of a PSM monomer

to the F
′
c(0) in which PSM is a minority lipid. The cor-

respondence of properties when a lipid is in the minority
or majority appears to apply to mixtures of DOPE and
DOPC [59]. Note that it is the influence of the monomer
that is sampled by the curvature spectrum of PSM di-

lute in POPC. The variation of F
′
c(0) with PSM mole-

percentage is plotted in Figure 2. The slope of F
′
c(0)

with percentage PSM in POPC is −4× 10−4 ± 5× 10−4

kcal/mol/Å/% when averaged between 0% and 10% and
−1.4×10−3±2×10−4 kcal/mol/Å/% when averaged be-
tween 0% and 20%. Statistically, these data indicate non-
linear variation of curvature stress with sphingomyelin
content. The full characterization of this non-linear vari-
ation, also observed for PSM/DOPE mixtures [59], is
beyond the scope of this present work. The fit implies

that the contribution to F
′
c(0) for monomers of PSM is

−0.14 ± 0.02 kcal/mol/Å, taking the data from 0% to
20% as the reference.

B. Fitting w(q) for a qualitative measure of
mechanical extent

Fitting the spontaneous curvature spectra to Eq. 35
yields a model of the spatial range of the individual
lipids via the function w(q). As we have described
it, the spontaneous curvature spectrum is a combina-
tion of c0 multiplied by the extent function w(q). In
the extensive experiments performed by Rand and co-
workers, e.g. Refs. [3, 4, 6, 7, 16], c0 is extracted from a
model relating osmotic stress to the strain of hexagonally
packed lipidic cylindrical monolayers (the inverse hexag-
onal phase). This yields the zero-frequency contribution
to the spectrum.

In this work, the fit is complicated by applying different
methodology, (analysis of the LPP) to extract the q = 0
point. The LPP has very high statistical precision, but
a caveat must be provided; for DOPC, DOPE, DOPS,
and DPPC we assume that the parameter c0 is the same
at 100% composition as it is when dilute. If the value of
c0 inferred reflects the lipid matrix, we refer to this as a
non-additive contribution to bilayer mechanics. This is
clearly an issue for sphingolipids and cholesterol but does
not appear to be significant for DOPE and DOPC [59].
The full numerical results of the fits are listed in Table
S1 of the supporting material.

1. The q-dependent spontaneous curvature spectra of
unsaturated lipids with varying headgroup chemistry indicate

primarily localized mechanical extent

The spontaneous curvature spectra for mixtures of
DOPC, DOPE, and DOPS are shown in Figure 3. These
data are computed from both lipid redistribution infor-
mation from large simulations (〈c̄q〉, closed points) as

well as F
′
(0) inferred from LPPs (open points at q = 0).

A lipid with localized extent has a spontaneous curva-
ture spectrum that is constant across q, see Eq. 24. The
spectra obtained in Figures 3-5 appear to be roughly con-
sistent with an asymptote to a constant value at high
q, consistent with local extent. It is expected but reas-
suring that two completely different methodologies (the
LPP and dynamic redistribution methods) give consis-
tent ∆c0. Although qualitatively the methods are consis-
tent at low q, there are statistical variations that appear
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inconsistent with completely localized ME.
In accord with the observation that the fits are largely

local, a robust fit of Eq. 35 can be performed by first sub-
tracting out the value of ∆c0(q) at high q, ∆c0klocalAp.
The magnitude of the residual spectra, knon−local, indi-
cates the delocalized extent. The ME is fit with:

wexp(q) = Ap(knon−locale
−2παq + klocal), (40)

c0(q) = c0wexp(q) (41)

with c0knon−local and α as least-squared fit parame-
ters, while klocal is computed directly from the apparent
asymptote above q ≥ 0.165. Including all three parame-
ters simultaneously in a least squares fit yields unphysical
parameters for very localized spectra, because for small
α the constant and exponential terms become linearly
dependent.

We report here the relative magnitude of the local
and non-local pieces with the percent of the effect at-
tributed to the non-local (exponential) factor. In the case
where the local and non-local switch signs, e.g., DOPS in
PC55PS45, absolute values are applied for reporting the
percent contribution. Qualitatively, if the spectra are flat
across the span of q reported from the simulations, they
will tend to have large klocal and thus the same sponta-
neous curvature for any surface undulation.

