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We study the stochastic force dynamics of a model microswimmer (Chlamydomonas reinhardtii),
using a combined experimental, theoretical, and numerical approach. While swimming dynamics
have been extensively studied using hydrodynamic approaches, which infer forces from the viscous
flow field, we directly measure the stochastic forces generated by the microswimmer using an optical
trap via the photon momentum method. We analyze the force dynamics by modeling the microswim-
mer as a self-propelled particle, à la active matter, and analyze it’s energetics using methods from
stochastic thermodynamics. We find complex oscillatory force dynamics and power dissipation on
the order of 106 kBT/s (∼ fW).

I. INTRODUCTION

Swimming at the microscopic scale has long attracted
the interest of biologists, physicists, and applied mathe-
maticians [1, 2]. The self-propulsion of microorganisms
through viscous fluids at low Reynolds number is an es-
sential aspect of life [3–7]. At the most basic level, this
involves a swimmer physically interacting with its en-
vironment to create directed motion. A widely studied
model microswimmer is the Chlamydomonas reinhardtii,
which is a unicellular biflagellate alga that uses a breast-
stroke motion to pull itself through its environment [8, 9].
Chlamydomonas have been studied extensively by biolo-
gists [10–12] long before physicists became interested [13].

To understand the swimming dynamics of the Chlamy-
domonas, hydrodynamic approaches have been used ex-
tensively to understand the flow fields around the swim-
mer and infer the forces generated by them [5]. A col-
lection of impactful experimental and theoretical stud-
ies have uncovered complex swimming dynamics [14, 15],
flagellar waveforms [16, 17], enhanced diffusion [18, 19],
synchronization [20–24], and fluctuations [23, 25]. Stud-
ies typically analyze the swimmer motion and the sur-
rounding fluid velocity field to infer forces using Stokeslet
models [3, 26–28]. However, direct investigation of the
force dynamics has been more elusive.

Here, we present a study of direct measurement of the
stochastic forces generated by a Chlamydomonas and in-
terpret the dynamics via modeling and simulations of a
self-propelled particle. Optical trapping to manipulate
and study microswimmers is not new [29–32], however,
in-situ force calibration is typically challenging [33–36].
Here, direct force measurement is possible due to recent
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advances in optical trap calibration, known as the pho-
ton momentum method [37, 38], that measures force via
changes in photon momentum of the trapping beam and
does not require a priori knowledge of the object shape,
refractive index, a synthetic handle, or external calibra-
tion as used traditionally for quantitative force measure-
ment [39–43]. This approach allows study of the stochas-
ticity of forces given the high resolution in force and sam-
pling rate (sub-pN and 50 kHz, respectively). This ap-
proach is particularly interesting for studies of stochas-
tic thermodynamics where fluctuations are important be-
cause it allows direct access to force without assuming an
underlying model (e.g. a linear spring), does not require
averaging, and is not limited by the precision of image
acquisition or correlation techniques [38, 44, 45]. Since
the photon momentum method does not rely on trap lin-
earity it allows large force fluctuations in the nonlinear
range to be captured, unlike traditional techniques for
calibration such as equipartition, Stokes drag, or active-
passive approaches [46]. By treating the swimmer as an
“active particle” we quantify its non-equilibrium activity
using tools from stochastic thermodynamics [44, 47–49].
We find that Chlamydomonas exhibit complex oscilla-
tory force dynamics with magnitude of tens of pNs, and
rotational dynamics of 1-2 Hz, that can be characterized
using a self-propelled particle model. Measurements and
theory suggest the power dissipated by single swimmers
to be on the order of 106 kBT/s (∼ fW).

II. THEORETICAL MODEL AND
EXPERIMENTAL METHODS

A. Equation of motion

We model the stochastic motion and active force dy-
namics of the optically trapped Chlamydomonas (in the
two-dimensional horizontal plane) with the overdamped
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Langevin equation [50, 51]. That is, the position r(t) ∈
R2 of the Chlamydomonas (or active particle) is governed
by

γṙ + κr = γu +
√

2Dγη, (1)

which balances the deterministic frictional and optical
trap forces with the random active and thermal forces.
In (1), κ is the optical trap stiffness, γ is the friction coef-
ficient of the Stokes’ drag, and D is the thermal diffusion
coefficient of the zero-mean, δ-correlated Gaussian white
noise process η. Also, u is the intrinsic self-propulsion ve-
locity of the active particle that can take on many forms
depending on the underlying model of the active parti-
cle such as Active Brownian Particle (ABP) or Active
Ornstein-Uhlenbeck Particle (AOUP) [50, 52]. In our
analytic approach we use the AOUP model as discussed
in the appendix. From this equation of motion we de-
rive analytic quantities such as the force spectrum (see
appendix) and perform numerical simulations of particle
trajectories.

