
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Entropy estimation within in vitro neural-astrocyte
networks as a measure of development instability

Jacopo Teneggi, Xin Chen, Alan Balu, Connor Barrett, Giulia Grisolia, Umberto Lucia, and
Rhonda Dzakpasu

Phys. Rev. E 103, 042412 — Published 15 April 2021
DOI: 10.1103/PhysRevE.103.042412

https://dx.doi.org/10.1103/PhysRevE.103.042412


Entropy estimation within in vitro neural-astrocyte networks as a measure of

development instability

Jacopo Teneggi∗

Department of Mechanical Engineering, Politecnico di Torino, Torino, 10129, Italy
Department of Physics, Georgetown University, Washington, District of Columbia, 20057 and
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218

Xin Chen†

Department of Physics, Georgetown University, Washington, District of Columbia, 20057

Alan Balu‡

Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057

Connor Barrett§

Department of Physics, Georgetown University, Washington, District of Columbia, 20057

Giulia Grisolia¶ and Umberto Lucia∗∗

Department of Energy “Galileo Ferraris”, Politecnico di Torino, Torino, 10129, Italy

Rhonda Dzakpasu††

Department of Physics, Georgetown University, Washington, District of Columbia, 20057 and
Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, 20057

(Dated: January 21, 2021)

The brain demands a significant fraction of the energy budget in an organism; in humans, it
accounts for 2% of the body mass, but utilizes 20% of the total energy metabolized. This is due to
the large load required for information processing; spiking demands from neurons are high but are a
key component to understanding brain functioning. Astrocytic brain cells contribute to the healthy
functioning of brain circuits by mediating neuronal network energy and facilitating the formation
and stabilization of synaptic connectivity. During development, spontaneous activity influences
synaptic formation, shaping brain circuit construction, and adverse astrocyte mutations can lead
to pathological processes impacting cognitive impairment due to inefficiencies in network spiking
activity. We have developed a measure that quantifies information stability within in vitro networks
consisting of mixed neural-astrocyte cells. Brain cells were harvested from mice with mutations to
a gene associated with the strongest known genetic risk factor for Alzheimer’s disease, APOE. We
calculate energy states of the networks and using these states, we present an entropy-based measure
to assess changes in information stability over time. We show that during development, stability
profiles of spontaneous network activity are modified by exogenous astrocytes and that network
stability, in terms of the rate of change of entropy, is allele-dependent.

I. INTRODUCTION

The brain is an energy intensive structure and must
couple its ability to grow with the need to maintain sta-
bility [1]. Its flexibility to adapt to the environment must
balance robustness against perturbations. Energy de-
mands in the brain are high; it comprises only 2% of the
human body mass, but consumes 20% of the total energy
[2]. Brain energy requirements are dynamic as neuronal
spiking activity drives energy consumption [3, 4] and as-
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trocytes, another class of cells in the brain, facilitate neu-
ronal energy processing [5–7]. During development, a
period when spontaneous activity is ubiquitous, energy
considerations are vital. Anatomical circuitry is estab-
lished in the absence of modulating sensory input [8–13].
In addition, a large fraction of energy resources is utilized
at the synapse, the site where spiking activity originates
and information is conveyed from one cell to another;
limits on the supply of energy will therefore influence
information processing capacity. Indeed, the majority
of energy consumption during development is attributed
to synaptic synthesis and efficacy, which promotes brain
circuitry development [14–16]. Energy demands mediate
network driven oscillations [17] and require that informa-
tion transmission is maximized at minimum energy cost.

Coordinated spontaneous activity during development
has been widely studied in several structures such as the
retina, spinal cord, neocortex and hippocampus, as it



2

serves to create a template for healthy circuit develop-
ment capable of responding to subsequent sensory input
[18–22]. This development is strongly influenced by the
ability of the circuit to efficiently process and transmit
neural information and energy [23]. While it is impor-
tant to quantify information transmission, experimental
constraints in measuring intracellular spiking dynamics
limit the ability to determine a relationship between in-
formation transmission and network development insta-
bility. Network scale intracellular recording methods are
required and currently such methods are limited to simul-
taneous recordings from only a few neurons [24]. As such,
it is necessary to develop quantitative measures to serve
as indirect proxies for information transmission, such as
entropy.

We describe a suite of analytical tools designed to as-
sess time-dependent changes of spiking dynamics within
neuronal networks. On the cellular level, synchronous
activity affects the probability of post-synaptic firing, as
in long-term potentiation [25–28] and collective activity
on the network level influences information transmission
[29–35]. Information theoretic measures have been used
to infer a wide range of phenomena associated with col-
lective dynamics, in experimental and computational sys-
tems [20, 36–47]. For example, Meshulam et al. [43]
implemented a theoretical framework to create a maxi-
mum entropy model from in vivo population recordings
of hippocampal CA1 neurons. Their model accurately
predicted neuronal activity regardless of the cell’s ability
to code for position. In a computational model, mutual
information (MI) was used to calculate the relationship
between the MI of a network of stochastic units that
code for a particular stimulus and their distance from
the response probabilities induced by continuous or dis-
crete stimuli [39]. They showed a logarithmic relationship
when the stimulus was continuous and an exponential one
for a discrete stimulus suggesting that MI is a useful tool
to measure neural codes.

