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Collections of cells exhibit coherent migration during morphogenesis, cancer metastasis, and
wound healing. In many cases, bigger clusters split, smaller sub-clusters collide and reassemble,
and gaps continually emerge. The connections between cell-level adhesion and cluster-level dynam-
ics, as well as the resulting consequences for cluster properties such as migration velocity, remain
poorly understood. Here we investigate collective migration of one- and two-dimensional cell clusters
that collectively track chemical gradients using a mechanism based on contact inhibition of locomo-
tion. We develop both a minimal description based on the lattice gas model of statistical physics,
and a more realistic framework based on the cellular Potts model which captures cell shape changes
and cluster rearrangement. In both cases, we find that cells have an optimal adhesion strength
that maximizes cluster migration speed. The optimum negotiates a tradeoff between maintaining
cell-cell contact and maintaining configurational freedom, and we identify maximal variability in the
cluster aspect ratio as a revealing signature. Our results suggest a collective benefit for intermediate
cell-cell adhesion.

INTRODUCTION

Collective cell migration is of critical importance in
nearly all stages of life [1]. Biological processes like em-
bryogenesis, morphogenesis, neurogenesis, regeneration,
wound healing, and disease propagation such as can-
cer metastasis involve numerous cells acting in a co-
ordinated way [1–3]. Studies have demonstrated that
multicellular clusters can sense chemoattractants more
efficiently and precisely than their isolated constituent
cells do [4, 5]. Sensory information is combined with
mechanochemical mechanisms, including actin polymer-
ization and contact-dependent polarity (known as con-
tact inhibition of locomotion, CIL) [4, 6], to produce di-
rectional migration. Recent studies have indicated that
cadherin- and integrin-based adhesions at cell-cell junc-
tions and cell-extracellular matrix (ECM) contacts re-
spectively are indispensable for migration of multicellu-
lar clusters [1, 7, 8]. Cell-cell and cell-ECM adhesion are
integrated with actin dynamics to keep clusters together
during collective cell migration [1, 9].

Collective migration presents a mechanical tradeoff, as
cells must negotiate a balance between displacing them-
selves with respect to the ECM, but not separating them-
selves from other cells. In many cases this results in clus-
ters that are dynamic and loosely packed rather than
rigidly structured. For example, in the case of neural
crest cells, a group of pluripotent cells in all vertebrate
embryos that can migrate very long distances, bigger
clusters split, smallersub-clusters collide and reassemble,
and gapscontinually appear and disappear [4, 10]. This
raises the question of whether there is an intermediate,
rather than very strong or weak, adhesion strengththat
optimally negotiates this tradeoff and results in dynamic
loose clustering and maximally efficient collective migra-

tion. Cell adhesion is clearly crucial to collective migra-
tion, but the mechanisms are not yet well understood.

Here we use mathematical modeling and simulation to
investigate the role of cell-cell and cell-ECM adhesion
strength in determining collective migration efficiency
and the concomitant effects on cluster shape and dynam-
ics. Rather than focusing on the details of the mode of
action or molecular properties of different types of ad-
hesion molecules, we develop a generic model which ex-
plores the different regimes of adhesion strength, so that
we may have a general understanding of the phenom-
ena. We start with a one-dimensional model based on
the lattice gas model of statistical physics [11] that al-
lows us to analytically probe the collective migration ve-
locity of a linear chain of cells as a function of adhesion
strength. We then extend this model to two dimensions
using the cellular Potts model [12–14], which more real-
istically captures cell shape, cluster rearrangement, and
other essential aspects of cluster migration.

Numerical results from both the one- and the two-
dimensional model suggest the existence of an intermedi-
ate adhesion strength among cells that leads to the fastest
migration of a multicellular cluster. Specifically, there
exists a regime of intercellular and cell-ECM adhesion
strengths which corresponds to optimally effective migra-
tion. We demonstrate that, in this regime, the clusters
possess the maximal rearrangement capacity while re-
maining as a connected cluster, rather than falling apart
and scattering into single isolated cells or strongly stick-
ing together as a compact structure.