B. Numerical Simulations

To simulate individual trajectories we discretize (1) us-
ing the Euler-Maruyama method [53, 54] over uniform
time steps of size ∆t, which produces the iterative pro-
cedure

ri = ri−1 −
κ

γ
ri−1∆t+ ui−1∆t+

√
2D∆tZi−1, (2)

for i = 1, 2, . . . . The subscripts indicate the time step of
the corresponding quantities, and Zi is a normally dis-
tributed multivariate random variable that has zero mean
and covariance equal to the identity matrix; see appendix
for the derivation of equation 2.

The forces due to friction, the trapping potential, ac-
tive processes, and thermal fluctuations at each time step
are then defined by

Ffric,i = −γ∆ri
∆t

,

Ftrap,i = −κri,

Fact,i = γui,

Fth,i =

√
2D

∆t
Zi,

and induce the respective work increments

∆Wfric,i = Ffric,i ◦∆ri,

∆Wtrap,i = Ftrap,i ◦∆ri,

∆Wact,i = Fact,i ◦∆ri,

∆Wth,i = Fth,i ◦∆ri,

where the symbol ◦ denotes the dot product with
Stratonovich convention [55], e.g. F(t′) = [F(ti) +

F(ti−1)]/2. In this discrete setting the forces and their in-
duced work increments are mathematically well-defined;
however, as the time step ∆t → 0+, the frictional and
thermal quantities diverge. Experimentally, only the op-
tical trap and frictional terms are directly accessible,
which limits our ability to make direct quantitative com-
parisons for continuous time. We circumvent this issue by
making calculations and comparisons with discrete quan-
tities for a time step ∆t defined by the precision of the
experiments.

C. Sample Preparation and Optical Tweezer
Measurements

Chlamydomonas reinhardtii were purchased from Car-
olina Scientific (item #152030) and used within 48 hrs
of arrival. A 20 µL droplet of stock solution containing
Chlamydomonas was sandwiched in a sample chamber
made from a glass slide and a coverslip (Fisher Scien-
tific) with Dow Corning vacuum grease used as a spacer.
A Nikon TE2000 with a 60x/1.2NA water-immersion ob-
jective and Hamamatsu ORCA-Flash4.0 V2 was used for
microscopy. The optical tweezer system (Impetux Optics
S.L.) includes the optical trap, piezo stage positioning,
and force detection. The 60x objective focuses the near-
infrared fiber laser (1064 nm, IPG-YLR-10, IPG Photon-
ics) to create the optical trap. Force detection and laser
tracking interferometry is done using the photon momen-
tum method (PMM) [37, 56] implemented with a 1.4NA
oil immersion condenser and a position sensitive sensor
that is digitized at 50 kHz. For the PMM method force
calibration to be accurate it is critical to use a condensing
objective with higher numerical aperture than the trap-
ping objective and to minimize scatter of light through
the sample [37, 57]. All control of experimental hardware
and data acquisition was done using Labview (National
Instruments).

D. Data Analysis

All data analysis of experiments and simulations was
completed in MATLAB. To calculate the force spectrum,
the power spectrum of a finite force signal, F(t) sampled
at 50 kHz, was estimated using Welch’s method [58] with
a Hamming window. This approach was used for both ex-
perimental data and numerically simulated data. Fitting
of the force spectrum to our analytic model was done us-
ing nonlinear least squares [59]. For calculations of work
fluctuations in the time domain, data was downsampled
by a factor of 10 to reduce high-frequency noise, for a
resulting sampling frequency of 5 kHz.
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FIG. 1. Representative force dynamics of a single swimming Chlamydomonas. (a) Force trajectory plot. Upper right inset
shows representative image of trapped swimmer. Lower left inset depicts cartoon of swimmer in harmonic trapping potential.
(b,c) Force components as a function of time. d,e) Histograms of forces measured in b,c. The black dataset in each panel shows
the force dynamics of a passive particle for comparison to thermal fluctuations.

III. RESULTS AND DISCUSSION

A. Characterizing force dynamics

Most studies of Chlamydomonas reinhardtii swimming
measure the position/velocity of the swimmer itself or the
fluid field surrounding it [6, 15, 16, 60]. These studies
provide a wealth of information, particularly on swim-
ming dynamics [14, 61, 62], flagellar waveforms [17, 63],
and synchronization [20, 64, 65]. We take an alterna-
tive approach where we directly measure the force gen-
erated by the swimmer as applied to the optical trap.
This is possible due to a recently developed force cali-
bration technique, called the photon momentum method
(PMM) [37, 38], that does not require a priori knowl-
edge of the trapped particle or the surrounding fluid bath.
One might expect that inferred forces from fluid mechan-
ics approaches [5, 6] and direct measurement of the force
generated by a swimmer would be compatible, since they
should be related by Newton’s 3rd law. Our direct mea-
surements of force confirm this hypothesis as we describe
in this section.

