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The active phase-field-crystal (active PFC) model provides a simple microscopic mean field de-
scription of crystallization in active systems. It combines the PFC model (or conserved Swift-
Hohenberg equation) of colloidal crystallization and aspects of the Toner-Tu theory for self-propelled
particles. We employ the active PFC model to study the occurrence of localized and periodic active
crystals in two spatial dimensions. Due to the activity, crystalline states can undergo a drift insta-
bility and start to travel while keeping their spatial structure. Based on linear stability analyses,
time simulations and numerical continuation of the fully nonlinear states, we present a detailed
analysis of the bifurcation structure of resting and traveling states. We explore, for instance, how
the slanted homoclinic snaking of steady localized states found for the passive PFC model is modi-
fied by activity. The analysis is carried out for the model in two spatial dimensions. Morphological
phase diagrams showing the regions of existence of various solution types are presented merging
the results from all the analysis tools employed. We also study how activity influences the crystal
structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a
simple PFC model for active crystals and swarm formation provides a clear general understanding of
the observed multistability and associated hysteresis effects, and identifies thresholds for qualitative
changes in behavior.

I. INTRODUCTION

Pattern formation is a fascinating phenomenon observed
in both nature and laboratory experiments and studied
theoretically in a wide variety of fields [1–3].
In the case of macroscopic physical systems, one can usu-
ally distinguish between passive systems that are typi-
cally closed and develop towards thermodynamic equi-
librium, and active or non-equilibrium systems that are
open and develop under permanent energy flow. In
the former, the resulting states may exhibit spatial pat-
terns, e.g., crystalline structures, that can be related to
self-assembly as typical structure lengths result directly
from the properties of individual constituents. In con-
trast, in active systems the structures that occur are self-
organized and dissipative. In this case typical structure
lengths result from transport coefficients [4].
One prominent example of an active system is a system
consisting of active particles or agents like bacteria, an-
imals or artificial micro-swimmers [5–8]. These agents
are able to transform different forms of energy into self-
propelled directed motion [9, 10] and use various energy
sources to drive an internal motor mechanism; hence they
represent a non-equilibrium system driven by a continu-
ous energy flow. Artificial micro-swimmers, for instance,
turn chemical energy [11] or radiation like light [12, 13]
or ultrasound [14] into actively driven, self-propelled mo-
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tion. Also, vibrated granular media in confined geome-
tries are employed as good model systems for certain as-
pects of active matter [15–18].

In non-equilibrium systems with a large number of ac-
tive particles, intriguing collective phenomena arise. In
particular, short- and long-range interactions between in-
dividual particles can result in alignment mechanisms
leading to directional ordering (so-called polar ordering)
and synchronized motion of the self-propelled particles
[19, 20]. The resulting collective modes of motion are
often referred to as swarming [9]. Animals often form
swarms for better protection from predators. Further
proposed functions include social interaction [21], en-
hanced foraging [22, 23] and increased efficiency of mo-
tion as often observed for birds [24].

One of the most famous approaches to collective motion
is the Vicsek model [25], where each individual particle
adapts to the average direction of motion in some neigh-
borhood, in the presence of noise. In general, depend-
ing on the specific interactions between particles, their
density and the driving strength (called in the following
the activity) one observes different regimes of clustering,
ordering and motion that one may, in analogy to equi-
librium behavior, call gas, liquid, liquid-crystalline and
crystalline states [10, 26]. Much recent attention has fo-
cused on an actively driven condensation phenomenon, a
motility-induced phase separation between a gaseous and
a liquid state that arises purely due to self-propulsion
[27–29].

However, for certain particle interactions and/or at quite
high densities, active particles can also form crystalline
ordered states, in particular, resting [30, 31] or trav-
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eling [12, 32–34] patches with nearly crystalline order
[35]. Different bacteria can form crystalline structures.
In particular, rotating cells of Thiovulum majus, a very
fast and smoothly swimming, large and nearly spheri-
cal bacterium equipped with flagella [36], are attracted
to each other owing to flow fields created by their ro-
tation, and bacterial crystals form. The connected cells
can pull nutrient-rich water towards the swarm by col-
lective motion of the flagella [23]. When buoyancy forces
are included another mechanism for structure formation
becomes available, resulting in the phenomenon of bio-
convection [37].

These “active crystals” [38, 39] (also called “flying crys-
tals” [35] or “living crystals” [10, 12, 40]) have proper-
ties that differ from known passive crystalline clusters
[41, 42]. The activity due to self-propulsion can change
the critical temperature and density at which crystal-
lization sets in and may even be necessary for crystalline
clusters to emerge. Besides, activity can induce orga-
nized translational and rotational motion [27, 32, 34, 43].
Patches of rotating cells of Thiovulum majus can also ro-
tate as a whole.

Many particle-based models are studied that show rest-
ing, traveling and rotating, active, crystalline and amor-
phous clusters [40, 44–46] as well as cluster-crystals
[47, 48]. For instance, a systematic study of the inter-
play of a short-range attraction and self-propulsion in
Brownian dynamics simulations shows that clusters form
at low activity (due to attraction) as well as at high ac-
tivity (motility-induced) with a homogeneous active fluid
phase in between [43].

Besides discrete models like Vicsek’s, there exist a num-
ber of continuum models for active matter [9, 35, 49, 50].
An important example is the Toner-Tu model of swarm-
ing [51, 52]. It represents a generalization of the com-
pressible Navier-Stokes equations of hydrodynamics to
systems without Galilei invariance, i.e., with preferred
velocities. Recently, a simple active phase-field-crystal
(aPFC) model has been proposed that describes transi-
tions between the liquid state on the one hand, and rest-
ing and traveling crystalline states on the other [38, 39],
combining elements of the Toner-Tu theory and the (pas-
sive) phase-field-crystal (PFC) model.

The PFC model is an intensively studied microscopic
mean field model for the dynamics of crystallization pro-
cesses on diffusive time scales [53]. It was introduced by
Elder and coworkers [54] and applies to passive colloidal
particles as well as to atomic systems [55, 56]. Mathemat-
ically, it corresponds to the conserved Swift-Hohenberg
(cSH) equation [57] in the form of a continuity equa-
tion. In contrast to the PFC model, the classical Swift-
Hohenberg (SH) equation represents non-conserved dy-
namics [58]. The SH equation is a standard equation
for studying pattern formation close to the onset of a
monotonic short-wave instability in systems without a
conservation law, e.g., a Turing instability in reaction-
diffusion systems or the onset of convection in a Bénard
system [4]. The cSH equation was first derived as the

equation governing the evolution of binary fluid convec-
tion between thermally insulating boundaries [59]. In
the PFC context, derivations from classical Dynamical
Density Functional Theory (DDFT) of colloidal crystal-
lization can be found in Refs. [53, 60–62] and, most re-
cently, in Refs. [63, 64]. In the course of the derivation,
the one-particle density of DDFT is shifted and scaled to
obtain the order parameter field of PFC. For brevity, in
the following we refer to the resulting order parameter as
a “density”.

The SH and PFC models both admit spatially extended
states (“crystals”) and spatially localized crystal patches
(“crystallites”). Ref. [57] provides detailed bifurcation
diagrams for the PFC model in one spatial dimension
(1D) while two (2D) and three (3D)-dimensional phases
are investigated via direct numerical simulations. An ex-
ample of a bifurcation diagram in 2D is given in [58].
However, since both models represent gradient dynam-
ics [58] these states are necessarily steady. In contrast,
in the aPFC model used here [38] the coupling between
density and polarization (quantified by an activity pa-
rameter coupling the two fields) breaks the gradient dy-
namics structure. Thus sustained motion becomes possi-
ble. Indeed, nonvariational modifications of the standard
nonconserved SH equation are known to result in both
standing oscillations and in traveling states [65–67].

Spontaneous motion typically arises via a drift-pitchfork
bifurcation [68, 69] and is found in many systems, in-
cluding self-aggregating membrane channels [70], drift-
ing liquid column arrays [71], chemically-driven running
droplets [72] and traveling localized states in reaction-
diffusion systems [73–75]. The onset of motion of local-
ized structures is studied, for instance, in Refs. [76–79]
while Refs. [39, 80, 81] focus on domain-filling patterns.
Such localized states are frequently observed in exper-
iments and models in various areas of biology, chem-
istry and physics [82–88]. Examples range from localized
patches of vegetation patterns [89], local arrangements
of free-surface spikes of magnetic fluids just below the
onset of the Rosensweig instability [90] to localized spot
patterns in nonlinear optical systems [91] and oscillating
localized states (oscillons) in vertically vibrating layers of
colloidal suspensions [92]. In the context of solidification
as described by PFC models, localized states are observed
in and near the thermodynamic coexistence region of liq-
uid and crystalline states. Crystallites of various sizes
and symmetry can coexist with a liquid background de-
pending on control parameters such as the mean density
and temperature [57, 58, 93, 94]. For instance, as the
mean density increases, the possible crystallites increase
in size as new density peaks (or “bumps” or “spots”) are
added at their boundary. Ultimately, the whole available
domain is filled and the branches of localized states termi-
nate on a branch of space-filling periodic states. Within
their existence region, the localized states are organized
within a “snakes-and-ladders” structure in the bifurca-
tion diagram [95, 96]. In conserved systems like the PFC
model on a finite periodic domain this structure is slanted
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[57, 94, 97–100] but in nonconserved systems like the SH
model it is aligned in the vertical [95, 101–103]. On non-
periodic domains the boundary conditions may substan-
tially modify this behavior [104–106].
Our main aim in this paper is to establish an overview
of the rather involved overall bifurcation structure of
the aPFC model suggested in [38] that may serve as a
road map for future studies of more realistic systems.
The model involves a simple coupling of concentration
and polarization and excludes spontaneous polarization.
These limitations are responsible for the presence of a
generalized reflection symmetry in the model that is in
turn responsible for the presence of the above-mentioned
drift bifurcations that govern much of the behavior re-
ported here. The aPFC model studied here has been
employed thus far to investigate the linear stability of
the liquid state with respect to the development of resting
and traveling crystalline patterns and in direct numerical
simulations of the resulting states in different geometries
[38, 39, 81, 107], although a detailed bifurcation study
of the system in 1D was provided in [108]. The present
work extends the latter study to 2D, focusing on the on-
set of motion of 2D localized states and on their destruc-
tion with increasing activity. We also explore whether
traveling localized states exhibit generic slanted snaking
– a characteristic property of resting localized states in
pattern-forming systems with a conserved quantity.
The paper is organized as follows. In Sec. II we present
the model equations, describe some of their elementary
properties and outline the numerical approaches used to
solve them. In Sec. III we study properties of spatially lo-
calized structures described by the model in both passive
and actives cases, focusing on the transition to drift in
the latter case. We also construct regime diagrams sum-
marizing the parameter regions where different states are
present. Section IV focuses on related results for spatially
extended states and the paper concludes with a brief dis-
cussion in Sec. V outlining future work.