Here, we quantify energy across the network as a func-
tion of the spiking neuronal activity in time bins within
a recording epoch; we define the entropy of the system
using these energy states. Based upon these quantities,
we devise a metric to evaluate the stability of developing
networks. Dysfunction in spiking activity during devel-
opment can cause severe alterations in synaptic connec-
tivity and neurodevelopmental disorders [2, 48], resulting
in network instabilities; however, such instablities might
not appear until later in the lifetime of the organism.
We apply this measure to evaluate spontaneous dynamics
from developing networks of in vitro hippocampal neu-
rons and astrocytes. Cells were harvested from the brains
of mice in which mutations were made to the gene associ-
ated with the strongest genetic risk factor for Alzheimer’s
disease, APOE.

Apolipoprotein E (APOE), the protein associated with
the APOE gene, is a lipid transport protein primarily
produced by astrocyte cells in the brain [49, 50]. It is
thought to be involved in neuronal repair after injury [51–

53]. There are three major APOE mutations: APOE2 is
believed to be protective, APOE3 is neutral and APOE4

dramatically increases risk for developing Alzheimer’s
and decreases the age of onset in a gene-dose dependent
manner [51, 54]. We show that in networks composed
of neurons and astrocytes harvested from APOE4 mice,
and in networks consisting of neurons and astrocytes har-
vested from mice that do not make APOE, the devel-
opment profiles are unstable, but in opposing manners.
However, networks of neurons and astrocytes harvested
from APOE2 mice are shown to be stable. Similar trends
were also measured from networks of neurons harvested
from mice that do not make APOE, but were supple-
mented with astrocytes from mice that produce either
APOE2 or APOE4.
This paper is organized as follows. In Section II, we

describe the experimental design and detail the quanti-
tative measures. In Section III, we describe the physi-
ological phenomena that we observed in the extracellu-
lar membrane potential fluctuations within each network.
We apply our measures of energy and entropy to these
neural-astrocyte networks as a function of time to charac-
terize their differences. Finally, in Section IV, we discuss
our findings.

II. METHODOLOGY

A. Experimental

Animal protocols conformed to NIH guidelines and ap-
proved by the Georgetown University Animal Care and
Use Committee were used. Please refer to Appendix A
for cell culturing details. Briefly, single cell suspensions
of embryonic hippocampal neurons were separately har-
vested from the following types of APOE mice and plated
onto previously prepared MEAs: mice that do not make
APOE (APOE KO), APOE2 mice and APOE4 mice. As-
trocytes from APOE2 and APOE4 targeted replacement
mice were provided as a gift from the G.W. Rebeck labo-
ratory. On day in vitro 7 (DIV7), astrocytes from either
APOE2 or APOE4mice were added to MEAs plated with
APOE-KO neurons to achieve an astrocyte to neuron ra-
tio of 0.4. Control APOE-KO networks contained no ex-
ogenous astrocytes. No additional astrocytes were added
to MEAs that contained hippocampal neurons harvested
from APOE2 or APOE4 mice, i.e., the endogenous as-
trocytes synthesizing either APOE2 or APOE4, respec-
tively. To ensure reproducibility of results across animals,
all reported experimental groups were derived from mul-
tiple experimental preparations.
Figure 1 shows the sequence of recording and pre-

processing of the MEA data. We recorded all sponta-
neous electrical activity using the MEA2100 amplifier,
A0, residing on a heated microscope stage at 37 °C. The
MEA is composed of 59 TiN electrodes, each of which
is 30µm in diameter and arranged on an 8 × 8 square
array. In addition, there is one reference electrode and
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FIG. 1. Schematic of the recording and filtering system. Neu-
rons and astrocytes are plated onto an MEA. The extracel-
lular voltage signal is amplified using the integrated signal
processor and headstage of the MEA2100 system. To reliably
capture extracellular action potentials, data is sampled to the
computer at 10 kHz. Spike times are extracted using a 2nd or-
der Butterworth high-pass filter at 25Hz.

four auxiliary analog channels; the inter-electrode spac-
ing is 200µm. Electrical activity is amplified and sam-
pled at a 10kHz acquisition rate in order to allow the
detection of spikes. To assess the development of each
network, 5minutes recordings began on DIV10 and con-
tinued daily until DIV21. Data were digitized and stored
on a Dell personal computer (Round Rock, TX) for of-
fline analysis.
Low frequency components were removed by high-

pass filtering all MEA voltage traces at 25Hz (MCRack,
Multi Channel Systems MCS GmbH, Reutlingen, Ger-
many). Negative voltage deflections were observed dur-
ing recordings and these recorded spikes were detected
using a threshold algorithm from Offline Sorter (Plexon
Inc., Dallas TX). Spikes were calculated as a multiple of
the standard deviation of the biological noise ranging be-
tween ±6σ to ±7σ. As described below, we used custom
software written in MATLAB (The Math Works, Natick,
MA) to analyze the activity from the mixed hippocampal
neural-astrocyte cell networks.

B. Data Analysis

1. Binning

Figure 2 outlines the analysis process. Let T =
(t1, t2, . . . , tn) be the spike time series for an electrode,
where tn is the time of occurrence of a spike, we pick a
bin size τ with which to divide the recording epoch. So,
Nτ = 300/τ is the number of bins.
We compute the binary vector B ∈ [0, 1]Nτ such that

bi =

{
1, if ∃ t ∈ T : (i − 1)τ ≤ t < iτ

0, otherwise
. (1)

t

Evaluate entropy

distribution

Evaluate energies from spike time-series

Define energy and gradient

probability distributions

Evaluate cumulative

entropy over time

FIG. 2. Overview of the data analysis process.

