
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dielectrowetting of a thin nematic liquid crystal layer
E. Mema, L. Kondic, and L. J. Cummings

Phys. Rev. E 103, 032702 — Published 31 March 2021
DOI: 10.1103/PhysRevE.103.032702

https://dx.doi.org/10.1103/PhysRevE.103.032702


Dielectrowetting of a thin nematic liquid crystal layer

E. Mema,1 L. Kondic,2 and L.J. Cummings2
1United States Military Academy, West Point, NY

2Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ

We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC)
film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to
their polar nature, NLC molecules interact with the (nonuniform) electric field generated, leading
to instability of a flat film. Implementation of the long wave scaling leads to a partial differential
equation that predicts the subsequent time evolution of the thin film. This equation is coupled to
a boundary value problem that describes the interaction between the local molecular orientation of
the NLC (the director field) and the electric potential. We investigate numerically the behavior of
an initially flat film for a range of film heights and surface anchoring conditions.

I. INTRODUCTION

Dielectrowetting, a consequence of dielectrophoresis,
involves the use of a nonuniform electric field to control
spreading of dielectric fluids on a substrate. A common
focus of dielectrowetting experiments is the controlled
manipulation of dielectric droplets using the interaction
with an electric field to spread them into a thin film
(see e.g. Brown et al. [1, 2]); or vice versa, to break
down a large parent droplet into smaller droplets (see
e.g. McHale et al. [19]), with numerous possible appli-
cations [6, 23–26, 30]. The classic dielectrowetting ex-
periment, described in pioneering works such as those
of Cheng et al. [6] and Brown et al. [1, 2], involves
a dielectric droplet or film spreading over a flat sub-
strate, which contains interdigitated electrodes. A po-
tential difference applied across these electrodes gener-
ates a nonuniform electric field, which acts on the polar
molecules, driving flow. An excellent and comprehen-
sive recent review of the field is provided by Edwards et
al. [9]. A key feature of dielectrowetting that makes it
desirable for applications is that it works with any di-
electric liquid, in contrast to the more well-known “Elec-
trowetting on Dielectric” (EWOD) technology, which
relies on the movement of free charge and is limited to
conducting liquids only. Dielectrowetting also offers the
capability of spreading a partially-wetting droplet into
a fully-wetting film (and vice-versa) [18], which opens
doors for new thin-film-based devices in the fields of
microfluidics and optofluidics [9].

Theoretical investigations into dielectrowetting to
date focus mostly on isotropic dielectric liquids [3, 4,
18, 19]. Considering their widespread industrial use, it
is also important to develop mathematical models that
describe the behavior of anisotropic dielectric liquids,
such as NLCs, in a similar setting. The most preva-
lent current use of NLCs exploits their birefringence and
behavior under applied electric fields in Liquid Crystal
Display (LCD) devices (see the book by Yakovlev et al.
in [29] for a thorough overview of NLCs and their opti-
cal applications). NLCs show rather complex behavior

compared to Newtonian fluids because they consist of
rodlike molecules, which have a dipole moment. In the
absence of an electric field the molecules tend to align
locally, due to interactions between the dipoles, which
imparts elasticity to the material. Molecular alignment
is also mediated by surface effects; so-called surface an-
choring [5, 8, 28]. Applying an electric field also af-
fects molecular alignment: the long axis of the NLC
molecules will align parallel or perpendicular to the lo-
cal electric field direction (depending on the dipole mo-
ment). Application of an electric field near a bound-
ing surface sets up a competition between the dielectric
force on the NLC molecules and the surface anchoring
at the boundary. As a result, mathematical models of
NLCs in such settings can be complex, even without the
complication of a moving free surface (see, for example,
work by Gartland [12, 13] and Feireisl et al. [11]).

In this paper, we seek to develop a mathematical
model that describes the flow of a thin NLC film under
the effect of a nonuniform electric field. We consider
a setup similar to that of Brown et al. [1, 2] where
a thin layer of dielectric liquid is placed on a substrate
containing parallel interdigitated electrodes, which gen-
erate a periodic electric field profile. We make use of
the commonly considered long wave scaling to derive a
version of the thin film equation governing the evolu-
tion of the film height. This equation is coupled to a
pair of boundary value problems, one for the electric
potential within the film, and one describing the aver-
age orientation of the long axis of the NLC molecules
(modeled in the theory by the director field n, a unit
vector). The modeling is simplified by exploiting a dis-
parity in timescales: both the director field and electric
field are assumed to be in instantaneous equilibrium for
the current free surface geometry. The resulting model
is still complex, and numerical techniques are used to
explore how the initial film height and anchoring con-
ditions at the boundaries influence the evolution of the
free surface over time.
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II. MATHEMATICAL MODEL

In what follows, we develop a mathematical model
that describes the flow and free surface evolution of a
nematic liquid crystal (NLC) film under the effect of
a nonuniform electric field. The basic setup, shown
in Figure 1, consists of a thin NLC layer placed on a
horizontal substrate. The substrate contains a pair of
planar, interdigitated electrodes, leading to an electric
potential that is nonuniform in the plane of the sub-
strate. In our model we will assume that the electrodes

(a)

(b)

Figure 1. (a) Diagram showing model setup and key pa-
rameters in dimensional coordinates. (b) Plan view of ex-
perimental setup showing the electrode geometry. Dashed
rectangle indicates the region that corresponds to (a).

are of infinite extent (in the y∗ direction in Fig. 1), so
that the electric field generated by the applied potential
will vary only in x∗, the coordinate in the plane of the
substrate perpendicular to the electrodes, and z∗, which
measures distance perpendicular to the substrate into

the NLC. The main dependent variables that govern the
dynamics are the velocity and director field of the NLC,
together with the electric potential generated by the
electrodes. In line with our assumed electrode geome-
try, throughout this paper we restrict attention to the
2D case in which the NLC velocity field v∗ = (u∗, w∗)
and the director field n = (sin θ, cos θ) are confined to
the (x∗, z∗)-plane; so that the electric potential at time
t∗ may be written as Ψ∗(x∗, z∗, t∗); and the director ori-
entation θ, which represents the angle that the director
makes with the z∗ axis, is θ(x∗, z∗, t∗). Here and below,
∗ superscripts are used to denote dimensional quanti-
ties. Quantities without superscripts are dimensionless.