The characteristic force dynamics of a Chlamydomonas
in an optical trap is shown in Fig. 1, where only a short
snippet (0.2 s) is shown for visibility purposes. By di-
rect force measurement it is evident the swimmer ex-

hibits oscillatory force dynamics in both x and y direc-
tions due to its breast stroke motion (Fig. 1a-c). Looking
at a short portion of the trajectory, the first interest-
ing feature is the forward/backward asymmetry of the
forces, most evident in Fig. 1b in the first 0.1s, where
the swimmer is dominantly aligned in the x-direction
and the forward (positive) beating force is larger than
the backward (negative) force. This is supported by the
corresponding force histogram (Fig. 1d) where there is
a positive peak of ∼30 pN and a negative peak of ∼-
15 pN. For comparison to fluids approaches, if one as-
sumes simple Stokes friction (F = γv), then the force
measured predicts forward/backward swimming veloci-
ties of ∼400/200 µm/s, which is in close agreement with
reported values [17, 60, 61].

The second interesting feature to note is the observed
force trajectory is not simply a forward/backward mo-
tion through the center of the trap, but rather a com-
plex oscillation that drifts around the origin over time.
Note that since the optical trap applies no torque, the
swimmer is free to rotate. We observe a wide variety of
rotational patterns as shown in a gallery of force trajec-
tories in Fig. 2. Similar dynamics are observed for all
swimmers, meaning a general rotation is always present,
but we note the finer features of the force trajectory show
great complexity. Focusing on the average rotation of the
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FIG. 2. Gallery of force dynamics of an optically trapped Chlamydomonas. A wide array of patterns in the force trajectories
are observed, and six representative examples are shown here (a-f). The overall rotational motion, 〈ω/2π〉, is compatible with
previous studies [9].

forward/backward swimming axis, a spectrogram anal-
ysis reveals an angular velocity, 〈ω/2π〉, as labeled in
Fig. 2. This angular velocity extracted from the force
trajectories is consistent with the Chlamydomonas’ well-
documented spinning motion of ∼ 1−2 Hz from motion-
tracking studies [9, 11, 62, 66].

Overall, the force dynamics in terms of peak values,
oscillations, and rotation are in agreement with swim-
ming dynamics from previous fluids studies [9]. This
shows that the optical trap (with PMM calibration) is
a viable technique to study the force dynamics of a mi-
croswimmer. Further, direct force measurement provides
several advantages — e.g. model independent force infor-
mation (at sub-pN resolution) and high-temporal resolu-
tion (50 kHz) which make this approach ideal for study-
ing the stochasticity of microswimmer generated forces.
For instance, the probability distribution of forces reveals
much about the underlying processes occurring. A ther-
mally fluctuating particle exhibits Gaussian force fluctu-

ations characteristic of thermal noise as shown in black
in Fig. 3. The force fluctuations of the Chlamydomonas
are non-Gaussian and have a much wider variance due
to the active non-thermal forces generated by the beat-
ing dynamics of the swimmer (Fig. 3, red). The stark
contrast between a passive Brownian particle and a mi-
croscopic swimmer shown in Fig. 3 is due to consump-
tion/dissipation of non-thermal energy by the swimmer,
which drives it far from equilibrium.

In the remainder of this paper, we study the stochastic
force dynamics of Chlamydomonas in an effort to disen-
tangle the active forces generated by the swimmer itself
and the thermal forces coming from the fluid bath. We
treat the swimmer as an “active particle” that uses inter-
nal sources of energy to generate self-propulsion [67]. In
addition, the swimmer experiences forces from thermal
fluctuations, friction, and the harmonic trapping poten-
tial as outlined in the modeling section above. Our goal
is to quantitatively characterize the activity of the swim-
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FIG. 3. Probability distribution of forces measured by the
optical trap for a Chlamydomonas (red) and a thermally fluc-
tuating particle (black). This distribution is calculated from
n = 24 experiments.

* * *

FIG. 4. The average total force spectrum of an actively
swimming Chlamydomonas (red) and the thermal force spec-
trum (black). Asterisks (∗) indicate local peaks in the force
spectrum at approximately 1.5, 25, and 50 Hz. Blue solid line
and green dashed line are theoretical fits to the analytic model
(equation 3). Inset shows an example of a single measurement
that also exhibits local peaks.

mer and explore its energetics.

