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Abstract 
 A numerical model for laser-matter interactions in the Warm Dense Matter regime is presented 
with broad applications, e.g. ablation, thermionic emission and radiation. A novel approach is adopted, 
in which a complete set of collisional and transport data is calculated using a quantum model and 
incorporated into the classical two-temperature model for the electron and lattice/ion temperatures. The 
data set was produced by the Average Atom Model that combines speed, conceptual simplicity and 
straightforward numerical development. Such data are suitable for use in the Warm Dense Matter 
regime, where most of the laser-matter interactions at moderate intensities occur, thus eliminating 
deficiencies of previous models, e.g. interpolation between solid and ideal plasma regimes. In contrast to 
other works, we use a more rigorous definition of solid and plasma states of the metal, based on the 
physical condition of the lattice, crystalline (ordered) versus melted (disordered), rather than a definition 
based on electron temperature. The synergy between the two-temperature and Average Atom models has 
been demonstrated on a problem involving heating and melting of the interior of Al by a short pulse 
laser with duration 0.1−1 ps and laser fluences 1×103−3×104 J/m2 (0.1-3 J/cm2). The melting line, which 
separates the solid and plasma regimes, has been tracked in time and space. The maximum melting 
depth has been determined as function of laser fluence: 4 10 .  
1. Introduction 
 Interaction of short-pulse lasers with metals at moderate laser fluence (~TW/cm2) generates, 
beneath and above the surface, a non-ideal plasma that is typically in the Warm Dense Matter (WDM) 
regime. It is characterized with electron density comparable to the solid density and electron temperature 
of a few eV. Many phenomena are associated with such plasmas, most notably ablation [1,2,3,4], 
thermionic emission [5,6] and bremsstrahlung radiation [7]. The laser energy absorption and energy 
transfer to the lattice are often modeled using the two-temperature model (Ref. [8,9,10,11,12], to name a 
few), which treats the electrons and ions as two separate sub-systems governed by the equations 

                                        (1a) Δ                     (1b) 
where kB is the Boltzmann constant, Tα is the temperature, nα is the density, /  is the 
normalized heat capacity and kα is the thermal conductivity of species α=e,i. The parameter G is the rate 
of energy transfer from electrons to ions and P is the local power absorption per unit volume from the 
laser field (to be specified later). The term containing the normalized latent heat of fusion, ΔΔ / , accounts for the solid-to-liquid transition at the melting temperature Tm [13], in which the gas 
constant R=8.3145 J/(mol*K) is used as a conversion factor.  
 Equations (1) are a sub-set of a more general (three-dimensional) set of equations. We account 
for parameter variation only along the laser propagation direction, z, and neglect transverse gradients. 
The latter is justified by the characteristic dimensions of the system under consideration: the transverse 
dimensions are comparable to the laser focal spot diameter (~1 mm), while the longitudinal dimensions 
are on the order of a few microns (cf. Figures 6 and 8). Equations (1) are solved to yield the spatio-
temporal evolution of the electron and lattice/ion temperatures. For the purpose of illustration of the 
concept proposed in this paper, i.e. the synergy between a model for laser-matter interaction and another 
model for computing a suitable set of collisional/transport data (the Average Atom Model), our study is 
limited to heating and melting, providing a foothold for a wider range of processes and phenomena such 
as the one mentioned above. 
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 But even in a process as “simple” as melting, we must consider the material phases characterized 
by the presence of a regular ion lattice structure. In the early stage of interaction (t < 1 ps) the lattice is 
still intact, while at later times (t > 1 ps) the lattice melts, forming dense plasma. The physical state of 
the metal is different during the two stages of the interaction, and so are the coefficients in Equations 
(1). In the former, the metal is in its solid state, i.e. spatially ordered crystal, and the coefficients are 
derived from classical solid-state physics considerations. In the latter, the lattice has collapsed to a dense 
mix of electrons and ions, i.e. the system is now in a liquid, or plasma state. Obviously, the two states 
must be modeled with different sets of parameters, and assumptions. For example, in the solid state the 
collisional and transport parameters are governed by electron-phonon interactions, while in the plasma 
state the interactions become electron-ion. The liquid (plasma) state can be naturally extended to vapor 
state, prevalent in phenomena such as surface ablation, but it is not considered in this work. 
 In the above, we consider thermal melting only. There are other mechanisms that may come into 
play. Non-thermal melting can occur due to excessive electron temperature or removal of electrons, 
causing the lattice to collapse, i.e. “cold ablation” (electrons pulling out ions from the lattice) [14], 
Coulomb explosion [13], or fast (fs-ps) energy density deposition. If pressure builds that exceeds the 
Young modulus, a strong shock wave emerges that compresses the material and causes structural 
damage [15]. 
 Though the overall interaction dynamics is well-known, it is the distinction between the two 
states and definition of coefficients we are concerned with. To date, the separation has been based on 
“low” and “high” electron temperature with the plasma state being inevitably modeled by some variation 
of the Spitzer’s formulas for ideal fully ionized gas. However, at solid densities the Spitzer’s formulas 
become applicable only at large electron temperatures, in excess of 50-60 eV. Thus, the vast majority of 
simulations take place neither in the solid, nor in ideal plasma limit, but rather, in the intermediary 
Warm Dense Matter regime (Figure 1).  