A. Leslie-Ericksen Equations

The flow of NLC may be described by the standard
Leslie-Ericksen model [10, 15], which comprises the en-
ergy, (zero inertia) momentum balance and mass con-
servation equations as follows:

−∂W
∗

∂n
+∇∗ ·

(
∂W ∗

∂∇∗n

)
+ G∗ = 0, (1)

−∇∗W ∗ + (∇∗n) ·G∗ +∇∗ · σ∗ = 0, (2)
∇∗ · v∗ = 0, (3)

where W ∗ is the bulk free energy density and σ∗ is the
stress tensor; these and the other quantities in Eqs. (1)–
(3) are defined below:

W ∗ = W ∗e +W ∗d , (4)
2W ∗e = K∗[(∇∗ · n)2 + (n× (∇∗ × n))2], (5)

2W ∗d = −ε∗0(ε‖ − ε⊥)(n ·E∗)2 − ε∗0ε⊥E∗ ·E∗, (6)

G∗i = −γ∗1N∗i − γ∗2e∗iknk, e∗ij = 1
2

(
∂v∗i
∂x∗

j
+

∂v∗j
∂x∗

i

)
, (7)

N∗i = ṅi − ω∗iknk, ω∗ij = 1
2

(
∂v∗i
∂x∗

j
− ∂v∗j

∂x∗
i

)
. (8)

Here, subscripts i, j, k denote vector indices and the
Einstein summation convention is assumed. The bulk
free energy density W ∗ consists of elastic and dielec-
tric contributions. Nematic molecules prefer to align
with their neighbors locally, a preference modeled by a
bulk elastic (Frank) energy, W ∗e , where in Eq. (5) the
widely-used one-constant approximation is used [8]. In
addition, NLC molecules respond to an applied electric
field E∗, which induces a force causing them to align
parallel or perpendicular to the field direction, giving
rise to a dielectric free energy contribution modeled by
W ∗d in Eq. (6). The constant ε∗0 is the permittivity of
free space and ε‖ and ε⊥ are the relative dielectric per-
mittivities parallel and perpendicular to the long axis
of the nematic molecules. The molecular orientation
induced by the field depends on the sign of the dielec-
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tric anisotropy, ε‖ − ε⊥; in line with the most common
situation we mostly assume parallel orientation, asso-
ciated with ε‖ − ε⊥ > 0. For our setup the electric
field E∗ = ∇∗Ψ∗ is generated by applying a potential
difference V ∗0 across the electrode pair; for modeling
simplicity we follow the approach of Brown et al. [1, 2]
and approximate the piecewise continuous substrate po-
tential by Ψ∗(x∗, 0, t∗) = V ∗0 cos

(
πx∗

2d∗

)
, where d∗ is the

electrode spacing. The parameters γ∗1 and γ∗2 in G∗ are
constant viscosities, while e∗ij and ω∗ij are symmetric and
antisymmetric rate-of-strain tensors for the material.

The stress tensor σ∗ for the NLC can be written as

σ∗ = −p∗I + σe∗ + σd∗ + σv∗, (9)

where σe∗, σd∗, σv∗ are the elastic, dielectric and viscous
contributions, respectively, and are defined as

σe∗ = −K∗∇∗n · (∇∗n)T , (10)
σd∗ = ε∗0(∇∗Ψ∗ ⊗∇∗Ψ∗)ε(n), (11)

(σv∗)ij = α∗1nknpe
∗
kpninj + α∗2N

∗
i nj + α∗3N

∗
j ni

+ α∗4e
∗
ij + α∗5e

∗
iknknj + α∗6e

∗
jk, nkni, (12)

where ε(n) = ε⊥I + (ε‖ − ε⊥)n ⊗ n is the dielectric
tensor, and the α∗i are constant viscosities related to γ∗i
in Eq. (7) by γ∗1 = α∗3 − α∗2, γ∗2 = α∗6 − α∗5 and to each
other by the Onsager relation, α∗2 + α∗3 = α∗6 − α∗5.

In addition to the electric field, NLC molecular ori-
entation is sensitive to interactions with the bounding
surface, a phenomenon known as anchoring. At a solid
substrate, anchoring is determined by the chemical in-
teractions between the NLC and the substrate. It is
a common practice in applications to treat the sub-
strate (chemically or mechanically) to impose strong
planar anchoring with respect to the surface, there-
fore we assume a Dirichlet condition θ(x∗, 0, t∗) = π/2
at the lower substrate. At a free surface, the direc-
tor typically prefers to align normal to the surface
(homeotropic anchoring), hence at z∗ = h∗(x∗, t∗) we
impose weak homeotropic anchoring with associated an-
choring strengthA∗, modeled by a Rapini-Papoular sur-
face energy contribution,

γ∗ − (A∗/2)(n · ν)2

(where ν is the unit outward normal to the free surface),
to the total energy [22]. In experiments, typical val-
ues for weak anchoring vary between 10−5− 10−6Jm−2

[21]. For the velocity v∗, we assume no-slip and no-
penetration conditions at the lower boundary, and a
kinematic boundary condition together with a balance
of normal and tangential stresses at the free surface.

B. Thin Film Model Derivation

We employ standard long wave theory scalings to
non-dimensionalize the governing equations:

x∗ = d∗x, z∗ = δd∗z, u∗ = U∗u, w∗ = δU∗w,

t∗ = d∗

U∗ t, p∗ = µ∗U∗

δ2d∗ p, W ∗ = WK∗

δ2d∗2 . (13)

Here, d∗ is the length scale of the electrode spacing
along the x∗-axis, U∗ is the typical flow speed in the x∗-
direction and µ∗ = α∗4/2 is the representative viscosity
scaling in the pressure.

In the absence of experimental data for free surface
dielectrowetting of NLCs, we base certain parameter
choices on the available data for isotropic dielectric liq-
uids (IDLs). Experiments by Brown et al. [1–3] in-
volve an IDL film in which the typical film height h∗0 is
much smaller than the electrode spacing (h∗0 ∼ 15µm
and d∗ ∼ 120µm), hence we set δ = h∗0/d

∗ � 1 to
be the aspect ratio of the film. Typical values of δ
range from 0.05− 0.5 in the IDL experiments [1, 2]. If
the free surface in the dimensional variables is given by
z∗ = h∗(x∗, t∗) then we write h∗ = h∗0h and the dimen-
sionless free surface representation is z = h(x, t).

