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The time-dependent Ginzburg-Landau (or Allen-Cahn) equation and the Swift-Hohenberg equa-
tion, both added with a stochastic term, are proposed to describe cloud pattern formation and cloud
regime phase transitions of shallow convective clouds organized in mesoscale systems. The starting
point is the Hottovy-Stechmann linear spatio-temporal stochastic model for tropical precipitation,
used to describe the dynamics of water vapor and tropical convection. By taking into account that
shallow stratiform clouds are close to a self-organized criticality and that water vapor content is the
order parameter, it is observed that sources must have non-linear terms in the equation to include
the dynamical feedback due to precipitation and evaporation. The non-linear terms are derived by
using the known mean-field of the Ising model, as the Hottovy-Stechmann linear model presents the
same probability distribution. The inclusion of this non-linearity leads to a kind of time-dependent
Ginzburg-Landau stochastic equation, originally used to describe superconductivity phases. By per-
forming numerical simulations, pattern formation is observed. These patterns are better compared
with real satellite observations than the pure linear model. This is done by comparing the spatial
Fourier transform of real and numerical cloud fields. However, for highly ordered cellular convective
phases, considered as a form of Rayleigh-Bénard convection in moist atmospheric air, the Ginzburg-
Landau model does not allow us to reproduce such patterns. Therefore, a change in the form of
the small-scale flux convergence term in the equation for moist atmospheric air is proposed. This
allows us to derive a Swift-Hohenberg equation. In the case of closed cellular and roll convection,
the resulting patterns are much more organized than the ones obtained from the Ginzburg-Landau
equation and better reproduce satellite observations as, for example, horizontal convective fields.

I. INTRODUCTION

Convective clouds are well known to be crucial com-
ponents of weather and climate, being a key process
not only in the transport of heat, moisture, momentum,
and dynamical quantities in the atmosphere but also by
strongly affecting solar and long-wave radiation budgets
from local to global scales [1, 2]. Historically, most re-
search involving convective clouds has focused on deep
rather than shallow clouds. However, shallow convective
clouds have significant impacts on the mesoscale as well
as for large-scale atmospheric dynamics [3].

The study of shallow clouds is worthy for at least two
reasons: first, they cool our planet reflecting a significant
portion of the incoming solar radiation back to space con-
tributing only marginally to the greenhouse effect; and
second, shallow clouds cover large fractions of our planets
sub-tropical oceans [2, 4]. Even changes in the order of
1% in cloud cover or other properties may significantly
affect the overall radiation balance [5]. As a consequence,
cloud feedback influences significantly the response of the
climate system to global warming [1, 6].

Shallow clouds exhibit spatial organization over a wide
range of scales [2, 7]. Compared to spatially homoge-
neous low clouds, these modes of organization could be
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significant for the radiative effect of convective organiza-
tion. They presumably affect the interaction of convec-
tion with atmospheric humidity and thus cloudiness plays
a role in climate variability [8]. Cloud systems formed by
shallow convection have horizontal dimensions ranging
from several to 100 or 200 kilometers. They are often
characterized as mesoscale patterns [9] and are largely
ignored in actual climate models [4].

Therefore, mesoscale systems need to be considered in
climate-model parametrizations of the physical processes
that affect the shallow cloud radiative response to climate
perturbations [10]. At the same time, this is one of the
challenges in climate sciences as contemporary climate
models cannot resolve the length scales where it occurs
[2]. Even the driving mechanisms responsible for these
patterns are not completely well understood [11].

Stratocumulus clouds (Sc) are relevant examples of
mesoscale organization of shallow convection on strati-
form cloudiness. They have been studied in recent years
due to their impact on the amount of sunlight reflected
back to space [1, 12]. Covering approximately one-fifth of
Earths surface in the annual mean, Sc are the dominant
cloud type by area covered. Thus, there are few regions
of the planet where these clouds are not climatologically
important [13]. Sc are characterized by honeycomb-like
patterns of stratiform cloudiness, arranged in either open
or closed cells controlled by processes from the microm-
eter to the kilometer scale which interact in and above
the scale O(10-100km) of large-scale models [14].
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FIG. 1. The four distinctive phases of shallow cloud organiza-
tion: closed-cell stratocumulus, pockets of open-cell stratocu-
mulus, open-cell stratocumulus, and shallow cumulus viewed
from satellite in panels a) to d), generated by the HS model
(Eq. 3) with the parameters proposed in Ref [17] in panels e)
to h) and by the non-linear idealized model (Eq. 11) in pan-
els i) to l). See Appendix A for the parameter values. The
data of the real fields was taken from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data, and from the
Geostationary Satellite Server (GOES) data from NOAA.

The organization of Sc into cellular or roll convection
could be considered in first approximation as a form of
Rayleigh-Bénard convection in the atmospheric bound-
ary layer [15]. However, this mechanism does not com-
pletely explain the multiscale turbulent character of the
mesoscale cloud convection (MCC) seen in observations,
whereby other theories have been proposed to explain
the driving of these patterns [16]. For Sc, in addition to
the temperature difference between the lower boundary
(the sea or land surface) and the upper boundary (a sub-
sidence inversion), there are extra factors and processes
whose interaction results in an enhancement or damping
of the atmospheric convective circulation [14].

Many of those processes are key in Sc and MCC clouds:
short-wave heating and long-wave cooling at cloud top,
turbulence and entrainment, precipitation, latent heat-
ing, evaporative cooling and surface fluxes of energy
as well as microphysical processes closely related with
droplets concentration, aerosol effect and their influence
in drizzle formation [13]. It is important to note the dif-
ferent processes involved in each regime. While open cells
(Fig. 1c) appear as a consequence of descending motion
and sinks of clear air at centers with ascending and cloudy
air at their borders, closed cells (Fig. 1a) are formed in
presence of upward motion and cloudy air in their cen-
ters and descending air at their interfaces. Heating from
below is the key responsible process in open-cell convec-
tion when there is a large difference between sea surface
temperature and air temperature; instead of that, radia-
tive cooling of cloud tops is the key responsible process

for closed-cell convection [13, 14, 18].

The transition from closed to open cellular convection
is interesting from the system dynamics as well as from
the perspective of radiative forcing of the climate but is
not clearly understood yet. Many theoretical and numer-
ical models have been proposed. Two of the most investi-
gated mechanisms are (1) cloud-aerosol-precipitation in-
teractions [19] and (2) advection over warmer water [20–
22]. The first approach can be thought of as microphys-
ically driven and the second one as largescale meteoro-
logically driven. This last mechanism has been studied
in recent years using satellite data, proposing a relation-
ship between column-integrated water and precipitation
rate as a Self-Organized Criticality (SOC) [23] system.
According to this, a critical value of water vapor (the
tuning parameter) determines a non-equilibrium contin-
uous phase transition to a regime of strong atmospheric
convection with the emergence of precipitation (the order
parameter)[24].