 
Figure 1: Illustration of the various regimes encountered or transitioned through during short pulse 
laser matter interactions at moderate intensities (~TW/cm2). The Warm Dense Matter regime spans 
roughly from a fraction of eV to ~50 eV. The dashed lines indicate the typical maximum electron 
temperature range for commonly used metals (Al, Cu and Au) at laser fluence 104 J/m2 (1 J/cm2) [8,9]. 
 In the last two decades a considerable body of work conclusively showed that the Warm Dense 
Matter regime is a state of matter in its own right that cannot be modeled by a simple interpolation of 
adjacent regimes. A single, yet compelling argument in favor of the last statement is conveyed by Fig. 2. 
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Figure 2: Electron-ion momentum-transfer cross sections in atomic units (2.8×10−21 m2) calculated 
using the Average Atom Model for Te=0.1, 1 and 10 eV (solid lines), the Born approximation 
(dashed line) and Spitzer’s formula with ln(L)=2 (dashed-dot line). 

The momentum-transfer cross section, which is at the heart of nearly all collisional and transport 
coefficients, as well as power absorption via Inverse Bremsstrahlung, is plotted in Figure 2 as calculated 
by the quantum model discussed in Section 2 (solid lines). The Spitzer’s Coulomb cross section is orders 
of magnitude larger, a point recently made by Starrett [16]. The next candidate, the Born approximation, 
is quantum by nature and offers an improvement, but it is valid only for “weak” electron-ion 
interactions, i.e. high electron energies (>100 eV). At low kinetic energies (1-20 eV), in which we are 
primarily interested in, it lacks accuracy and is still an order of magnitude larger compared to the 
quantum model. Thus, neither the classical Coulomb cross section nor the cross section calculated in the 
Born approximation are adequate for computing collisional rates and transport parameters. 
 The above arguments speak strongly of the need to perform quantum-mechanical calculations to 
compute cross sections and related transport parameters. In addition, it is imperative to revisit the earlier 
distinction between solid and plasma states. In this paper, we adopt a novel approach in which (i) the 
two states are separated based on the physical condition of the lattice: crystalline (ordered) versus 
“melted” (disordered), which is related to the lattice temperature, rather than the electron temperature; 
and (ii) we calculate the coefficients in the plasma state by using a quantum model appropriate for this 
state, i.e. Warm Dense Matter. We dispose of the Spitzer’s formulas except for the electron-electron 
collision rate at high temperature. The interpolation between solid and plasma states is preserved; 
however, in this work it is between “crystalline” and “disordered”, not “high” and “low” electron 
temperature and the transition point (the melting temperature) is unambiguously defined. In Sections 2 
we recount the coefficients in the solid state and introduce the coefficients in the plasma state, and in 
Section 3 we present simulation results using the two-temperature model. Section 4 discusses the 
Average Atom Model in context of other models, and we conclude in Section 5. 
2. Collisional and transport coefficients 
 In the solid state the electron transport coefficients are well known from both published papers 
[1,2,8,9,10,11,12,17,18,19] and solid state physics books [20,21] and will be only briefly recalled. The 
electron-phonon and electron-electron collision rates are (in SI units) 
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parameter ln Λ ln 1 /  is the Coulomb log with ,  and ,  being the minimum and maximum impact parameters in which  is the electron 
thermal velocity,  is the average ionization,  is the Wigner-Seitz radius (defined later) and  is 
