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Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are
not random pairwise encounters: they occur within various types of gatherings such as workplaces, households,
schools, and concerts, best described by a higher-order network structure. We model contagions on higher-
order networks using group-based approximate master equations, in which we track all states and interactions
within a group of nodes and assume a mean-field coupling between them. Using the Susceptible-Infected-
Susceptible dynamics, our approach reveals the existence of a mesoscopic localization regime, where a disease
can concentrate and self-sustain only around large groups in the network overall organisation. In this regime,
the phase transition is smeared, characterized by an inhomogeneous activation of the groups. At the mesoscopic
level, we observe that the distribution of infected nodes within groups of a same size can be very dispersed, even
bimodal. When considering heterogeneous networks, both at the level of nodes and groups, we characterize
analytically the region associated with mesoscopic localization in the structural parameter space. We put in
perspective this phenomenon with eigenvector localization and discuss how a focus on higher-order structures
is needed to discern the more subtle localization at the mesoscopic level. Finally, we discuss how mesoscopic
localization affects the response to structural interventions and how this framework could provide important
insights for a broad range of dynamics.

I. INTRODUCTION

Classic epidemiological models have been successful at
providing meaningful insights on the spreading of infection
diseases [1, 2]. Their simplicity is their strength : from as lit-
tle information as the basic reproduction number R0, one can
tell whether or not a disease should invade or not a popula-
tion. However, we cannot hope to represent the complexity
of human behavior and of our modern social structure with
mathematical models relying solely on an average individual.
This is even more true when considering more complex types
of spreading processes, such as social contagions [3–5] or the
coevolution of diseases [6].

The study of spreading processes on networks allows to
look beyond the mass action principle, to account for more
realistic contact patterns while keeping our models simple
enough to provide meaningful insights [7, 8]. One success
of network science has been to unveil the impact of the het-
erogeneity of contacts, and how this affects critical properties
of these systems. Heterogeneous mean-field theories [9, 10],
heterogeneous pair approximations [11, 12], and approximate
master equations [13–15] represent only a few of the many
techniques that have been developed to describe the behav-
ior of dynamical processes on networks with heterogeneous
number of contacts.

Social networks, however, are more than just random con-
tacts between heterogeneous individuals: interactions occur in
a coordinated manner because of a higher-level organization.
At the mesoscopic level, we see groups of individuals that are
more or less densely connected to one another [16, 17]. We
can thus shift from asking if a contagion can invade a popu-
lation, to where it should thrive within that population. This

question is best embodied by the phenomenon of epidemic
localization: near the epidemic threshold, the disease exists
only in some parts of the whole network.

The localization of epidemics has been studied mostly
through the lens of extensive numerical simulations or
quenched mean-field theory [18–21]. A general observation is
that for most complex networks, an epidemic should either be
localized around the innermost network core or the hubs [19].
The localization subgraph depends on the structure, but also
on the details of the dynamics [22, 23]. Moreover, localization
dramatically affects the fundamental critical properties of an
epidemic : it is notably possible to observe a Griffiths phase,
where the system slowly relaxes to an inactive state [24–28].
Another notable effect is the smearing of the phase transition,
where the order parameter develops inhomogeneously beyond
the critical point [26–30].

Despite the important body of work on epidemic localiza-
tion, theoretical results are still limited to a handful of mod-
els and most works have used a node-centric perspective. To
broaden our understanding of localization of dynamical pro-
cesses and embrace the higher-level organization of complex
networks, we argue that higher-order representations of net-
works should be used [31]. Furthermore, we claim that ap-
proximate master equations represent powerful and flexible
approaches for this purpose.

In this paper, we reveal a phenomenon we call mesoscopic
localization for spreading processes on certain heterogeneous
networks with a higher-level organization (see Fig. 1). It is
characterized by the localization of the contagion in large
but finite-size mesoscopic substructures near the epidemic
threshold [32], with a phase transition that is smeared at the
global level. To illustrate this phenomenon, we use a group-
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FIG. 1. Simple illustration of the mesoscopic localization phe-
nomenon. In both regimes, the contagion is concentrated around the
innermost core of the network, but the composition of the core is dif-
ferent. In what we called the delocalized regime, substructures of
all sizes (e.g. triangles, 4−cliques, etc.) contribute to the contagion,
while in the mesoscopic localization regime, there is a strong bias
toward the largest and densest substructures.

based framework together with an approximate master equa-
tion analysis of the SIS dynamics. We present a complete
analytical description of the mesocopic localization regime,
while we describe its impact on interventions in Ref. [33] to
show how accounting for this localization regime is critical to
our ability to control contagions on networks.