II. THE MODEL: GOVERNING EQUATIONS

The local state variables of the aPFC model as intro-
duced in Ref. [38] are the scalar order parameter field
ψ(r, t) (referred to in the following as a “density”) and
the vector order parameter field P(r, t) (referred to in
the following as a “polarization”) that describes the lo-
cal ordering and direction of the active drive. Here
r ∈ Ω ⊂ Rn, where Ω denotes the domain. The field
ψ(r, t) is conserved, i.e.,

∫
Ω

drψ = 0 is constant in time,

and specifies the modulation about a mean density ψ̄ that
itself encodes the deviation from the critical point [53].
The field P(r, t) is in general nonconserved.
The uncoupled dynamics of ψ(r, t) and P(r, t) correspond
to a purely conserved and a mixed non-conserved and
conserved gradient dynamics on an underlying free en-
ergy functional F [ψ,P], respectively. The functional con-
tains no terms mixing the two fields and the coupling is

purely nonvariational, i.e., no part of it can be written
as gradient dynamics. The coupling maintains the con-
served character of the ψ-dynamics, i.e., the evolution of
ψ follows a continuity equation ∂tψ = −∇ · j, where j is
a flux. The nondimensional evolution equations are [38]

∂tψ = ∇2 δF
δψ
− v0∇ ·P, (1)

∂tP = ∇2 δF
δP
−Dr

δF
δP
− v0∇ψ, (2)

where v0 is the coupling strength, also called an activ-
ity parameter or strength of self-propulsion. Physically
speaking, P is subject to translational and rotational dif-
fusion with Dr being the rotational diffusion coefficient.
The functional F [ψ,P] is the sum of the standard phase-
field-crystal functional FPFC[ψ] [53, 54, 109] and an ori-
entational part FP[P],

F = FPFC + FP, (3)

with

FPFC[ψ] =

∫
dr

{
1

2
ψ
[
ε+

(
1 +∇2

)2]
ψ +

1

4
(ψ + ψ̄)4

}
(4)

and

FP[P] =

∫
dr

(
1

2
C1P

2 +
1

4
C4P

4

)
. (5)

The functional (3) encodes the phase transition between
the liquid and crystal states [53, 94]. It contains a neg-
ative interfacial energy density ( ∼ |∇ψ|2) that favors
the creation of interfaces, a bulk energy density and a
stabilizing stiffness term (∼ (∆ψ)2) – this can be seen
by partial integration. The parameter ε encodes tem-
perature such that negative values of ε correspond to
an undercooling of the liquid phase and result in crys-
talline (periodic) states for suitable mean densities ψ̄,
whereas positive values of ε result in a liquid (homoge-
neous) phase. The functional (5) with C1 < 0 and C2 > 0
allows for spontaneous polarization (pitchfork bifurcation
at C1 = 0). However, in our work we avoid spontaneous
polarization and use C1 > 0 with C2 = 0 as also done in
most of the analyses of Refs. [38, 39, 107]. With C1 > 0
diffusion tends to reduce polarization.
Computing the variational derivatives of the energies (4)
and (5) and introducing the result in the governing equa-
tions (1)-(2) leads to the dynamical equations

∂tψ = ∇2
{[
ε+

(
1 +∇2

)2]
ψ +

(
ψ̄ + ψ

)3}− v0∇·P,
(6)

∂tP = C1∇2P−DrC1P− v0∇ψ. (7)

By construction, Eq. (6) preserves
∫

Ω
drψ ≡ 0 while

the assumption C2 = 0 implies that Eq. (7) preserves∫
Ω

drP ≡ 0. Moreover, the equations are nonvariational
whenever v0 6= 0 and are invariant under the reflection

κ : (r, ψ,P)→ (−r, ψ,−P). (8)



4

This symmetry permits the presence of steady, nondrift-
ing solutions that are not left-right symmetric, provided
they are κ-symmetric. To see this, suppose we seek a
solution that is stationary in a frame moving with speed
c in the x-direction, i.e., c = cx̂. In the moving frame we
have

0 =∇2
{[
ε+

(
1 +∇2

)2]
ψ +

(
ψ̄ + ψ

)3}
−v0∇ ·P + c · ∇ψ, (9)

0 =C1∇2P−DrC1P− v0∇ψ + (c · ∇)P. (10)

Suppose now that the solution (ψ,P) is κ-symmetric with
respect to x→ −x. Applying κ to (9)-(10) we obtain

0 =∇2
{[
ε+

(
1 +∇2

)2]
ψ +

(
ψ̄ + ψ

)3}
−v0∇ ·P− c · ∇ψ, (11)

0 =C1∇2P−DrC1P− v0∇ψ − (c · ∇)P. (12)

Together these equations imply that c ≡ 0 and hence
that a κ-symmetric solution is necessarily at rest. In the
following we refer to such solutions as resting solutions.
Note that κ symmetry is a robust condition for a resting
state. However, Eqs. (6)–(7) also admit robust resting
states that are not κ-symmetric (see below). Such states
are present here because of the special structure of the
equations and would not be present in generic models
except at isolated parameter values. Each of these states
may in turn undergo transitions to a drifting state as
parameters are varied, and in the remainder of this paper
we focus on the properties of both resting and traveling
states in 1D and 2D with a special emphasis on the onset
of motion that arises from spontaneous breaking of the κ
symmetry.
Resting and traveling solutions of the aPFC model (6)–
(7) in 1D were studied in detail in Refs. [108, 110]. How-
ever, in nature, collective motion often occurs effectively
in 2D. Tissue cells, bacteria and amoebae crawl on sub-
strates while ungulates like gnu or sheep display herding
and organize in 2D swarms. In the context of artificial
active matter, e.g., colloidal particles swimming on the
surface of a liquid, the system may form 2D crystals [12].
For this reason, we investigate here how 2D active crys-
tals described by the aPFC model evolve from a localized
state (LS) consisting of a single peak into spatially ex-
tended states (crystals) under the influence of activity.
As in [108], we focus on the mean density ψ̄ and the
activity parameter v0 as the main control parameters.
The activity parameter v0 must, of course, be nonzero
for the presence of traveling structures but its specific
value will turn out to have a major influence not only
on the transition from resting to traveling states but also
on the structure of 2D crystals and associated pattern
selection. We mention that a parallel study based on di-
rect numerical simulations of collective behavior in a 2D
vacancy-aPFC model is reported in [111, 112]. In this
model the additional vacancy term [113, 114] breaks the
symmetry between “bumps” and “holes” and so plays a
similar role to ψ̄ in our approach.

y

Neumann

0

Ly/2

ψ

Neumann

pe
ri

od
ic

Px

Dirichlet

pe
ri

od
ic

Py

0 Lx

x

−Ly/2
0 Lx

x

0 Lx

x

FIG. 1. Sketch of the numerical setup: Two-dimensional
structures that are reflection-symmetric with respect to the
x-axis are computed on a reduced domain [0, Lx] × [0, Ly/2]
as indicated by the colored area. The density field ψ and the
x-component Px of the polarization satisfy Neumann bound-
ary conditions at y = 0 while Dirichlet boundary conditions
apply to the y-component Py of the polarization: Py = 0 at
y = 0. All fields are periodic in the x-direction, i.e., only
motion in the x-direction is allowed. For visualization, the
entire domain Ωexp = [0, Lx] × [−Ly/2, Ly/2], indicated by
the colored and gray-scale regions, is used.

A. Numerical continuation in 2D

We employ numerical parameter continuation [58, 115,
116] to determine steady (c = 0) and stationary (c > 0)
periodic and localized solutions of Eqs. (9) and (10).
We use the MATLAB package PDE2PATH [117] which
allows us to follow branches of solutions in parameter
space, detect bifurcations, switch branches and in turn
follow the bifurcating branches. A phase condition that
breaks translational invariance and a constraint that en-
forces the mean density ψ̄ are included as integral condi-
tions. This implies that in each continuation run beside
the main control parameter one has two auxiliary pa-
rameters that have to be adapted. The mean density ψ̄
and the activity v0 are used as the main control param-
eters. The corresponding velocity c and the Lagrange
multiplier for the density constraint are auxiliary param-
eters obtained by solving a nonlinear eigenvalue problem
in the rest frame of the traveling state. Owing to the
linearity of the polarization equation all solutions satisfy
in addition the condition

∫
Ω

drP ≡ 0.