METHODS

We first consider a simplified one-dimensional model
for collective migration based on the lattice gas model
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of statistical physics, and then a more realistic two-
dimensional model based on the cellular Potts model.
Here we first review the lattice gas model (later, in the
Results section, we discuss our new calculations using
this model, as well as our own modifications to it). We
then present the model details of the cellular Potts model.

One-dimensional lattice gas model

We first investigate a one-dimensional collective of cells
using the lattice gas model. Consider N cells arranged
in a one-dimensional lattice of V sites with V ≥ N (Fig.
1A). σi denotes the state of each lattice site i. σi = 1
represents a cell while ECM is labeled by σi = 0.

Assume that interaction exists only between adjacent
cells; the total energy for a given configuration of cells
{σi} can then be expressed as

ELG = −ε
V∑
i=1

σiσi+1 (1)

where −ε is the interaction energy between two adjacent
cells representing their adhesion. We impose σV+1 = σ1

for periodicity and
∑V
i=1 σi = N to conserve cell number.

The grand partition function for the lattice gas is

ΞLG =

V∑
N=0

zNZLG (2)

where ZLG =
∑
{σi} e

−βELG is the canonical partition

function, z = eβµ is the fugacity parameter, with β =
(kBT )−1 and µ denoting the chemical potential. Eq. (2)
implies

ZLG =
1

N !

∂N

∂zN
ΞLG. (3)

Inserting Eq. (1) into Eq. (2) and exploiting the fact that

N =
∑V
i=1 σi, Eq. (2) can be recast as

ΞLG =
∑
{σi}

exp

(
βε

V∑
i=1

σiσi+1 + βµ

V∑
i=1

σi

)
. (4)

We now recognize that the grand partition function of
the lattice gas model as expressed in Eq. (4) has the
same form as the canonical partition function of the Ising
model [11, 15]. Specifically, relating the σi ∈ {0, 1} to
Ising spin variables si ∈ {−1, 1} via σi = (si + 1)/2, Eq.
(4) reads

ΞLG = ZIe
βµV/2eβεV/4, (5)

where ZI is the canonical partition function of the Ising
model with magnetic field H = (ε + µ)/2 and coupling
energy J = ε/4.
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CFIG. 1: Velocity vs. adhesion for one-dimensional col-
lective cell migration. A. Schematic showing a collection
of cells (colors, σi = 1) and ECM (white, σi = 0) arranged
in a linear chain. Each pair of cells has an interaction energy
−ε. Arrows indicate motility force fi. B. Normalized velocity
〈v〉/v0 as a function of adhesion βε for the undriven model,
Eq. (1). C. Normalized velocity as a function of adhesion βε
for the driven model, Eq. (16).

The canonical partition function of the Ising model is
exactly solvable in one dimension and reads

ZI = λV+ + λV− (6)

for a periodic chain, where

λ± = eβJ cosh(βH)±
√
e2βJ sinh2(βH) + e−2βJ . (7)

Thus, Eqs. (3) and (5)-(7) constitute an analytic expres-
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sion for the canonical partition function of the lattice gas
model. We use this fact to calculate the cluster migration
velocity in the Results section.

Two-dimensional cellular Potts model

To more realistically model cluster migration in two
dimensions, we use computer simulation. Many cellular
automata models have been developed for this task [16–
18]; we use the cellular Potts model (CPM) [19, 20]. The
CPM captures realistic properties such as changes in cell
shape and cell size, rearrangement of cells within a clus-
ter, and the dynamic breakup or re-aggregation of sub-
clusters. Diverse biological phenomena like chemotaxis,
cell sorting, endothelial cell streaming, tumor invasion
and cell segregation have been modeled using the CPM
[19, 21, 22].