This paper is structured as follows. First, we introduce
the group-based framework and the approximate master equa-
tions in Sec. II. We obtain an implicit expression and explicit
bounds for the epidemic threshold in Sec. II A. With a devel-
opment of the stationary state near the critical point, we show
in Sec. II B that mesoscopic localization emerges from a suf-
ficiently weak coupling between the groups. Second, we fully
characterize mesoscopic localization in Sec. III. We derive
asymptotic results for the scaling of the epidemic threshold in
Sec. III A, leading to explicit expressions for the localization
regimes. We then consider the effects of finite-size cut-offs in
Sec. III B. We complete our analysis using the inverse partic-
ipation ratio, further connecting our work with the literature
on eigenvector localization. Our comparison reveals the im-
portance of a change of perspective—a focus on higher-level
group organization rather than individual nodes—in order to
detect localization phases at the mesoscopic level. Finally, in
Sec. IV, we discuss possible extensions of our work and some
direct implications for the control of epidemics [33].

FIG. 2. Framework for contagions on higher-order networks. Nodes
are assigned to m groups and groups are of various sizes n, distributed
according to gm and pn. Groups are equivalent to cliques in the main
text. We consider a SIS dynamics where infected nodes transmit the
disease at rate β, and recover at rate µ.

II. GROUP-BASED SIS MODEL

There exists multiple representations for higher-order struc-
tures [31], ranging from simplicial complexes to hypergraphs,
or more simply a bipartite graph, where nodes are attached
to groups that encode the interaction. In this paper, we use
the latter [see Fig. 2]. Groups could be used to represent any
kind of mesoscopic substructures, dense or sparse, with pos-
sibly weighted and directed edges. They could also be used
to model higher-order interactions that cannot be decomposed
into simpler pairwise interactions. To simplify the mathemat-
ical description, in the main text we consider that all groups
of n nodes represent cliques, i.e., fully connected and undi-
rected subgraphs. In Appendix E, we generalize the approach
to consider weighted cliques.

We assume that each node in the network belongs to a cer-
tain number of groups, m, the membership of the node, which
is drawn from a membership distribution gm. The size n of a
group is drawn from a group size distribution pn. We consider
infinite-size heterogeneous random networks where nodes are
assigned to groups uniformly at random [17]. In other words,
m and n are uncorrelated. Throughout the paper, we denote
expected values taken over pn and gm as 〈 · · · 〉, where the in-
terior of the bracket makes it clear over which distribution the
average is performed.

Let us introduce a few structural properties associated with
this ensemble. The average membership of a node is 〈m〉 and
the average group size is 〈n〉. If we pick a node at random and
follow a group to which it belongs, the distribution for the size
of that group is proportional to npn. Consequently, the average
excess group size, i.e., the average number of neighbors this
node has in that group, is 〈n(n − 1)〉 /〈n〉. Since m and n are
uncorrelated, the average degree of a node (in the one-mode
projection of the bipartite graph) is therefore

〈m〉 〈n(n − 1)〉
〈n〉

.

On these networks, we consider the Susceptible-Infected-
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Susceptible (SIS) dynamics in which each node is either in-
fected or susceptible. Infected nodes transmit the disease to
their neighbors at rate β and recover to the susceptible state at
a rate µ [see Fig. 2].

We describe the dynamics using the heterogeneous clique
approximation of Ref. [34]. We track sm(t), the probability for
a node of membership m to be susceptible at time t, and cn,i(t),
the probability to observe i infected nodes within a group of
size n at time t.