1. Energetics

Following an approach similar to that of Lin et al.
[17] (which does not include electric field effects), if
the inverse Ericksen number N = K∗/(µ∗U∗d∗) and
the dielectric parameter D (defined in Eq. (15) be-
low) are both O(1), the leading-order director energet-
ics reduce to the Euler-Lagrange equations for mini-
mizing total dimensionless free energy per unit length
in the x-direction. The assumption underlying this
simplification is that the timescale on which the NLC
molecules reorient (driven either by elastic or electric
field effects) is very much shorter than that on which
the free surface geometry evolves. The latter is the
timescale associated with the flow, τ∗ = d∗/U∗. The
former may be estimated by the ratio of the rotational
viscosity γ∗1 = α∗3 − α∗2 of the NLC and the associ-
ated free energy density (W ∗e or W ∗d ), giving timescales
τ∗e = γ∗1(δd∗)2/K∗ (reorientation under elastic effects)
or τ∗d = γ∗1 (δd∗)2/(ε∗0V

∗2
0 ) (reorientation under the elec-

tric field), respectively. Fixing the velocity scale using
N = O(1), it is easily verified that τ∗e,d/τ

∗ = O(δ2).
Hence it is reasonable to assume that the director field
is always in quasi-static equilibrium, adapting instanta-
neously to the slowly-changing free surface geometry.

The dimensionless free energy to be minimized is
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given by

J =

∫ h

0

NW (θ, θz,Ψz) dz + g(θ)|z=h, (14)

where W is the total dimensionless bulk energy density
and g(θ) is the Rapini-Papoular surface energy density,
given in dimensionless form by

W =
1

2
θ2z −DΨ2

z($ + cos2 θ), (15)

D =
V ∗20 ε∗0(ε‖ − ε⊥)

2K∗
, $ =

ε⊥
ε‖ − ε⊥

,

g(θ)|z=h = γ − A
2

(n · ν)2|z=h = γ − A
2

cos2 θ|z=h.
(16)

Here, D represents the relative strength of the dielec-
tric anisotropy and elasticity, γ = δ2d∗2γ∗/(K∗h∗0) is
the dimensionless surface tension coefficient defined in
terms of the dimensional surface tension γ∗ and A =
δA∗d∗/K∗ is the dimensionless anchoring strength at
the free surface.

We follow the approach described by Cummings et
al. [7] to minimize the total free energy density of the
layer with respect to variations in θ and Ψ. The first
variations must vanish at an extremum and the signs of
the second variations indicate whether an energy min-
imum is reached. The bulk terms lead to the Euler-
Lagrange equations,

θzz −DΨ2
z sin 2θ = 0, (17)

D
(
Ψz($ + cos2 θ)

)
z

= 0, (18)

while the surface terms lead to one term that can be
eliminated, giving the weak anchoring condition,

Wθz = gθ on z = h,

a free surface boundary condition on θ. The remain-
ing boundary conditions on θ and Ψ are taken to be
Dirichlet conditions: strong planar substrate anchoring
for θ on z = 0; specified substrate potential Ψ(x, 0, t) to
approximate the interlaced electrodes on z = 0; and, in
order to retain a maximally tractable model, we assume
the free film surface is an equipotential1. This gives the
following complete set of boundary conditions for θ and

1 More accurately, one should also solve for the electric potential
in the region above the film, imposing appropriate continuity
conditions, but this leads to a much more complex system.

Ψ:

θ = π/2 on z = 0, (19)

θz +
A
2

sin 2θ = 0 on z = h, (20)

Ψ = cos
(π

2
x
)

on z = 0, (21)

Ψ = 0 on z = h. (22)

Although both θ and Ψ are functions of the three
independent variables x, z, t, in much of the following
we will suppress the explicit t-dependence due to the
quasistatic nature of the boundary value problem these
functions satisfy. We will also, where convenient, sup-
press the independent variables altogether in θ and Ψ
(likewise in h).

2. Momentum Equations

We use the pressure scale µ∗U∗/(δ2d∗) to non-
dimensionalize the stress tensor σ∗. Then, provided
that the inverse Ericksen numberK∗/(µ∗U∗d∗) = O(1),
the momentum equations reduce to the condition that
the stress tensor be divergence-free, and the equations
governing the fluid flow can be extracted by retaining
the leading order terms in

δ
∂σ11
∂x

+
∂σ13
∂z

= 0, (23)

δ
∂σ31
∂x

+
∂σ33
∂z

= 0, (24)

where subscripts 1 and 3 refer to the x and z coordinate
directions respectively, in our 2D geometry. As a result,
the leading-order equations are found to be

px = 2DN
(
ΨxΨz($ + cos2 θ)

)
z

(25)

+
(
A1(θ)uz

)
z
−N

(
θxθz

)
z
,

pz = 0, (26)

for the x and z components respectively, where

A1(θ) = 1 + (α5 − α2) cos2 θ + 2α1 sin2 θ cos2 θ

+ (α3 + α6) sin2 θ. (27)

Following the approach taken by Lin et al. [16, 17],
the normal and tangential stress balance boundary con-
ditions may be derived. The normal stress is bal-
anced by the surface tension contribution in the Young-
Laplace condition, which yields

p+ 2NW = −Chxx on z = h(x, t), (28)

where C = δ3γ∗/(µ∗U∗) is an inverse capillary number.
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The tangential stress is balanced by the surface energy
gradients along the free surface, which (after some al-
gebra) reduces to the boundary condition

uz = 0 on z = h(x, t). (29)

Equation (26) together with the normal stress condition
of Eq. (28) gives the pressure p(x, t) throughout the
layer as

p = −2NW |z=h − Chxx, (30)

while Eq. (25) together with the tangential stress con-
dition in Eq. (29) gives the velocity gradient across the
layer as

A1(θ)uz = N
[
θx(x, z)θz(x, z)− A2 θx(x, h) sin 2θ(x, h)

]
− 2DNΨz(x, z)

[
$ + cos2 θ(x, z)

]
[Ψx(x, z)−Ψx(x, h)]

− 2N (z − h) [Wx + hxWz] |z=h − C(z − h)hxxx. (31)

Imposing the no-slip and no-penetration boundary con-
ditions, u = v = 0 at z = 0, the kinematic boundary
condition at z = h(x, t), together with mass conserva-
tion and the integral relation

∫ h
0
u dz =

∫ h
0
uz(h−z) dz,

gives

∂h

∂t
+

∂

∂x

(∫ h

0

uz(h− z) dz

)
= 0. (32)

Substituting Eq. (31) into Eq. (32) above, we obtain
a partial differential equation (PDE) that governs the
evolution of the NLC film height h,

ht + C ∂
∂x

(
hxxx

∫ h
0

(h−z)2
A1(θ)

dz
)

(33)