Since 2D computations are much more expensive and
time-consuming as compared to 1D problems we make
use of the symmetries of the fields ψ and P = (Px, Py)T to
reduce the computational effort. Unless otherwise stated
in the caption of the figures that follow, all computations
are carried out on the half-domain as explained in Fig. 1.
Here the colored area Ω = [0, Lx]× [0, Ly/2] indicates the
part of the domain on which the actual computation is
performed. The entire solution profile is then obtained
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by exploiting the following symmetries:

ψ(x, y) =ψ(x,−y), (13)

Px(x, y) =Px(x,−y), Py(x, y) = −Py(x,−y),

where y = 0 corresponds to the horizontal line separating
the colored and gray areas. The expanded area used for
visualization and classification of the solutions is thus
Ωexp = [0, Lx]× [−Ly/2, Ly/2] with volume or area V =
Lx Ly. From the linear stability analysis of the uniform
state, we know that at onset only the unstable mode
kc = 1⇔ Lc = 2π grows.
Next, we define the boundary conditions (BCs) imposed
on Ω = [0, Lx] × [0, Ly/2]. In order to pin the solutions
such that the applied symmetries are preserved, we use
Neumann BCs in the y-direction for ψ and Px. Accord-
ingly, Py is kept zero at y = 0 and y = Ly/2, i.e., Dirichlet
BCs are applied. The combined BCs in the y-direction
read

∂yψ(x, y = 0, Ly/2) =0, (14)

∂yPx(x, y = 0, Ly/2) =0, Py(x, y = 0, Ly/2) = 0.

In the x-direction, periodic BCs are imposed on all three
fields.
Owing to the chosen BCs, the y-component cy of the
drift velocity c always remains zero. This implies that
crystalline structures have to be oriented such that the
desired drift, e.g., as observed in time simulations or ex-
periments, is in the x-direction, i.e., cx 6= 0.
Besides the rectangular geometry, we also make use
of a hexagonal domain when discussing the passive
PFC model and the phenomenon of slanted snaking of
branches of steady LS. There, the numerical continua-
tion is done on a triangular domain, namely, a right-
angled triangle with a hypotenuse of the side length of the
hexagon and Neumann BCs for ψ. In the passive case,
Px and Py remain zero. The triangle defined by the ver-

tices at (x, y) = 2π(0, 0), 2π(0, 3) and 2π(1, 3/
√

3) is one
twelfth of the entire domain as pictured in Fig. 3. Note
that the equilateral triangles found in the hexagon have
a height Lc = 2π and a side length La = 2√

3
Lc = 4π√

3
.

All the bifurcation diagrams that follow show the L2-
norm of the density profile that we use as the main solu-
tion measure. In 2D, this norm is defined by

||ψ||2 =

√
1

V

∫
V

drψ(r)2 (15)

with area V and r = (x, y)T ∈ V ⊂ R2. In addition to
numerical continuation, we also perform numerical time
simulations employing a pseudo-spectral method with
semi-implicit Euler time-stepping.

III. LOCALIZED STATES

As known from the passive PFC model [57] and from
results in 1D [108], we can identify a transition region

FIG. 2. (left) Bifurcation diagram showing branches of ho-
mogeneous, periodic and localized steady states of the passive
PFC model (v0 = 0) on a rectangular domain. Shown is the
L2-norm ||ψ||2 as a function of the mean density ψ̄. Stable and
unstable states are shown as solid and dotted lines, respec-
tively. The liquid phase (gray horizontal line) is destabilized
at ψ̄ ≈ −0.55 and an unstable branch of periodic hexagonal
patterns (black line, cf. location IV) emerges subcritically. In
a secondary bifurcation, a branch of LS (blue line) is created.
After various folds responsible for repeated gain and loss of
stability, the LS branch terminates on the same branch of
periodic hexagons from which it bifurcated. (right) Selected
solution profiles ψ(r) at locations labeled I to IV in the left
panel. The domain size is 2La×4Lc with La = 2Lc/

√
3 being

the side length of a hexagon/triangle and Lc = 2π the critical
wavelength/height of the triangles. The remaining parameter
is ε = −0.98.

where patches of the liquid and crystalline states coexist.
In the vicinity of the linear instability threshold of the
liquid state, a broad variety of spatially localized states
(LS or crystallites) is therefore expected.
We use numerical continuation of Eqs. (9) and (10) to
explore the bifurcation structure of the resulting active
crystallites in 2D. How do (active) crystallites grow in
the plane as a function of the mean density ψ̄? What
is the influence of the activity parameter v0? Are fully
2D traveling states possible? Do traveling LS exhibit the
same slanted snaking as the resting LS?

A. Passive PFC model: slanted snaking

We start by constructing bifurcation diagrams as a func-
tion of the mean density ψ̄ for the passive PFC model,
i.e., by setting v0 = 0, resulting in uncoupled Eqs. (9)
and (10), with P ≡ 0 for all time.
Figures 2 and 3 depict typical slanted snaking of the LS
branches along their path to a spatially extended crys-
tal. In both bifurcation diagrams, the continuation in ψ̄
starts from the uniform state ψ = 0 referred to as the
liquid state (gray branch). At a critical density close
to ψ̄ = −0.55, this state loses stability and a branch of
periodic solutions of hexagonal order bifurcates (black
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FIG. 3. (left) Bifurcation diagram showing branches of ho-
mogeneous (gray line), periodic (black line), target-like (red
line) and localized (blue line) steady states of the passive PFC
model (v0 = 0) on a hexagonal domain. Shown is the norm
||ψ||2 as a function of the mean density ψ̄. (right) Selected
solution profiles ψ(r) at locations labeled I to IV in the left
panel. The hexagonal domain has side length 3La. Remaining
line styles and parameters are as in Fig. 2.

FIG. 4. (left) Bifurcation diagram showing suppressed
snaking at lower values of ε, here ε = −1.5, in the passive
PFC model (v0 = 0). In contrast to ε = −0.98 (Figs. 2
and 3) the crystalline patches do not grow by adding layers
of density peaks. Instead a single peak grows into an elon-
gated structure and subsequently forms a dumbbell-shaped
two-peak state. Asymmetric states are omitted. The domain
size is 2La × 2Lc. Remaining line styles and parameters are
as in Fig. 2.

branch) in a transcritical bifurcation. We did not fol-
low the supercritical part of the emerging branch that
corresponds to so-called cold or down-hexagons.
As expected, a secondary bifurcation is detected on the
branch of periodic states close to the primary bifurca-
tion. On the rectangular domain used in Fig. 2, the
bifurcating branch (blue line) corresponds to spatially
localized hexagonal crystallites. The branch undergoes
a series of folds corresponding to the addition of a pair
of layers of density peaks, symmetrically with respect to

y = 0 (Fig. 2); this is not the case in larger domains,
however [94]. At each fold, the stability of the branch
changes. Solid lines correspond to stable solutions and
dotted lines indicate unstable solutions. Eventually, the
LS branch terminates on the branch of the spatially ex-
tended hexagons and the entire domain is filled with the
crystalline state. Thereafter, the crystalline state is sta-
ble. Owing to the conservation of ψ, the loci of the
left and right saddle-node bifurcations align along lines
slanted towards higher ψ̄. Since the model is passive with
v0 = 0 and P ≡ 0, no traveling states can exist and all
solutions are steady.

Figure 3 presents a similar bifurcation diagram obtained
from continuation on a hexagonal domain. In contrast
to the rectangle used in Fig. 2, a rotationally symmetric
solution (red line, location I) emerges at the first sec-
ondary bifurcation from the hexagonal state. This type
of LS has been termed a ring solution. Its branch has
been tracked until the state starts to interact with the
Neumann boundaries of the triangular computation do-
main and its symmetry is destroyed. Apparently, the
hexagonal geometry favors the emergence of ring-like so-
lutions as it is closer to rotational symmetry than the
previously used rectangle.

The snaking branch of LS (blue line) bifurcates in a ter-
tiary bifurcation from the branch of ring solutions. This
bifurcation is actually imperfect due to numerical grid
effects. However, in Fig. 3, this cannot be seen by eye.
The crystalline patch of hexagonal order gradually grows
until the hexagonal domain is completely filled and the
branch terminates on the branch of the periodic crystals
(black line). As the hexagonal domain is of a larger area
than the rectangular one used in Fig. 2, more density
peaks fit in and the LS snaking branch consists of more
back-and-forth oscillations. Note, in particular, that in
both cases the LS, be they hexagonal patches or rings, are
present below the fold of the spatially extended hexago-
nal state, i.e., outside of the region of bistability between
the trivial state and the hexagonal crystal. This obser-
vation confirms that the coexistence region is wider than
the region of bistability – a typical feature of systems
with a conserved quantity.

Figures 2 and 3 use ε = −0.98 as employed in earlier
studies [38, 39, 81]. However, at yet smaller values of the
temperature-like parameter ε, e.g., ε = −1.5, the local-
ized density peak does not grow into a patch of hexagonal
order but rather elongates, forming first an oval structure
and ultimately a dumbbell state (Fig. 4). On rectangu-
lar domains this elongation is a natural consequence of
the domain shape and represents a continuous transition.
However, this elongated state is not a consequence of
boundaries: the continuation was carried out on various
domains with the same result of an elongating density
peak. In particular, and in contrast to all other solution
profiles shown here, ψ(r) in Fig. 4 is not computed on half
of the depicted domain and mirrored, and so states (I)-
(III) depict the actual computed solution profiles. Here,
the density peak is placed in the middle of the computa-
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FIG. 5. (left) Bifurcation diagram of resting and traveling
one-peak LS at mean density ψ̄ = −0.9 showing the L2-norm
of ψ as a function of the activity v0. Resting and traveling
states are indicated by blue and orange lines, respectively.
Branches of stable and unstable states are shown as solid and
dotted lines. At vc ≈ 0.15, a stable resting LS undergoes a
drift pitchfork bifurcation and a branch of traveling localized
states (TLS) emerges. The region of existence of the TLS
is limited by a fold at v0 ≈ 0.24. The panels on the right
show (top) selected solution profile ψ(r) at v0 = 0.1 (only
part of the domain is shown); (center) the drift velocity c
vs. v0. Above vc ≈ 0.15, the velocity increases as

√
v0 − vc.