We have considered a discrete two-dimensional lattice.
Each cell is represented by a group of lattice sites x with
the same integral values for their lattice labels σ(x) >
0 (Fig. 2). The empty lattice sites correspond to the
extra-cellular matrix (ECM), with lattice label σ(x) = 0,
providing an environment through which the cells move.
The initial configuration has several cells arranged in a
single cluster. The energy of the whole system ECPM
has contributions from two factors: the first one is the
adhesion while the second one is the area restriction term,

ECPM =
∑
〈x,x′〉

Jσ(x),σ(x′) +

N∑
i=1

λA(δAi)
2. (8)

The adhesion energy term Jσ(x),σ(x′) is given by the fol-
lowing

Jσ(x),σ(x′) =


0 σ(x)σ(x) ≥ 0 within ECM or same cell,

α σ(x)σ(x′) = 0 cell-ECM contact,

γ σ(x)σ(x′) > 0 cell-cell contact.

(9)

α denotes the interaction strength of any cell due to ad-
hesion with its environment while intercellular adhesive-
ness is characterized by γ. A migrating cell is refrained
from growing or shrinking to unphysical sizes, as well
as branching or stretching into unphysical shapes, due
to the presence of the area restriction term in Eq. (8).
Cells undergo fluctuations in size δAi around a desired
area A0 via δAi ≡ Ai(t)−A0. We have set λA to be unity
[23]. Previous work [12–14, 23] has included a perimeter
restriction term in addition to the area restriction term.
For simplicity we omit this term, as we find that suffi-
ciently large α and γ constrain perimeter by cell-ECM or
cell-cell contact.

Our model of migration is based on contact inhibition
of locomotion (CIL), a well known and central mecha-
nism of collective cell movement [6]. The formation of
cell protrusions is locally inhibited when a cell comes

into contact with another cell, and hence the cell ceases
to move in that direction. Instead, the cell generates
protrusions away from the site of contact [24, 25], which
produces force in the outward direction. Direct evidence
of CIL has been observed in migrating clusters, where
outer cells have strong outward polarization while inner
cells weakly protrude [4]. Note that under this mecha-
nism, directional migration is purely collective: two or
more cells in contact are polarized, whereas single iso-
lated cells are not.

We consider the case where cells exist in an external
chemical gradient. Drosophila egg chamber cells [26–29],
clusters of lymphocytes [30], neural crest cells [4], and
epithelial organoids [5] exhibit emergent gradient sensing
and collective migration in response to graded chemical
cues. Under the assumption that the chemical concentra-
tion influences the magnitude of the protrusive forces, the
presence of a chemical gradient creates a force imbalance
[31, 32], allowing the cluster to respond to the gradient.
However, as a cluster migrates up a gradient according to
this mechanism, the background concentration increases,
which increases the outward forces and can cause the
cluster to scatter [31]. To prevent scattering, we adopt
an adaptive mechanism of gradient sensing [5, 23, 31], in
which cells respond to the difference between the local
chemical concentration and the average experienced over
the entire cluster. Evidence for adaptive collective gra-
dient sensing has been observed in epithelial organoids
[5].

Specifically, we take the magnitude of the force expe-
rienced by cell i to be

Fi = ηg(xicm − xccm) (10)

where η sets the force strength, g is the concentration gra-
dient which is in the x direction (downward in Fig. 2 and
subsequent figures), xicm and xccm are the x coordinates
of the center-of-mass of the cell and of the whole cluster
respectively, and the subtraction expresses the adaptiv-
ity. A cluster is a contiguous set of connected cells, where
connectivity is defined by any amount of shared cell-to-
cell border. The cluster center of mass is the center of
mass of all pixels of cells in the cluster. We set ηg = 1 in
this work. The direction of the force experienced by cell
i is determined according to CIL [23]: we sum all vec-
tors pointing from cell-pixels in contact with any other
cell to the center-of-mass of cell i. This net ‘repulsion’
vector points outward (gray in Fig. 2), whereas the force
direction is flipped when the sign of Eq. (10) is negative
(black in Fig. 2). The forces contribute a work term to
the energy functional, given by