That is, bi is 1 if there is at least one spike in the i-th time-
bin. The binning process returns the binary matrix M ∈
[0, 1]Nactive×Nτ , where Nactive is the number of active
electrodes in each MEA. We use three physiologically-
relevant bin sizes: 3ms, 10ms, and 100ms, which re-
sulted in 1× 105, 3× 104, and 3× 103 data points per
DIV per electrode, respectively.

2. Energy estimation

There are many approaches to encoding energy within
neurons and neural networks [55]. We base our method
on [43] and estimate the energy state of each network
using the number of electrodes that are simultaneously
active in each bin.
Let E = (e1, e2, . . . , eNτ

) be the normalized energy vec-
tor such that

ei =

∑Nactive

j=1 Mij

Nactive

. (2)

ei is a discrete variable that can assume a finite set of
values, S:

S = (0, 1, . . . , Nactive)
1

Nactive

. (3)

To determine how the energy states are distributed in
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each network, we estimate their probability distribution,

p̂(s) =
ns

Nτ

, (4)

where ns is the number of occurrences of the energetic
state s in the energy vector E.
Let W = (w1, . . . , wi, . . . , wNτ−1) be the energy gradi-

ent vector where

wi = ei+1 − ei. (5)

wi is a discrete variable that can assume a finite set of
values, G:

G = (−Nactive, . . . ,−1, 0, 1, . . . , Nactive)
1

Nactive

. (6)

We fit the raw energy distributions from the set of
MEAs with the same allele on the same DIV to a gener-
alized decreasing sigmoid

f(x; a) = a1

[
1−

(
1 + a2e

−a3x
)− 1

a4

]
, (7)

using the penalized loss function

l(x; a) = f(x; a)− y + λ‖a‖. (8)

Here, we have:

x = ln(p̂(S))
y = S,

(9)

where S is the concatenation of the energy state vectors
E from each MEA and p̂(S) is their probability. We use
MATLAB’s lsqnonlin function [56, 57] that implements
a trust-region-reflective algorithm based on the interior-
reflective Newton method described in [58, 59]. We train
the learned parameters a on 70% of S and we test on the
remaining 30% and choose the value of λ that minimizes
the loss function.

3. Entropy estimation

We define the discrete phase space Ω such that

Ω = {(s, g), s ∈ S, g ∈ G}, (10)

and

p̂(s, g) =
n(s, g)

Nτ

(11)

where n(s, g) is the number of occurrences of the point
(s, g). Then, we estimate the conditional probability:

p̃(s, g) =
p̂(s, g)

p̂(s)
=

n(s,g)

ns

, (12)

such that
∑

g∈G

p̃(s, g) = 1. (13)

In order to estimate the entropy of each energetic state
s we use Miller’s [60] estimator (see Appendix B), defined
as

ĤMM (s) ≡ ĤMLE +
ms − 1

2ns

, (14)

where ĤMLE is the maximum likelihood estimator of
Shannon’s entropy [61], such that:

ĤMLE = −
∑

g∈G

p̃(s, g) log2 p̃(s, g), (15)

and ms = #{g : p̃(s, g) 6= 0}.
We fit the raw entropy distributions from all MEAs

from the same treatment on the same DIV to a fourth-
degree polynomial using MATLAB’s polyfit function [56].
Finally, we estimate the expected value of the entropy

E[H ] =
∑

s∈S

p(s)H(s) (16)

with the mean entropy

m =
∑

s∈S

p̂(s)ĤMM (s)

=
1

Nτ

Nτ∑

i=1

ĤMM (ei)

=
iτ
Nτ

.

(17)

To investigate the evolution of the mean entropy over
development, we define the relative entropy as

m(dB) = 20 ln

(
mDIV x

mDIV 10

)
, (18)

where x ∈ {14, 18, 21}.

III. RESULTS

Embryonic neurons were plated onto previously pre-
pared MEA substrates as depicted in Figure 1. To re-
flect changes in development stability of the networks, we
analyzed datasets from four time points within a 12-day
period between DIV10 and DIV21. Rastergrams of spon-
taneous activity from APOE-KO neurons plated with or
without exogenous astrocytes are presented in Figure 3
and from mixed neural-astrocyte APOE2 and APOE4
networks in Figure 4. Figure 3a shows that in the absence
of APOE, network activity is sparse, with little increase
in spiking over time. In contrast, APOE-KO neurons
that were supplemented with either APOE2 (Figure 3b)
or APOE4 (Figure 3c) astrocytes display more activity
as early as three days after the addition of exogenous as-
trocytes; these networks continue to develop resulting in
strong, robust firing patterns by DIV21. In Figure 4, en-
dogenous astrocytes in these networks synthesize either
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FIG. 3. Rastergrams of one minute of network activity from several channels in APOE-KO neural networks under the different
experimental conditions show qualitative changes in spiking dynamics as the networks develop. a) Networks with no exogenous
astrocytes display sporadic synchronized spiking on DIV10. The synchronous activity does not become uniform or more
widespread as the activity evolves. b) Astrocytes from APOE2 mice were added on DIV7. By DIV10, three days after the
addition, activity has increased and by DIV21, there are several synchronized electrodes. c) Astrocytes from APOE4 mice
were added on DIV7. On DIV10, there are clusters of increased activity. By DIV21, as in panel b, activity has increased with
uniform firing throughout the epoch.