Based on these ideas, Hottovy and Stechmann pro-
posed a linear stochastic equation to describe cloud phase
transitions [25]. In this paper, we propose to modify such
model by including a feedback mechanism for sources
and sinks like precipitation or evaporation. This leads
to a time-dependent stochastic Ginzburg-Landau equa-
tion and if convection is included, to a time-dependent
stochastic Swift-Hohenberg equation. Such equations
describe the formation and transition of stratocumulus
cloud regimes: open cells, closed cells, and pockets of
open cells [26] (Fig. 1b), as well as an unrobust phase
(Fig. 1d) observed in shallow clouds. This mechanism
for organized mesoscale convection simulates the transi-
tion to strong convection as a result of an increase in
precipitation rate as a function of the column water va-
por (CWV), in particular, for stratiform rain systems as
Sc clouds [27]. By means of Fourier transforms, we com-
pare the obtained patterns with several real cloud fields
obtaining a good agreement.

In fact, the idea of developing a Ginzburg-Landau-type
equation for cloud patterns is not completely new. In
2013, Craig and Mack proposed a Cahn-Hilliard equa-
tion to build a coarsening model for self-organization of
tropical convection [28]. Their model started with the
Allen-Cahn equation, which generalizes the Ginzburg-
Landau equation to more general functionals [29]. As in
our work, they used a similar order parameter, the tropo-
spheric humidity, and a budget equation with feedback.
They found a phase transition when the Landau-type
functional has two minima, rather than one, leading to a
bistable system with two equilibrium values of humidity
[28]. Beyond the not so important differences in the type
of Landau functional, the main departure from our work
is that here we include stochastic terms in the equations.
Thus, noise is considered in the time evolution, while in
the work by Craig and Mack the noise is only used to pro-
duce an initial state [28]. As in other systems, noise has
important effects in the pattern formation phase diagram
[30, 31].
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The structure of this paper is the following, in section
II we detail the linear model while in sections III and
IV the non-linear models are introduced. Finally, the
conclusions are given in section V.

II. THE HOTTOVY AND STECHMANN
LINEAR STOCHASTIC MODEL FOR
MESOSCALE SHALLOW PATTERNS

In this section, we explain the basic details of the Hot-
tovy and Stechmann (HS) model [25], based upon an
idealization of water vapor dynamics as a stochastic dif-
fusion process. In this model, several effects of the physi-
cal processes involved in cellular convection are included:
evaporation, turbulent advection-diffusion of water vapor
and precipitation.

The HS Model [25] was proposed as a model for the dy-
namics of the cloudy boundary layer following the ideal-
ized simplification of models of phase transitions in other
contexts. The model starts by considering the evolution
of the total moisture content q = q(r, t) (water vapor plus
condensed water, i.e, liquid and ice) in each planetary
boundary layer (PBL) column at a horizontal spatial lo-
cation (x, y), normalized and shifted so that q = 0 repre-
sents the saturation level [17]. Spatio-temporal changes,
given by the convective derivative of q, must be equal to
the contribution of all sources and sinks such as precipi-
tation or evaporation,

Dq

Dt
=
∂q

∂t
+ v · ∇q = S (1)

where v is the velocity. We next decompose q as q =
q̄ + q′, where q̄ is a large-scale average component and
q′ is a small fluctuation part, and in a similar way we
decompose v = v̄ + v′. Using Eq. (1), we obtain an
equation for the large component [17],

∂q̄

∂t
= S̄ −∇ · (q̄v̄)−∇ ·

(
q′v′

)
(2)

where it was used that q̄′ = 0 and v′x = v′y = 0. Next

the small-scale flux convergence term ∇ ·
(
q′v′

)
is ap-

proximated by a laplacian b∇2q, used to represent eddy
diffusion and mixing due to turbulence. The parame-
ter b is an effective diffusion constant. The nonlinear
turbulent effects contained in ∇ (q̄v̄) are taken into ac-
count by additional turbulent damping [32] −q/τ0 and

stochastic forcing, DẆ [33]. The term q/τ0 represents a
relaxation, where the parameter τ0 is obtained through a
careful analysis of the column-integrated water and pre-
cipitation rate [17]. The term DẆ represents a stochas-
tic forcing, and is used as the simplest model for the
turbulent fluctuations and others physical processes with
a random component, such as the entrainment. Finally,
the source term S̄ represents the net water sources and
sinks, including precipitation and evaporation of water
from the ocean surface. It is considered to contribute

with a constant and deterministic forcing F0, and a par-
tial stochastic contribution, taken already into account
in the constant D.

Finally, the temporal evolution is given by the follow-
ing equation[17],

∂q

∂t
= b∇2q − 1

τ0
q + F0 +DẆ (3)

where here, and to avoid overburden the notation, q rep-
resents the average part q. In what follows, the same
convention will be used.

It has been shown that this model can be translated
into a spin-like Hamiltonian system that presents phase
transitions[25] once q discretized using a function that
takes the values 0 or 1 depending on the sign of q. Typical
cloud fields obtained through numerical simulations using
this equation are shown in Fig. 1. Therein, we include
real images from satellite to provide a comparison.

Although the model is able to reproduce the overall
aspect of the fields and the phase transitions between
them, it is also clear that there is much more organization
in real cloud patterns for closed phases. To account for
this, we have calculated the spatial Fourier transform of
real closed-cell patterns taken from satellite photographs
as well as from the outcome of HS model, as seen in Fig.
2.

In Fig. 2 panels b) and c) we can identify one spatial
frequency (wave-vector) that reveals the existence of a
particular structure. This is very clear in 2 c), in which
a ring-like structure is observed. Nevertheless, in Fig.
2, panels e) and f), we see that the Fourier transform of
the outcomes obtained from the HS model does not show
any characteristic dominant structure. This is expected
as the HS is a linear model which does not couple modes
[25].

Notice that in the case of the satellite photographs, we
adjust the contrast and exposure of the original image -
showed in Fig. 2a)- before converting the grayscale image
into a binary image. This is done to define the cells with
more details and precision.