B. The force spectrum and characterizing activity

We use the force spectrum, a recently developed ap-
proach [36, 49, 68–70], to quantify the non-equilibrium
force dynamics of the swimmer as an active particle.
The force spectrum is the power spectral density of the
stochastic forces measured by the optical trap. In ex-
periments, we access the force spectra by estimating the
power spectral density using Fourier transform meth-
ods [58]. In the theoretical model, we calculate the force
spectra (equation 3, derivation in appendix) analytically

from the equation of motion,

Sff (ω) =

(
2κ2D − 2τκ2v20

µ2τ2 − 1

)
1

µ2 + ω2

+
2τκ2v20

(µ2τ2 − 1)

1

τ−2 + ω2
,

(3)

where ω is frequency in rad/s, µ = κ/γ, τ is the persis-
tence time of the active force, D is the thermal diffusion
coefficient, and v0 is the characteristic strength of the ac-
tive velocity. The majority of parameters in equation 3
are determined by our physical system and the trapped
object including: the trap stiffness (κ), the friction coeffi-
cient (γ), and the thermal diffusion coefficient (D). Thus,
equation 3 has only two free parameters that describe the
active process: v0, which quantifies the amplitude, and
τ , which quantifies the timescale. In relation to the equa-
tion 1, v0 is the the average active speed from the AOUP
model.

In Fig. 4 we plot the average force spectra of a swimmer
(red) and a passive particle (black). The passive particle
is the same size and shape as the swimmer, and thus pro-
vides an equilibrium fluctuation baseline (as verified us-
ing a dead swimmer). In both cases, a typical Lorentzian-
like shape is evident with a low frequency plateau and a
high frequency scaling of f−2 expected for thermal fluc-
tuations. This suggests that for f > 103 Hz that fluctu-
ations are dominantly thermal. However, below 103 Hz
the two force spectra diverge, clearly showing that the
swimmer (red) exhibits force fluctuations greater than a
passive particle (black). The separation between these
two force spectra are due to the active forces from the
swimmer. Additionally, the average force spectra of the
swimmer exhibits several local peaks, which when aver-
aged over 24 Chlamydomonas occur at roughly 1.5, 25,
and 50 Hz marked by (∗) in Fig. 4. These local peaks
are not captured by our simple analytic model but are
explored later via simulations.

To characterize the measured force fluctuations, we fit
equation 3 to each individual force spectra to obtain the
two parameters that quantify activity, v0 and τ , which
characterize the amplitude of activity and its timescale,
respectively. The extracted parameters for x and y direc-
tion are shown in Fig. 5 for all experiments. On average,
we find the active speed is 〈|v0|〉 = 38 µm/s and the
active timescale is 〈τ〉 = 39 ms. These extracted pa-
rameters are within the expected range for freely swim-
ming Chlamydomonas [18] but biased towards the lower
end, likely because our swimmer is trapped. Nonethe-
less the agreement is quite striking, given the two exper-
imental methods have little in common, where the fluids
approach tracks the position of a free swimmer and our
approach measures the force generated by an optically
trapped swimmer and fits an analytic model. It is inter-
esting to note that the extracted τ does not correspond
with the timescale of passive rotational diffusion as it
does for active colloids that are well-described by AOUP
or ABP models [50]. This suggests τ is a unique prop-
erty of the swimmer and is likely related to the flagellar
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FIG. 5. Fitting parameters from the analytic model. v0 rep-
resents the amplitude of the active process and τ the persis-
tence time. Symbols indicate x-direction (×) and y-direction
(•).

beating and its asymmetry [14, 62], which would cause
decorrelation of the active forces due to rotation. Inter-
estingly, tuning the rotational diffusion independently of
thermal fluctuations could allow optimization of swim-
ming trajectories [71].

To isolate the non-equilibrium activity we calcu-
late the average active energy spectrum, Eact =
〈|F̃tot|2〉/〈|F̃th|2〉 − 1, where 〈|F̃tot|2〉 is the total force

spectrum of the swimmer and 〈|F̃th|2〉 is the spec-
trum of thermal forces, and ˜ indicates the frequency-
domain [49, 72]. The active energy spectrum quantifies
the energetic fluctuations due to non-thermal processes
and thus characterizes the energy injected into the system
by the swimmer (Fig. 6). Integrating the active energy
spectrum provides an estimate for the energy dissipa-
tion rate, 〈J〉, due to active processes [47, 49]. Averaged
over all swimmers and all time, we find 〈J〉 = 3.4 × 104

kBT/s (∼ 0.1 fW). Our average energy dissipation rate
is significantly lower than the average power dissipated
during a Chlamydomonas beat cycle (∼ 4 fW) as mea-
sured from viscous dissipation [61]. This could be due to
our very different approaches — measuring force fluctu-
ations vs. fluid velocity field — or could be due to other
experimental differences. We offer two factors that may
contribute to our measured lower average dissipation: (1)
we average over all microswimmers, which includes lower
activity samples that may bias the average towards lower
dissipation; (2) we average over all time, which includes
periods of high, low, and no swimming activity. To fur-
ther investigate (1) and (2) we analyze the force dynamics
of individual Chlamydomonas in the time domain in the
following section.