+N ∂
∂x

(∫ h
0

(h−z)[T1(x,z)+T2(x,h)+T3(x,h)(h−z)]
A1(θ)

dz
)

= 0,

where the functions T1(x, z), T2(x, h) and T3(x, h) take
the following forms:

T1(x, z) = θx(x, z)θz(x, z) (34)

− 2DΨx(x, z)Ψz(x, z)[$ + cos2(θ(x, z))],

T2(x, h) = −A
2
θx(x, h) sin(2θ(x, h)) (35)

+ 2DΨx(x, h)Ψz(x, h)[$ + cos2(θ(x, h))],

T3(x, h) = A sin(2θ(x, h))[θzx(x, h) + hxθzz(x, h)]

+ 2DΨ2
z(x, h) sin 2θ(x, h)[θx(x, h) + hxθz(x, h)]

− 4DΨz(x, h)($ + cos2(θ(x, h)))

× [Ψzx(x, h) + hxΨzz(x, h)]. (36)

In order to simulate a thin film of infinite lateral extent

overlying a periodic array of electrodes, we impose peri-
odic boundary conditions in the x-direction as follows:

h(0, t) = h(L, t), hx(0, t) = hx(L, t), (37)
hxx(0, t) = hxx(L, t), hxxx(0, t) = hxxx(L, t),

where the length of the computational domain L is
taken to be an even integer (corresponding to simulat-
ing flow over an integer number of electrode pairs). We
use L = 4 for all simulations presented in this paper,
representing a single period-unit of the interdigitated
electrode setup.

C. Solution Scheme & Discretization

Equation (33), coupled with the boundary-value sys-
tem Eqs. (17)–(18), subject to the boundary conditions
given by Eqs. (37) and Eqs. (19)–(22) respectively, de-
scribe the flow of a NLC film driven by the nonuniform
electric field generated by the interdigitated substrate
electrodes.

Solving these equations simultaneously, even for the
2D geometry considered here, poses a significant com-
putational challenge. Since the boundary-value prob-
lem (BVP) Eqs. (17)–(22) is quasistatic (reflecting the
assumptions on the much slower time scale of the flow
relative to the timescales on which NLC molecules and
electric field respond to changes in film geometry) we
are able to solve it independently for a dense grid of
film heights h. To do this, we rewrite the BVP as a vec-
tor system of four first-order ordinary differential equa-
tions for θ, θz, Ψ, Ψz and apply the MATLAB routine
bvp4c. An initial guess [θ0,Ψ0] is required to start the
routine; for this we use the results of the analogous uni-
form field problem, obtained as outlined by Mema et al.
[7, 20], for each height h. The procedure builds a “li-
brary” that consists of the director configuration θ(x, z)
and electric potential Ψ(x, z) for a range of film heights
0.01 ≤ h ≤ 2.00 with ∆h = 0.01, as an electric potential
Ψ(x) = cos

(
π
2x
)
is applied at z = 0 for 0 ≤ x ≤ 4 with

∆x = 0.02 (the value of ∆z to compute the solutions
θ,Ψ for each pair (x, h) is selected by the routine).

Once the BVP is solved for all discrete film heights
h ∈ [0.01, 2.0] and all discrete x ∈ [0, 4], we solve
Eq. (33) numerically. The integrals in Eq. (33) are
difficult to evaluate directly; in the interests of retain-
ing maximum tractability we follow Lin et al. [14, 17]
in using a two-point trapezoidal rule to approximate
them and hence obtain the following fourth-order non-
linear partial differential equation for the film thickness
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h(x, t),

∂h

∂t
+ C

∂

∂x
[h3hxxx] (38)

+ N
∂

∂x
[h2(T1(x, 0) + T2(x, h)) + h3T3(x, h)] = 0,

where C = C/(2(1+α3+α6)), N = N/(2(1+α3+α6)).
The arguments of h are suppressed in Eq. (38) and
those for Ti are understood to be (x, z); the quantities
T1(x, 0), T2(x, h), T3(x, h) are then given by Eqs. (34)-
(36) respectively. We use a finite difference method
based on central differences to discretize the spatial
terms in Eq. (38) and use the built-in MATLAB routine
ode15s, which is a variable-step variable-order solver
[27], to approximate the height of the film at each time
step. The procedure used to obtain the numerical re-
sults is as follows: given an initial film profile, h0(x), we
solve Eq. (38) at each time step, extracting the director
and electric potential configurations in the process as
necessary from our previously built library.

III. RESULTS

In this section we use the above-derived model com-
prising Eq. (38) coupled with Eqs. (17)–(22) to investi-
gate the flow of an initially flat film in the presence of
a nonuniform electric field. We focus on the evolution
of the free surface height h(x, t), as well as the director
and electric fields within the layer, as we vary the initial
film height, h0 and the anchoring conditions at the up-
per bounding surface. With a view to later qualitative
comparison with the experiments of Brown et al. [1–3]
we explore a range of initial film heights: h0 = 1.5 is
taken to be representative of a thick film in our model,
h0 = 1.0 an intermediate film and h0 ≤ 0.5 a thin film.
Depending on the thickness of the NLC film, dimension-
less weak anchoring strength can lie in the approximate
range A ∈ (0.125, 50). Consistent with this range of
values, in our simulations we use values A = 1, 10, 50 to
represent a range of weak anchoring conditions.

Figures 2–6 present results for evolution of a NLC film
with positive dielectric anisotropy (D > 0), strong pla-
nar anchoring at z = 0 and weak homeotropic anchor-
ing of strength A = 10 at the free surface z = h(x, t),
for several different values of h0. Figures 7–12 illus-
trate the analogous evolution for weaker (A = 1) and
stronger (A = 50) free surface anchoring. Figures 13-14
show film evolution for negative dielectric anisotropy
D < 0 and weak planar free surface anchoring of
strength A = 10 (again substrate anchoring is strong
and planar). In all cases, the layer is subjected to a
dimensionless electric potential Ψ(x, 0) = cos

(
πx
2

)
on

the substrate, and an equipotential boundary condition
Ψ(x, h) = 0 at the free surface. We set the inverse cap-

illary number and Ericksen number to C = N = 0.625
and the relative strength of the dielectric anisotropy
D = ±10 throughout. Our simulations are stopped ei-
ther when the film height h falls below 0.1 (after which
the numerics become unreliable, though we conjecture
film breakup would ensue if we were able to continue
the simulations), or when a steady state is reached.