the Debye-Huckel screening length (for details, refer to Ref. [16]). Coefficients ks and ke are on the order 
of unity (typically between 0.1 and 10) and are specific for each element. The electron-electron collision 
rate, νsolid, has been derived in the limit of zero temperature and is generally valid for  [22,23]. 
Above the Fermi energy, the collision rate levels off to a value on the order of ~1015 s-1 ([23], Fig. 1). 
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Since we are not aware of analytical formulas for , in order to prevent gross overestimation of 
the collision rate, we suggest replacing the  in the formula for  with max , }. Note 
also, that the Fermi energy associated with it may change due to finite-temperature effects. To account 
for that, we correct the Fermi energy when the average ionization and consequently, the electron density 
change. The normalized electron heat capacity is an interpolation between the degenerate and ideal 
plasma limits given by [8,9] 

                                                                        (4) 

The electrical and thermal conductivity are taken in their standard form, 
                                                                                         (5a) 

                                                                                      (5b) 

and the electron-phonon coupling constant G is taken from the literature [24,25]. The electron-phonon 
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and ω0 are the laser field and frequency, respectively, I is the laser intensity and c is the speed of light. 
The laser intensity along z is modeled as , 2 exp ℓ  with ℓ  being the skin layer 
thickness and A is the absorption coefficient, to be specified later. The conventional skin depth, ℓ

, where  is the plasma frequency, was replaced by the collisional skin depth [26] ℓ / /
,                                                                (6) 

where the parameter  is the ratio of the electron collision frequency to the laser frequency.  

 In the solid state the average ion charge Z  is not known and must be determined separately. In 
this work, it is calculated from the Average Atom Model and is used in both the solid and plasma states. 
The electron density is calculated according to e in Zn= . 
 Less than a picosecond after the laser pulse interacts with the metal surface, the lattice 
temperature reaches the melting point and the lattice collapses into a mix of electrons and ions. This is 
the plasma state. A “warm” plasma is formed with electron temperature of a few eV, putting it in the 
Warm Dense Matter regime. There are numerous approaches with various degree of accuracy, e.g. 
Density Functional Theory (DFT), Quantum Molecular Dynamics (QMD) and Path Integral Monte 
Carlo (PIMC), but they are computationally very intense. A reasonable trade-off is the Average Atom 
Model, which, albeit approximate, is fully quantum and fast (a few seconds of computation time), 
capable of producing large data tables for any combination of ion density and electron temperature. For 
this reason, all coefficients in the plasma state are computed with the Average Atom Model.  
 We now review the Average Atom Model and its building blocks, which is outlined in a number 
of works. [27,28,29,30,31,32,33,34,35,36]. It is a fully quantum model that falls into the category of the 
so-called cellular methods developed by Wigner and Seitz [37,38]. A sphere surrounding an atom is 
defined by the Wigner-Seitz radius ( ) 1/34 / 3WS ir nπ −=  (the average distance between atoms). An ion 
with charge Z is placed in the center of the sphere with a cloud of electrons (bound and free) around it. 
The Average Atom Model is based on the Hartree-Fock-Slater (HFS) model, which solves the one-