We define the following system of approximate master
equations

dsm

dt
= µ(1 − sm) − mrsm , (1a)

dcn,i

dt
= µ(i + 1)cn,i+1 − µicn,i + (n − i + 1){β(i − 1) + ρ}cn,i−1

− (n − i){βi + ρ}cn,i , (1b)

which contains a total of O(mmax + n2
max) equations, where

mmax and nmax are the maximal membership and maximal
group size respectively. From now on, we set µ ≡ 1 without
loss of generality.

The mean fields r(t) and ρ(t) are defined as

r(t) =

∑
n,i βi (n − i)cn,i(t)pn∑

n,i(n − i)cn,i(t)pn
, (2a)

ρ(t) = r(t)
[∑

m(m − 1) msm(t)gm∑
m msm(t)gm

]
. (2b)

If we take a susceptible node and select a random group to
which it belongs, r(t) is the mean infection rate associated to
that group. Indeed, the joint distribution for the size n of the
group and the number of infected nodes i within that group is
proportional to (n − i)cn,i(t)pn. Then r(t) is just an average of
the infection rate received, βi, over this joint distribution.

Now if we pick a susceptible node in a group, ρ(t) is the
mean infection rate received from all external groups (i.e., ex-
cluding the one we picked the node from). Assuming that
infection coming from different groups are independent pro-
cesses, we multiply r(t) with the mean excess membership
of a susceptible node to get ρ(t). The membership distribu-
tion of a susceptible node picked in a group is proportional to
msm(t)gm, thus we simply average m − 1, the excess member-
ship, over this distribution.

The global prevalence (average fraction of infected nodes)
is

I(t) =
∑

m

gm[1 − sm(t)] ,

and the prevalence within groups of size n is

In(t) =
∑

i

i
n

cn,i(t) .

Note that unless specified otherwise, sums over m (n) are over
every value such that gm > 0 (pn > 0), and sums over i cover
the range {0, . . . , n}.

In Eq. (1), the evolution of each sm is treated in a mean-
field fashion [35], while the evolution of each cn,i is described

using a master equation. The infection rate due to infected
nodes within a group is treated exactly, while the contribution
of infected nodes in external groups is approximated (i.e. the
terms involving ρ). We therefore refer to our approach as ap-
proximate master equations.

The system eventually settles to a stationary state in the
limit t → ∞, and henceforth we assume that the quantities
sm, cn,i, r and ρ have reached a fixed point. These variables
characterizing the stationary state are obtained by solving the
following self-consistent expressions

sm =
1

1 + mr
, (3a)

(i + 1)cn,i+1 ={i + (n − i)
[
βi + ρ

]
}cn,i ,

− (n − i + 1)
[
β(i − 1) + ρ

]
cn,i−1 , (3b)

obtained from Eq. (1), and where r and ρ are still given by
Eq. (2). It will be useful to rewrite Eq. (3b) more explicitly as

cn,i = cn,0
n!

(n − i)!i!

i−1∏
j=0

[β j + ρ] ∀i ∈ {1, . . . , n} , (4)

with cn,0 = 1 −
∑n

i=1 cn,i.

A. Epidemic threshold

For the SIS dynamics, there exists a critical value βc for the
transmission rate, called the epidemic threshold. For β < βc,
the absorbing-state—where all nodes are susceptible—is at-
tractive for all initial conditions. For β > βc, the absorbing-
state becomes unstable and there exists a non-trivial stationary
state.

To obtain an expression for βc, let us redefine the stationary
state observables as functions of ρ, i.e., r(ρ), sm(ρ) and cn,i(ρ).
We then define the right-hand side of Eq. (2b) as F(ρ). Since
F(ρ) is bounded from above [36], a positive solution ρ = F(ρ)
exists if

dF
dρ

∣∣∣∣∣
ρ→0

> 1 .

At the epidemic threshold βc, this derivative is exactly 1, re-
sulting in ρ → 0, r(ρ) → 0, sm(ρ) → 1 and cn,i(ρ) → δi,0,
where δi, j is the Kronecker delta.

It will prove useful to expand cn,i near the epidemic thresh-
old as cn,i(ρ) = δi,0 + hn,iρ + O(ρ2). From Eq. (4), we obtain

hn,i ≡
dcn,i

dρ

∣∣∣∣∣
ρ→0

=
n!βi−1(i − 1)!