Deviations from a sharp onset of motion are due to lattice
effects. (bottom) The difference ||ψ||22 − ||P||22 crosses zero at
the drift pitchfork bifurcation. Note that, in the left panel,
||ψ||2 times the area V is plotted for clarity as for 2D domains
the norm of LS tends to be very small. The domain size is
V = 60× 30. Remaining parameters are ε = −1.5, C1 = 0.1,
C2 = 0 and Dr = 0.5.

tional domain in order to avoid a possible influence of the
boundaries. Based on these computations we conclude
that the observed states describe gradual spot fission as
ψ̄ varies, i.e., fission of a spot into a pair of adjacent
spots (see, e.g., [118]). We have found no evidence for
the coexistence of this state with any spatially extended
state at these parameter values. Note that dumbbell lo-
calized states were previously observed in the classical
nonconserved SH equation in both 2D and 3D [119].

Next, we move on to the active PFC model and inves-
tigate the influence of the activity parameter v0. By
continuation in ψ̄ at v0 = 0, we produce various LSs
whose response to activity is then studied. As explained
in Sec. II A, we use a rectangular domain and symme-
tries of ψ and P in order to perform continuation on a
reduced-size domain. In Sec. III D, we return to slanted
snaking and study to what extent snaking is modified by
activity. In particular, we study the bifurcation structure
of traveling states as a function of ψ̄.
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FIG. 6. Density ψ(r) and polarization P(r) profile shown as
a color map overlaid with white arrows for (a) a resting (v0 =
0.13) and (b) a traveling (v0 = 0.22 > vc) one-peak LS. Note
that in (a) the +1 defect of the polarization field coincides
with the density maximum (and the net polarization is zero),
while in (b) they are shifted with respect to one another as
the front-back symmetry is broken. The shift corresponds to
a net polarization, i.e., net propulsion to the left, with c ≈
−0.19. Only a part of the computational domain is shown.
The remaining parameters are as in Fig. 5.

FIG. 7. (left) Bifurcation diagram of a resting two-peak LS
(cf. Fig. 4) at mean density ψ̄ = −0.9 showing the L2-norm
of ψ as a function of the activity v0. (right) Selected density
profiles ψ(r) at v0 = 0.03 (top) on the upper part of the
branch of left-right symmetric states (blue line), v0 = 0.09
(middle) on the branch of left-right asymmetric states (black
line) and v0 = 0.04 (bottom) on the lower part of the branch
of the left-right symmetric states. In contrast to the one-peak
LS, only resting two-peak LS exist at this mean density as the
saddle-node bifurcation of the symmetric states is located at
v0 < vc ≈ 0.15. The remaining line styles, parameters and
the domain size are as in Fig. 5.

B. Active PFC model: onset of motion

We now systematically explore how LS in 2D respond to
increasing activity by employing the activity parameter
v0 as the main control parameter. From results obtained
for LS in 1D [108], we expect transitions from resting
to traveling LS (RLS and TLS, respectively) associated
with symmetry breaking between the two fields ψ and P,
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as centers of the density peaks shift with respect to +1
defects in P at a critical activity vc. For resting crystals,
P points down the gradient of ψ, leading to a defect
at the center of the density peak, similar to the vector
field of a monopole. These defects are termed +1 defects
[cf. Fig. 6(a)].

Figure 5 shows a typical bifurcation diagram as a func-
tion of v0. A stable one-peak LS at rest (represented by a
solid blue line) undergoes a drift-instability at vc ≈ 0.15.
The traveling one-peak LS (orange branch) are stable up
to v0 ≈ 0.24 where the branch folds back to smaller v0.
Unstable branches are shown as dotted lines. The drift
velocity c of the TLS increases as

√
v0 − vc as previously

observed. Due to larger grid effects in 2D (we use an
adaptive grid), the onset of motion is not perfectly sharp
in c (cf. Fig. 5). Since the criterion for the onset of mo-
tion derived in [108] applies in two spatial dimensions, we
track the quantity ||ψ||22− ||P||22 to reveal a zero crossing
at vc, and use this procedure to identify drift bifurcations.

The onset of motion is associated with the appearance of
symmetry breaking between ψ and the vector field P for
sufficiently large v0. Centers of the density peaks shift
with respect to the +1 defects in P as depicted in Fig. 6.
For resting states, averaging P over the area of a single
density peak yields zero. Above vc, a net orientation
of P emerges and traveling crystals or crystallites come
into existence. In Fig. 6(b), the net polarization points
to the left leading to a negative drift velocity c. The
direction of the shift and hence the resulting sign of the
velocity are arbitrary: both directions correspond to the
same branch of traveling solutions. This agrees well with
similar observations for the onset of motion for extended
patterns [38, 81]. Similar results hold for an aPFC model
with an additional vacancy term [111].

If ψ̄ is chosen too low, i.e., too close to the solid-
liquid transition, activity can melt crystallites before
motion sets in. This is what happens to two-peak
LS at rest at ψ̄ = −0.9 as v0 increases and the two-
peak LS passes through a fold before encountering a
parity-breaking bifurcation (Fig. 7). Here the branch
of two-peak LS does not reach far enough in v0 to ful-
fill the criterion for the onset of motion and activity
melts the structure before the onset of drift: the po-
sition of the fold is at v0 ≈ 0.14 < vc. Close to
the fold, there is a subcritical pitchfork bifurcation gen-
erating steady but asymmetric solutions [dotted black
branch, cf. Fig. 7 (right central panel)] that bifurcate
off the blue branch corresponding to solutions with left-
right symmetry in ψ(r) (right upper and lower panels).
Note that the dotted black line represents two differ-
ent asymmetric solutions related by reflection with re-
spect to a suitable origin: [ψ(x, y), Px(x, y), Py(x, y)]↔
[ψ(−x, y), −Px(−x, y), Py(−x, y)]. At ψ̄ = −0.9 these
two-peak LS coexist with the one-peak LS from Fig. 5
but all two-peak states are unstable.

For ψ̄ = −0.8, however, the fold of the two-peak LS
shifts beyond the threshold for the onset of motion and
the two-peak LS also undergo a drift bifurcation. Ow-

FIG. 8. Summary bifurcation diagram showing ||ψ||2 vs v0 for
resting and traveling dumbbell-shaped two-peak LS at mean
density ψ̄ = −0.8. Blue and black lines indicate branches
of resting symmetric and asymmetric LS, respectively. At
v0 ≈ 0.15, states traveling in different directions (orange
branches) emerge in various drift bifurcations. See Figs. 9 and
11 for details and selected solution profiles. Thin gray lines
correspond to branches of resting and traveling one-peak LS.
Remaining line styles, parameters and the domain size are as
in Fig. 5.

ing to the additional spatial degree of freedom in 2D a
reflection-symmetric structure at rest may undergo mo-
tion in two orthogonal directions, longitudinal and trans-
verse, resulting in a drastic change in the overall bifurca-
tion picture. Figure 8 summarizes the intricate bifurca-
tion structure of two-peak crystallites at this value of ψ̄.
This complicated behavior is disassembled into Figs. 9 to
11 shedding additional light on the different branches of
TLS that emerge.

Figure 9 depicts branches of TLS moving longitudinally,
i.e., parallel to the long axis of the elongated LS while
Fig. 11 shows the branches of TLS moving transversely,
i.e., parallel to the short axis of the LS. Interestingly, the
latter branch extends to higher values of v0.

Figure 10 magnifies the upper part of the bifurcation
diagram presented in Fig. 8 completing the branch of
asymmetric LS. Interestingly, the branch exhibits tilted
snaking like that found in other pattern-forming systems
with a conservation law [101]. However, the behavior
does not correspond to the usual snakes-and-ladder struc-
ture of snaking branches of symmetric LS connected by
branches of asymmetric LS. Instead, the asymmetric LS
snake in a slightly slanted, spiralling fashion. With each
loop, the asymmetric LS grows in the longitudinal di-
rection by creating one new peak (see, e.g., the density
profiles in panels I-VI of Fig. 10). All the asymmetric
states are unstable.

The resting elongated two-peak LS are connected to the
rotationally symmetric one-peak solution as indicated in
Fig. 11, state III. This point is also a fold near which
the stable resting one-peak LS (solid gray line) start to
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⇒

⇐

FIG. 9. (top left) Shown is a subset of the bifurcation curves
from Fig. 8, namely, the traveling dumbbell-shaped two-peak
LS that move parallel to their long axis, the one-peak states,
and the resting two-peak states. The right panels show se-
lected density profiles ψ(r) at points labeled I to IV in the
main panel. The resting two-peak LS are destabilized with
respect to parallel motion in drift-pitchfork bifurcations at
vc ≈ 0.16, marked by black circles. On the orange branches of
traveling LS, state III [state II] travels with the larger [smaller]
density peak at the front. The asymmetric steady solution
is destabilized in a drift-transcritical bifurcation marked by
the circle on the black branch. Here, two branches of TLS
with opposite drift velocities emerge. The lower left panels
show the drift velocity c as a function of v0 and the measure
||ψ||22−||P||22 that crosses zero at the respective onsets of mo-
tion. The remaining line styles, parameters and the domain
size are as in Fig. 8.

deform into a two-peak LS. Because of the influence of
the boundaries this is a continuous transition. In fact,
all (reflection-symmetric) resting LS in Fig. 8 correspond
to a single branch, similar to the result for the snaking
branches as a function of ψ̄. The branches of one-peak
LS (moving and resting) are shown in light gray with
solid (dotted) lines for (un)stable states. Unfortunately,
at this value all two-peak LS are still unstable, just as
for ψ̄ = −0.9 (Fig. 7).

At vc ≈ 0.15, various TLS emerge at drift bifurcations
marked in Figs. 9 and 11 by black circles. TLS moving
parallel to their long axis (Fig. 9) do not reach activity
values as high as the TLS moving transversely (Fig. 11).
Figure 9 shows that two distinct branches of TLS origi-
nate in a drift-transcritical bifurcation on the branch of
resting asymmetric states (black). Owing to the lack of
left-right symmetry of the density profile, each direction

FIG. 10. Shown is a magnification of Fig. 9 completing the
branch of steady asymmetric LS (black dashed line). Panels I
to VI present selected density profiles ψ(r) at points labeled I
to VI in the main panel. The remaining line styles, parameters
and the domain size are as in Fig. 9.