W = −
N∑
i=1

~Fi ·∆~xi, (11)

where ∆~xi is the change in the center-of-mass of each cell
upon a configurational change, discussed next.
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FIG. 2: Cellular Potts model for collective migration in a chemical gradient. A schematic of the adaptive cellular
Potts model (CPM) depicting a characteristic snapshot of three multicellular clusters of different sizes. The cluster consisting
of two cells, enclosed within a dashed box (left), is zoomed (right) to show cell-cell energy penalty γ and cell-ECM energy
penalty α. All cells have respective motility force vectors (black arrows) and repulsion vectors (gray arrows; away from cell-cell
contact as a result of CIL) in a linear chemoattractant gradient. A single isolated cell (cell 6) has no force acting on it since
we have considered CIL as our guiding mechanism for motility.

Given the energy and work terms, cellular dynam-
ics under the CPM are simulated using a Monte Carlo
process which is based on the principle of minimizing
the energy of the whole system. Specifically, motility
is modeled by an addition (copying the identity of one
cell-pixel, chosen randomly, to its neighboring site) or
removal (copying an ECM-pixel to a site previously oc-
cupied by cell) of pixels. Each Monte Carlo step selects
randomly a pair of adjacent lattice sites, and attempts
to copy the identity of one to the other. It calculates
the energy of the previous (before copying) and the new
(after copying) configuration. The new configuration is
accepted with probability P , given by

P =

{
e−(∆ECPM+W ) ∆ECPM +W ≥ 0

1 ∆ECPM +W < 0,
(12)

where ∆ECPM is the change in energy of the system due
to the attempted move, calculated from Eq. (8), and W
is the work term given by Eq. (11). Note that because of
the work term, the configuration depends on the energy,
which in turn depends on the configuration. Thus, the
system relaxes on an evolving landscape and is therefore
driven out of equilibrium.

RESULTS

Driven lattice gas model exhibits optimal cell-cell
adhesion

We first consider the one-dimensional lattice gas model
(Methods) and ask how the average cell velocity depends
on the adhesion strength. As in the CPM described
above, we assume that the force (fi in Fig. 1A) is ex-
erted by the edge cells due to CIL and is proportional to
the local concentration of an external chemical. In one
dimension, there are only two edge cells per cluster of
at least two cells (single isolated cells experience no con-
tacts and therefore no force). In a linear chemical profile,
the net force will be proportional to the linear extent of
the cluster, equivalent to the number of cell-cell contacts.
Assuming that the velocity is proportional to the force
(appropriate at low Reynolds number), the velocity of
a cluster can be expressed as v0

∑
i σiσi+1, where the

sum extends over the indices of the cluster and gives its
length, and v0 is an arbitrary constant that sets the ve-
locity scale. The average velocity over all clusters in a
particular configuration {σi} is the sum of all such terms
divided by the total number of clusters, or

v =
v0

∑V
i=1 σiσi+1∑V

i=1 σi(1− σi+1)
= − v0ELG

εN + ELG
. (13)

Here the denominator counts clusters by their rightmost
edges, and the second step recalls Eq. (1). We have cho-
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sen to weight each cluster equally in Eq. (13) for analytic
tractability, but we will see that similar results are ob-
tained if each cell is weighted equally instead, as in later
Results sections.

The average velocity is the sum of Eq. (13) against the
Boltzmann probability,

〈v〉 =
∑
{σi}

−v0ELG
εN + ELG

×e
−βELG

ZLG
=

v0

ZLG

∞∑
n=0

(
∂β
εN

)n
ZLG.

(14)
The second step recognizes that n derivatives of the par-
tition function extract n powers of −ELG, which when
summed as a geometric series are equivalent to the first
expression. Eq. (14) connects the average velocity with
the canonical partition function of the lattice gas, for
which we have an analytic expression (Methods).