There is minimal non-local extent in the PC55PS45,
PE55PS45, and PC25PE30PS45 simulations shown in
Figure 3. In both the PE55PS45 and PC25PE30PS45

simulations, the introduction of non-local extent either
contributes weakly (e.g. knon−local = 13% for DOPC and
7% for DOPE in PC25PE30PS45) or does not change the
statistical significance of the fit, for DOPE and DOPC.
For DOPS in all three of these mixtures, a rather short-
ranged α, < 3 Å, with magnitude knon−local > 60%, im-
proves the fit significantly over a completely local fit. The
somewhat small value of α is still consistent with the size
of a lipid (with an area per lipid ca. 65 Å2), although the
Lorentzian form of the real-space extent has a long tail.
In summary, for these lipids with common headgroup
and unsaturated tail chemistry, we find largely localized
extent with a small non-local, but still short-ranged, con-
tribution.

2. The complex spontaneous curvature spectra of saturated
lipids indicate non-local extent

Figure 4 shows the spontaneous curvature spectra of
three PSM/POPC mixtures. The spectrum of PSM
drops significantly at high q where it displays negative
curvature. At low q, where collecting statistics is chal-
lenging due to the slow relaxation times, error bars are
large but generally consistent with an estimate from the
LPP that PSM has positive spontaneous curvature. A
key feature of increasing PSM in the simulation is the
emergence of positive curvature between q = 0.05 and
q = 0.2 Å−1. These points are indicated in Figure 4 with

black outlines. As apparent outliers, if the highlighted
points were not used in the fit their deviation would be
even more striking.

Consider then a lipid analogous to PSM but with a
chemically simpler lipid backbone (glycerol). Figure 5
shows the spontaneous curvature spectrum of a 20%
DPPC in POPC mixture. Here, a statistically signifi-
cant peak is indicated between q = 0.1 and q = 0.15
suggesting a length-scale for the curvature sensitivity of
DPPC. These points have been highlighted as for PSM.

Compared with unsaturated lipids, the mechanical ex-
tent for these saturated lipids is non-monotonic. Instead,
there is a marked positive curvature preference at the
nanometer length scale. Considering the development of
this feature as PSM concentration is increased, its origins
may involve coupling to a background of other saturated
lipids present at higher PSM fractions.

A potentially interesting observation at high q is that
PSM appears to orient according to curvature. In the
supporting material, plots of the transverse curvature
bias are shown at high q for PSM, DPPC, and POPC.
The two acyl chains appear to favor substantially dif-
ferent curvature, indicating that the orientation of PSM
couples to curvature.

C. Non-local mechanical extent supports
modulation of lipid phase separation

In 1986, Leibler [60], and later with Andelman [61]
applied the Ginzburg-Landau (GL) formalism to char-
acterize how particle-curvature coupling leads to inho-
mogeneity of the particle distribution and enhancement
of surface undulations. The GL formalism is sufficiently
flexible to describe line tension physics that gives rise to
macroscopic phase separation [62–64]. Lipid composition
is represented by the order parameter Φ(r) with Fourier
weight Φq, while the coupling between surface and com-
position is parameterized with Λ:

Fcouple =

∫
dqx

∫
dqyΛΦqq

2hq (42)

When surface undulations are accounted for, a length-
scale q∗ emerges for the largest variations in Φq:

q∗ =

√
γσ2 − Λ2σ

2(Λ2κb)
, (43)

where σ is tension and γ is the GL parameter penal-
izing gradients of Φ and is related to line tension [62].
Curvature-compositional coupling can enhance the abil-
ity of particles to phase separate by reducing the ener-
getics of variations in Φ, as described in Ref. [24].

This mechanism has been proposed to explain the
modulation of the shape of phase-separated lipid do-
mains [23–25, 65], which would otherwise be expected
to be circular. For example, stripes emerge in some
complex lipid mixtures [22] with a characteristic width
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FIG. 3: Spontaneous curvature spectra sampled from PC55PS45, PC25PE30PS45, and PE55PS45. DOPC is shown
in black triangles, DOPS in gray circles, and DOPE in lighter gray squares. Open circles at q = 0 are computed

from the LPP. The data is a histogram of values. Error bars are ± the standard error of the histogram bin mean.

that can be tuned. Here the width of the striped phase
may be related to 2π

q∗ . The strength of the emergence

of the length-scale q∗ is set by the relative strength of
tension and curvature, e.g., κ

σ . As the magnitude of a

thermal undulation is proportional to 1
q4κ+q2σ , at low q

tension strongly suppresses membrane undulations rela-
tive to high q. Thus, a balance is struck for q∗ at some
finite value.