⇐

FIG. 11. (top left) Shown is a subset of bifurcation curves
from Fig. 8, namely, the traveling dumbbell-shaped two-peak
LS that move perpendicular to their long axis, the one-peak
states, and the resting two-peak states. The remaining panels,
line styles, symbols, parameters and the domain size are as in
Fig. 9.
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of the drift results in a separate branch. In particular, the
TLS on the upper branch move to the left with the larger
density peak at their tip (cf. Fig. 9, state III) while the
lower branch that emerges (bending towards lower norm)
corresponds to TLS with the smaller density peak at the
tip (state II). Both branches of TLS terminate on the
branch of resting left-right symmetric LS (blue) in re-
spective drift-pitchfork bifurcations (marked by circles).

We mention that on the scale of Fig. 9 the bifurca-
tion occurring on the branch of asymmetric RLS does
not exhibit the typical shape of a transcritical bifurca-
tion as both branches of TLS seem to bifurcate towards
larger v0. Our identification of this bifurcation as a drift-
transcritical bifurcation is based on similar behavior ob-
served in 1D [108] where more precise computations are
possible, and for this reason we believe that one of two
branches undergoes a fold very close to the transcritical
bifurcation. Grid effects make it very hard to remain on
branches of RLS and lead to rather blurred onsets of the
drift velocity c vs v0. However, with the help of the onset
criterion derived in Ref. [108], we are able to determine
the exact location of all drift bifurcations (lower panels
of Fig. 9).

Note that the bifurcation diagrams presented in Figs. 8
and 9 are incomplete and focus only on the transitions to
TLS. In particular, further evolution of the RLS branch
for higher values of the L2 norm is omitted here and will
be the subject of further research.

Figure 11 explores the branches of traveling two-peak LS
that travel transversely. Here, the picture is simpler. As
for the traveling one-peak LS, a branch of TLS stretches
between a pair of drift bifurcations highlighted by black
circles. Panels on the right show selected density profiles.

Overall, the bifurcation structure of traveling two-peak
LS is much more intricate than that of the single-peak
LS. Moreover, increasing ψ̄ from −0.9 to −0.8 drastically
changes the bifurcation structure. Figure 12 illustrates
how the drift bifurcations and TLS come into existence
by showing a series of four bifurcation diagrams for in-
creasing values of mean density ψ̄. Between ψ̄ = −0.67
and −0.65 a pair of drift bifurcations is created. Their
origin coincides with the fold of the branch of resting
states (blue lines) as shown by a two-parameter contin-
uation. For increasing ψ̄, the region of existence of TLS
grows as the fold of the TLS branch moves to higher
values of v0 while the threshold activity for the onset of
migration, vc, stays practically constant. These results
are consistent with the results of extensive fold continua-
tion in 1D. Note that for Fig. 12 we have used ε = −0.98
in contrast to previous figures with ε = −1.5.

With the various TLS obtained by continuation in v0

in hand, we are now able to construct a morphological
phase diagram (next section). This is followed by an
examination of the bifurcation diagrams for fixed v0 as
the mean density ψ̄ varies and a study of the phenomenon
of slanted homoclinic snaking for active crystallites at
v0 > 0 in Sec. III D.

FIG. 12. A sequence of bifurcation diagrams ||ψ||2 vs v0 show-
ing how traveling one-peak LS (orange line) come into exis-
tence with increasing mean density ψ̄ (from top left to bottom
right) at ε = −0.98 (corresponding to the value used in [38]).
Two drift-pitchfork bifurcations appear simultaneously at the
saddle-node bifurcation of the branch of resting LS (blue line).
Increasing ψ̄ further expands the range of existence of trav-
eling LS toward larger v0 and the drift-pitchfork bifurcations
separate. The onset of motion is always at vc ≈ 0.15. Re-
maining line styles, parameters and the domain size are as in
Fig. 5.

C. Morphological phase diagram

Before discussing in detail the bifurcation structure as
a function of ψ̄ and changing the temperature-like pa-
rameter ε to allow for snaking, we conclude the discus-
sion of active crystallites at ε = −1.5 by presenting a
large-scale morphological phase diagram in the parame-
ter plane spanned by v0 and ψ̄. The phase diagram is
determined numerically by counting peaks of ψ(r, t) af-
ter a sufficiently long transient. To favor the creation
of LS, six density bumps are superposed at random po-
sitions on the homogeneous phase marginally perturbed
by white noise. For the polarization P, we choose a ran-
domly perturbed trivial state P0 = 0 as initial condition.
The domain with periodic boundaries has a size of
8Lc × 7La with La = 4π/

√
3 being the side length of

a hexagon/triangle and Lc = 2π the critical wavelength
at the onset of crystallization. As already mentioned, Lc

is the height of triangles found in the hexagonal pattern.
This domain size results in a maximum number of 56
density peaks in a periodic array [cf. Fig. 14(I)].
In Fig. 13 periodic states with around 56 density peaks
are displayed in green, whereas LS exist within the
blueish area. The white area without any density peaks
corresponds to the liquid state ψ(r) = 0. The white lines
indicate the stability limits obtained from linear stability
of the liquid phase, with the vertical white line indicat-
ing the onset of motion at vc (vc ≈ 0.15, independently
of ψ̄). The limits of the existence of LS are determined
by a two-parameter continuation of their fold. The black
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FIG. 13. Morphological phase diagram for the aPFC model in
2D in the plane spanned by the activity v0 and the mean den-
sity ψ̄ as obtained through systematic time simulations. The
region of stable liquid state is white, while crystalline struc-
tures of various size exist in the colored areas. The color bar
indicates the number of density peaks formed in the domain
of size 8Lc × 7La with La = 2Lc/

√
3 and Lc = 2π. Regions

where resting and traveling LS exist are marked by shades
of blue while domain-filling periodic patterns are shown as
green (56 peaks). The various lines in the diagram, the initial
conditions for the simulations, and the peak counting proce-
dure are described in the text. The remaining parameters are
ε = −1.5, C1 = 0.1, C2 = 0 and Dr = 0.5 as used throughout
Sec. III B. The parameter increments between simulations are
∆v0 = 0.035 and ∆ψ̄ = 0.0125. See Fig. 14 for a magnifica-
tion of the region close to the onset of motion and selected
density profiles.

lines show the position of folds of resting one-peak LS
(solid black) and of traveling one-peak LS (dotted black).
The position of the saddle-node bifurcations of 2D TLS
starts to shift backwards, towards smaller values of v0 at
v0 ≈ 0.7. This is a major difference from the one-peak
TLS in one spatial dimension which exist to arbitrarily
high v0.

The time simulations indicate large areas of existence
of various active LS (blueish area). The extent of the
LS region ranges from single density peaks (light blue)
to patches of LS almost filling the entire domain (dark
blue). Selected solution profiles ψ(r) can be found in
Fig. 14. The phase diagram also illustrates how hexago-
nal periodic states change their shape towards a stripe
pattern resulting in a lower number of density peaks
[Fig. 14(I)]. For such patterns each elongated ridge is
only counted as a single density peak. Close to the limit
of linear stability of the liquid state, large patches of lo-
calized crystalline order coexist with the uniform state
[Fig. 14(III)]. Resting LS (v0 < 0.15, left of the vertical
dotted line denoting the onset of motion) exist down to
low values of ψ̄ ≈ −1.05. Increasing activity melts most
of these LS (ψ̄ < −0.95) and the v0-range of their exis-
tence contracts as ψ̄ decreases. Higher ψ̄ favors traveling
LS (−0.95 . ψ̄ . −0.7, 0.15 . v0 . 0.7) and travel-
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FIG. 14. The large panel shows a magnification of the re-
gion close to the onset of motion in the morphological phase
diagram in Fig. 13. The parameter increments between sim-
ulations are ∆v0 = 0.02 and ∆ψ̄ = 0.025. The small panels
show selected density profiles ψ(r) at points labeled I to V in
the phase diagram after the time simulations have converged.
Arrows indicate direction of motion. Shown are (I) resting
hexagonal pattern close to the transition to stripes, (II) trav-
eling hexagonal pattern, (III) traveling cluster of hexagonal
order, (IV) resting LS, and (V) traveling LS.

ing crystals that fill the entire domain are present for
ψ̄ & −0.65, the linear stability threshold of the liquid
state, and v0 & 0.15, where the blue region terminates
giving way to green areas. We also see that traveling
periodic states exist to arbitrarily high activities and do
not melt, unlike most LS, in agreement with similar ob-
servation in 1D [108].

The morphological phase diagram in Figs. 13 and 14 may
be compared with similar phase diagrams obtained ex-
perimentally or via particle-based simulations of systems
that also show active and passive interactions, the latter
resulting in crystals at zero and low activity. The collec-
tive behavior of Quincke rollers investigated in Ref. [120]
provides an example. Figure 1 of this paper shows a
phase diagram that reveals similar transitions to those
found here: At low activity the authors find resting crys-
tallites that with increasing activity either “evaporate”
into a “gas” (at lower densities) similar to the transi-
tion from resting localized states to a uniform state for
ψ̄ . −0.95 in Fig. 14 or start to travel (at higher densi-
ties) similar to the transition from resting localized or
crystalline states to travelling states for ψ̄ & −0.95.
Moreover, below a certain density their traveling crys-
tals evaporate upon a further increase in activity similar
to our case for −0.7 . ψ̄ & −0.95 (cf. Fig. 13). At higher
density their traveling crystals become traveling bands, a
transition we do not see, possibly because of our smaller
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FIG. 15. Bifurcation diagram showing slanted snaking of rest-
ing and traveling LS at ε = −0.98. Shown is the norm ||ψ||2
as a function of the mean density ψ̄ with activity fixed at
the still relatively low value v0 = 0.151 > vc that allows for
the coexistence of resting and traveling states. Labels I to
IV mark the location of the stable traveling LS shown on
the right. The liquid phase (gray line) with norm zero is
destabilized at ψ̄ ≈ −0.53 and a branch of traveling periodic
patterns (dark red) emerges. Close to the first primary bifur-
cation, a branch of resting crystals (black) emerges in another
primary bifurcation. Resting and traveling LS (blue and or-
ange), respectively, bifurcate in secondary bifurcations from
these branches. Since v0 > vc, all resting solutions are unsta-
ble. The inset illustrates the small separation of the branches
in terms of their norm. The lower panel shows the drift ve-
locity c as a function of ψ̄. Since c < 0, all TLS move to the
left. The domain size is 2La × 4Lc while the remaining line
styles and parameters are as in Fig. 5.

system size.