(n − i)!i!
∀i ∈ {1, . . . , n} ,

and by definition hn,0 ≡ −
∑n

i=1 hn,i.
For all n, we encode each sequence

(
hn,i

)n
i=0 in the generat-
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ing function

Hn(x; β) =
∑

i

hn,ixi ,

= hn,0 +
1
β

n∑
i=1

n!
(n − i)!i!

(βx)i(i − 1)! ,

= hn,0 +
1
β

∫ ∞

0

n∑
i=1

n!
(n − i)!i!

(βux)iu−1e−udu ,

= hn,0 +
1
β

∫ ∞

0
[(1 + βux)n − 1]u−1e−udu . (5)

Interestingly, the auxiliary generating function

Qn(x; β) =
Hn(x; β) − hn,0

Hn(1; β) − hn,0
=

∫ ∞
0 [(1 + βux)n − 1]u−1e−udu∫ ∞
0 [(1 + βu)n − 1]u−1e−udu

,

can be interpreted as the probability generating function for
the quasi-stationary distribution (only for i > 0) of the num-
ber of infected nodes in a group of size n, under the influence
of a weak (vanishing) external field.

These generating functions allow to write

dF
dρ

∣∣∣∣∣
ρ→0

= β
〈m(m − 1)〉
〈m〉〈n〉

〈
(n − 1)H′n(1; β) − H′′n (1; β)

〉
, (6)

where the derivatives are with respect to x and we have used
standard properties of generating functions in combination
with Eqs. (2a) and (2b). We simplify the above equation by
noting that

(n − 1)H′n(1; β) − H′′n (1; β) = n(n − 1)
∫ ∞

0
(1 + βu)n−2e−udu .

The epidemic threshold βc is thus obtained by solving the fol-
lowing implicit equation for β

β
〈m(m − 1)〉
〈m〉〈n〉

〈n(n − 1)An(β)〉 = 1 , (7)

where

An(β) ≡
∫ ∞

0
(1 + βu)n−2e−udu . (8)

Appendix A provides a detailed development leading to
Eqs. (6)-(8). An can also be rewritten in terms of the upper
incomplete gamma function, but the present integral represen-
tation will be more useful later on.

Although it is not possible to write βc in closed form, we
provide bounds for An(β),

1 ≤ An(β) ≤
1

1 − β(nmax − 2)
.

Details of this result are presented in Appendix B. These in-
equalities lead to lower and upper bounds on the epidemic
threshold

βc ≥
1

Ω(gm, pn) + (nmax − 2)
, (9a)

βc ≤
1

Ω(gm, pn)
, (9b)

where we defined the coupling between groups as

Ω(gm, pn) ≡
(
〈m(m − 1)〉
〈m〉

) (
〈n(n − 1)〉
〈n〉

)
, (10)

the product of the average excess group size and the aver-
age excess membership. If we take a random node within a
group, Ω(gm, pn) corresponds to its average number of exter-
nal neighbors. It is therefore a good measure of the interaction
of groups with one another.

B. Behavior for heterogeneous membership and group size

Let us consider power-law distributions pn ∝ n−γn and
gm ∝ m−γm with large cut-offs nmax � 1 and mmax � 1. We
set γn, γm > 2 so that 〈n〉 and 〈m〉 remain bounded.

For reasons that will become clear in Sec. III, we distin-
guish a strong group coupling (Ω(gm, pn) � nmax) from a
weak group coupling (Ω(gm, pn) � nmax). Figure 3 illustrates
the stationary state properties of the dynamics for two differ-
ent pairs of exponents (γm, γn), Fig. 3(a-c) corresponding to
a strong group coupling and Fig. 3(d-f) to a weak group cou-
pling.

Comparing Fig. 3(a) and Fig. 3(d), we note that all sm de-
crease faster in the former case as the ratio β/βc increases.
From Eq. (3a), this is explained by a faster increase of the
mean field r, resulting directly from a stronger coupling be-
tween groups.