In many of our simulation plots, we superimpose rep-
resentative snapshots of the director field as short di-
rected line segments. We note that our model is in-
variant under the transformation θ → −θ (a limitation
of our restriction to a 2D thin film model), hence a
choice must be made when selecting θ. Although nu-
merically our code selects values continuously in the
range θ ∈ [0, π/2], our plots show line segment repre-
sentations of the director that align visually with the
electric potential lines (there is no mathematical dis-
tinction between the two possible states in our model).

A. Effect of initial film height on free surface
evolution

We consider NLC films subject to strong planar sub-
strate anchoring θ(x, 0) = π/2, and weak homeotropic
anchoring at z = h(x, t) with dimensionless anchor-
ing strength A = 10. We first demonstrate film sta-
bility in the absence of an applied electric field. In
Fig. 2(a), a slightly perturbed film of initial thickness
h0(x) = 1.0 + 1

4π cos(πx) is seen to flatten in this case,
indicating the stability of a flat film to perturbations.
With no external field the NLC molecules align with
their neighbors within the layer, while respecting the
anchoring conditions at the boundaries.

We next consider a flat film, of initial dimensionless
height h0 = 1.0 (intermediate thickness), on applica-
tion of the nonuniform electric field. In this case the
film rapidly deforms, as seen in Fig. 2(b). The fluid col-
lects around x = 1 and x = 3 (points of zero substrate
potential) and begins to thin around x = 0, 2 and 4
(where the substrate potential takes values +1,−1,+1,
respectively). In the presence of the nonuniform po-
tential the polar nature of the NLC molecules induces
a force that tends to align them parallel to the local
electric field, competing with the forces due to the in-
ternal elasticity and the anchoring boundary conditions
at z = 0, h respectively. As a result, molecules begin to
migrate from the regions directly above the electrodes,
x = 0, 2 and x = 4 where Ψ(x, 0) = ±1 and Ψz(x, 0) is
large, towards the inter-electrode regions above x = 1
and x = 3 where the electric potential Ψ(x, 0) and its
gradient Ψz(x, 0) are both small. This may be seen
in Fig. 3, which illustrates the electric potential Ψ(x, z)
and its level curves within the NLC layer at the same
times shown in Fig. 2. Figure 4 shows the corresponding
behavior of the director field: the director angle θ(x, z)
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(a)

(b)

Figure 2. (a) Evolution of the surface height for a perturbed
film of initial height h(x) = 1.0 + 1

4π
cos(πx), anchoring

strength A = 10, C = N = 0.625 when no electric field is
applied: D = 0 for various times t = Nt/N where N = 8000
and Nt is specified in the legend. (b) Evolution of the free
surface height of a flat film with initial height h0 = 1.0,
A = 10, C = N = 0.625 and D = 10 for various times
t = Nt/N where N = 8000 and Nt is specified in the legend.

and its level curves are plotted within the layer. We
see that the director gradient |θz| is large in the regions
above the electrodes, x = 0, 2 and x = 4, and smaller
in the regions between electrodes, at x = 1 and x = 3.

This behavior is qualitatively consistent with the ex-
perimental results reported by Brown et al. [1–3] where
a similar set up is considered: a layer of an isotropic
dielectric liquid (1-decanol oil), rather than NLC, coats
a glass substrate on which interdigitated ITO (indium

Figure 3. Evolution of the electric potential Ψ(x, z) and its
level curves for the film of Fig. 2(b).

tin oxide) electrodes are patterned. The authors ob-
serve that liquid flows from regions where the electric
potential gradients are small to those regions where gra-
dients are highest. Though this broad agreement is
encouraging, no quantitative comparison is possible at
this stage due to the different rheology of the (isotropic)
fluid in the experiments and the several simplifying as-
sumptions we made in developing our model. We will
briefly address ways in which the specific nematic na-
ture of the film in our study may impact results later,
when we consider how the details of the anchoring con-
ditions affect the surface height evolution.

We now investigate how changing the initial film
height affects evolution. We first consider a thinner
film of initial dimensionless thickness h0 = 0.5, then
a thicker film with h0 = 1.5, both initially flat. Fig-
ure 5 presents the evolution of the thinner film in time.
For early times we observe the formation of wrinkling
patterns, where the film thickens at x = 0.5, 1.5, 2.5
and x = 3.5 (representing the edges of the electrodes in
our simple model); and thins at x = 0, 2, 4 (electrode
midpoints) and at x = 1, 3 (points mid-way between
adjacent electrodes). As time progresses the film con-
tinues to thin significantly at the electrode midpoints
x = 0, 2, 4 where the potential gradient is large; these
are the global film minima. Between the electrodes,
where the potential gradient is small, further thinning of
the film is suppressed and local minima persist at x = 1
and x = 3. We halt our simulations when the film height
dips below 0.1 at the global minima. Though our nu-
merics become unreliable if continued beyond this point,
we believe that under these conditions, the film would
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Figure 4. Evolution of the director field θ(x, z) and its level
curves for the film of Fig. 2(b).

proceed to dewet, similar to the behavior observed in
the prototypical optical shutter presented by Russell et
al. [25]. Prior to halting the simulation, the evolution
of the electric potential and the director field is qual-
itatively similar to the intermediate film height case:
both director and electric potential gradients are small
in the regions between electrodes (x = 1 and x = 3) and
large in the regions above the electrodes (x = 0, 2, 4);
however, the gradients are larger for thinner films.

Figure 6 shows the free surface evolution of the
thicker NLC film, h0 = 1.5. For early times the evo-
lution is similar to the intermediate film case h0 = 1.0
(Fig. 2), with the fluid collecting in regions where the
electric potential gradients are small. As time pro-
gresses, however, the thicker film reaches a steady state,
with approximately sinusoidal profile, exhibiting local
minima of height h ≈ 1.42 at electrode midpoints
x = 0, 2 and 4 and local maxima of height h ≈ 1.55
at x = 1 and x = 3, midway between electrodes. Our
simulations stop when |h(x, tn)−h(x, tn−1)| < 10−5, as
we deem a steady state to have been reached.

B. Effect of anchoring conditions on the evolution
of surface height

We next investigate the influence of different anchor-
ing conditions on the evolution of an initially flat film.
Specifically, we first study how, in the model described
above, the strength of the weak homeotropic anchoring
at the free surface affects the surface height evolution.
Then, with a view to conducting simulations that are

(a)

(b)

Figure 5. (a) Evolution of the free surface height of a film
with initial height h0 = 0.5 for A = 10, C = N = 0.625 and
D = 10 for various times t = Nt/N where N = 8000 and Nt
is specified in the legend. (b) Electric potential Ψ(x, z) and
director field θ(x, z) at final time: t = 52/N with director
configuration shown in red.

closer in spirit to the isotropic dielectric case studied by
Brown and co-workers [1–3], we briefly study the evo-
lution of NLC films with negative dielectric anisotropy,
subject to planar anchoring at both boundaries.