Eq. (14) depends on the size of the lattice V , the num-
ber of cells N , the velocity scale v0, and the dimensionless
adhesion energy βε. Therefore, we can ask for a given V
and N , how the normalized velocity 〈v〉/v0 depends on
the adhesion strength βε. As an example, for V = 8 and
N = 4, Eq. (14) evaluates to

〈v〉
v0

=
4eβε + 18e2βε + 12e3βε

1 + 12eβε + 18e2βε + 4e3βε
. (15)

We see in Fig. 1B (green curve) that 〈v〉/v0 is a mono-
tonically increasing function of βε.

In general we find analytically that velocity increases
monotonically with adhesion strength for other values of
N and V , and also numerically when cells are weighted
equally in the average (Fig. 1B). This would imply that
the optimal adhesion is infinitely strong. However, thus
far, this model neglects the impact of the motility process
itself on the probability of occurrence of each configura-
tion {σi}. That is, the probability is determined entirely
by the Boltzmann distribution, which depends only on
the adhesion energy. Instead, we expect that the motil-
ity forces will influence the ensemble of configurations, as
some configurations that are driven by collective move-
ment will occur more frequently than they would in the
undriven system.

To account for the influence of motility on the con-
figuration ensemble, we add a driving term to the en-
ergy function that is proportional to the motility forces.
Specifically, we consider the change in energy to be of the
following form,

∆E = ∆ELG − ηfi∆x. (16)

Here ∆E is the change in energy when cell i shifts to a
neighboring lattice position. ∆ELG is the change in the
adhesion energy according to Eq. (1), while −ηfi∆x is
the work that occurs when the change in cell position
∆x aligns with the motility force fi. The latter term
is analogous to the work term in the CPM, Eq. (11).
The sign of this term reflects the fact that the motility

forces on both ends of the cluster point in the gradient
direction, due to the adaptivity (see Methods for details).
We continue to take fi = n − 1 to be the number of
connected edges in the cluster of size n, and η sets the
strength of the motility. The presence of the work term
in Eq. (16) drives the system far from equilibrium due to
the motility forces. Note that η = 0 corresponds to the
undriven ensemble as before.

We evolve the system via Monte Carlo simulation as in
the CPM [Methods, Eq. (12)]. Specifically, we randomly
choose a pair of non-identical neighboring sites, i.e., a cell
and an ECM site, and swap them, calculate the energy
change following Eq. (16), and accept the new configura-
tion with Boltzmann probability e−β∆E . The center-of-
mass velocity averaged over many instances is shown in
Fig. 1C for different values of βη. We observe in all cases
that there is a clear optimum in the adhesion strength
for which the cluster has the maximum migration veloc-
ity. We conclude that the effect of motility is to bias
the ensemble of configurations away from its equilibrium
distribution, which is necessary to observe an optimal
adhesion strength.

The optimal adhesion strength arises due to the fol-
lowing tradeoff. On the one hand, weak adhesion results
in isolated cells that diffuse without bias, except when
they happen to collide and briefly attain a bias due to
the CIL. On the other hand, strong adhesion causes the
first term in Eq. (16) to dominate over the second, as any
configurational change that results in loss of adhesion is
energetically costly. Strong adhesion therefore suppresses
movement of cells at the leading edges of clusters, in turn
suppressing movement as a whole. The optimal adhesion
strength negotiates the balance between the two, result-
ing in clusters that are tight enough to cohere but fluid
enough to allow forward progress.

The one-dimensional model considered thus far cap-
tures the core physics of an optimal adhesion strength but
necessarily neglects changes in cell and cluster shape, as
well as intra-cluster cell rearrangements, that are typical
of multicellular migration in larger dimensions. There-
fore, we use the two-dimensional CPM to investigate
these aspects next.