Also, observe that in Fig. 2 e)-f), h)-i) and k)-j) there
is a lower cut-off of the spectrum when compared with
Fig. 2 b)-c) and k)-l). This is due to the resolution
of the grid used. Although one can increase the cut-off
frequency by growing the number of points in the sim-
ulation mesh, it turns out that the phases and param-
eters of the HS model depend upon the mesh. On the
other hand, decreasing the resolution of the real cloud
fields leads to a lower-quality Fourier image. A trade-
off is thus needed to keep the original parameters of
the HS model and the best resolution of the real cloud
fields. To solve this conundrum, here we adopted the
policy of using absolute units in reciprocal space. These
units are determined by the length (L = 500) in Km
of the real space field and the resolution of the photo-
graph (Npixels × Npixels = 500 × 500), resulting in the
cut-off frequency kx = ±πNpixels/L = ±π [km−1]. For
the simulation, the mesh has N × N points resulting in
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FIG. 2. Fourier transform of the closed-cell phase. Panels
in the left column show the cellular pattern taken from a)
satellite photograph, d) Hottovy and Stechmann model, g)
Ginzburg-Landau stochastic model and j) Swift-Hohenberg
stochastic model. In the central and right columns, we present
the Fourier spectra of each pattern in the I/I0 − ky plane
and the orthogonal plane, respectively. We can identity in
panels b-c) and k-l) a dominant frequency with radial sym-
metry indicated by red arrows, corresponding to a character-
istic length of ≈ 14 km. The maximal spatial frequencies
in panels e), h) and k) are determined by the resolution of
the grid used in the simulation given in the units of kx (see
text). See Appendix A for the parameter values. The sim-
ulations were done for t = 1000 hrs. The data of the real
fields was taken from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) data and the Geostationary Satellite
Server (GOES) data from NOAA.

a cut-off frequency kx = ±πN/L = ±π(N/500)[km−1].
In all the Fourier transforms, the intensity I is scaled by
the maximal intensity I0.

III. NON-LINEAR MODEL: TIME-DEPENDENT
GINZBURG-LANDAU STOCHASTIC EQUATION

One of the most important points in the work of Craig
and Mack and HS is the recognition of q as an order
parameter [25, 28]. In general, pattern formation is gov-
erned by order parameters whose spatio-temporal behav-

ior is determined by non-linear partial differential equa-
tions [34]. This suggests that the extra features seen in
real cloud patterns are due to non-linear effects. Fol-
lowing this idea, here we consider the cellular convec-
tive pattern described by a state vector p(r, t) which in
this case corresponds to the cloud cover. Its evolution
equation takes the general form of a partial differential
equation[34]:

∂p(r, t)

∂t
= N [∇, p(r, t)] (4)

where N denotes a nonlinear function. The behavior
of the state vector p(r, t) of the pattern forming system
can be represented as a functional of one or several order
parameters, denoted by Φ(r, t) that often can be directly
related to a physical observable [34],

p(r, t) = Q [Φ(r, t)]

where Q is a functional of Φ(r, t). In order to recover
the linear equation proposed by HS, in our model we
identify Φ(r, t) = q(r, t), i.e., the CWV in each column
of the lattice. Thus, instead of solving the determining
equations for the state vector p(r, t), the spatio-temporal
evolution is in general determined by an equation for the
order parameter field [34]. The most simple case is the
following,

∂q

∂t
= L(∆)q +N [q] (5)

Here L(∆) is a linear operator and N [q, t)] the non-
linear functional that is approximated by a polynomial
expansion of q in its low order derivatives.

Therefore, by comparing with Eq. (3) we can identify
the operator L(∆) with τ−10 + b∇2, while D and F0 are
parameters that determine the strength of the random
and deterministic forcing generated by internal forcing
due to small-scale cloud processes and large-scale exter-
nal forcing, respectively. The transition of cloud area
fraction (CAF ) from a regime of closed cellular convec-
tion to a regime of pockets of open cells is determined by
both parameters [7].

Let us start with the simple model given by Eq. (5)
to indicate how non-linear terms arise. We start by
pointing out that several observational data and numeri-
cal studies have documented the crucial relationship be-
tween precipitation and water vapor for precipitation pre-
diction in the context of convective parameterizations.
Peters and Neelin [21, 24] showed that there is a criti-
cal value qc of the CWV where the mean precipitation
〈P (q)〉 increases rapidly as an approximate power law,
i.e., 〈P (q)〉 ∼ (q − qc)β , for q > qc. As β < 1, the precip-
itation variance has a strong peak at the critical value qc
and then diminishes [35–37].

It has been argued that the mechanism presents a ten-
dency to self-maintain at criticality instead of being sim-
ply controlled by an external parameter [21, 24]. In fact,
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self-organized critically (SOC) has been proposed to de-
scribe macroscopic critical phenomena such as organized
structures associated with atmospheric convection [38].

This organization mechanism is supported by observa-
tions which exhibit that, even when the system hardly
exceeds qc, the CWV tends to decay more slowly than
an exponential rate toward the higher values, reflecting
the tendency towards SOC [14, 24]. The same studies
show a scale invariance suggesting a scaling law for at-
mospheric convection. Moreover, the invariance under
spatial averaging suggests the applicability of the renor-
malization group (RNG), also supported by the SOC ap-
proach [14, 24].

In the original HS model, the relaxation time τ−10 and
the forcing F0 were adjusted in such a way that differ-
ent assumed models of the precipitation ratio fitted the
results of Peters and Neelin for the precipitation condi-
tional probability. If ri,j is the precipitation ratio for
a cell with integer coordinates (i, j) in a square mesh,
there are two precipitation models, the first model is the
Betts-Miller-like rain rate model [32],

ri,j = |F0|σi,j (6)

the other was provided by HS [17],

ri,j = [|F0|+ qi,j/τ0]σi,j (7)

where σi,j = 1 if q > 0, and σi,j = 0 otherwise. Notice
that σi,j is analogous to a spin variable. Its role is to
signal whenever q is above the precipitation threshold
q = 0. Then is possible to have rain.

While the conditional probability for precipitation can
be obtained from the distribution function of q, the linear
model does not provide a feedback threshold due to pre-
cipitation in the source term S̄. In other words, the pre-
cipitation can be calculated a posteriori once the model
is solved, but it does not enter into the calculation. We
require S to depend upon q.