C. Trajectory-level fluctuations

Direct force measurement with an optical trap provides
high-resolution trajectories to analyze fluctuations. We
characterize the energetic fluctuations of the swimmers
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FIG. 6. The average active energy spectrum quantifies the
non-thermal energetic fluctuations of the microswimmer. In-
tegrating this spectrum provides an estimate of the energy dis-
sipation rate, 〈J〉, via the Harada-Sasa equality [47]. (shaded
region indicates S.E.M.)

shown in the force gallery (Fig. 2) by calculating work
fluctuations. Two types of work fluctuations are accessi-
ble in our experiments: (1) work done by the optical trap;
and (2) work done by friction. To access these we as-
sume the optical trap has a linear force-displacement rela-
tionship and that the swimmer experiences low-Reynolds
Stokes friction. This assumption allows us to calcu-
late the incremental work done by the optical trap as
∆WOT = FOT ◦ ∆r, where FOT is the force measured
by the optical trap, ∆r is the incremental displacement,
and ◦ indicates Stratonovich convention. Similarly, we
can calculate the incremental work done by friction as
∆Wfr = Ffr ◦∆r, where Ffr = −γṙ is the friction force.

The incremental work fluctuations are plotted in
Fig. 7(left) where the labels (a)-(f) correspond to the tra-
jectories shown in the force gallery (Fig. 2). Two impor-
tant features to note in the incremental work fluctuations
are: sample-to-sample variation is quite high (e.g. small
fluctuations for trajectory (d) and large fluctuations for
(e)); and fluctuations in time also vary even within a sam-
ple (e.g. trajectory (f) exhibits small fluctuations initially
that increase in amplitude as time advances). This sug-
gests that averaging over (1) samples and/or (2) time will
hide variations in dissipation.

The corresponding accumulated work along each tra-
jectory is shown in Fig. 7(right) from numerical inte-
gration of the work increments. Here we observe that
the work done by the optical trap, WOT fluctuates pos-
itive/negative as expected and also varies significantly
between trajectories. We note the net work done by the
optical trap on average is zero, since the trapping po-
tential does not vary in time. Perhaps more interest-
ing because it is directly comparable to fluid mechanics
studies [18, 61] is the work done by friction, Wfr, which
is a fluctuating negative quantity that accumulates over
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FIG. 7. Work fluctuations (left column) and accumulated work (right column) for trajectories shown in the force gallery
(Fig. 2). Individual microswimmers (a-f) exhibit significant variation in their dynamics as shown by their time-series dynamics.
This is particularly evident in Wfr where the power dissipated in the observed interval varies by a factor of 4 from ∼ 2 fW (d,
purple) to ∼ 8 fW (e, green).

time. At the trajectory level it is clear Wfr also varies be-
tween swimmers and over time. Quantifying the activity
of the individual swimmers from the average slope of the
Wfr curves in Fig. 7(right) shows a range of power dis-
sipation, where the least active swimmer (d) dissipates
0.5× 106 kBT/s (∼ 2 fW) and the most active (e) dissi-
pates 1.9× 106 kBT/s (∼ 8 fW), during the observation
window. The average over all swimmers (a-f) estimates
the average power dissipation from viscous forces to be
〈|Pact|〉 = 1.2×106kBT/s (∼ 5 fW). This average value is
very close to the average power dissipated by a Chlamy-
domonas from viscous dissipation, ∼ 4 fW [61]. If we
calculate the instantaneous power dissipated by friction,
we see peak values of ∼ 10 − 15 fW, which is again in
striking agreement with the value of ∼ 15 fW measured
by viscous dissipation [61].

Overall, this agreement between the optical trap and
fluid mechanics approach is quite striking. In both cases
we assume that the mechanical energy generated by the
swimmer is dissipated by friction into the viscous fluid;
however, our calculation methods are very different. The
fluids studies calculate the power transferred from a
Chlamydomonas to the viscous fluid from the velocity
field gradient, P =

∫
2µ(Γ : Γ)h dA, where µ is the fluid

viscosity, h the fluid height, and Γ = 1
2 [∇v + (∇v)T ] is

the rate of strain tensor, v is the velocity field, and dA
is the differential area element. This method inherently
involves regularization (smoothing) of the velocity field
in space and time from the particle image velocimetry
[45, 61]. In our study, we calculate the instantaneous
power dissipated by friction from the basic definition of

power, P = Ffr ◦ ṙ, where Ffr = γṙ, and ṙ is the in-
stantaneous velocity of the swimmer calculated from the
displacement (∆r) and time (∆t) via back focal plane in-
terferometry. In both approaches, low-Reynolds Stokes
friction is assumed. The force measurement approach
provides several benefits: increased resolution not lim-
ited by image acquisition, model-independent force fluc-
tuations, access to thermal fluctuations, and comparison
to stochastic particle models widely used in active mat-
ter and stochastic thermodynamics. From this analysis
of force trajectories we observe two things when consid-
ering individual trajectories in the time domain: (1) for a
Chlamydomonas, measurement of the fluid velocity field
surrounding the swimmer and direct measurement of the
net force fluctuations of an active swimmer lead to simi-
lar estimates of the power-dissipation due to swimming;
(2) there is significant variation in the work fluctuations
in time as well as between different swimmers.