Cellular Potts model exhibits optimal cell-cell and
cell-ECM adhesion

To capture more realistic motion of cells in two dimen-
sions, we use the CPM (Methods). We plot the migra-
tion velocity for a cluster of nine cells in the phase space
of α, which represents the energy penalty for cell-ECM
contact, and γ, which represents the energy penalty for
cell-cell contact (see Fig. 3A). We see a clear optimum
in regime ii (red), corresponding to intermediate α and
γ. We have checked that the existence and location of
the optimum is not strongly dependent on the number
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FIG. 3: Velocity vs. intercellular and cell-ECM adhe-
sion strengths for two-dimensional collective cell mi-
gration. A. Normalized center-of-mass velocity vs. cell-ECM
energy penalty α and cell-cell energy penalty γ. Velocity is
maximal in region ii. Velocity is computed after 20,000 Monte
Carlo steps and averaged over 200 trials for each value of α
and γ. System size is large enough that no cell reaches a
boundary during the simulation. B. Snapshots from simula-
tion of a cluster of nine cells, illustrating the cluster configura-
tion while migrating, corresponding to different regimes in the
parameter space: (i) cells scatter and diffuse away, (ii) cells
remain connected with intermediate adhesion, and (iii) cells
tightly adhere to one another forming a compact structure.

of cells in the system. Thus, not only is there an opti-
mal cell-cell adhesion strength (γ) as found in the one-
dimensional model, there is also an optimal cell-ECM
adhesion strength (α).

The reason for the optimum is illustrated in Fig. 3B.
At low α and high γ (region i), cells adhere to the ECM
but not each other. Therefore, they scatter and do not
benefit from the collective determination of the gradient
direction, resulting in a low velocity. At high α and low γ
(region iii), cells adhere to each other but prefer to avoid
contact with the ECM. The latter prevents protrusions
from forming, also resulting in a low velocity. Region ii
optimally negotiates this tradeoff.

Although Fig. 3 demonstrates the existence of opti-
mal adhesion strengths, it does not directly address the
question of what properties of the clusters correspond to
this optimum. As these properties could lead to experi-
mental predictions and further reveal the physical mech-
anisms behind optimal collective migration, we explore
this question next.
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FIG. 4: Connectedness transition does not account for
maximal cluster velocity. A. Schematic illustrating low,
intermediate, and high connectedness. B. Mean cluster size
vs. α and γ for 9 cells. Cells transition from disconnected
to connected when α > 2γ, as predicted, which is far from
where velocity is maximal (dashed circle). Inset: Cluster size
distribution for different values of α and γ (as shown by i-vi
in A) clearly exhibits a transition from multiple clusters to
a single cluster of size nine. Cluster sizes are computed over
10,000 Monte Carlo steps for each value of α and γ. System
size is large enough that no cell reaches a boundary during
the simulation.

Optimum arises from intact clusters with maximal
shape variability

We first hypothesized that the optimal migration ve-
locity corresponds to the transition between a fully con-
nected cluster and multiple disconnected clusters (Fig.
4A). Such a transition occurs when γ ≈ 2α. The reason
is that two cell edges that are in contact with each other
will have an energy cost of γ, whereas if these two edges
are exposed to the ECM they will have an energy cost
of 2α. Thus γ < 2α will promote cell scattering, while
γ > 2α will promote cluster cohesion.

Fig. 4B confirms the transition: we see in Fig. 4B that
to the left of the line γ = 2α (dashed) the mean cluster
size is less than the total cell number of 9 cells, whereas
to the right of the line it converges to 9 cells. Indeed,
in the inset of Fig. 4B we see that far to the left of the
transition (region i), the cluster size distribution is broad,
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cluster velocity. A. Schematic illustrating low and high
cluster extension in the gradient direction, which we quantify
by the aspect ratio (AR). B. Mean aspect ratio 〈AR〉 vs. α
and γ exhibits maximum in same location as maximal cluster
velocity (dashed circle). Aspect ratio is computed over 20,000
Monte Carlo steps and averaged over 200 trials for each value
of α and γ. System size is large enough that no cell reaches
a boundary during the simulation.

with significant probability to observe clusters of size less
than nine, including isolated cells of size one. In contrast,
far to the right of the transition (region vi), we see that
the cluster size distribution has support only at nine,
meaning all cells remain intact throughout the migration.