Therefore, to improve the model one needs to in-
clude the fact that once the threshold for precipitation
is reached, indicated by the spin variable σi,j , the source
term will change. In fact, σi,j can be used to derive an
equivalent Ising Hamiltonian for the cloud field [17]. Now
comes the question, what is the most simple and natural
choice for the feedback term? Following the Ising anal-
ogy, we can replace the spins σi,j by the known Ising
mean field, σ ≈ (1 + tanh(q/T ))/2 with T a constant.
Notice how the field is shifted to have σi,j ≈ σ = 0 for
q → −∞ and σ = 1 for q → ∞ . This results on two
possible average precipitation rates r depending upon the
used model,

r ≈ 1 + tanh(q/T )

2
|F0| (8)

or,

r ≈ 1 + tanh(q/T )

2

[
|F0|+

q

τ0

]
(9)

As we are interested in the region around the threshold,
i.e., near the lineal model, we can expand the hyperbolic
tangent to obtain, using Eq. (8),

r ≈
(

1 +
q

T
− 1

3

( q
T

)3
+

2

15

( q
T

)5
+ ...

)
|F0|

2
(10)

Thus, we generated a non-linear term able to model dy-
namically a precipitation threshold. Although in prin-
ciple we can just modify the sources term in Eq. (3)
by using S̄ → S̄ − r̄, it will be unwise not to recog-
nize that sources must also depend dynamically on q, as
for example, the conditional probability of having an in-
creased q grows once precipitation occurs [39, 40]. Thus,
we left open the possibility of having an interplay between
sources and sinks by the replacement S̄ → F0+DẆ−r̄+s̄
where s̄ is an average dynamic source. The most simple
model is to assume s̄ ≈ f r̄ where f controls the relative
weight between sources, like evaporation, and precipita-
tion. The parameter f allows an interplay between two
kinds of non-linear regimes, one dominated by sinks the
other by sources.

Finally, we include, up to third order, the sources and
sinks terms in Eq. (3) to obtain the following non-linear
model built from Eq. (8) Betts-Miller-like rain rate pre-
cipitation model,

∂q

∂t
= b∇2q + Eq −Kq3

+DẆ + F

(11)

where the constants are given by,

E =
1

τs
− 1

τ0
, K =

1

3τsT 2
, F =

(
f + 1

2

)
|F0| (12)

with,

1

τs
=

(
f − 1

2

)
|F0|
T

(13)

The model given by Eq. (11) takes the same form of
the celebrated time-dependent Ginzburg-Landau equa-
tion [41, 42], now added with stochastic noise [43]. It
is important to remark that Eq. (11) is also known as
the stochastic Allen-Chan equation, as the order parame-
ter is real, while in the Ginzburg-Landau equation it can
be complex. Such equation coincides with the idea that
most classical models for phase transitions are inherently
nonlinear[44] and at the same time, satisfies one of the
conditions of SOC: non-linear interaction, normally in
the form of thresholds [45]. In Eq. (11), the threshold
transition parameter T and the ratio f control the time
parameter τs. This is a new characteristic time that com-
petes with the damping time τ0.

Also, we can use the alternative SH precipitation model
given by Eq. (9). Up to terms of order q3, we obtain a
general model that contains the Ginzburg-Landau as a
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particular case,

∂q

∂t
= b∇2q +

q

τs
+Gq2 −Kq3

+DẆ + F

(14)

where G defined as,

G =
f − 1

2Tτ0
, (15)

The main difference between Eq. (11) and (14) is
the quadratic term, which vanishes in the Betts-Miller-
like rain rate model, resulting in the Ginzburg-Landau
equation. As is well known, the quadratic term in
the Ginzburg-Landau equation does not appear due to
symmetry considerations. Here we will only study the
Ginzburg-Landau equation, as the resulting pattern ob-
tained from the second model were very different from
real fields.

Fig. 1 i)-l) shows the outcomes of the first model found
solving numerically Eq. 11. Further details of the simu-
lations are explained in the Appendices A and B, includ-
ing several limiting cases studied to validate the soft-
ware. In Fig. 2 we present the pattern and spectrum for
the closed-cell phase. It is worthwhile mentioning that
the spectra in Fig. 2 h)-i) were obtained from tempo-
ral and initial condition averages up to t ≈ 1000 hrs.
Although for the stationary regimen of the Ginzburg-
Landau (or Allen-Cahn) equation we reproduced the
well-known behavior of a bell-shaped Fourier transform,
for times t < 100 hrs and in some patterns we observed
more structure in the non-linear model when compared
with the pure linear one (see next section and Appendix
B). Observe that this is the most interesting regimen for
real cloud patterns as typically they stay up to four days.

As was done previously with the linear model, in the
following section we further compare the outcomes of our
non-linear model with the original clouds formations us-
ing Fourier spectrum and the closed-cell convection as
reference.

A. Phase Transitions Diagrams

The model outputs in Fig. 1, panels e)-h) present the
four phases of cloud organization shown in observational
data from panels a)-d), respectively. It is possible to see
the transition from closed-cells to pockets of open cells
(POCs). These four cloud regimes correspond to four
distinct parameter regimes of Eq. (11) where F and D
are the tuning parameters which determine the phase
transition.

Fig. 3 presents the phase diagram for different pat-
terns, obtained from the stochastic Ginzburg-Landau
equation, in cases where they are qualitatively different
as a function of the control parameters D and F . The
control parameter values are similar to those found in
the HS model, obtained through a careful tuning of the

FIG. 3. Representative patterns obtained as a function of
the control parameters D and F for the stochastic Ginzburg-
Landau equation. For all the plots, we set E = 1 hr−1 and
K = 1 mm2hr−1. Notice that D and F have values in the
same range of found by the original HS model from observa-
tional data [17]. These patterns were found at an intermediate
relaxed regimen t ≈ 1000 hrs and thus for F ≈ 0 metastable
banded patterns are seen.

model with real data [25]. The only difference here is the
constants E and K, which adjust the Fourier amplitude
and position of the extra peaks. However, as explained
in Appendix A, these constants do not change for the
different patterns, instead were fixed at E = 1 hr−1 and
K = 1 mm2hr−1.

It is important to remark in Fig. 3 that for F ≈ 0,
a banded pattern is seen. This is a typical intermediate
transient state. It persist up to t = 1000 hrs. As F de-
parts from F = 0, relaxation is faster and no structure
is observed. Therefore, the spectrum in Fig. 2 h) does
not present much structure. Its Fourier spectrum is a
bell-shaped curve centered at k = 0, expected for such
limiting cases. Other resulting patterns may have struc-
ture as in closed cells fields, but this only happens in the
time regimen t < 1000 hrs, and eventually, the structure
disappears.