D. Numerical simulations of an oscillating
swimmer

One glaring deficiency of the analytic model is the in-
ability to capture the local peaks in the force spectrum
(Fig. 4). This is not surprising since the paradigmatic
self-propelled particle models (AOUP and ABP) exhibit
exponentially decaying active force correlations [50], with
no oscillations. However, a microswimmer, such as a
Chlamydomonas, cyclically beats its flagella to swim and
thus the active forces generated must be more complex.
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FIG. 8. Simulations of the Active Beating Swimmer (ABS) model. Adding force oscillations to the equation of motion
recapitulates the main features of our experimental measurements. This includes: (a) complex force trajectories oscillating
around the trap center; (b) force oscillations in time; (c) local peaks in the force spectrum; (d) fluctuating work increments;
(e) comparable dissipation by friction; and (f) local peaks in the dissipation spectrum.

In an effort to explore this behavior we modify the ABP
model [52] to include an oscillating force and use numer-
ical simulations to analyze the resulting force dynamics.
We refer to this model for an active force as the Active
Beating Swimmer (ABS) model of a self-propelled parti-
cle. Similar models have been developed and explored in
the absence of a trapping potential [73].

To investigate the ABS model we compute trajectories
using equation 2 for the discrete self-propulsion velocity

ui = v0

(
1 +

N∑
k=1

λk cos(2πfkti)

)
, (4)

where v0 = (v0 cos θi, v0 sin θi) is a characteristic velocity
with mean speed v0 and a stochastic angle of orientation
θi diffusing from θ0 = 0 with a rotational diffusion coeffi-
cient DR; λk determines the amplitude of the velocity of
term k; fk is the frequency; and N indicates the number
of oscillatory terms applied. In our case, we choose to
represent the ABS model as

ui = v0 (1 + λ cos(2πf1ti) + λ cos(2πf2ti)) , (5)

and extract v0, λ, and fk from experiments. We extract
〈|v0|〉 = 38 µm/s from fitting equation 3 (Fig. 5), f1 = 25
Hz and f2 = 50 Hz correspond to frequency peaks in
Fig. 6, and both oscillations have the same amplitude
of V = v0λ = 350 µm/s as estimated from the range

of forces measured (V ∼ |F|/γ) and is consistent with
velocities measured previously [9, 17, 61]. The rotational
diffusion coefficient is DR = 1/τ , for a persistence time
τ extracted from experimental data (Fig. 5). Equation
5 is placed into equation 2, and the numerical trajectory
is simulated over 200 seconds with the input parameters
shown in Table I.

TABLE I. Parameters for Simulation

Parameter Symbol Value

time step ∆t 2.0× 10−4 s
friction coefficient γ 6.6× 10−8 kg/s
trap stiffness κ 10−6 N/m
thermal diffusion coefficient D 6.3× 10−14 m2/s
rotational diffusion coefficient DR 25.6 rad2/s
active velocity amplitude V 350× 10−6 m/s
active velocity mean v0 38× 10−6 m/s
frequency one f1 25 Hz
frequency two f2 50 Hz

The simple ABS model is able to recapitulate the main
features of our experiments, including not only the lo-
cal peaks in the force spectrum and active energy, but
also the trajectory-level dynamics of forces and ener-
getics. Subsequent calculations of the energy dissipa-
tion rate from simulated trajectories also agree with ex-
perimental values (∼ 5 fW). Interestingly, in addition



9

to agreeing with experimental results on average, the
trajectory-level dynamics for the ABS simulations also
mimic the measurements. This is first evident in the
force trajectories showing complex oscillatory dynamics
(Fig. 8a,b), and further in the fluctuations in work shown
in (Fig. 8d,e). These discrete work fluctuations were
computed for ∆t = 2.0 × 10−4 s for direct comparison
to experiments with the same time resolution (shown in
Fig. 7); however, it is important to note that moving
to smaller time steps may not be rigorously valid since
some of the limiting quantities diverge as ∆t→ 0+. To-
gether, these simulations suggest that simple modifica-
tions of self-propelled particle models (e.g. adding oscil-
latory forces) can be used to quantitatively describe the
average and trajectory-level dynamics of microswimmers
as observed via experiments.