APOE2 (Figure 4a) or APOE4 (Figure 4b), respectively.
Activity was robust early in development on DIV10. By
DIV21, APOE2 networks display uniform, synchronous
activity whereas the APOE4 networks have a broader
range of firing patterns. Several electrodes display high
frequency firing patterns whereas activity in other elec-
trodes is very sparse.
We calculate the energy distribution within each net-

work during the course of their development. Figure 5
shows the evolution from DIV10 to DIV21 of the fits to
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FIG. 4. Rastergrams of one minute of network activity from
several channels in the APOE2 and APOE4 networks show
qualitative changes in spiking dynamics as the networks de-
velop. a) APOE2 networks display a modest transition to
synchrony by DIV21. b) APOE4 networks have a wide range
of activity patterns and by DIV21, there are electrodes ex-
hibiting very sparse firing and others with persistent activity.

the energy distributions for τ = 10ms. We refer the
reader to the raw data plots in the Appendix, Figure 11.
The macro-energy state is normalized to a number be-
tween 0 and 1, where 0 corresponds to the absence of
activity within a bin across all electrodes, and 1 corre-
sponds to activity in all possible channels for a given bin,
i.e., an ideally synchronous network state. The learned
parameters of the fits are not used in any quantitative
evaluation; importantly, the artifact at p̂(e) = 1 for e ∼ 0
should be disregarded.

One feature common to all four networks is that the
quiescent state, i.e., e = 0, is the most probable network
state regardless of the developmental state of the net-
work (Figure 6). This quiescent state probability is very
high throughout the development of all networks and is
quite stable for both τ = 3ms (Figure 6a) and 10ms
(Figure 6b). When τ = 100ms (Figure 6c), the quies-
cent state is still the most probable state, but its value
decreases considerably. Additionally, there are large fluc-
tuations in the APOE4 networks; the quiescent state
probability drops considerably on DIV18 with minimal
recovery on DIV21. However, once e > 0, activity pat-
terns between the networks begin to differentiate over
time (Figure 5).

On DIV10 (Figure 5a), APOE2 networks and both
APOE-KO networks are quite similar; as the energy state
increases, the probability gradually decreases. In the
APOE4 networks, there is a sharp drop in the proba-
bility when e > 0 and the range of energy states is not
as broad. On DIV14 (Figure 5b) the range of occupied
energy states increases for all four networks (emax ∼ 0.7)
compared to DIV10 (emax ∼ 0.5). We remark that a
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FIG. 5. Energy distribution sigmoid fits for τ = 10ms dur-
ing network development. a) On DIV10, both APOE-KO
and APOE2 show a similar profile; as the energy states in-
crease, there is a gradual decrease in the probability. APOE4
networks have a sharp drop in probability as the energy in-
creases. b) On DIV14, the APOE-KO networks have a small
increase in their maximum energy state. The sharp drop in
the APOE4 profile from DIV10 has decreased and these net-
works expand their range of energy states. The APOE2 net-
works are similar to their DIV10 profile with a small reduction
in the slope. c) APOE-KO networks overlap in their energy
profile with a maximum in their energy state of 0.8. APOE2
networks are nearly constant from DIV14 and APOE4 net-
works start to contract their energy profile. d) All networks
remain nearly the same as for DIV18.

higher energy corresponds to more simultaneously active
electrodes and therefore all networks increase their syn-
chronicity at this time. It is also interesting to note that
both KO networks show an inflection point, while the
APOE4 networks maintain the same concavity through-
out their development.
On DIV18 (Figure 5c), both APOE-KO networks

strongly overlap as well as increase to a higher maxi-
mum energetic state (emax ∼ 0.8); there is also a broad,
flat region of states with equal probability, indicating
a nearly uniform energy distribution at this point in
their network development. In contrast, the distribu-
tions in the APOE4 networks have their broadest range
of energies on DIV14 and start to contract by DIV18
(emax ∼ 0.55). The APOE2 networks have a consis-
tent profile from DIV14 to DIV18. Lastly, on DIV21
(Figure 5d), both APOE-KO networks are stable from
DIV18, with a maximum energy state near emax ∼ 0.8.
APOE4 networks are stable from DIV18 to DIV21, while
APOE2 networks have a small increase in their energy
range with the emergence of a small inflection point.
These energy distributions provide a picture of the evo-

lution of global activity and synchronicity during the de-
velopment of each network. Next, we ask how likely dur-

ing the recording epoch, does each network transition
between energy states. Given that a network is in a par-
ticular energy state, what is the probability that it will
increase or decrease its energy?

To investigate these questions we define the energy gra-
dient w as the difference between two consecutive ener-
getic states: w > 0 indicates increasing energy, w < 0
indicates decreasing energy and w = 0 indicates a steady
state. We evaluate energy gradients within each record-
ing epoch and calculate the conditional probability dis-
tributions. This results in phase space plots of energy
gradients that describe the calculated moves from energy
states within each network, akin to the moves within a
chess game.