As seen in Fig. 2b)-c), real patterns reveal the pres-
ence of a dominant frequency. This kind of spectrum
is radially symmetric, implying that the corresponding
structure is glass-like, as it has short-range order which
is not preserved at long scales.
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c)             

d)

a)                 b)

I/I
0

FIG. 4. a) Pattern formed by Fourier inverting the spectrum
for the parameter values F = 0 and D = 5, as shown in Fig.
3. b) A close up of the normalized spectrum in panel a). The
dominant frequency peaks are indicated by red arrows. c)
Pattern formed by inverting the central part of the spectrum
shown inside the red frame in panel b). d) Pattern formed
by inverting the external part of the spectrum shown inside
green frames in panel b).

In Fig. 4 we present the Fourier spectrum for a non-
relaxed pattern for F = 0 and t = 1000 hrs. In Fig. 4
panel b), we present a zoom near k = 0, and which reveals
two characteristic peaks. These peaks are not seen for a
fully relaxed pattern of the stochastic Ginzburg-Landau
or Cahn-Allen equation, which consists of a bell-shaped
curve centered at k = 0. Such peaks are only observed
under non-periodic boundary conditions or during tran-
sients. Notice that relaxation in the Allen-Cahn equation
goes as a square root of the time and thus gets slower [46].
This is a typical result for systems with a double-well
potential structure as there are two kinds of time-scale
dynamics [47, 48].

Further verification of the transient nature of the peaks
in Fig. 4 can be obtained by a reconstruction of the pat-
tern by filtering out spatial frequencies higher than the
main central peaks. The filtered spectrum can be used
to reconstruct a pattern by an inverse Fourier transform,
as seen in Fig. 4 panel c). Clearly, the peaks are due to
the underlying transient banded state.

This metastable pattern lies in a special parameter re-
gion where noise and the non-linear functional power are
of the same order. In noise sustained patterns as in adap-
tive control algorithms, this region turns out to be the
most interesting as it contains a lot more ”structural”
information [31]. As all benchmarks were reproduced
for the limiting cases, including changes in the boundary
conditions (see Appendix B), this means that the system

is trapped in a deep metastable state.
In fact, numerically such mestastable patterns appear

for E + F > 0 and its reason is easy to understand. The
most simple stability analysis is obtained by linearization
of the average field q = 〈q〉 in Eq. (11),

∂〈q〉
∂t

= b∇2〈q〉+ E〈q〉+ F (16)

Considering a field, 〈q〉 = δq exp(ik ·r+λt) results in the
condition,

λ = −bk2 + (E + F ) (17)

The average field is stable whenever the real part of λ is
such that Re(λ) = E + F < 0.

Therefore, for t < 100, the spatial structure for F ≈ 0
corresponds to metastable states. As real cloud patterns
are in this time regime, we can conclude that a possible
outcome is that organization in the cloud pattern is due
to a system trapped in a deep-basin metastable state. To
understand this, we mention a clear analogy with glasses
and crystals. Glasses are disordered solids in the observa-
tion time scale as they are not fully relaxed [49, 50]. The
low-free energy state corresponds to a crystal [51, 52].
Yet we consider glasses and crystals as different physical
entities.

Finally, it is worthwhile to mention that is well estab-
lished numerically and mathematically that if the mesh
size in the Ginzburg-Landau or Allen-Cahn equation sim-
ulation is shrunk, the numerical solutions would converge
to a zero-distribution with no pattern formation in the
continuum limit [30, 53]. In fact, the two-dimensional
white noise-driven Allen-Cahn equation does not lead to
the recovery of a physically meaningful limit [53]. A way
to interpret the simulations of such equation is to view
them as numerical approximations of equations driven by
a noise field having a finite correlation length[30]. Here
we used the mesh proposed by HS which has carefully
tuned to reproduce meaningful physical results[17]. How-
ever, we verified that the mesh only has a small effect in
the peak position for transient states, as the mesh is asso-
ciated with much higher values of k and not at the center
of the spectrum.

In the following subsection we further explore the pat-
tern phase diagram of the system.

To further understand the changes between one and
another phase, we use a phase diagram of cloud regimes
using statistics moments as shown in Figures 5 and
6. In the first diagram, the mean cloud area fraction
(〈CAF 〉) is calculated as a function of D and F , i.e.,
〈σ〉 = 〈σ(F,D)〉 =

∑
i,j σi,j in the stationary state and

by fixing τ0 and b. Moreover, the plot in Fig. 6 pro-
vides the standard deviation, which is a measure of the
statistical sensitivity.

In Fig. 5 is notorious the phase diagram regions be-
longing to each regime: the closed-cell regime corre-
sponds to F > 0 and the open-cell regime corresponds to
F < 0, as indicated by the mean CAF , since while the
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FIG. 5. Phase diagram of shallow cloud regimes for the
Ginzburg-Landau non-linear stochastic model given by Eq.
(11). The plot shows the mean cloud area fraction (〈CAF 〉 )
as a function of variability, D, and the net source/sink param-
eter F . The transition from open to close cells is clearly seen
as a transition from high to low values of the 〈CAF 〉. How-
ever, this picture changes by increasing E and K, resulting in
two limiting cases (see Appendix C).

average value cloud area of open cells is 1, the mean of
the closed ones is 0. On the other hand, the POCs could
be seen in the middle of both regimes as their transi-
tion in the region around F = 0 with intermediate values
of the mean CAF between 0 and 1. All these cellular
regimens are associated with intermediate values of D.
The shallow cumulus regime (Fig.1d) appears for D > 8
mmhr−1/2 at all F values.

It is intuitive to understand why for small D, the
CAF attains its mean unordered value: in this case, the
value 〈CAF 〉 = 1 should be reached for positive F , and
〈CAF 〉 = 0 for negative F . However, higher values of E
and K affect this picture (see below).

Furthermore, to have a measure of the climate response
or climate uncertainty, in Fig.6 we present the standard
deviation of the cloud area fraction (STDCAF ). The
open and closed cellular regimes are associated with low
values of the STDCAF . The POCs and shallow phases
are associated with high values of the STDCAF , indi-
cating how small changes in F or D lead to very large
changes in 〈CAF 〉. It also shows how the STDCAF in-
creases drastically out of the regions where it presents
the closed or open cellular patterns.