The ME is now introduced. Instead of coupling
Φ directly to h point-wise, an intermediate function
fextent coupled is introduced by convolving w with Φ:

fextent coupled(x, y) =

∫
dx′dy′ΛΦ(x′, y′)w(x− x′, y− y′)

(44)
which in Fourier space is simply

fextent coupled(q) = Φqwq (45)

So that Eq. 42 is modified as:

Fcouple,ME =

∫
dqx

∫
dqyΛΦqwqq

2hq. (46)

With Eq. 46, new length-scales emerge regardless of the
tension; they may be set by length-scales intrinsic to
w, if present. Figure 5 shows a peak in the sponta-
neous curvature spectrum of DPPC between q = 0.1 and
q = 0.15 Å−1 (e.g., a wavelength between 4 and 6 nm).
This length-scale is perfectly compatible with domains
of ordered DPPC that appear in mixtures with DOPC

and cholesterol [66]. Meanwhile, the spectrum for PSM
(Figure 4) is somewhat more challenging to interpret but
still compelling: there is a statistically significant in-
crease in the spontaneous curvature between q = 0.05
and q = 0.15, similar to the case as for DPPC. However,
PSM appears to have a stronger positive curvature effect
at low q, at least within the higher PSM background of
20–30%. Note that the spectrum for DPPC and PSM
here may be influenced by this very effect—the lipid dis-
tribution (i.e. Φ) couples to membrane undulations at a
peak value of q∗, enhancing the apparent curvature spec-
trum at that point.

II. CONCLUSIONS

This work developed the methodology necessary to de-
scribe the spatial range of a lipid’s influence on bilayer
mechanical properties, which we termed the mechanical
extent (ME). The ME influences the position-dependent
energy of a lipid. If the ME is highly localized, as we
found to be typical of the lipids we modeled here with all-
atom molecular dynamics simulation, lipids sense local
curvature more strongly than if the effect is distributed
over a larger area. Similarly, the ME should influence
the chemical potential of lipids as they are trafficked be-
tween bilayers; for example, fully localized lipids cannot
“balance” the stresses of nearby lipids.

An important step in the method is to control for how
to sample the lateral position of a lipid that is composed
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FIG. 4: Spontaneous curvature spectra sampled from simulations of PSM in POPC. POPC is shown in blue. PSM
is colored red. Open circles at q = 0 are computed from the LPP. Each data point is the average over modes within
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outlined in black in the intermediate range of q indicate where saturated lipids appear to have increased positive
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FIG. 5: Spontaneous curvature spectra sampled from
DPPC20POPC80. POPC is shown in blue. DPPC is
colored red. The data is a histogram of values. Points

outlined in black in the intermediate range of q indicate
where saturated lipids appear to have increased positive

curvature. Error bars are ± the standard error of the
histogram bin mean.

of many atoms. To do so, we demonstrate how a par-
ticular choice, the so-called neutral surface of bending,
yields an unbiased position. As a corollary, described in
the Appendix, we show how to infer the bending modulus
of a lipid from its depth-dependent sampled curvature.

Extracting the undulation-wavelength-dependent aver-
age curvature yields what we term the spontaneous curva-
ture spectrum. The spectrum is proportional to the ME.
Spontaneous curvature spectra for mixtures of varied
headgroups and simple unsaturated acyl chains (DOPC,
DOPE, and DOPS) demonstrate well-localized extent.
While a similar localized curvature effect was found for
saturated lipids (PSM and DPPC), they also displayed
a marked positive curvature preference at the nanometer
length-scale. We predict that this preference for a finite
length-scale modulates the shape of lipid-liquid domains,
promoting very small domains via curvature coupling.

III. APPENDIX: COMPUTING THE BENDING
MODULUS FROM THE TRANSVERSE

CURVATURE BIAS

In Ref. [67] the authors outline how to compute the
bending modulus from the undulations of a dynamic
molecular simulation without running afoul of apparent
fluctuations at higher q that are unrelated to curvature
energetics. An example of these spurious increases in the
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undulation spectral intensity are fluctuations of the lipid
tilt vector away from the local bilayer normal, as well as
protrusions of the lipids above or below their neighbors.
The principal result of that work is that by controlling
for lipid tilt, the true curvature-mediated undulations can
be extracted and the analysis can be extended to higher
q (shorter wavelength modes amenable to smaller sim-
ulations). A similar method was reported by Allolio et
al. [68].

Connecting the average curvature sampled by the
lipids of a bilayer provides an arguably more convenient
route with the same logic. Eq. 16 is based on the correla-
tions of surface curvature and the lipid director. Molecu-
lar fluctuations uncorrelated with the surface normal (for
example, local tilting) will, on average, not contribute to
〈c〉(z). The method is thus to plot the average curvature
sampled by a lipid as a function of zi, with zi determined

by the average height profile of atoms from an approxi-
mately planar simulation. The slope of the best fit line
to 〈c〉(z)q is −2

Aβκb
.
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