IV. CONCLUSION

We have experimentally measured the stochastic force
dynamics generated by a Chlamydomonas microswimmer
in an optical trap using the photon momentum method.
We find that its swimming motion generates complex
oscillatory force dynamics including rotational motion.
Using self-propelled particle models we characterize the
non-equilibrium activity of microswimmers on average,
and use trajectory-level analysis to quantify the ener-
getics of single microswimmers with time. Overall, us-
ing our optical trap measurements and a particle-based
Langevin approach we find that Chlamydomonas exhibit
an average power dissipation of 〈|Pact|〉 = 1.2×106kBT/s
(∼ 5 fW), which is in striking agreement with previ-
ous fluid mechanics approaches. The force measurement
approach, an alternative to well-established fluid ap-
proaches, is well-suited to characterize the stochasticity
and fluctuations of microswimmer dynamics and reveals
complex force patterns not previously accessible. This
approach provides direct access to model-independent
force fluctuations, high resolution sampling, and data
compatible with particle-based models for investigations
of stochastic thermodynamics.

V. ACKNOWLEDGEMENT

CJ, MG, and RM acknowledge the Black Family Fel-
lowship. NB and WWA acknowledge funding from
the CSUF RSCA. Part of this work was completed at
the QCBNet hackathon supported by NSF grant MCB-
1411898. This material is based upon work supported by
the National Science Foundation under Grant No. DMS-
2010018.

Appendix A: Deriving the finite difference equation

To simulate individual stochastic trajectories from the
equation of motion in (1), the velocity is isolated and
then integrated over a time interval [ti−1, ti] of size ∆t.
The result is

r(ti)− r(ti−1) =

ti∫
ti−1

(
−κ
γ

r + u +
√

2Dη

)
dt.

which upon formally applying the mean value yields

ri − ri−1 = −κ
γ

ri∗∆t+ ui∗∆t+
√

2Dηi∗∆t, (A1)

for a time ti∗ ∈ [ti−1, ti]. In (A1), the subscript notation
indicates the evaluation point of corresponding quantity,
e.g., ri∗ ≡ r(ti∗). Since equation (A1) does not include
a stochastic variable multiplying a stochastic increment,
the evaluation point within the time interval is of little
consequence [55]. The left endpoint is chosen for conve-
nience and consistency, allowing us to write the particle’s
discrete trajectory as

ri = ri−1 −
κ

γ
ri−1∆t+ ui−1∆t+

√
2D∆Bi, (A2)

where ∆Bi = ηi−1∆t is an increment of the Wiener pro-
cess. We note that

∆Bi ∼ N (0,∆t) ∼
√

∆tN (0, 1),

where N (0, 1) denotes a normal distribution with a mean
of zero and a variance of unity. We therefore have reason
to rewrite ∆Bi as

∆Bi =
√

∆tZi−1,

where Zi is a normally distributed random variable that
satisfies 〈Zα,i〉 = 0 and 〈Zα,iZβ,j〉 = δαβδij . The reason
for such manipulation is to lower the computational cost.
We are left with

ri = ri−1 −
κ

γ
ri−1∆t+ ui−1∆t+

√
2D∆tZi−1. (A3)

Appendix B: Calculating the power spectral density

The components x(t) and y(t) of r(t) solving (1) satisfy
equivalent stochastic differential equations. So without
loss of generality, consider the x process, which is exactly
given by

x(t) = x0e
−µt +

∫ t

0

eµ(z−t)u(z)dz

+
√

2D

∫ t

0

eµ(z−t)η(z)dz.

(B1)

where µ = κ/γ and η is a standard Guassian white noise
process.
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Assuming the mutual independence of the random
variables x0, u and η(t), the positional autocorrelation

E[x(t)x(s)] = e−µ(t+s)E[x0
2]

+

∫ t

0

∫ s

0

eµ(z−t+ζ−s)E[u(z)u(ζ)]dζdz

+ 2D

∫ t

0

∫ s

0

eµ(z−t+ζ−s)δ(z − ζ)dζdz,

where we have used that E[η(t)] = E[u(t)] = 0 and that
E[η(z)η(ζ)] = δ(z − ζ).

With the assumption t ≥ s, the integral∫ t

0

∫ s

0

eµ(z−t+ζ−s)δ(z − ζ)dζdz

=

∫ s

0

∫ s

0

eµ(z−t+ζ−s)δ(z − ζ)dζdz

=

∫ s

0

eµ(2z−t−s)dz =

(
e2µs − 1

)
e−µ(s+t)

2µ

Alternately, if s > t, a similar calculation shows the in-
tegral is equal to the same expression but with t and s
switched. Hence, the positional autocorrelation is

E[x(t)x(s)] = e−µ(t+s)
(
E[x0

2]− D −De2µmin{s,t}

µ

)
+

∫ t

0

∫ s

0

eµ(z−t+ζ−s)E[u(z)u(ζ)]dζdz,

for all t ≥ 0 and s ≥ 0.