1. Varying weak homeotropic anchoring strength

We consider the model described above, compris-
ing Eq. (38) coupled with Eqs. (17)–(22), with strong
planar anchoring at the lower substrate and weak
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(a)

(b)

Figure 6. (a) Evolution of the free surface height of a film
with initial height h0 = 1.5 for A = 10, C = N = 0.625
and D = 10 for various times t = Nt/N where N = 8000
and Nt is specified in the legend. (b) Electric field potential
Ψ(x, z) and director field θ(x, z) at final time: t = 315/N
with director configuration shown in red.

homeotropic anchoring at the upper free surface. All
previous simulations were for dimensionless (Rapini-
Papoular) anchoring strength A = 10; we now simulate
initially flat films where A = 1 and A = 50 at the free
surface. We again compare results for three different
initial film thicknesses, h0 = 0.5, 1.0 and 1.5.

Figures 7 and 8 show the evolution of an initially
flat film of height h0 = 1.0 and the corresponding elec-
tric potential Ψ(x, z) and director field θ(x, z) at the fi-
nal computed time, for anchoring strengths A = 1 and
A = 50, respectively. The evolution of the correspond-

ing film with dimensionless free surface homeotropic an-
choring strength A = 10 was shown in Fig. 2(a). Again,
simulations are stopped if the layer becomes too thin
and the numerical solution for the director field becomes
unreliable; or if a steady state is reached. While the
evolution of the film is similar for all three anchoring
strengths considered, there are some differences: first,
in the weaker anchoring case (dimensionless anchoring
strengthA = 1), the director at the free surface deviates
significantly from the preferred homeotropic orientation
(see Fig. 7(b)); this deviation is especially apparent in
regions between the electrodes (where the electric po-
tential is close to zero). For (relatively) strong anchor-
ing A = 50, by contrast, the director almost perfectly
respects the preferred anchoring conditions at the free
surface: see Fig. 8(b). Additionally, we note that the
maxima in the free surface height profile at x = 1 and
x = 3 become more diffuse as the anchoring strength in-
creases (peaks shown in Fig. 8(a) are wider than those
in Fig. 7(a)).

We now discuss the effect of anchoring strength on
a thinner film. Figures 9 and 10 illustrate the evolu-
tion for a film of initial height h0 = 0.5, with weak
homeotropic free surface anchoring of strengths A = 1
and A = 50 respectively, together with the correspond-
ing electric potential and director field at the final com-
puted time. The corresponding evolution with A = 10
is shown in Fig. 5. As in that figure, we observe here
that the film surface exhibits wrinkle formation and de-
velops a distinctly non-sinusoidal profile. The formation
of wrinkling patterns appears to depend primarily on
the initial film height and not on free surface anchoring
strength. We expand on this conjecture in the next sec-
tion when we discuss how planar anchoring conditions
on both boundaries affect the surface height evolution.

There are, however, some qualitative differences in
the evolution as anchoring strength varies. First, for
weaker anchoring strength and in the regions between
electrodes where the electric potential is near zero, the
film height slowly increases in time (see Fig. 9(a) at
x = 1 and x = 3). By contrast, as anchoring strength
increases to A = 10 and A = 50, at the same loca-
tions the film height decreases (compare Fig. 5(a) and
Fig. 10(a)). Moreover, the director orientation at the
free surface deviates significantly from the preferred ori-
entation when A = 1; in fact for this weakest anchoring
strength the director orientation is planar throughout
the film in the regions between electrodes, where the
electric field is weakest: here θ = π

2 is a stable (con-
stant) steady solution to the governing equations (cf.
Mema et al. [21]). The strong planar substrate anchor-
ing dominates over both the weak homeotropic anchor-
ing and the weak electric field in regions between the
electrodes, forcing the director to align parallel to the
substrate throughout the layer: θ(1, z) = θ(3, z) = π/2.

As the anchoring strength increases to A = 10 and
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(a)

(b)

Figure 7. Evolution of an initially flat film, h0 = 1.0 with
weak homeotropic free surface anchoring of dimensionless
strength A = 1 and parameters: C = N = 0.625 and
D = 10. Various times t = Nt/N are shown in (a) where
N = 8000 and Nt is specified in the legend. (b) Electric
potential Ψ(x, z) and director field θ(x, z) at final time t =
153/N with director configuration shown in red.

A = 50 the constant stable steady state for the director
ceases to exist, even in the weak-field regions; the direc-
tor bends across the layer at all x-locations, deviating
only slightly from the preferred homeotropic orientation
at z = h. In regions above the electrodes (assuming pos-
itive dielectric anisotropy), the electric field helps the
director align closely with the free surface homeotropic
anchoring orientation, independently of the anchoring
strength.

Finally, we comment briefly on the effect of anchoring
strength for thicker films: Figures 11 and 12 illustrate

(a)

(b)

Figure 8. Evolution of an initially flat film, h0 = 1.0 with
weak homeotropic free surface anchoring of dimensionless
strength A = 50 and parameters: C = N = 0.625 and
D = 10. Various times t = Nt/N are shown in (a) where
N = 8000 and Nt is specified in the legend. (b) Electric
potential Ψ(x, z) and director field θ(x, z) at final time t =
207/N with director configuration shown in red.

the evolution of an initially flat film of thickness h0 =
1.5 with strong planar substrate anchoring and weak
homeotropic free surface anchoring, of strengths A = 1
and A = 50 (respectively). The analogous evolution
with A = 10 is shown in Fig. 6(a): similar to that case,
both films reach a steady-state near-sinusoidal profile
(shown in Figs 11(a) and 12(a)). Small differences in
the free surface height are observed for the different
cases: as anchoring strength increases, the amplitude
of the perturbations to the steady-state surface height
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(a)

(b)

Figure 9. Evolution of an initially flat film, h0 = 0.5 with
weak homeotropic free surface anchoring of dimensionless
strength A = 1 and parameters: C = N = 0.625 and
D = 10. Various times t = Nt/N are shown in (a) where
N = 8000 and Nt is specified in the legend. (b) Electric
potential Ψ(x, z) and director field θ(x, z) at final time t =
48/N with director configuration shown in red.