The optimal velocity occurs in region ii of Fig. 3A
which corresponds to region vi of Fig. 4B (dashed circle),
which is far from the connectedness transition. Evidently,
being relatively deep within the fully connected regime is
optimal for maximal cluster velocity. Therefore, being at
the transition between connected and disconnected can-
not explain the optimum observed in our model.

We next hypothesized that the optimal migration ve-
locity corresponds to the ability of the cluster to extend
maximally in the gradient direction while remaining in-
tact (Fig. 5A). Maximal extension would allow the clus-
ter to span the largest distance in the gradient direction,
meaning that the concentration difference between the
front (or back) cell and the cluster center-of-mass would
be largest. This would result in the largest force exerted
by these cells via Eq. (10). We quantify extension using

the cluster aspect ratio (AR): the ratio of the length of
the cluster parallel vs. perpendicular to the gradient di-
rection. We see in Fig. 5B that the average aspect ratio
indeed varies as a function of the adhesion parameters α
and γ, and that a maximum is observed (dark blue) cor-
responding to extension parallel to the gradient direction
(〈AR〉 > 1). The location of this maximum corresponds
to that of the maximal velocity (dashed circle in Fig.
5B). We conclude that maximal cluster extension leads
to maximal migration velocity.

The maximal average extension observed in Fig. 5B
could occur in multiple different ways. One possibil-
ity is that the cluster relaxes to a maximally extended
shape and stays in this shape throughout the course of
the migration. An alternative possibility is that the clus-
ter shape is highly variable, with cells free to extend,
contract, or rearrange while the cluster remains intact
(Fig. 6A). Previous studies have shown that fluidity de-
termines the properties of a jamming transition in conflu-
ent sheets [33], and that more fluid multicellular clusters
can be more effective gradient sensors [34]. If the cluster
is fluid, motility forces would then drive the cluster into a
maximally extended shape on average, but many shapes
could be visited throughout the migration process. We
therefore expect the two possibilities of a rigid or a fluid
cluster to have low or high variability in the aspect ratio,
respectively.

To distinguish between these two possibilities, we com-
pute the variance in the aspect ratio, σ2

AR. Fig. 6B plots
σ2
AR as a function of α and γ. We see that it has a

maximum at the same location of the optima in the mi-
gration velocity and the cluster extension (dashed cir-
cle). We have checked that a maximum is also present in
the same location in plots of the Fano factor σ2

AR/〈AR〉
and squared coefficient of variation σ2

AR/〈AR〉2. Thus,
maximal velocity corresponds not to a cluster that is
rigidly extended in the gradient direction, but to a clus-
ter with maximal shape variability: extended on average,
but freely exploring the space of cluster shapes as migra-
tion proceeds. This maximal shape variability is enabled
at intermediate adhesion strengths: sufficiently strong to
keep cells intact as a fully connected cluster, but suffi-
ciently weak to allow maximal freedom in cluster shape.

DISCUSSION

We have developed a model to investigate the role of
cell-cell and cell-ECM adhesion in determining the mi-
gration velocity of multicellular clusters. In our model,
migration is (i) collective, based on contact inhibition of
locomotion, and (ii) directed, due to the presence of an
external gradient. In its simplest form—point-like cells
in one dimension—we have mapped the model to the lat-
tice gas model of statistical physics, which affords ana-
lytic results for the migration velocity. We have seen that
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FIG. 6: Shape variability correlates with cluster veloc-
ity. A. Schematic illustrating low and high shape variabil-
ity. High shape variability corresponds to changes in overall
cluster shape, which we quantify using the variance of the
aspect ratio. B. Variance of the aspect ratio vs. α and γ ex-
hibits maximum in same location as maximal cluster velocity
(dashed circle). Aspect ratio is computed over 20,000 Monte
Carlo steps, and variance is computed over 200 trials for each
value of α and γ. System size is large enough that no cell
reaches a boundary during the simulation.