D. Snaking of active crystallites

In this section, we explore in detail the bifurcation struc-
ture of both resting and traveling active crystallites as
a function of the mean density ψ̄. Having analyzed the
slanted snaking of passive LS (Sec. III A), we now wish to
examine the influence of the activity parameter v0 on the
snaking of 2D LS and the response of 2D TLS to varying
ψ̄.
The value ε = −1.5 of the effective temperature turns
out to be too low to support continuous snaking of both
passive and active LS (cf. Fig. 4). At these values of ε the
snaking branches most likely break up into disconnected
pieces. For this reason we increase the temperature to
ε = −0.98 as done for passive crystallites in Sec. III A.
In addition, this value is also employed in [38] where the
aPFC model was introduced. There, diffusion is set to

FIG. 16. Bifurcation diagram ||ψ||2 vs ψ̄ for traveling hexag-
onal patterns and traveling LS at the relatively high activity
v0 = 0.18 where no resting states exist. Labels I to IV denote
the locations of the stable traveling LS shown on the right.
The bottom right panel shows the drift velocity c as a func-
tion of ψ̄. All states travel to the left. Domain size, line styles
and the remaining parameters are as in Fig. 15.

C1 = 0.2 leading to vc ≈ 0.3. The high diffusion causes
many crystallites to melt before motion can set it. We
therefore stick to C1 = 0.1 as used in the previous sec-
tions, for which the threshold for the onset of migration
is vc ≈ 0.15.

Figure 15 depicts the bifurcation diagram at v0 = 0.151,
slightly above vc and allowing for TLS. The overall pic-
ture is similar to the slanted homoclinic snaking found for
passive LS. The branches of LS bifurcate from periodic
solutions that emerge in subcritical primary bifurcations
from the destabilized liquid state and extend well below
the folds of the periodic state. Besides the resting crystal
(Fig. 15, dotted black branch), there is a branch of trav-
eling spatially extended patterns (red). Both crystals are
of hexagonal order and their norms differ only slightly.
The inset in Fig. 15 enlarges the region close to the folds
of the periodic states, illustrating their small separation.

The resting and traveling LS branch off from the resting
and traveling periodic solutions in secondary bifurcations
at small amplitude. Since the value of the activity pa-
rameter v0 is above the threshold for migration, all RLS
(blue branch) are unstable as indicated by dotted lines.
The TLS exhibit the typical alternation of stable and un-
stable states familiar from slanted snaking of passive LS.
Like the branches of periodic solutions the resting and
traveling LS have very similar L2-norm.
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The lower panel of Fig. 15 shows the drift velocity c of the
respective solutions as a function of ψ̄. Evidently, RLS
(blue) and the resting crystal (black) have c = 0. The
velocity of the traveling crystal (red) rises slightly as the
crystal grows. In contrast to the main panel, here it is
easy to see how the TLS branch off from the traveling
periodic solution. All in all, the drift velocity c does not
depend strongly on ψ̄.

The same holds at v0 = 0.18 as shown in Fig. 16. The
bottom right panel reveals that c is almost independent of
the mean density ψ̄. Because v0 = 0.18 is beyond the po-
sitions of the folds of RLS, resting solutions are no longer
present. As also observed at smaller v0, the TLS (orange)
emerge in a secondary bifurcation from the branch of
traveling crystals (red). With increasing ψ̄, the TLS grow
by adding density peaks until the whole domain is filled
by the crystalline state and the TLS branch terminates
on the branch of traveling periodic states [cf. Fig 16(IV)].
In contrast to passive snaking, the growth of the TLS
does not occur by adding density peaks layer by layer.
The broken symmetry at v0 > vc seems to favor growth
via the addition of pairs of density peaks, maintaining
reflection symmetry with respect to y = 0 at all times, as
shown in panels (I) and (II). The different growth pat-
tern is reflected in the larger number of undulations of
the snaking branch as compared to the passive case in
Fig. 2.

Overall, we find that the mean density ψ̄ does not have
a strong influence on the drift velocity c of the travel-
ing states. In addition, there are no connections between
the branches of RLS (of hexagonal order) and TLS (also
of approximately hexagonal order) as ψ̄ varies. Hence,
changes in the mean density cannot directly induce drift
instability (although a suitable ψ̄ is necessary for drift
instabilities to occur when varying v0). And rather un-
expectedly (when taking the 1D results [108] as a guide),
the branch of TLS at ε = −0.98 exhibits slanted homo-
clinic snaking much as observed for RLS in the passive
system and in active ones at small v0. We do not expect
the spatial dimension to play a role here; more likely,
the presence of slanted snaking is solely a consequence of
choosing an effective temperature ε that is not too neg-
ative. We mention that slanted snaking associated with
traveling structures is present even in nonconserved sys-
tems [121], likely a consequence of the fact that the drift
speed is itself a nonlocal property.

IV. PERIODIC STATES

In two spatial dimensions, different periodic patterns can
be distinguished. Besides stripes that can be regarded
as a 2D extension of the periodic states determined in
1D [108], the aPFC model exhibits both hexagonal and
rhombic structures. In this section, we analyze the peri-
odic states that emerge in the 2D aPFC model and, in
particular, study their bifurcation structure.

(a) (b)

(c) (d)

=⇒

=⇒ =⇒

FIG. 17. Selected snapshots of periodic density patterns ψ(r)
at the fixed mean density ψ̄ = −0.4 as obtained for increasing
activity by time simulation. Panel (a) shows a resting hexag-
onal pattern at v0 = 0.25, (b) a traveling hexagonal pattern
at v0 = 0.3, (c) a traveling rhombic pattern at v0 = 0.8, and
(d) a traveling stripe pattern at v0 = 1.5. The respective
directions of motion are indicated by white arrows. The do-
main size is 6Lc × 5La while the remaining parameters are
ε = −0.98, C1 = 0.2, C2 = 0 as in Ref. [38].

A. Crystal structure and activity

The original passive PFC model exhibits crystalline
hexagonal patterns in certain ranges of the temperature
ε and mean density ψ̄. Changing the mean density can
lead to transitions to stripes [57]. These transitions can
also be induced by the activity v0. In the original paper
[38] introducing the aPFC model, numerical time simula-
tions show a transition from a resting hexagonal pattern
to traveling hexagons with increasing v0. A further in-
crease leads to a transition to traveling rhombic patterns
and, ultimately, to traveling stripes. Snapshots from time
simulations at certain values of v0 and the same set of
control parameters as in [38] are shown in Fig. 17 and
these reproduce previously made observations.
The domain is of size 6Lc× 5La with critical wavelength
Lc = 2π and side length La = 4π/

√
3 accounting for 30

density peaks in hexagonal order. At v0 = 0, resting
hexagons are oriented parallel to the y-axis and perfectly
match the aspect ratio of Lx and Ly. As v0 is increased
the wave vector and geometry of the pattern change. The
whole crystalline structure reacts by a rotation within the
periodic domain [cf. Fig. 17(a) and (b)] thereby adjusting
its position such that the dominant wave vectors fit into
the domain.
Rhombic [Fig. 17(c)] and stripe patterns [Fig. 17(d)] ori-
ent themselves parallel to the y-axis as Lx is a multiple of
Lc = 2π. Following the drift instability at vc ≈ 0.3, these
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FIG. 18. The main panel shows the bifurcation diagram ||ψ||2
vs v0 for hexagonal patterns oriented such that the onset of
motion is parallel to an edge. Resting hexagons (blue line)
are stable (solid line) until a drift-pitchfork bifurcation oc-
curs at vc ≈ 0.3 where a branch of stable traveling hexagonal
patterns (orange line) emerges. The corresponding drift ve-
locity c is shown in the lower left panel while the lower right
panel shows the measure ||ψ||22 − ||P||22 that crosses zero at
the drift bifurcation. On the right selected solution profiles
ψ(r) at the locations labeled I to IV in the bifurcation dia-
gram are shown. Profiles II-IV travel in the x-direction to the
right. The domain size is V = 3La × 4Lc and the remaining
parameters are as in Fig. 17.

patterns travel with a constant speed c while keeping
their spatial periodicity. White arrows indicate the di-
rection of motion. Stripes always travel perpendicular to
their orientation. Hexagons and rhombi also exhibit spe-
cific directions of motion. Therefore, the patterns have to
be correctly oriented when employing numerical continu-
ation with the particular boundary conditions discussed
in Sec. II A. These only permit motion in the x-direction.

B. Pattern selection and bifurcation structure

From time simulations in previous studies [38, 39], it is
known that the activity parameter v0 does not only lead
to a transition from resting to traveling patterns, but
also strongly influences the crystal structure. Here, we
use numerical continuation to investigate if the different
traveling patterns are connected via bifurcations and how
the patterns are selected.
Starting with a steady state hexagonal pattern at v0 = 0
in a suitable domain, we follow the branch of hexago-
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FIG. 19. Density ψ(r) and polarization P(r) profiles in terms
of a color map with overlaid white arrows, respectively, for
(a) a resting (v0 = 0.25) and (b) a traveling (v0 = 0.4 > vc)
hexagonal pattern. In (a) the +1 defects of the polarization
field coincide with the density maxima (and the net polariza-
tion is zero), while in (b) they are shifted with respect to one
another, breaking the left-right symmetry. This shift gener-
ates a net polarization and results in net propulsion to the
right with c ≈ 0.3. Parameters and domain size are as in
Fig. 18.

nal crystals in v0. Figure 18(I) illustrates the chosen
domain. Its aspect ratio corresponds to the ratio be-
tween the height Lc and the side length La of the equi-
lateral triangles within the hexagon. The hexagons are
oriented with one edge parallel to the direction of motion
observed in time simulations close to the onset of motion
(cf. Fig. 17). Due to the employed boundary conditions
(see Sec. II A for details) only motion along the x-axis is
possible.