decreases, and the film height maxima become more dif-
fuse. In all cases the maxima are achieved at the points
mid-way between the electrodes, x = 1 and x = 3. For
the smallest anchoring strength A = 1 the maximum
film height at the final time tf , h(1, tf) ≈ 1.6. As an-
choring strength increases to A = 10 and A = 50, the
maximum film height decreases slightly: h(1, tf) ≈ 1.55.
We note also that the director at the free surface de-
viates slightly from the preferred homeotropic orienta-
tion at the weakest anchoring strength A = 1 when

(a)

(b)

Figure 10. Evolution of an initially flat film, h0 = 0.5 with
weak homeotropic free surface anchoring of dimensionless
strength A = 50 and parameters: C = N = 0.625 and
D = 10. Various times t = Nt/N are shown in (a) where
N = 8000 and Nt is specified in the legend. (b) Electric
potential Ψ(x, z) and director field θ(x, z) at final time t =
50/N with director configuration shown in red.

compared to the simulations with stronger anchoring
strengths A = 10 and A = 50. As expected, however,
this difference is less pronounced than for thinner films.
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(a)

(b)

Figure 11. Evolution of an initially flat film, h0 = 1.5 with
weak homeotropic free surface anchoring of dimensionless
strength A = 1 and parameters: C = N = 0.625 and D =
10. Various times t = Nt/N are shown in (a) where N =
8000 and Nt is specified in the legend. (b) Electric potential
Ψ(x, z) at final time t = 265/N with director configuration
(shown in red) at that time.

2. Planar Anchoring at Both Boundaries & Negative
Dielectric Anisotropy

Motivated by the wish to distinguish between the ef-
fects of internal elasticity due to director field distor-
tions, and dielectric effects due solely to the electric
field, we now discuss the evolution of an initially flat
NLC film with negative dielectric anisotropy, subject
to strong planar anchoring at the lower substrate and
weak planar anchoring of strength A = 10 at the free

(a)

(b)

Figure 12. Evolution of an initially flat film, h0 = 1.5 with
weak homeotropic free surface anchoring of dimensionless
strength A = 50 and parameters: C = N = 0.625 and D =
10. Various times t = Nt/N are shown in (a) where N =
8000 and Nt is specified in the legend. (b) Electric potential
Ψ(x, z) at final time t = 307/N with director configuration
(shown in red) at that time.

surface. With dielectric anisotropy parameter D < 0
the nematic molecules align perpendicular to the elec-
tric field, rather than parallel to it, so that all external
effects here favor a director field that orients parallel
to the substrate, with θ = π/2 throughout and zero
bulk distortion (the elastic contribution We = θ2z/2 to
the bulk free energy density in Eq. (15) is zero). We
present results for three different initial film thicknesses,
h0 = 0.3, 1.0, 1.5 and compare them with the analo-
gous simulations presented above (with strong planar
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anchoring at the substrate and weak homeotropic an-
choring at the free surface, which we refer to as the
planar-homeotropic case). Here, we choose the smaller
value h0 = 0.3 as representative of a thin film (rather
than h0 = 0.5 considered earlier) in order to observe
free-surface wrinkling patterns, which are not exhibited
when h0 = 0.5.

Figure 13 shows the evolution of an initially flat film
of intermediate height h0 = 1.0. As noted above, the
director aligns parallel to the substrate throughout the
layer (see Fig. 13(b)), which illustrates the director con-
figuration superimposed on the electric field potential at
the final computed time. There are similarities to the
evolution of the initially flat planar-homeotropic film
of the same height shown in Fig. 2(b): the film thick-
ens around the points x = 1 and x = 3 mid-way be-
tween the electrodes where electric field gradients are
small, and begins to thin directly above the electrode
midpoints at x = 0, 2 and 4, where electric field gradi-
ents are large. There are some differences, however:
the surface height profile in Fig. 13 has well-defined
peaks exactly at x = 1 and x = 3; while the surface
height profile for the planar-homeotropic case in Fig. 2
has more diffuse maxima. We attribute the diffuseness
to the competing forces that the director experiences
in the planar-homeotropic case. This competition be-
comes more intense as free surface anchoring strength is
increased, hence the film maxima are even more diffuse
at the largest anchoring strength considered (A = 50 in
Fig. 8(a)).

We next discuss the thin film of initial height h0 =
0.3. The evolution, shown in Fig. 14, is compared
to that of the flat planar-homeotropic film of height
h0 = 0.5 as shown in Fig. 5(a) (see also Figs. 9(a)
and 10(a) for different free surface anchoring strengths).
Complex, strongly non-sinusoidal wrinkling patterns
emerge in all cases, with the films thinning/thickening
in regions of large/small electric field gradients. We
here highlight key differences between the cases: first,
note that in Fig. 14 the fluid collects in regions mid-
way between the electrodes where the electric potential
gradient is small, forming local film maxima at x = 1
and x = 3 (local minima are formed at these points for
the planar-homeotropic case in Figs. 5, 9(a) and 10(a)).
Second, we observe four small additional peaks in re-
gions of high electric potential gradients, near x = 0,
x = 2 (one on either side) and x = 4, which were
not observed in the earlier simulations (where surface
height decreases over time at these locations). Despite
these differences, the re-emergence of wrinkling pat-
terns for these different anchoring conditions reinforces
our conjecture that they are ubiquitous for sufficiently
thin films (though the details of the anchoring and di-
electric anisotropy may modulate the specific wrinkling
patterns observed).

Finally, we compare the evolution of a thick film,

(a)

(b)

Figure 13. Evolution of initially flat film, h0 = 1.0 with
strong planar substrate anchoring and weak planar free sur-
face anchoring of dimensionless strength A = 10 and pa-
rameters C = N = 0.625, D = −10. Various times
t = Nt/N are shown in (a) where N = 8000 and Nt is
specified in the legend. (b) Electric potential Ψ(x, z) at fi-
nal time t = 1234/N with director configuration shown in
red.

h0 = 1.5, to that observed in the planar-homeotropic
case shown previously in Fig. 6 (see also Figs. 11 and 12
for different free surface anchoring strengths). Figure 15
shows the evolution of a film with strong planar sub-
strate anchoring, weak planar free surface anchoring of
strength A = 10, and negative dielectric anisotropy. As
in the planar-homeotropic cases of Figs. 6, 11 and 12 we
observe that the film thickens in regions between elec-
trodes where electric field gradients are small and thins
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(a)

(b)

Figure 14. Evolution of an initially flat film, h0 = 0.3 with
strong planar substrate anchoring and weak planar free sur-
face anchoring of dimensionless strength A = 10 and pa-
rameters: C = N = 0.625 and D = −10. Various times
t = Nt/N are shown in (a) where N = 8000 and Nt is speci-
fied in the legend. (b) Electric potential Ψ(x, z) at final time
t = 100/N with director configuration shown in red.

directly above electrodes, where electric field gradients
are large. In addition, and again similar to the planar-
homeotropic cases, a steady state is quickly reached.
The surface height profile in Fig. 15 has well-defined
maxima at x = 1 and x = 3 while the corresponding
planar-homeotropic surface height profile in Fig. 6 ex-
hibits more diffuse maxima at these points. As with
the intermediate film thickness h0 = 1 simulations, we
conjecture that this difference is due to the competition
between different forces on the NLC molecules in the

planar-homeotropic case.