electron Schrodinger equation 1 ( ) ( ) ( )
2

W r r rα αψ εψ⎡ ⎤− Δ + =⎢ ⎥⎣ ⎦
r r r  for each atomic orbital with effective 

potential energy W(r) that includes the Coulomb potential of electrons and ion, as well as an exchange 
potential in the local density approximation. In practice, the wave functions are decomposed in a 
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spherical basis according to ( )( ) ( , )lm
u rr Y

r
α

αψ θ ϕ=r , where Ylm is a spherical harmonic, n is the principal 

and l is the orbital quantum number, and the radial part of the wave function uα is calculated from the 
spherically symmetric radial Schrodinger equation (atomic units used in this section) 
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outward integration. The wave function is normalized by matching it to the analytical solution outside 
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zero. Here, ℓ and ℓ denote the spherical Bessel functions of first and second kind, √2  is the wave 
vector and ,ℓ is the phase shift [29]. The electron density is calculated from the wave functions: 
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 is the Fermi statistical occupancy for electrons with kinetic 

energy ε. The first two terms in Formula (9) comprise the Coulomb potential energy (electron-nucleus 
and electron-electron), while the last one is the exchange term in the limit 0. For finite 
temperatures, it is divided by a factor 1 3 / 2 , as suggested by Murillo et. al. [30]. The combined 
formula reproduces the limiting cases of zero and high electron temperatures derived by Gupta and 

Rajgopal [39]. Equations (7-9) are closed by the quasi-neutrality condition 2

0

4 ( , )
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eZ r n r drπ μ= ∫ , which 

is used to derive the chemical potential μ. The average ion charge, Z , is defined as the number of free 
electrons, which is an integral of the second term in Eq. (8). The input parameters in the Average Atom 
Model are the atomic number Z, electron temperature Te, and ion density ni. The model adopted is of the 
simplest kind and more advanced versions exist that will be discussed in Section 4. 
 The collisional and transport coefficients are calculated from the electron-ion momentum 

transfer cross section ( ) 2
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0
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The electron-ion collision rate ( ) ( )v( )ei e mom iT nν σ ε ε=  is calculated by averaging the momentum 
transfer cross section over the Fermi-Dirac distribution ( )f ε  and density of states of free electrons 

( )g ε , the latter also being computed from the Average Atom Model. The dc electrical and thermal 
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 The Average Atom Model used in this work has been extensively benchmarked. Sample results 
are plotted in Figure 3 for the average ion charge, chemical potential, electrical and thermal 
conductivities of Al, and compared to data published in the literature [16,28,30,42,43,44,45]. For Te << 
10 eV the Average Atom Model predicts 3Z ≅ , in agreement with the fact that in Al at solid density and 
room temperature 3 electrons out of 13 are free and reside in the conduction band. The chemical 
potential μ is also well reproduced. The model prediction for the electrical conductivity is flat for Te < 3 
eV, in contrast to more advanced models such as neutral-pseudoatom approach and QMD, but still 
reasonably well reproduced by the Average Atom Model. The thermal conductivity increases with Te, in 
agreement with other calculations.  

 
Figure 3: Average ion charge (a), chemical potential (b), electrical (c) and thermal conductivity (d) for 