The resulting bifurcation diagram is depicted in the main
panel of Fig. 18. The branch of resting hexagons is shown
in blue, whereas the traveling hexagonal pattern corre-
sponds to the orange branch. At the critical activity
vc ≈ 0.3, the resting pattern is destabilized in a drift-
pitchfork bifurcation. The left bottom panel shows the
characteristic growth of the drift velocity c; close to the
drift instability c ∝ √v0 − vc. The second small panel
demonstrates that the quantity ||ψ||22−||P||22 crosses zero
at the onset of motion. Note that the onset of motion at
vc ≈ 0.3 corrects earlier studies [38] and confirms the
critical activity value found in [81].

The four selected solution profiles ψ(r) (I)-(IV) corre-
spond to the locations indicated in the main panel. The
density profiles illustrate how the hexagonal order of the
crystal is preserved with increasing v0. However, the
individual density peaks change their shape from circu-
lar bumps towards oval and even rectangular peaks, cf.
Fig. 18 (III) and (IV). The branch of traveling hexagons
is stable up to very high values of activity, in other
words, we did not detect a destabilizing bifurcation on
this branch.

Figure 19 gives details on the symmetry breaking associ-
ated with the onset of motion of the hexagonal pattern.
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FIG. 20. The main panel shows the bifurcation diagram ||ψ||2
vs v0 for hexagonal patterns for the onset of motion per-
pendicular to an edge. On the right selected solution pro-
files ψ(r) at locations labeled I to IV in the bifurcation di-
agram are shown. Profiles II-IV travel in x-direction to the
right. Resting hexagons (blue line) are stable (solid line) un-
til a drift-pitchfork bifurcation at vc ≈ 0.3 where a branch
of stable traveling hexagonal patterns (orange line) emerges.
With increasing v0, the traveling hexagonal pattern (e.g.,
profile II) deforms into modulated stripes (e.g., profile III).
The branch terminates on the horizontal branch of traveling
stripes (dark green line, e.g., profile IV) that itself emerges in
a drift-pitchfork bifurcation from an unstable branch of rest-
ing stripes (red line). The domain size is V = 4Lc× 3La and
the remaining parameters are as in Fig. 17.

The density field ψ(r) is given as a color map and the po-
larization field P(r) is indicated by white arrows. Panel
(a) depicts the two fields in a resting crystal. As dis-
cussed for LS in Sec. III B for resting states, the centers
of the density peaks coincide with +1 defects of P. One
of the corresponding symmetries is broken beyond the
onset of motion and the topological defects of P shift
with respect to the peaks of ψ. Hence, when averaging
the polarization over a density peak, a net polarization
and drift emerge. Figure 19(b) shows a moving hexag-
onal crystal with a positive net polarization. In the red
area of the maximum of ψ, more arrows point to the
right than to the left and the crystal therefore moves to
the right without change of shape.

For the bifurcation diagram in Fig. 20, the orientation
of the hexagon has been rotated by 90◦, i.e., the drift
is forced to occur perpendicular to the an edge of the
hexagon. The domain size is adapted to match the
hexagons by switching the lengths of Lx and Ly from
Fig. 18. As in Fig. 18, the resting hexagonal pattern
(blue branch) is destabilized in a drift-pitchfork bifurca-

tion at vc,⊥ = 0.3015 as compared to vc,‖ = 0.3008 in
Fig. 18. The slightly larger threshold is in agreement
with results from time simulations where drift parallel to
an edge (cf. Fig. 18) is found for motion at onset. Black
circles highlight the drift bifurcations in the main panel
of Fig. 20. Besides stable resting hexagons, an unstable
resting stripe pattern exists in this setup (red branch).
The resting stripes undergo a drift bifurcation at vc ≈ 0.3
as well.

In contrast to hexagons traveling parallel to an edge, the
hexagons traveling perpendicular to an edge do not per-
sist to arbitrarily high v0 and instead terminate on a
branch of traveling stripes (horizontal green line) in a
supercritical pitchfork bifurcation. Along this branch,
the crystal continuously changes from traveling deformed
hexagons (Fig. 20, profile II) to traveling modulated
stripes (III); moreover, the solutions lose stability in a
Hopf bifurcation at v0 ≈ 0.6 before reaching the termi-
nation point. The horizontal branch of moving stripes
confirms the results for periodic states in 1D that also
maintain a constant norm by shifting the relative po-
sitions between ψ(x) and P (x) with changing v0. The
traveling stripes eventually gain stability in a Hopf bi-
furcation at about v0 = 1.5 after undergoing various
bifurcations (not shown). At v0 = 1.5, random initial
conditions evolve into drifting stripes in numerical time
stepping. Note that vertical stripes do not fit into the
domain of Fig. 18 as Lx is not a multiple of Lc = 2π. In
the parameter range where Fig. 20 exhibits only unsta-
ble states, time simulations show either traveling rhom-
bic patterns [cf. Fig. 17(c)] or states with a more intricate
time dependence (not shown).

Even though time simulations show a different direction
at the onset of motion of the traveling hexagons, the de-
tected branch of modulated stripes (Fig. 20, profile III)
corresponds to a solution type that arises within large
scale parameter scans presented in Sec. IV C. In addition,
continuation confirms that resting stripes are unstable for
all values of v0 as suggested by time simulations. Since
time simulations also point to rhombic patterns, we have
also performed continuation on a square domain. Fig-
ure 21 shows that the branch of squares traveling parallel
to a diagonal (orange) becomes stable at about v0 ≈ 0.7,
in perfect agreement with the traveling squares observed
in time simulations [cf. Fig. 17 (c)], and suggests that
these stable traveling squares extend to arbitrarily large
values of the activity parameter v0. Squares traveling
parallel to a side are expected as well, but were not com-
puted.

Finally, Fig. 22 combines the results from continuation
runs on different domains. Around practically identical
values of v0, vc ≈ 0.3, all resting crystals undergo drift
instabilities. As for the resting states at small v0, only
hexagons (blue branch) are stable (solid line). Traveling
squares and traveling stripes gain stability at higher val-
ues of v0 that are in perfect agreement with numerical
time simulations. Numerical continuation suggests that
different traveling crystals coexist. In the simulations the



16

FIG. 21. The main panel shows the bifurcation diagram ||ψ||2
vs v0 for square patterns oriented such that the motion is par-
allel to a diagonal of the square. On the right selected solution
profiles ψ(r) at locations labeled I to III in the bifurcation
diagram are shown. Profiles II-III travel in the x-direction
to the right. Resting squares (black line) are unstable. At
drift-pitchfork bifurcations at vc ≈ 0.3 branches of unstable
traveling square patterns (orange lines) emerge. At v0 ≈ 0.7
traveling squares gain stability in a Hopf bifurcation. The do-
main size is 2

√
2Lc × 2

√
2Lc and the remaining parameters

are as in Fig. 17.

FIG. 22. Combined bifurcation diagrams for the resting and
traveling periodic states in Figs. 18, 20 and 21. Note that
the domain sizes differ between the different branches. All
resting patterns undergo drift-pitchfork instabilities at nearly
identical values of v0, vc ≈ 0.3. Different traveling states
coexist at large activity v0.

domain and in particular its aspect ratio appear to select
the moving pattern.

C. Morphological phase diagram

In order to complete the picture of crystalline states and
the influence of v0 and ψ̄, we again perform numerous
time simulations and construct a morphological phase di-
agram in the (v0, ψ̄)-plane for the parameter set employed
in this section. The time simulations are carried out in
the same way as previously described in Sec. III C and
again LS and various periodic states are distinguished
in terms of the number of peaks of ψ(r). The resulting
phase diagram is shown in the main panel of Fig. 23.
The parameter set used is from Ref. [38] and includes a
high value of the diffusion constant, C1 = 0.2 – twice the
value used in Sec. III B. The high diffusion leads to, first,
a higher vc ≈ 0.3 (cf. vertical dotted line) and, second,
it suppresses the existence of LS for increasing activity
(no blue areas for v0 > 0.5). The green crystalline area
exhibits density fields with more than 56 peaks for high
activities. Here, solution profiles show traveling rhombic
patterns (Fig. 23, profile II) with a smaller wavelength
than the hexagonal states. Thus, more peaks fit into the
considered domain. At higher mean densities towards
ψ̄ = −0.4 the rhombic patterns transform into a stripe
pattern. However, the stripes are still sufficiently modu-
lated in space to account for a high number of peaks as
depicted in Fig. 23, profile III. Accordingly, the number
of counted density peaks does not decrease.
Figure 23 gives a detailed overview of the active crystals
and crystallites that arise for the parameter set used in
Ref. [38]. It also evidences a neat interplay between nu-
merical continuation and time simulations as the results
from fold continuation (black lines) nicely bound the re-
gion of existence of LS.