Appendix C: Active Ornstein–Uhlenbeck particles
(AOUPs)

Active Ornstein–Uhlenbeck particles have an internal
stochastic velocity u specified by the stochastic differen-
tial equation

u̇+ τ−1u =
√

2Aτ−1χ(t), (C1)

for a Gaussian white noise process χ(t), persistence time
τ and active diffusion coefficient A. Observe that this
equation is in the exact same form as (1) but with u ≡ 0,
γ = 1, κ = τ−1 and D = Aτ−2. Hence, by the previous
work, the autocorrelation of self-propulsive velocity u(t)
is

E[u(t)u(s)] = e−(t+s)/τ
(
E[u0

2]− A−Ae2min{s,t}/τ

τ

)
,

where u0 is the initial velocity of the process that has no
directional bias, i.e., E[u0] = 0. Setting E[u0

2] = A/τ
reduces the previous formula to

E[u(s)u(t)] =
A

τ
e−|t−s|/τ , (C2)

making the process u stationary in the wide sense.

From expression (C2), the double integral∫ t

0

∫ s

0

eµ(z−t+ζ−s)E[u(z)u(ζ)]dζdz

=
Ae−µ(t+s)

τ

∫ t

0

∫ s

0

eµ(z+ζ)e−|z−ζ|/τdζdz.

For simplicity, assume that s ≥ t ≥ 0. Then s ≥ z, and
the interior integral with respect to ζ can be split into
two integrals over [0, z] and [z, s]. Specifically,∫ t

0

∫ s

0

eµ(z+ζ)e−|z−ζ|/τdζdz

=

∫ t

0

e(µ−1/τ)z
(∫ z

0

e(µ+1/τ)ζdζ

)
dz

+

∫ t

0

e(µ+1/τ)z

(∫ s

z

e(µ−1/τ)ζdζ

)
dz

=
1− e2µt

µτ(µ2 − 1/τ2)
+
eµ(s+t)−(s−t)/τ

µ2 − 1/τ2

+
1− e(µ−1/τ)s − e(µ−1/τ)t

µ2 − 1/τ2
.

If we remove the constraint that s ≥ t ≥ 0, then∫ t

0

∫ s

0

eµ(z+ζ)e−|z−ζ|/τdζdz

=
1− e2µmin{t,s}

µτ(µ2 − 1/τ2)
+
eµ(s+t)−|s−t|/τ

µ2 − 1/τ2

+
1− e(µ−1/τ)s − e(µ−1/τ)t

µ2 − 1/τ2

for all t ≥ 0 and s ≥ 0, and∫ t

0

∫ s

0

eµ(z−t+ζ−s)E[u(z)u(ζ)]dζdz

=
A

τ

e−µ(t+s) − e−µ|s−t|

µτ(µ2 − 1/τ2)
+
A

τ

e−|s−t|/τ

µ2 − 1/τ2

+
A

τ

e−µ(t+s) − e−(µt+s/τ) − e−(µs+t/τ)

µ2 − 1/τ2
.

1. Positional Autocorrelation and Power Spectral
Density

After letting E[x0
2] = 0, the previous formula specifies

that the autocorrelation of the position

E[x(t)x(s)] =

(
D

µ
− A

µτ2(µ2 − 1/τ2)

)
e−µ|s−t|

+

(
A(µ+ 1/τ)

µτ(µ2 − 1/τ2)
− D

µ

)
e−µ(t+s)

+
A

τ

e−|s−t|/τ − e−(µt+s/τ) − e−(µs+t/τ)

µ2 − 1/τ2
.
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From the definition of the power spectral density of the
position x(t), namely

Sxx(ω) = lim
T→∞

1

T

∫ T

0

∫ T

0

E[x(t)x(s)]eiω(t−s)ds dt,

we can directly integrate the autocorrelation to show

Sxx(ω) =

(
2D − 2Aτ−2

µ2 − τ−2

)
1

µ2 + ω2

+
2Aτ−2

µ2 − τ−2
1

τ−2 + ω2
.

Since the force of the trap in the x-direction is f(x) =
−κx, then its power spectral density Sff(ω) = κ2Sxx(ω),
i.e.,

Sff(ω) =

(
2κ2D − 2Aκ2τ−2

µ2 − τ−2

)
1

µ2 + ω2

+
2Aκ2τ−2

µ2 − τ−2
1

τ−2 + ω2
.

Finally, defining v0 as characteristic strength of the active
velocity via the formula A = τv0

2 produces the equation
given in (3) for the power spectral density of the optical
trap force.
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