Al calculated by the Average Atom Model (solid lines) and compared to other published data. 
 The collisional and transport parameters for Al in the solid and plasma states are plotted versus 
electron temperature in Figure 4. The data in the plasma state are calculated with the Averaged Atom 
Model developed in the work. The data in the solid state are calculated using formulas (2)-(5). Only the 
electron-ion coupling constant, plotted in Figure 4a, has been taken from the literature (Refs. [24,46]). 
Unfortunately, in the solid state it is available only for electron temperature Te < 2 eV. In the plasma 
state, it has been computed in the entire temperature range of interest. For Te < 10 eV G is constant, but 
for higher temperatures it increases, i.e. more energy is transferred from electrons to ions. The increase 
is primarily due to the increase of the average ion charge  (Figure 3a) and electron density . 
In Figure 4b, the normalized electron heat capacity, , is plotted in the solid and plasma states. For 
both, it follows the same trend and is nearly equal in both states (solid and plasma). It increases linearly 
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with Te, following the well-known scaling of strongly degenerate plasma,  (Eq. 4 in the 
limit ), and gradually transitions to the limiting case of ideal gas, i.e. 3/2. The electron-
phonon collision rate is plotted in Figure 4c for lattice temperature 300 K. In the solid state, it is constant 
according to Equation (2) (only lattice temperature dependence). In the plasma state, increases with Te 
for the same reason the electron-phonon rate increases. For very large electron temperatures (~40-50 
eV), it gradually transitions into the classical (Spitzer’s) rate and starts to decrease. The electron-electron 
collision rate is common for both the solid and plasma states (Figure 4d). The electrical and thermal 
conductivities are plotted in Figures 4e and 4f, respectively. The electrical conductivity in the solid state, 
calculated by the Drude model (Equation 5a), differs markedly from that in the plasma state. The 
thermal conductivity follows a similar trend (fast increase with Te) being larger in the solid state.  

 
Figure 4: Electron-ion coupling constant (a), normalized electron heat capacity (b), electron-ion 

momentum-transfer collision rate (c), electron-electron collision rate (d), electrical 
conductivity (e) and thermal conductivity (f) for Al calculated by the Average Atom Model in 
the plasma state (solid lines) and solid state (dashed lines). 
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For convenience, a fit of the parameters in the plasma state is listed below, valid for Te < 50 eV. ..                                                                              (10a) 

                                                                                  (10b) 2 10 /   (s−1)                                              (10c) 3 10   (Ω−1m−1)                                              (10d) 1 10 . .   (Wm−1 K−1)                                         (10e) 4.6 10 1 0.1   (Wm−3 K−1)                                    (10f) 
 Overall, the differences between the individual parameters in the solid and plasma states are 
within a factor or two or less (except for the electrical conductivity). A smooth interpolation between 
them is given by the following formula: 

( ) ( )( )2 2/ /1m mT T T Tsolid plasmaX e X e X− −= + −l l ,                                                   (11) 

in which the transition point is the melting temperature of the metal. However, the interpolation 
proposed in this work differs from the conventional one [2,9] as depicted in Figure 5. The former 
interpolates between values for a fixed electron temperature, while the latter interpolates between values 
from temperature regimes that are far apart (below 1-2 eV and above 50-60 eV). In the conventional 
scheme most of the simulations are done are in the poorly defined interpolation region between ~2 and 
~50 eV, while in our scheme the interpolation is between phase transitions that last a few fs only. 

 
Figure 5: Conventional interpolation scheme (a) and interpolation scheme used in this work (b). The 
conventional scheme bridges a wide temperature gap, while the one proposed in this work interpolates 
between values for the same temperature.  

 It should be noted that the melting temperature, Tm, is a function of density. In Cowan’s QEOS 
model, which is widely used in practice, the density dependence of the melting temperature relates to the 
Debye temperature, ΘD, via the Lindmann melting law /  [47]. In this work, we consider no 
density variation and Tm is a fixed number. However, in hydro simulations with density variation, e.g. 
ablation, the melting temperature must be adjusted accordingly. 
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3. Simulation results. 
In this section, numerical simulations for Al at solid density will be presented with emphasis on 

melting of the interior of the metal. This is of particular interest to us since it separates the solid from 
liquid phase and, more importantly, in our model it delineates the switch from solid to plasma in the 
Warm Dense Matter regime. Upon melting, the collisional and transport parameters in Equation (1) must 
transition accordingly with the interpolation given by Formula (11). The target is assumed to be 
infinitely long with the surface located at z=0, and infinitely wide. For both electrons and ions, 