Finally, it’s important to mention the effect of the E
and K parameters on the phase diagram showed in Fig.5.
After a systematic tuning, we developed a phase transi-
tion with respect to these parameters, i.e., the change
of the E and K values result in different phase spaces.
Even when it’s possible to recover the four regimes of in-
terest, the F and D pairs able to form each phase vary
considerably; we discuss an example in Appendix C. On
the other hand, fixing F and D at the values used for
the cellular regimes, we conclude that even when these
phases could be formed, the dominant amplitudes in their
Fourier spectra change for the effect of the E and K pa-

FIG. 6. Plot of the cloud area fraction standard devia-
tion (STDCAF ) as a function of the variability, D, and net
source/sink, F , for the Ginzburg-Landau stochastic model
given by Eq. (11). The open and closed cellular regimes
are associated with low values of the STDCAF . The POCs
and shallow phases are associated with high values of the
STDCAF .

rameters. Understanding the physical interpretation of
all these parameters and their full effect on cloud forma-
tion requires further study.

IV. STOCHASTIC SWIFT-HOHENBERG
MODEL

In spite that the stochastic non-linear models already
show certain organization, Figs. 1 a) and 7 a) reveal
that some real cloud fields still can be much more orga-
nized and in fact are in a different physical limit. They
reveal hexagonal cells mimicking patterns arising from
Rayleigh-Bénard convection. Indeed they are considered
as a form of Rayleigh-Bénard convection in moist atmo-
spheric air [22, 54]. For such special cloud fields, we
need to depart from some assumptions of the original
HS model as after an exhaustive exploration of the pa-
rameters phase diagrams, there is no way to generate
such highly ordered patterns. The dominant turbulent
diffusion term prevents them to form. Returning to the
budget equation (2), we see two possibilities. Either the
source term or the small-scale flux convergence terms
induce the selection of certain wavelengths. As clouds
move, the pattern can persist in time, thus the source
term is improbable to produce such behavior and we can
keep our heuristically derived terms. The next natural
step is to consider changes in the small-scale flux conver-
gence term, i.e., in the operator L(∆). The idea behind
such change is the following. Suppose a pattern in which
a wave-mode kc is selected in an otherwise isotropic sys-
tem. Let q̃ = q̃(k, t) be the Fourier transform of q(r, t)
in the space domain. The leading-order dynamics must
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be of the following form,

∂q̃

∂t
= (α|k|2 − β|k|4 + ...)q̃ (18)

where α > 0 and β > 0, as we require small-wavelength
modes to decay, i.e., q̃(k, t)→ 0 for k →∞. In terms of
the constants, the selected wave-mode is given by kc =√
α/2β. Transforming to real space, we are lead to the

following general equation,

∂q

∂t
= −α∇2q − β(∇2)2q (19)

We can take β = 1 as scale. Therefore α = 2k2c and we
complete squares in Eq. (19),

∂q

∂t
= (k4c − (k2c +∇2)2)q (20)

This procedure to find the operator works for many types
of pattern-forming systems [55, 56], but was first for-
mally deduced from the Navier-Stokes equations in the
Boussinesq approximation to study the effects of ther-
mal fluctuations on a fluid near the Rayleigh-Bénard in-
stability [57]. By considering the expansion of N [q] in
Eq. (14) and collecting the linear terms in q using a con-
stant ε = k4c + 1/τs, we obtain the following stochastic
equation,

∂q

∂t
=
[
ε− (k2c +∇2)2

]
q +Gq2

−Kq3 + F +DẆ

(21)

which is the stochastic Swift-Hohenberg equation. The
solutions of Eq. (21) are still in the process of being
investigated [58] although studies of the Swift-Hohenberg
equation in the presence of noise started decades ago [59].

Eq. (21) can be solved numerically through implicit
finite differences and a successive over-relaxation (SOR)
method as proposed by Pérez-Moreno et al. [60]. In Fig.
2 j) and Fig. 7 d) we show the formation of two particular
patterns that arise in the Rayleigh-Bénard convection,
hexagons and rolls. Further details of the simulations
are explained in Appendix A. Both patterns have been
identified as ways of organization in Sc clouds and their
formation depends on the parameter G that controls the
strength of the quadratic non-linearity. In Fig.2 pan-
els a), j) and in Fig.7 panels a), d) we compare satellite
photographs with simulations of hexagons and rolls, re-
spectively; we can see clear similarities with the satellite
patterns. To confirm the similarities, the Fourier spec-
trums of the real and simulated cloud formations were
performed.

In Fig.2 panels b)-c) and k)-l), the hexagonal pattern
spectrum reveals the presence of a dominant frequency
for a cut along a certain direction. In Fig.2 we can iden-
tify a principal frequency and other harmonics of lower
amplitude. This coincides with the spectrum of a cellular
pattern with defects and not highly ordered as a result of

FIG. 7. Fourier transform of the horizontal convective rolls.
Panels in the left column show the horizontal convection pat-
tern taken from a) satellite photograph and d) the Swift-
Hohenberg model given by Eq. (21). In the central and right
columns, are presented the Fourier spectra in the I/I0 − ky
plane and the orthogonal plane, respectively. We can iden-
tity in panels b)-c) and e)-f) a dominant frequency with axial
symmetry indicated by red arrows. Notice that in panels a)
and d), the blue circles indicate bifurcations observed in the
real and simulated patterns. See Appendix A for the param-
eter values. The data of the real fields was taken from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
data, and the Geostationary Satellite Server (GOES) data
from NOAA.

the forcing added in Eq. (21), which generates different
sizes of cells without a particular tessellation. On the
other hand, in Fig.7 panels b)-c) and e)-f) we show the
presence of a dominant frequency with axial symmetry
that corresponds to a pattern formed by parallel rolls in
real space. In both kinds of convection, the simulations
recover the structures formed in real cloud fields.

V. CONCLUSIONS

Following the work of Hottovy and Stechmann, we
proposed a non-linear differential equation for an order
parameter field given by the column water vapor q(r, t)
to describe the transitions of various pattern formations
in mesoscale shallow clouds systems. One of the main
modifications introduced to the original linear model is
the possibility of a feedback due to sources. In particu-
lar, we used two precipitation rate models, one leading
to a time-dependent stochastic Ginzburg-Landau equa-
tion while the other adds a quadratic term to this equa-
tion. The first model produces some realistic cloud fields
and even glass-like patterns, i.e., with short-range order
which is not preserved at long scales.

However, this model is not able to reproduce the
highly ordered fields present in Rayleigh-Bénard convec-
tion in moist atmospheric air featuring rolls and hexag-
onal waves. Therefore, in the spirit of perturbation the-
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ory, we introduced a change in the small-scale flux con-
vergence term, resulting in a stochastic Swift-Hohenberg
equation, proposed here as a simple model for cloud
fields. The numerical simulations confirmed the presence
of closed-cellular and horizontal convection phases.