Figure 7 shows the conditional probability distribu-

tions of the energy gradient plots, P̃ (e, w), of 4 rep-
resentative MEAs: one per APOE treatment. Within
each spatial map, we identify four different regions, which
vary in extent and sparsity depending on the type of
astrocytes that are present in each neuronal network.
A bright-red region is bounded by the w = 0 and the
w = −e diagonal (i.e., return to e = 0.) This triangu-
lar region shows the high probability that a network will
decrease rather than increase its energy. A slim, blue-
green arch extending upwards from the origin describes
the transition probabilities to higher energy states and
shows the paths networks take to generate events that
will lead to bursts. Cells along the leftmost column,
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FIG. 6. Average quiescent state probabilities. a) When τ =
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drop in the overall probability for τ = 10ms. Developmental
variability is small for all networks, with the exception of
APOE4 networks having an increase in fluctuations on DIV18.
c) When τ = 100ms the probability of the quiescent state
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FIG. 7. Representative phase space maps of conditional probabilities for the energy gradient at τ = 10ms during network
development. Overall, most of the occupied areas have a high probability to transition to a lower energy state. a) For the
APOE-KO-E2 networks on DIV10, the transitions with high probability typically have small gradients, clustered around zero;
on DIV14, the gradients increase for the regions with high probability transitions to lower energies. By DIV21, more of the
phase space is occupied, with a prominent speckle pattern of high transition probabilities. b) APOE-KO-E4 networks follow
a similar trajectory as the APOE-KO-E2 networks for DIV10 and DIV14. By DIV18 and DIV21, transition probabilities to
lower energy states are high when the initial energy state is high. There are also more non-zero probability transitions, creating
a smoother pattern of accessible states. c) APOE2 networks also have a similar clustering of high transition probabilities
with small gradients on DIV10. On DIV14, the high probability transitions to lower energy states tend to occur with larger
gradients. When the network is in a high energy state by DIV18, transitions to lower energy states are sparse and by DIV21,
high probability transitions to lower energy states increases, with an emerging speckle pattern due to regions of zero probability
transitions. d) APOE4 networks start with the smallest occupied region of phase space and the occupied region increases on
DIV14; high probability transitions increases. Interestingly, these high probability transitions originate from a high or low
energy state; these transitions are surrounded by large regions of zero-probability transitions. By DIV21, the map expands to
higher energies with large transition probabilities, with a lower density than that of the other networks.

(e = 0, w ∈ G), have a greater probability to experi-
ence energy increases in an incremental, step-wise fash-
ion rather than taking large jumps. In general, for any
nonzero energy state, as the energy increases, it is more
likely that the system will decrease in energy (red re-
gions) and the higher the energy, the harder, i.e., lower

probability, it is for the network to increase its energy.
The outer regions where dark blue predominates are re-
gions in the phase space for which there are no observed
transitions in energy.

Early in the development on DIV10, all networks start
with a small fraction of the phase space occupied, with



8

the APOE4 network occupying a particularly small frac-
tion of phase space. For all networks, regions with higher
probability consist primarily of transitions to lower en-
ergy states; in general, there are few states with a non-
zero probability to transition to a higher energy state.
On DIV14, most of the networks continue to have many
areas defined by high probability transitions to lower en-
ergy states. The APOE4 network (Figure 7d) also has
regions with high transition probabilities to higher en-
ergy states. In addition, all of its high probability transi-
tions are surrounded by areas with zero probability. On
DIV18, the occupied phase space increases for all net-
works except for the APOE4. The APOE-KO-E2 net-
work (Figure 7a) has several sites with high transition
probabilities to lower energies and the gradients are large,
ranging from 0.2 to 0.4. Interestingly, these accessible
states are also interspersed with many zero-probability
transitions. Also, there is a cluster of high probability
states with transitions from lower to higher energies, but
they are not prevalent until DIV18 and the initial states
with these high probabilities are around 0.4. For the
APOE-KO-E4 network (Figure 7b), there are fewer in-
accessible transitions surrounding accessible transitions.
In addition, the transition probabilities to lower energy
states are not as high as in the APOE-KO-E2 network.
The APOE2 network (Figure 7c) does not have many
accessible transitions at high energies. The phase space
for the APOE4 (Figure 7d) network reverts to a similar
structure of few accessible states as seen on DIV10. Both
the APOE-KO-E2 and APOE-KO-E4 networks have sta-
ble patterns from DIV18 to DIV21. For the APOE2 net-
work, the general phase space boundary is similar from
DIV18 to DIV21, with a slight increase in the number of
high-probability transitions. As with the APOE-KO-E2
network, these transitions are interspersed with regions
of zero probability. Finally, while there is an expansion in
the phase space for the APOE4 network from DIV18 to
DIV21, the high-probability transitions at the higher en-
ergy states are surrounded by many inaccessible regions.

To account for experimental variability, we normal-
ize m, the mean entropy, over the number of active
electrodes in the experiment to obtain the mean single-
electrode entropy, mr ≡ m/Nactive. Figure 8 shows the
fits for the cumulative single-electrode entropies by dif-
ferent networks on different DIVs, as a function of the
duration within each recording epoch. APOE4 networks
are the least stable, with a strong increase of mean en-
tropy over DIV, whereas the APOE2 networks display
a consistent pattern during development. APOE-KO-E2
and APOE-KO-E4 networks display similar, largely over-
lapping, trajectories.

Figure 9 shows the mean single-electrode relative en-
tropies for all taus during the course of network de-
velopment. Here, we include the mean relative en-
tropies for the APOE-KO control networks (i.e., networks
with no additional astrocytes) to evaluate how the ad-
dition of astrocytes to neuronal networks from APOE-
KO mice affects stability. Interestingly, the entropy in

the APOE-KO control networks decrease exponentially
for τ = 10ms and 100ms, albeit with large fluctuations
from DIV10 to DIV14. In contrast, the entropy in the
APOE4 networks increases exponentially, and this in-
crease is τ -invariant. The largest increase occurs between
DIV14 and DIV18, a period when neuronal networks typ-
ically stabilize their activity, but these networks exhibit a
rapid rate of dissipation. The entropies for both APOE-
KO-E2 and APOE-KO-E4 networks are nearly constant
from DIV10 to DIV18 for both τ = 10ms and 100ms.
The APOE2 networks show a similar behavior through-
out their development for τ = 10ms and 100ms, with a
small increase during development when τ = 3ms. These
behaviors are independent of changes in the number of
active electrodes over DIV; the respective figures for m
as seen in Figures 13 and Figure 14 in the Appendix have
trends consistent with the ones describe above.