Equations (1) are solved with boundary conditions ( , 0) 0dT t z
dz

= =  and ( , ) 0T t z L= = , where L is the 

length of the computational domain, typically L=2 μm, and initial conditions ( 0, ) 300T t z K= = . Energy 
losses due to black body radiation from the surface have been neglected. Justification is provided in the 

next paragraph. The laser pulse temporal intensity profile is of the form 2
0( ) sin

2
tI t AI π
τ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 having 

peak intensity I0 and duration τ full width of half maximum (FWHM) (2τ at the base). The laser fluence 
is 00

( )F I t dt I τ
∞

= =∫ . A key laser-target interaction parameter is the absorption coefficient of the metal 

surface, A. While in some works it is calculated dynamically (as a function of time) from the Maxwell 
equations using the Drude theory [8,9,11], we opted for a safer and more reliable approach. We use 
time-average (over the whole laser pulse) absorption coefficient, which depends only on the laser 
fluence: ( )5 1/2( ) 0.13 1 3.2 10A F F−= + ×  [8,48] with the laser fluence in units of J/m2. The choice has 
been motivated, in part, by the fact that experimental measurements are usually time averaged and 
provide a single number for a given laser fluence. The coefficients for electron-phonon and electron-
electron collision frequencies are ks=18.8 and ke=1, respectively [19]. The thermodynamic data for Al 
are listed in Table 1. The normalized parameters in Equation (1) are Δ 1.29 10   and / 2.9. 
Table 1: Thermodynamic data for Al used in the two-temperature model. The data are from 
https://en.wikipedia.org/wiki/Aluminium. 
parameter variable value 
density  ρ 2700 kg/m3 
melting temperature  Tm 933 K 
heat of fusion ΔHm 10.71 kJ/mol 
thermal conductivity  ki 237 W/(m*K) 
molar heat capacity Ci 24.2 J/(mol*K)

 The electron and ion temperatures inside the metal are plotted in Figure 6 for laser fluence 104 
J/m2 (1 J/cm2). On the left, the simulation results are for a “short” pulse with peak laser intensity I0=1017 
W/m2 and pulse duration τ=0.1 ps, while on the right the results are for a “long” pulse with peak laser 
intensity I0=1016 W/m2 and pulse duration τ=1 ps. In all figures time t=0 refers to the time when the 
front of the laser pulse reaches the target surface. The first line plots simulation results for time t=0.2 ps, 
at the end of the “short” laser pulse. The electron temperature reaches its maximum of ~4 eV. The lattice 
temperature is just above the melting temperature, i.e. this is the moment the surface starts to transition 
from solid to liquid. At later times, t=2 ps, the lattice/ion temperature near the surface is well above the 
melting temperature and nearly half the electron temperature. At later times, the electron and ion 
temperatures equilibrate. In addition, thermal diffusion causes both temperatures to gradually penetrate 
the interior of the metal to a distance of about 1 μm. There is an additional energy loss from the metal 
surface due to black body radiation, but it is negligible: only 0.11 J/m2, which is <0.01 % of the 
absorbed laser energy. 
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Figure 6: Electron and ion temperatures as a function of spatial position for times 0.2 ps (a,b), 2 ps 

(c,d), 20 ps (e,f) and 200 ps (g,h). Left: peak laser intensity 1017 W/m2, pulse duration τ=0.1 
ps. Right: peak laser intensity 1016 W/m2, pulse duration τ=1 ps. The laser fluence is 104 J/m2 
for both cases. 