The success of both models can be appreciated by ob-
serving the real patterns in Fig. 1. Therein, we identified
that the three patterns corresponding to MCC are not in
a perfectly hexagonal arrangement (highly ordered) nor
are they arranged in complete randomness (highly disor-
dered). The distributions of cumulus, both in closed and
open-cells, appear in some arrangement between these
two extremes.
Both proposed non-linear models are closer to this dom-
inant structure than the linear one, while the Swift-
Hohenberg equation allows the formation of clearly orga-
nized patterns for two characteristic convective regimes.
Finally, we presented a phase diagram for the cloud pat-
terns, using as basic parameters those found by HS by
fitting the data, as well as additional non-linear parame-
ters we identified by comparing with the spatial Fourier,
transforms of the patterns.
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Appendix A: Pattern Parameters

a. The Stechmann and Hottovy linear Stochastic Model for
mesoscale shallow patterns

In Fig. 1 panels a)-d), the outcomes of Eq. (3)
were numerically solved using implicit finite differences
with the same parameter values proposed by Hottovy
and Stechmann [17, 25]. A two-dimensional discrete
spatial grid in a domain of L by L, where L = 500 km
divided in a N by N lattice with N = 100 and lattice
spacing of ∆x = ∆y = 5 km; this was chosen to be

roughly the smallest width of individual cells of tropical
deep convection. The boundary and initial conditions
were considered periodic and random, respectively. It
was defined qi,j(t) as the integrated CWV and Wi,j(t)
as independent white noise, denoted formally as the
derivative of a Wiener process [17, 25], in the (i, j)th
column of the atmosphere for i, j = 1, ..., N .

The parameters b and τ0 conserves the values b = 25
km2 hr−1 and τ0 = 100 hr, as proposed by HS [17, 25].
In each phase of Fig. 1, the parameter values used were
a) D = 1.55 mm hr−1/2, F = 0.12 mm day−1, b) D =
1.94 mm hr−1/2, F = 0.048 mm day−1 c) D = 1.55
mm hr−1/2, F = −0.12 mm day−1 and d) D = 11.62
mm hr−1/2, F = −0.72 mm day−1.

b. Non-linear model: time-dependent Ginzburg-Landau
stochastic equation

In Fig. 1 panels i)-j), the outcomes of Eq. (11) were
obtained using the same domain and discretization as
well as initial and boundary conditions of the linear
model simulations. The parameters b and τ0 conserves
the same values proposed by Hottovy and Stechmann
[17, 25], while different values of F and D, in the
same range used by them (F0 ∼ ±1 mm day−1 and
D ∼ 10 mm hr−1/2), were explored to find the regimens
observed in Fig. 1, panels i)-l). The dynamics of the
non-linear terms in Eq. (11) was determined by the
parameters E and K whose values, after an exploration
of different orders of magnitude, were fixed in E = 1
hr−1 and K = 1 mm2 hr−1. The increase of both
parameters is associated with a major percolation in the
boundaries around open or closed clusters to the same
F and D values.

In particular, the parameter values used in Fig. 1 for
Eq. (11) were i) D = 6 mm hr−1/2, F = 1 mm day−1,
j) D = 9 mm hr−1/2, F = 0.2 mm day−1 k) D = 6
mm hr−1/2, F = −1 mm day−1 and l) D = 10.25
mm hr−1/2, F = −0.4 mm day−1.

c. Stochastic Swift-Hohenberg model

In Fig. 2 g) and Fig. 7 c) we show the formation
of two particular patterns that arise in the Rayleigh-
Bénard convection, hexagons and rolls. Eq. (21) was
solved numerically through implicit finite differences and
a successive over-relaxation (SOR) method as proposed
by Pérez-Moreno et al. [60].

For such simulations, the numerical method used a
two-dimensional discrete spatial grid in a domain of L
by L, where L = 500 km was divided in a N by N lattice
with N = 200 and lattice spacing of ∆x = ∆y = 2.5
km. In this case, this discretization was chosen to
approximate the cell diameter of the real ones. The
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boundary and initial conditions were considered again
as periodic and random. In the SOR method, it was
used as the iteration step k = 15 and as the relaxation
factor w = 1.3.

To form each pattern, the parameters were fixed as
follows: in Fig. 2 g) ε = 0.1, kc = 1.3 km−1, g = 1,
D = 0.15 mm km hr−1/2, F = 0.1 mm day−1. and
in Fig. 7 c) ε = 0.3, kc = 1.2 m−1, g = 0, D = 0.3
mm km hr−1/2, F = 0.25 mm day−1.

Appendix B: Fourier Transform Analysis

To investigate the validity and accuracy of the main
text results, in this section we present first, in subsection
a, the Fourier Transform software testing and second,
in section b,c and d, an examination of the numerical
method used to solve the Eq. (11) varying time aver-
ages, mesh grid and boundary conditions. Note that, in
sections b, c and d, the spectra present only a section
of the amplitude domains in order to make it easier to
identify the wavenumbers that appear as a reminiscence
of the characteristic metastables states of the Ginzburg-
Landau patterns formed when F ≈ 0.

a. Fourier Transform Benchmarks

First, we tested the Fourier spectrum software us-
ing known examples to reproduce the expected results.
Among the targets, the most simple one is two circular
apertures with different diameters, as shown in 8 panels
a) and d). In the middle and right columns, the respec-
tive Fourier spectrum of each aperture is showed in b),
e) the I/I0−ky plane, and in c), f) the orthogonal plane.

FIG. 8. Fourier transform code proof. a) Circle with radio
r = 20 pixels in a 200× 200 square lattice, the corresponding
2D Fourier transform is showed in b) the I/I0− ky plane and
c) the orthogonal plane. d), b) and e) are equivalent to a),
b) and c) to a circle with radio r = 50 pixels in a 200 × 200
square lattice.

FIG. 9. The corresponding time-averaged Fourier transforms
for the four distinctive phases of shallow cloud organization
generated by the Ginzburg-Landau stochastic model (Eq. 11)
with the same order and parameters used in Fig. 10, panels
e)-h). The Fourier transforms were averaged over 20 indepen-
dent simulations (from t = 100 to t = 300 each 10 time-steps).

The analysis is in perfect agreement with the expected
analytical results.

b. Time-averaged Fourier Transform

We next investigate the persistence of the domi-
nant wavenumbers that appear in the Ginzburg-Landau
Fourier spectra for times t ≈ 100 hrs. For this purpose,
we computed the time-averaged Fourier spectra of the
four distinctive cloud phases generated by the Ginzburg-
Landau stochastic model (see Fig. 9) once the patterns
reach a stationary state.