(a)

(b)

Figure 15. Evolution of an initially flat film, h0 = 1.5 with
strong planar substrate anchoring and weak planar free sur-
face anchoring of dimensionless strength A = 10 and pa-
rameters: C = N = 0.625 and D = −10. Various times
t = Nt/N are shown in (a) where N = 8000 and Nt is speci-
fied in the legend. (b) Electric potential Ψ(x, z) at final time
t = 219/N with director configuration shown in red.

From a modeling perspective one might anticipate
that this case of NLC film evolution with planar anchor-
ing conditions and negative dielectric anisotropy should
provide results most analogous to those for an isotropic
dielectric liquid (IDL), due to the uniform director ori-
entation throughout the layer. However, a closer qual-
itative agreement with the IDL experiments reported
by Brown et al. [2] is found with our earlier planar-
homeotropic simulations (Figs. 2–12) than with the re-



15

sults of this section. There are several possible reasons
for this discrepancy, not least the fact that a NLC, even
with uniform director orientation, is not the same as an
IDL. For this reason we refrain from attempting any
direct comparison with experiments for IDLs.

IV. CONCLUSION

We have presented a mathematical model that de-
scribes the flow of a thin NLC film in the presence of
a nonuniform electric field. Specifically, we consider a
thin layer of NLC coated on a substrate z = 0 that con-
tains embedded planar interlaced electrodes, the effect
of which we approximate by a periodic electric field pro-
file on z = 0 in the x-coordinate direction. The math-
ematical model derived consists of a 4th order nonlin-
ear parabolic partial differential equation for the height
h(x, t) of the film, coupled to a boundary value system
for the electric potential Ψ(x, z, t) and the director field
n = (sin θ, cos θ), characterized in our 2D setup by a
single angle θ(x, z, t).

Numerical techniques were used to investigate the
temporal evolution of an initially flat film, with initial
dimensionless height representative of thick (h0 = 1.5),
intermediate (h0 = 1.0) or thin (h0 = 0.5 or h0 = 0.3)
films. For thick films, the surface height evolves to an
undulating steady-state profile in all cases considered:
fluid collects in the regions between electrodes where
the electric potential is near zero and electric field gra-
dients are small, and thins at the electrode midpoints,
where the electric and director field gradients are large.
For thin and intermediate thickness films, fluid accumu-
lates in regions of high electric potential and director
field gradients, migrating from regions of small gradi-
ents. Unlike the thicker films, thin and intermediate
films thin significantly in these high-gradient regions;
no steady state is found and our simulations are halted
when accuracy is lost in the solution for the director
field. For the thinnest films, complex wrinkling pat-
terns form, with the film thickening at the edges of the
electrodes and further thinning observed at the elec-
trode midpoints where the electric potential gradients
are large, leading to global film minima at these points.
Between the electrodes, film thinning is suppressed and
local minima form above x = 1 and x = 3.

Additionally, we investigated the effect of different
anchoring conditions on NLC film evolution; specifically
we considered the effect of free surface homeotropic an-
choring strength A on the surface height evolution by
considering three different values: A = 1, A = 10 and
A = 50. Changing A primarily affects the director con-
figuration and its gradients, which in turn affect the
surface height evolution. We observed that as A is in-
creased the maxima of the film surface profile become
more diffuse, possibly due to increased competition of

different forces within the film. For sufficiently weak
anchoring, in the thinnest film simulated (h0 = 0.5) we
also observe regions in the film where the director field
is uniform and planar (Fig. 9), reflecting the fact that
θ = π/2 is a stable steady solution to the governing
equations under the local film conditions.

With the goal of gaining insight into the behavior of
film evolution when there are no elastic forces within
the film layer, we also considered an NLC film with
negative dielectric anisotropy, subject to strong pla-
nar anchoring at the lower substrate and weak planar
free surface anchoring. Negative dielectric anisotropy
means that the nematic molecules align perpendicular
to the direction of the electric field instead of parallel
to it; the director in this case is uniform throughout
the layer, and the elastic energy is negligible. While
surface height evolution was generally similar to that
of analogous films with planar-homeotropic anchoring,
the films with planar anchoring and negative dielectric
anisotropy had well-defined maxima, which we attribute
to the lack of competition between opposing forces in
the film. The thinnest films in this case exhibit complex
non-sinusoidal wrinkling profiles, behavior that appears
to depend primarily on the initial film height.

Finally, though the results are not reported here, we
briefly explored the effect of increasing D on the film
evolution, finding that the qualitative behavior is not
sensitive to the value of D; however, the amplitude of
the perturbations increases as D increases. We plan to
explore the effect of varying D, and the features of the
electric field more generally, in future work.

Our numerical results are in qualitative agreement
with the experiments of Brown et al. [1] who investi-
gate dielectrophoresis of an isotropic dielectric liquid
(IDL) over interlaced electrodes. They observe that
fluid collects above electrodes, where electric potential
gradients are highest, and is removed from regions be-
tween electrodes where electric potential gradients are
small. A similar experiment carried out by the same
group [2] demonstrated that as the initial height of the
IDL film decreases, wrinkled, strongly non-sinusoidal
profiles emerge, similar to those in our thinnest film sim-
ulations. Though we anticipated that our simulations
for NLC films with planar free surface anchoring and
negative dielectric anisotropy might be a closer analog
to the IDL (having zero net elastic energy), this expec-
tation was not borne out: our simulations of planar-
homeotropic flat films provide the best agreement with
the experimental results of Brown et al. [1]. Given the
rheological differences between IDLs and NLCs, we are
unable to make any meaningful quantitative comparison
of our model simulations with these results. We hope
that our new model and computational results will in-
spire future experimental investigations of dielectrowet-
ting with NLCs, that may provide further insight and
lead to improvement of our mathematical model.
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