an optimal cell-cell adhesion strength emerges that maxi-
mizes migration velocity, and that this optimum depends
on the interplay between the motility forces and the con-
figurational statistics of the cells. In its more realistic
form—spatially extended cells embedded in ECM in two
dimensions—we have seen that the optimum exists for
both cell-cell and cell-ECM adhesion strengths. Clusters
with intermediate adhesion are fastest because they have
the largest shape variability: they are intact, extended in
the gradient direction, and maximally variable in cluster
shape.

Our prediction that there exist optimal cell-cell and
cell-ECM adhesion strengths could be tested experimen-
tally. Experiments suggest that both cell-cell and cell-
ECM adhesion are crucial for tumor invasion, as well
as for homeostasis in healthy tissues [35]. Experimen-
tal perturbations could be used to modulate cadherin or
integrin levels to tune cell-cell or cell-ECM adhesion re-
spectively, and the effects on migration velocity could be
investigated. For example, downregulation of E-cadherin
within a tumor spheroid was recently achieved by intro-

duction of interstitial flow, which was subsequently seen
to promote tumor invasion [36].

Our observation that variability in aspect ratio corre-
lates with migration velocity could also serve as a phe-
nomenological signature to look for in experiments. Vari-
ability in cluster shape is straightforward to extract from
microscopy videos and quantify, and it abstracts away
the underlying molecular details of the adhesion or mi-
gration. It would be interesting to see whether the fastest
clusters generically have the most variable shapes across
biological systems, regardless of the nature of the molec-
ular perturbation applied.

We have considered only one- and two-dimensional mi-
gration, whereas three-dimensional migration is clearly
prevalent, rich in its modalities (e.g., mesenchymal,
amoeboid, lobopodial), and dependent on tunable factors
(e.g., adhesion, cell confinement, contractility, deforma-
bility, proteolytic capacity) [37–39]. It would be possible
in the future to extend our model to three dimensions to
investigate some of these factors and migration modes.
Nonetheless, important examples of 1D and 2D migration
exist, to which our findings may more directly apply. Ex-
amples of 1D or quasi-1D migration include preferential
migration of tumor cells, cancer stem cells, and leuko-
cytes along a bundle of linear collagen fibrils [40, 41],
as well as migration of fibroblasts on 1D fibril-like lines
[37, 42]. Examples of 2D or quasi-2D migration include
wound healing (or gap closure) in an epithelial tissue,
cells migrating on a bone, migration of single epithelial
cells along 2D sheets of basement membranes, and pa-
trolling of leukocytes along the luminal surface of blood
vessels [43–46].

Our observation that cluster shape variability maxi-
mizes migration velocity is a purely mechanical effect: in-
termediate adhesion promotes cluster configurations that
maximize net motility forces in the gradient direction.
Previous work has also shown that cluster fluidity im-
proves gradient sensing due to a different mechanism: flu-
idity averages out detection noise due to cell-to-cell vari-
ability [34]. We do not consider detection noise [5, 23, 34]
or cell-to-cell variability [34] here. It would be interest-
ing to investigate how these distinct advantages of shape
variability and cluster fluidity act in concert or whether
they combine synergistically.

The model developed here is generic, minimal, and not
specific to any particular cell type. In general, there can
be more than one cell type within a single cluster. In that
case, it is straightforward to extend our model to include
a set of cell-cell interaction parameters γij between every
pair of cell types i and j, or a set of cell-ECM interaction
parameters αk for each cell type. We have considered
only the simplest version of this scenario here, but it
may be interesting in the future to generalize our work to
systems that exhibit heterogeneous collective migration.
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