IV. DISCUSSION

We developed an analytical framework based on Shan-
non entropy to estimate mean entropy as a function
of time in in vitro neuronal networks. We applied
this framework to investigate early stage differences in
network development of spontaneous voltage transients
recorded from in vitro mouse neural-astrocyte hippocam-
pal networks. The networks consisted of either neurons
harvested from APOE knock out mice with exogenous as-
trocytes from APOE-E2 or APOE-E4 mice or co-cultures
of hippocampal and astrocytic cells from either APOE2
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FIG. 8. Cumulative entropy linear fits as a function of time for
τ = 10ms. On DIV10, the cumulative entropy is nearly the
same for all networks. From DIV14 through DIV21, APOE4
networks have the largest cumulative entropy. APOE2 net-
works show a steady and consistent value in their cumulative
entropy during development. Both APOE-KO networks show
the smallest change in their cumulative entropy during devel-
opment.
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FIG. 9. Mean relative entropies for τ = 3, 10, 100ms. APOE4
networks display an exponential increase in entropy during
development, whereas the entropy for the APOE-KO control
networks decrease exponentially; these effects are independent
of τ . The fluctuations for the APOE2 networks are small
when τ = 10, 100ms and when τ = 3ms, there is a small
increase over time. The APOE-KO-E2 and APOE-KO-E4
entropies are virtually constant from DIV10 until DIV18 for
both τ = 10, 100ms.

or APOE4 mice. Coordinated spontaneous neural activ-
ity provides the basis for the creation of healthy neural
circuitry. The tools we developed allow us to quantify
qualitative features observed in the rastergrams of net-
work activity and to articulate dynamics that might not
be easily visualized. Importantly, we use these tools to
investigate whether early abnormalities in network devel-
opment could forecast problems known to manifest later
in life.

The framework assumes that neuronal networks are
physical systems moving between energetic macro-states,
where energy is defined as the number of channels that
detect at least one spike within a given bin. As such,
each bin assumes the binary value of 0 or 1. We se-
lected a range of bin sizes for our analyses that is within
the physiologically relevant time frame for spiking activ-
ity and allows us to assess the stability of the calculated
trends. The goal was to create a set of tools that are “tau-
agnostic” within a physiological range. Furthermore, τ
describes the resolution time scale with which we look at
the networks; as we vary τ we adjust the zoom on our
“temporal camera” and evaluate its impact on the cal-
culated differences between the different treatments. In
addition, we identify the existence of τ -invariant features
that might mark stronger trends by fitting the probabil-
ity distributions of energetic macro-states of networks to
capture their collective developmental trend. The use of
the generalized decreasing sigmoid best represents several
features of the data: the quasi-linear decay at low ener-
gies, the plateau at median energies, and the final down-
ward tail at high energies. We remark that the prevalence
of the sigmoid function in quantifying evolutionary bio-
logical processes [62–64] might suggest the presence of
a fundamental biological phenomenon observed in these
current studies.

Out of all the energetic macro-states, the quiescent
state (e = 0) is the most probable and this was observed
for all networks throughout their development. This high
probability of quiescence suggests that synchronous ac-
tivity need not always lead to an increase in network
activity. Rather, synchronicity can emerge due to a reor-
ganization of the existing activity and these connections
strengthen as the networks become more established over
time. We propose a link to the high quiescent state prob-
ability to a physiological phenomena: the finite neuro-
transmitter available at each synapse during a spiking
event. Repetitive firing at any given synapse will deplete
neurotransmitter from synaptic vesicles and a delay will
ensue to recycle “spent” vesicles [65, 66].
The energy gradient maps with bright red regions,

high probability-density and negative gradient suggest
that the networks function as negative feedback loops.
The higher the energy, the less probable it is for the en-
ergy to increase, presumably due to the reduced avail-
ability of neurotransmitter. The region defined by the
slender green-blue arch relates to findings from neuronal
avalanche studies [67, 68]. The probability distribution in
this region suggests that bursting is not a sharp, discrete
event but it is preceded by a build-up of spikes, akin to
a neuronal avalanche. Our gradient maps show that the
probability of moving directly from the quiescent state to
a high energy state is very small; the networks must move
along several paths with finite probability, leading to high
energy states and these paths must pass through interme-
diate areas of increasingly energetic states. Lastly, there
are high probability transitions to lower energy states
and these transitions are interspersed with large regions
of zero probability. This pattern appears in all networks
and is prominent later in development. It is most promi-
nent in the APOE-KO-E2 and APOE2 networks, sug-
gesting that as those networks mature, transitions from
high energy states are restricted to discrete gradients and
several transitions in the phase space are not accessible.
As previously stated, current state-of-the-art tech-

niques do not allow for the direct measurement of
network-wide information transmission. The MEA sys-
tem measures the rate of change of the extracellular volt-
age, dV/dt, defined by the superposition of the extra-
cellular membrane potentials from any cell capacitively
coupled to a channel. This is in contrast to an intracellu-
lar probe where the voltage, V (t), is measured and arises
due to the gating of ions through primarily membrane
sodium and potassium channels. The approach that we
have taken to define the entropy of the network is similar
to the physical approach encountered in engineering ther-
modynamics where the rate of change of entropy: dS, is
often divided into two separate components: dextS, due
to external exchange of heat, and dintS due to the inter-
nal generation of entropy.
As such, we can write

dS = dintS + dextS, (19)

and since our system consists of an array of extracellular
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electrodes, we access the entropic rate component due to
fluctuations in the external electromagnetic field.