V. SUMMARY AND CONCLUSIONS

We have studied in considerable depth the bifurcation
structure of an active phase-field-crystal model in two
spatial dimensions. This model, first introduced in
Ref. [38], describes a variety of resting and traveling spa-
tially extended and spatially localized structures.
First, using the mean concentration ψ̄ as the con-
trol parameter, we have analyzed how the classical
slanted snakes-and-ladders structure (slanted homoclinic
snaking) known from the phase-field-crystal model [57] is
modified by activity. In particular, we have shown that
with increasing activity, one finds a critical value for the
onset of motion of both domain-filling crystals and the
various localized states associated with them. In gen-
eral, an increase in activity suppresses resting localized
and crystalline states. Resting LS ultimately annihilate
in saddle-node bifurcations at critical values of the activ-
ity parameter that are similar for all the states studied,
while resting periodic or crystalline states disappear in
supercritical pitchfork bifurcation of the homogeneous or
liquid state. In other words, activity eventually melts all
resting crystalline structures as the driving force over-
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FIG. 23. Morphological phase diagram for the aPFC model
accompanied by selected density profiles at locations labeled
I-V obtained from systematic simulations. Large panel: Dif-
ferent states are characterized by the total number of density
peaks that form in a rectangular domain of size 7La × 8Lc

as indicated by color coding. The various lines in the dia-
gram, the initial conditions of the simulations, and the peak
counting procedure are described in the text. The liquid state
refers to a uniform density phase with zero peaks (white area).
LS exist in the regions marked in blue. Periodic hexagonal
patterns (green) fill the domain with 56 density peaks (I).
Around v0 > 1 the number of peaks slightly increases as rest-
ing hexagonal patterns (I) begin transforming towards travel-
ing rhombic patterns (II) with a smaller wavelength allowing
for more density peaks. Arrows indicate the direction of mo-
tion. At even higher v0, traveling stripe patterns (III) arise.
These remain spatially modulated so that individual peaks
can still be located on each ridge and the number of density
peaks does not drop. (IV) and (V) give examples of resting LS
coexisting with the liquid phase. The remaining parameters
are ε = −0.98, C1 = 0.2, C2 = 0 and Dr = 0.5 as in [38].

comes the attractive forces that stabilize the equilibrium
crystals and the crystallites that exist in the reference
system without activity.

However, at values of the activity below this melting
point, the branches of resting states exhibit drift bifurca-
tions for suitable diffusion and mean densities, generat-
ing branches of traveling states. These may exist stably
within certain ranges of activity as shown here by numer-
ical two-parameter continuation of the relevant bifurca-
tions. In other words, although activity may melt trav-
eling crystallites, there are extended parameter regimes
where this is not the case. In fact, we have found that
while high activity melts most traveling localized states,
i.e., traveling crystalline patches, this is not the case
for traveling periodic states, i.e., traveling domain-filling
crystals. These can be driven with arbitrarily high activ-

ity and then exhibit correspondingly high drift velocities.
We believe that this is most likely the case because the
periodicity of the domain-filling crystals is fixed, while
traveling localized states naturally adapt their peak to
peak spacing to the imposed parameter values. This ad-
ditional degree of freedom may make such states less sta-
ble. Note that the crystallites we have found are not re-
lated to the motility-induced clusters discussed, e.g., in
[27–29]. The size of such “kinetic clusters” tends to in-
crease with activity [122] while here we have studied “ad-
hesive clustering” where, in contrast, activity tends to de-
stroy clusters. This has also been observed in the Brow-
nian dynamics simulations of Ref. [43] for self-propelled
particles with short-range attraction (see also the review
[26]). There, with increasing activity, adhesive cluster
are destroyed before kinetic clustering sets in beyond a
range of gas-like behavior. A transition from resting to
traveling adhesive clusters is also described. In Ref. [123]
short-range attractive and long-range repulsive interac-
tions are combined, resulting in an initial increase in the
size of adhesive clusters with activity, before their de-
struction at yet higher activity.

We remark that to our knowledge motility-induced clus-
tering has not yet been described by an aPFC model since
such models generally show how equilibrium crystalliza-
tion is modified by activity. In the context of an aPFC
model, motility-induced clustering would imply that for
some parameter values no clusters exist at zero activity
but appear when activity is increased beyond a certain
threshold. Whether such models are capable of describ-
ing kinetic clustering will no doubt be clarified in future
studies, cf. [111].

Next, we have investigated the region of existence of
traveling localized states and showed that such TLS are
generic solutions in extended regions of the plane spanned
by the mean concentration and activity. While broader
TLS with three and more peaks quickly vanish into the
homogeneous background, narrow localized states (with
one and two density peaks) can be driven at quite high
activities where they reach high velocities. This does not
seem to be the case in the nonvariational systems stud-
ied in [66, 67]. Thus a future comparative study of the
present system, the systems studied in [66, 67] and those
reviewed and discussed in [65] would be beneficial.

A substantial focus of the paper has been on the nature
of the onset of motion of the competing localized and
extended structures. We found that this occurs at criti-
cal values of the activity that depend only weakly on the
size of a particular localized state or the number of den-
sity peaks within it. We have shown that a previously
derived criterion for the onset of motion of active crys-
tals in 1D also holds in two dimensions, namely, that the
zero crossing of the difference of the squared norms of
the two steady fields (||ψ0||22−||P0||22) marks the onset of
motion for all localized and extended crystalline states.
This criterion holds at the drift-pitchfork bifurcation of
κ-symmetric states and may be used to determine the
critical strength of the activity parameter that is needed
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for collective traveling motion. It also determines the on-
set of drift of asymmetric states via the drift-transcritical
bifurcation. Whether such simple criteria can be derived
for more complicated active matter models that capture
faithfully the specific properties of laboratory systems
and the active particles at hand remains to be investi-
gated.
The onset of motion in the aPFC model studied here
differs from that in the nonvariational Swift-Hohenberg
equations studied in [66]. There, at any value of the
driving parameter in front of the nonvariational term, all
asymmetric states drift and all symmetric states are at
rest. Here, however, the special form of the coupling of
the two fields allows for resting asymmetric states even
at a finite activity parameter, a nongeneric feature of the
model that will be investigated further in future work.
Within the aPFC model both symmetric and asymmet-
ric states undergo sharp transitions to drift as the ac-
tivity parameter v0 increases. However, only the former
are expected to be present in generic κ-symmetric mod-
els, with the latter replaced by continuous or imperfect
transitions. Because of this the results of the present
work are expected to assist greatly in the computations
of drifting states in such models, particularly those lying
on disconnected branches associated with such imperfect
bifurcations. This topic will also be the subject of a fu-
ture study.
The additional degrees of freedom present in 2D lead to
considerably more complex bifurcation diagrams than in
1D [108] largely because more states are possible and the
fact that these states can drift in more than one direc-
tion. Besides translation modes, rotational modes can
also be destabilized and the particular direction of the
drift with respect to symmetry axes of the LS has to be
taken into account. A rotationally symmetric one-peak
LS has shown many similarities to the 1D case, while
the less symmetric dumbbell-shaped two-peak LS turned
out to be unstable for any nonvanishing value of activ-
ity. For the employed value of the effective temperature,
the active crystallites exhibit slanted homoclinic snaking
and resting LS as well as traveling LS exhibit similar be-
havior. The LS, whether resting or traveling, gradually
grow in size as one follows the LS branch until they fill the
entire domain and respectively terminate on a periodic
resting or traveling solution. At lower values of the effec-
tive temperature the snaking behavior apparently ceases
and is replaced by new behavior the details of which re-
main unclear.
In 2D, the activity parameter also strongly influences
the crystal structure of space-filling, fully periodic so-
lutions. We have identified a multistability region with
stable traveling hexagons, traveling rhombuses and trav-
eling stripes. Here, finite size effects such as the aspect
ratio of the domain control pattern selection but it is evi-
dent than in the thermodynamic limit the phase diagram

must be highly complex. We have presented morpho-
logical phase diagrams that combine information from
time simulations and numerical continuation providing
an indication of this complexity. Besides showing the
transition between resting and traveling localized states,
these diagrams demonstrate the impressive capability of
fold continuation for localized states to predict the exis-
tence limits determined from time simulations. These
phase diagrams share many features with similar dia-
grams obtained in experiments on the collective behavior
of Quincke rollers [120] as discussed at the end of Sec-
tion III C. In the future similar phase diagrams should
be generated for active particle systems that allow for
both adhesive and kinetic clustering.

Finally, we highlight a number of questions that merit
further investigation. As experimental studies often fo-
cus on the collective behavior of many interacting par-
ticles and clusters [27, 32, 34], we need to investigate
further whether it is possible to derive statistical models
from single cluster bifurcation studies such as the present
one. Such a methodology has recently been presented for
ensembles of sliding drops [124]. Moreover, the rather
simple coupling of concentration and polarization in the
aPFC model considered here excludes spontaneous po-
larization. These limitations are responsible for the pres-
ence of the κ-symmetry of the model that is in turn re-
sponsible for the presence of drift bifurcations that gov-
ern so much of the behavior reported here. It is necessary
therefore that the results obtained here regarding the on-
set of motion should be compared to systematic studies of
the bifurcation structure of related models of active mat-
ter, including the vacancy-aPFC model [111, 112], the
chiral aPFC model [125], as well as more realistic active
DDFT [64] or active DeanKawasaki models [48]. This
will allow one to develop a clearer general understanding
of the observed multistability of states and associated
hysteresis effects as well as of the thresholds for qualita-
tive changes in behavior. The present study may serve
as a road map for such analyses.
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110, 208001 (2013).

[18] V. Narayan, N. Menon, and S. Ramaswamy, J. Stat.
Mech.-Theory Exp. 2006, P01005 (2006).

[19] N. Uchida and R. Golestanian, Phys. Rev. Lett. 106,
058104 (2011).

[20] R. Golestanian, J. M. Yeomans, and N. Uchida, Soft
Matter 7, 3074 (2011).

[21] M. V. Abrahams and P. W. Colgan, Environ. Biol.
Fishes 13, 195 (1985).

[22] B. L. Partridge, J. Johansson, and J. Kalish, Environ.
Biol. Fishes 9, 253 (1983).

[23] A. Petroff and A. Libchaber, Proceedings of the Na-
tional Academy of Sciences 111, E537 (2014).

[24] F. E. Fish, J. Exp. Zool. 273, 1 (1995).
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