 The temperatures on the metal surface are critical for phenomena such as thermionic emission 
and ablation. Figure 7 plots the temporal evolution of the surface electron and ion temperatures for 
various laser fluences. The pulse duration is set to τ=0.1 ps. Equilibration occurs on a picosecond time 
scale, between 1.5 and 5 ps depending on the laser fluence (left panels). The surface reaches melting 
temperature in about 0.2 ps. During melting, the lattice/ion temperature flattens for about ~0.1 ps since 
during the solid-to-liquid phase transition energy is absorbed (the latent heat of formation), but the 
temperature stays constant (equal to the melting temperature). After equilibration, the surface 
temperatures gradually decrease with a time constant of 0.5-1 ns (right panels). It takes between one and 
several nanoseconds for the surface to cool off, which may have implications for processes such as 
thermionic emission of electrons.  
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Figure 7: Electron and ion temperatures on the surface of the metal as a function of time for laser 

fluences 103 J/m2 (a,b), 3×103 J/m2 (c,d), 104 J/m2 (e,f), and 3×104 J/m2 (g,h). The pulse 
duration is τ=0.1 ps for all cases. The melting temperature is plotted with a gray dashed 
horizontal line. 

 As stated at the beginning of this section, melting of the metal interior is of primary interest to 
this study. The energy, which is deposited in a skin layer of roughly 20-30 nm, spreads inwards due to 
thermal diffusion. In Figure 8, we track the progress of this inward energy transfer by looking at the 
“melting line”, i.e. the position z where the lattice temperature reaches the melting temperature. This is 
denoted as “melting depth”. As discussed in Figure 6, for laser fluence 104 J/m2 at time t=0.2 ps surface 
melting has already commenced. Following the line in Figure 8 for that fluence (second line from top), 
we see that at that time the metal has melted to a depth of ~20 nm. With time the melting rapidly 
progresses inward and at t=0.5 ns it levels off at depth of ~350 nm. This is the maximum melt depth for 
that laser fluence. The pattern is similar for all laser fluences under consideration. As expected, at lower 
laser fluence saturation is reached faster since there is less energy (per unit area) to spread, and the melt 
depth is smaller. For the lowest laser fluence of 103 J/m2 it is only ~35 nm, barely larger than the skin 
depth. In contrast, for laser fluence 3×104 J/m2 the heat wave keeps going inward for ~3 ns to a melt 
depth of 1.5 μm. 
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Figure 8: Melting depth of Al versus time for various laser fluences. The pulse duration is τ=0.1 ps. 
 The results are summarized in Figure 9, where we plot the melting depth versus laser fluence. 
For reference we plot the peak surface electron and lattice/ion temperatures (Figure 9, left panel). The 
data are taken at the end of the laser pulse. The lattice/ion temperature increases linearly with laser 
fluence. The electron temperature increases sub-linearly due to two factors: the electron heat capacity, 
which is a function of Te, and the thermal conduction, a strong function of Te itself, which conducts more 
heat at higher electron temperature thus reducing the electron temperature on the surface. The melting 
depth increases linearly with laser fluence. This relationship can become important in a more practical 
sense being relevant to the so-called heat affected zone [49,50] that affects the chemical and material 
composition and has implications in material processing. The melting depth, however, should not be 
identified as ablation depth. 

 
Figure 9: Electron and ion temperatures on the surface of the metal (a) and melting depth (b) as a 
function of laser fluence. The pulse duration τ=0.1 ps. 
 Since the main purpose of the proposed methodology is to use rigorously computed data, we 
benchmarked our simulation results with published data. Figure 9a compares the computed maximum 
electron temperature on the metal surface with other sources [8,51]. Both the magnitude and trend of the 
electron temperature with laser fluence are in agreement with other sources. 
4. Discussion. 