There is a flattening of the entropy distribution for
the networks containing APOE-KO neurons, and the dis-
tribution spans a broad range of energies for each net-
work, regardless of the type of added astrocyte. These
flat entropy distributions suggest the lack of a preference
for a particular energetic state as it relates to transmis-
sion of information. The stable profile of the APOE2
networks across all DIVs, with a peak around low ener-
gies, suggests a stable information transmission structure
throughout their development. In contrast, the narrow
range of the profile of APOE4 networks suggests that
information transmission capabilities of these networks
might not be as robust.

The absence of APOE presents itself as a patholog-
ical neurological state with physiological deficits, and
APOE-KO mice are used as a disease model [69–72].
However, while the APOE4 allele is a risk factor for
Alzheimer’s, APOE4 mice are not a disease model. Im-
portantly, neurological deficits attributed to the APOE4

allele do not materialize until much later in life. As such,
we were interested in investigating whether our measure
might uncover unique dynamical irregularities early in
network development. Indeed, our measure elucidates
time-dependent changes in the mean entropy for all treat-
ments, with the networks without APOE displaying a
large attenuation. It may be that effective connections
might not form during the development of these net-
works. It has been suggested that APOE is involved in
synaptic transmission [51] and therefore a lack of APOE
might adversely influence formation of healthy synapses.
Adding astrocytes containing APOE - of either allele - ar-
rests this deficiency, with reduced fluctuations over time.
This suggests that APOE can facilitate the development
of a healthy network state.

In contrast, the APOE4 networks display an alarm-
ing trend in their mean entropy in the form of a dra-
matic, exponential increase in slope over time. As a re-
sult, these networks might be more sensitive to external
perturbations. In fact, studies have shown that adult
APOE4 mice have a higher likelihood for seizure [73]
as well as morphological abnormalities in their dendritic
spines [74]. We record network activity during a pivotal
period of development; neuronal networks are experienc-
ing rapid creation and pruning of synapses to establish
proper contacts, and we hypothesize that APOE4 net-
works may be impaired in these efforts. Interestingly,
while the APOE2 networks have a slightly larger mean
entropy than the APOE-KO-E2 or APOE-KO-E4 net-
works, in the case when τ = 10ms and 100ms, APOE2
networks have reduced variability over time. These small
fluctuations suggest that their information retention is
stable during development.

We conclude by noting that these networks are created
from in vitro, rather than in vivo preparations, making
a clear one-to-one mapping to the brain dynamics less
tenable. However, a major advantage to the coupling

of an MEA system to cultured neuronal networks is the
ability to uncover novel, time-dependent trends that are
difficult, if not impossible, to currently measure in vivo.
While results from these studies might be relevant to
the fabrication of neuromorphic devices [75, 76], conclu-
sive, physiological studies are required to elucidate bio-
chemical mechanisms. Here, we suggest, from a dynam-
ics perspective, that APOE2 networks operate within a
steady state of information transmission during devel-
opment. Additionally, we show that an unstable state
is restored to a steady state when APOE-deficient net-
works are supplemented with exogenous APOE. Finally,
in APOE4 networks, where physiological deficits will not
present themselves until later in life, our measure shows a
propensity for instability that might serve as a harbinger
of things to come.
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Appendix A: Cell Culture

Colonies of human APOE2 and APOE4 Targeted Re-
placement (TR) mice were bred in-house on a C57Bl6/J
mouse background. These mice, homozygous for the
APOE2 or APOE4 alleles, respectively, feature a tar-
geted replacement of the murine APOE gene with hu-
man APOE. Expression of human APOE is driven by the
endogenous murine promoter [77]. In addition, colonies
of APOE knock out (APOE-KO) mice were bred in-
house on a C57Bl6/J mouse background. To prepare
individual embryonic (E17.5) hippocampal cultures from
APOE2, APOE4 or APOE-KO mice, we used a proto-
col modified from [78]. Embryonic hippocampi were ex-
tracted into ice-cold dissection solution. The meninges
were carefully removed from extracted tissue and the hip-
pocampal tissue were finely chopped and digested with
0.1% trypsin followed by mechanical trituration. Before
plating, micro-electrode array (MEA) plates (MEA2100,
Multi Channel Systems MCS GmbH, Reutlingen, Ger-
many) were cleaned, autoclaved and treated with poly-
d-lysine (PDL) and laminin (Sigma Aldrich, St. Louis,
MO). A single cell suspension resulted from the tritura-
tion, and cells were added to the MEAs to achieve an
approximate density of 700 cells/mm2. At this plating
density, spontaneous electrical activity was observed as
early as DIV7 [79]. MEAs were covered with a gas per-
meable Teflon membrane to prevent evaporation of the
media and to avoid contamination [80]. Cultures were
maintained in Neuralbasal A supplemented with B27,
penicillin/streptomycin and horse serum (Thermo Fisher
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Scientific, Waltham, MA) in a humidified 5% CO2 and
95% O2 incubator at 37 °C.
Table I shows the number of MEAs used for each treat-

ment. Assuming normality, this setup yields V ar(m) <
1%, 3%, 5% for τ = 3ms, 10ms, 100ms.