The corresponding 2D Fourier Transform of each phase
was averaged over 20 independent simulations in the total
period [150, 350] hrs at time intervals of tn = 10n+Ti for
n an integer. The initial time, Ti = 150 hrs, corresponds
to the common minimum time in which the four phases
reach the stability according to the 〈q(r, t)〉 value.

We conclude that these characteristic wavenumbers are
persistent for intermediate times t ≈ 100 hrs, although
may vanish at long times t ≈ 1000 hrs, as can be verified
in the phase diagrams that appear in the main text. As
the dynamics of the Cahn-Allen slows down as a square
root of the time, the characteristic wavenumbers corre-
spond to metastable states with a long decay time. We
recognize that this is possibly equivalent to metastability
presented in the two-dimensional Ising model under the
effects of an external magnetic field.

c. Comparison between Hottovy-Stechmann and
Ginzburg-Landau Fourier spectra

Once we had evidence of the Fourier spectra validity
used in the analysis of the patterns, we investigate the
role of non-linear terms of the Ginzburg-Landau model
in the emergence of patterns for certain couples of F and
D parameter values. Fig. 10 shows the Fourier transform
corresponding to the four cloud phases of interest gener-
ated by the Hottovy-Stechmann model, in Fig. 1 panels
a-d), and by the Ginzburg-Landau model, in panels e-h),
all taken in the time regimen t ≈ 100 hrs.
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FIG. 10. Fourier transforms for the four distinctive phases of
shallow cloud organization at the time regimen t ≈ 100 hr:
closed-cell stratocumulus, pockets of open-cell stratocumulus,
open-cell stratocumulus, and shallow cumulus generated by
the HS model (Eq. (3)) with the parameters proposed in Ref
[17] in panels a) to d) and by the Ginzburg-Landau model
(Eq. (11)) in panels e) to h). See section A for the parameter
values.

The Fourier transforms in the top row show no domi-
nant wave numbers over the rest, which is consistent with
the lack of organization in the Hottovy-Stechmann pat-
terns. However, the bottom row presents, as the Fig. 9
does, characteristic wavenumbers that give the first clue
of a more homogeneous distribution and so, more orga-
nization in the patterns formed by the Ginzburg-Landau
model. Also, the fact that these dominant wave numbers
appear only in the cellular phases allows to complement
the phase diagrams in the main text to understand the ef-
fect of the tuning parameters, F and D, in the formation
and transition of cloud phases.

d. Characterizing the effect of boundary conditions and
mesh grid on Ginzburg-Landau Fourier spectra

Most of the numerical studies which have been found
disordered spatio-temporal regimes formed by non-linear
partial differential equations have been done consider-
ing periodic boundary conditions, with the idea that in
the limit of very large systems, the boundary conditions
would not influence the system dynamics. However, for
the description of real systems, it is necessary a system-
atic study of boundary conditions to consider their pos-
sible effects in the formation of more realistic patterns.

For this reason, once we prove the validity of the
Fourier Transform program as well as the numerical so-
lution of Ginzburg-Landau model, in this section we will
focus on the behavior of the stochastic Ginzburg-Landau
equation on different mesh refinement and with different
types of boundary conditions.

First, through the comparison of periodic, Neumann
and Dirichlet boundary conditions (see Fig. 11) we sum-
marize the behavior observed numerically on the closed-

cellular regimen formed in a two-dimensional rectangular
domain under the same parameters detailed in Appendix
A.

Applying null Dirichlet (q = 0), and Neumann ( ∂q∂n =
0) boundary conditions, in the left column of Fig. 11 we
show the patterns formed under each kind of condition.
In the right column, we can see their respective Fourier
spectra. For the three cases, the spectra reveal similar-
ities between them. In the left panels, it is possible to
appreciate such behavior qualitatively. However, for the
Dirichlet and Neumann cases, near to the walls, we can
see open regions in contradistinction to the periodic case.

On the other hand, to investigate the effects of the
mesh refinement on pattern formation, we simulate our

FIG. 11. Fourier transforms of the closed-cell phase at the in-
termediate time regimen t ≈ 100 hr. Panels in the left column
show the closed cellular pattern taken from Ginzburg-Landau
stochastic model (Eq. (11)) using a) periodic boundary con-
ditions, c) Dirichlet boundary conditions and e) Neumann
boundary conditions. In the right column, we present the
corresponding Fourier spectrum of each pattern.
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FIG. 12. Fourier transform of the closed-cell phase at the
time regimen t ≈ 100 hr. Panels in the left column show the
closed cellular pattern taken from Ginzburg-Landau stochas-
tic model (Eq. (11)) solved in a square discrete domain of
L by L, with L = 500 km, divided in a N × N lattice with
a) N = 100, b)N = 200 and N = 300. In the right column,
we present the corresponding Fourier spectrum of each pat-
tern. The maximal spatial frequencies in panels b), d) and
e) are determined by the resolution of the grid used in the
simulation given in the units of kx.

system with the same initial and periodic boundary con-
ditions specified in Appendix A over a square domain
with side L = 500 km. In Fig. 12 we present the re-
sults for different mesh refinements ∆(x) = L/N where
N is the number of lateral divisions. In a), N = 100, c)
N = 200 and e) N = 300 cells. By observation of the left
column is clear that ∆(x) affects the CAF ; particularly,
in panel e), this is visible with the apparition of open
regions and the decrease of the closed area percolation,
compared with panels a) and c). Such effect has been
reported previously by HS and that’s why one need to
tune ∆(x) with observational data.

Appendix C: Ginzburg-Landau phase diagrams

The study of the Ginzburg-Landau time-dependent
equation requires considering the effects of the linear and
non-linear parameters in the phase formation and tran-
sition. Represented in the main text as E and K, the
polynomial terms in Eq. (11) were explored systemati-
cally by identifying two limits: 1) when E and K tend
to 0 with results close to the Hottovy and Stechmann
outputs and, 2) when E and K increase. In the phase
diagram, this produces the formation of symmetry with
respect to an intermediate D value, as shown in Figs.13
and 14.

FIG. 13. Phase diagram of shallow cloud regimes for the
Ginzburg-Landau stochastic model given by Eq. (11). The
plot shows the mean cloud area fraction (〈CAF 〉) as a function
of D and F fixing the parameters E = 8.5 hr−1 and K = 6.5
mm2 hr−1.

FIG. 14. Plot of the cloud area fraction standard deviation
(STDCAF ) as a function of the D and F , for the Ginzburg-
Landau stochastic model given by Eq. (11), fixing the param-
eters E = 8.5 hr−1 and K = 6.5 mm2 hr−1.
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