The collisional and transport parameters of the two-temperature model have been calculated 
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rigorously using a quantum-based model. In this work, we implemented the basic version of the Average 
Atom Model, which is straightforward and not difficult to develop, but is sufficient to convey the main 
point of the paper. In this section, we will discuss possible extensions and improvements. Ever since its 
first practical implementation by Liberman [27], the Average Atom Model underwent numerous 
improvements. Some of them are only marginally relevant to this work, for example relativistic 
corrections [28,29]. Starrett et. al took the Average Atom Model to the next level by accounting for both 
the electronic and ionic structures of plasma. In particular, ion correlation effects have been included 
that take into account the penetration of adjacent ions into the ion sphere under consideration [52]. 
Thiele et. al included the effect of screening on the atomic orbitals; work that includes subtle effects, but 
is more relevant to the bound states [53]. Some of the improvements, directly relevant to our work, is the 
inclusion of the ion structure factor S(k) into the electron-ion momentum transfer cross section [32, 54]. 
It can be incorporated particularly easy into the basic version of the Average Atom Model, when 
adjacent ions do not penetrate into the Wigner-Setz sphere, since an analytical form of S(k) exists [54]. 
The procedure for computing the momentum transfer cross section is only marginally more complicated 
since it involves the computation and integration of the differential cross section rather than integrated 
cross section directly. On the theoretical side, more rigorous derivation and use of the Average Atom 
Model based on the variational principle was proposed by Piron and Blenski [55] 

The Average Atom Model has undergone development in another direction, pioneered by 
Dharma-wardana and Perot in the early 90’s [56,57]. They developed the so-called neutral-pseudoatom 
Approach (NPA) [30,44,58,59,60], which overcomes many of the limitations of the original Average 
Atom Model. In particular, the electron wave-functions are no longer confined to the Wigner-Seitz 
sphere, but allowed to extend far beyond its boundary in a natural way into a correlation sphere with 
radius ~10rws. The accuracy is improved albeit at the cost of complexity and computation time. The 
latter is still reasonable (minutes/run) and can be used for mass-production of collisional data. 

Finally, it is worth noting that other options for generation of complete data sets exist. A notable 
example is Ref. [11], in which an analogous set of data for Cu was produced by the FP-LMTO model. 
But the Average Atom Model has several unique features that makes it highly desirable. In addition to 
being fully quantum, it has the virtues of conceptual simplicity and straightforward numerical 
development. Speed, robustness and versatility make it the method of choice when large data sets are 
required in problems such as ablation. Last, but not least, the Average Atom Model can be applied to a 
variety of metals, e.g. Na, Be, Fe, Cu, and Au.  

The second discussion point is the data implementation. We restricted ourselves to a relatively 
straightforward application for constant ion density, but the consequences are far-reaching. More 
advanced models of laser ablation based on hydro simulations can benefit from the proposed approach 
too, except a data table should be made in the density-temperature configuration space rather than 
temperature dependent only as it was done in this work. Since the Average Atom Model is extremely 
fast and it can cover smoothly the density-temperature domain in a very wide range of conditions, 
appropriate tables for each parameter can be easily generated, including Equation of State (EoS), 
pressure as a function of density and temperature [61]. Thus, the applicability of the proposed approach 
can be extended far beyond what was demonstrated here to tackle more complex problems.  
5. Conclusions 
 Analytical formulas for collisional and transport parameters of Al in the solid state are combined 
with data calculated from the Average Atom Model for the plasma state to produce a complete set for 
modeling laser-metal interactions at moderate intensities (103-105 J/m2). The separation between solid 
and plasma states is based on the physical condition of the lattice with a uniquely defined transition 
point, which is in contrast to other models that use the electron temperature as a demarcation line. 
Another critical difference is the use of a fully quantum model suitable for plasmas in the Warm Dense 
Matter regime instead of Spitzer-like models adopted in previous works. Thus, the accuracy of power 
deposition rate, collisional and transport parameters has been improved.  
 The data were incorporated into a two-temperature model and applied to the important case of 
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lattice melting. Surface heating and melting depth have been calculated as a function of temperature for 
laser fluences varying from 103 J/m2 to 3×104 J/m2. It was found that the melting depth increases linearly 
with laser fluence. 
 The approach proposed in this work can be extended to more complex situations such as laser 
ablation that involve hydrodynamic motion of the plasma.  
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