TABLE I. Number of experiments per treatment.

DIV10 DIV14 DIV18 DIV21
APOE2 8 8 8 8
APOE4 8 8 8 8

APOE-KO-E2 16 16 15 15
APO-KO-E4 13 13 13 13
APOE-KO 12 12 11 11

We see from Figure 10 that the sample distributions of
p̂(s) is comparable across treatments.
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FIG. 10. Distributions of p̂(s), τ = 10ms.

Appendix B: Finite sample size effects

Estimating information theoretic quantities has been a
vibrant area of research in psychology, neurophysiology,
and neuroscience. Most recently, Valiant and Valiant [81]
introduced an algorithm that approaches this problem by
finding the simplest histogram with the most similar fin-
gerprint to that of the data. They compare it to the
most common entropy estimators: the naive estimator

ĤMLE [82, 83], the Miller-Madow corrected estimator

ĤMM [60], the jackknifed estimator ĤJK [84, 85], the

best upper bound estimator ĤBUB [86], and the CAE es-
timator [87].
Here, we show in Figure 6 that the average p̂(0) &

90%, 80% for τ = 3, 10ms respectively. Furthermore,
rare energetic states bring little contribution to iτ . Con-
sidering the worst case scenario of ns = 1, this ac-

counts for τ/300 = 0.001%, 0.003%, 0.03% for τ =
3ms, 10ms, 100ms, respectively.
Table II shows that it is reasonable to use the Miller-

Madow bias correction for τ = 3ms because N0/m0 >>
100 andN1/m1 ∼ 100, as pointed out by Paninski in [86].
Therefore, for consistency, we use the same estimator for
τ = 10, 100ms.
We remark that, while recording for longer epochs

might initially seem to solve to these limitations, these
are living, evolving networks and it is important to con-
sider the non-stationarity of developmental neuronal net-
work activity. Indeed, we record for epochs that are short
compared to the total lifetime of each network to assume
stationarity; changes calculated during these epochs are
assumed to be free of developmental effects. Considering
the worst case scenario of ns = 1 during a recording of
300 s under the stationarity assumption, obtaining 100
data points from which to estimate entropy would re-
quire a recording epoch of 500min ∼ 8.3 h. This would
adversely impact the health of the cells and, importantly,
exceed the duration over which to assume stationarity.

Appendix C: Outliers removal for energy and

entropy distribution fits

Outliers were removed that did not satisfy a n-nearest-
neighbors criterion before fitting commenced. In this
study we selected n = 2 in order to eliminate pairs of
isolated points.
We define the threshold vector R = (r1, r2), where ri

is the threshold radius for the i-th closest neighbor.

ri = µi + σi, (C1)

where µi, σi respectively are the mean value and the stan-
dard deviation of the distance of the i-th closest neighbor.
For every data point j we defined the closest-neighbors

vector Dj = (d1, d2), where di is the distance from the
i-th closest neighbor.
The test condition is

testj =

{
0, if min(Dj −R) > 0

1, otherwise
, (C2)

and we removed all the data points for which testj = 0,
that is, we removed all the data points that do not show
at least 1 nearest neighbor within their threshold radius.

Appendix D: Outliers removal for mean entropy fits

To evaluate changes in the mean relative entropy, m,
we omitted those values that fall outside of a ±1σ interval
around the initial mean value µm.

Appendix E: Supplemental figures
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TABLE II. Average sum p̂0 + p̂1, where p̂j ≡ p̂(1/Nactive) and the average ratios N0/m0, N1/m1, where Nj = p̂jNτ ,mj =
Nactive + j, for τ = 3ms

DIV10 DIV14 DIV18 DIV21

p̂0 + p̂1
N0

m0

N1

m1
p̂0 + p̂1

N0

m0

N1

m1
p̂0 + p̂1

N0

m0

N1

m1
p̂0 + p̂1

N0

m0

N1

m1

APOE2 99% 2400 95 98% 2800 115 97% 2800 145 96% 2500 130
APOE4 99% 3300 60 99% 4800 100 99% 6500 210 99% 1600 245

APOE-KO-E2 97% 2000 115 96% 1700 95 93% 1600 78 92% 1500 70
APO-KO-E4 97% 2000 105 95% 1700 85 93% 1600 75 93% 1600 70
APOE-KO 99% 4100 118 98% 2700 90 95% 2400 90 95% 2200 65
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FIG. 11. Raw superimposed probability distributions over DIV for τ = 10ms, with sigmoid fits.
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FIG. 12. Raw superimposed entropy distributions over DIV for τ = 10ms, with fourth-degree polinomial and a confidence
region greater than 50%. Entropy is measured in bits and its physical interpretation is the amount of information that a
network discharges based on its energy state. Initially, on DIV10, all networks display a similar peak near the energy state
e ∼ 0.2. The e ∼ 0.2 peak and general profile for the APOE2 networks is nearly constant throughout the development of
those networks. APOE-KO-E2 and APOE-KO-E4 networks broaden their profiles over time, with their maximum entropies
flattening as the networks develop. The changes in energy do not result in changes in entropy, indicating the presence of a
white noise-like entropy distribution. The peak in the APOE4 networks flattens over development with a rightward shift.
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FIG. 13. Raw superimposed cumulative entropies over time, over DIV, for τ = 100ms, with linear fit.
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FIG. 14. Mean relative entropies over DIV, for all values of τ .