The difference between Fig. 3(b) and 3(e) is more strik-
ing. While the group prevalence In does not vary much with
n in Fig. 3(b)—the coupling Ω(gm, pn) is strong—we observe
a sequential activation of the groups for the weakly coupled
system in Fig. 3(e). Figures 3(c) and 3(f) provide an even
clearer illustration for a fixed β. When the coupling is strong,
all distributions cn,i are concentrated around roughly the same
fraction of infected nodes within the groups. Weak coupling
yields a more diverse scenario where smaller groups have very
few infected nodes while the prevalence in larger groups can
be very high. We qualify the latter as active groups. For
groups of moderate size (e.g., n = 50), cn,i is bimodal and
highly dispersed, akin to a system near a critical point.

This is a telling illustration of why stochastic dynamics on
networks with a high level of group organization are best de-
scribed by approximate master equations: groups of nodes
can have heterogeneous state distributions, and a cruder ap-
proximation (e.g., models averaging i/n for all groups of a
given size or other mean-field approximations) is likely to
miss many rich features of the dynamics. These features may
be interesting by themselves, and important for the overall
evolution of the process. While mean-field approaches are
sometime qualitatively correct, they are most often quantita-
tively off the mark [14, 37]. Approximate master equations
yield both qualitatively and quantitatively correct results (see
Appendix D), ensuring that the observed phenomena are true
properties of the original stochastic process.

The scenario presented by Figs. 3(e) and 3(f) is typical of
a smeared phase transition. Instead of clean critical point
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FIG. 3. Comparison of the stationary state near the epidemic threshold in the delocalized and mesoscopic localization regimes. Stationary
state solutions were obtained from Eqs. (3a) and (4) for heterogeneous membership and group size distributions of the form gm ∝ m−γm and
pn ∝ n−γn . We used m, n ∈ {2, . . . , 100}. The epidemic threshold βc is the solution to Eq. (7). (a) and (d) Stationary fraction of susceptible
nodes with a given membership m as a function of the transmission rate. (b) and (e) Group prevalence In (solid lines) and global prevalence I
(dashed line) as a function of the transmission rate. (c) and (f) Distributions for the number of infected nodes i in a group of size n, obtained
for β = 2βc corresponding to the vertical dotted lines in the panel on their left. Spline interpolations are used for visual purpose. Upper row
(a)-(c) γm = γn = 2.2. Lower row (d)-(f) γm = 4 and γn = 3.5.

driven by a collective ordering, subparts of the system self-
activate independently from the rest, as shown by the local or-
der parameters In. This behavior has an intuitive explanation.
Since pn ∝ n−γn , a small proportion of the groups are very
large, albeit of finite size. Near βc, the largest groups are able
to self-sustain an endemic state by themselves, but since the
coupling is weak, the contagion does not spread through the
rest of the network. As β increases beyond βc, more groups
are able to self-sustain a local outbreak, until a point where the
epidemic delocalizes and invades the whole network. This an-
alytical description is in line with the work of Ref. [25], where
numerical evidence for Griffiths phases was found in a similar
setting.

To predict the emergence of this phenomenon, we need to
have some better intuition of the behavior of In near βc. Since
ρ→ 0 near the critical point, we write

In =
1
n

H′n(1; β)ρ + O(ρ2) .

Performing a saddle-point approximation for H′n(1; β), we ob-

tain the following asymptotic behavior for large n

H′n(1; β) ∼


n

1 − βn
if β < n−1

n3/2 (βn)n e−n+1/β if β ≥ n−1 ,
(11)

where “∼” means asymptotically proportional. For β = an−1

where a > 1 is a constant independent of n, this implies that
In = O

(
n1/2ebn

)
with b > 0. A more formal proof could be

made following an argument similar to the one used in Ap-
pendix B. Therefore, near the epidemic threshold (i.e. β =

βc + ε with ε � 1), we expect the epidemic to be local-
ized within any groups of size n for which β > n−1. More
formally, we say that the epidemic is localized near the epi-
demic threshold when Inmax/I2 = O(n1/2

maxebnmax ), and we then
expect a smeared phase transition, such as the one presented
in Fig. 3(e). Conversely, if Inmax/I2 = O(1) near βc, then we
say that the epidemic is delocalized, and we expect a phase
transition similar to the one shown on Fig. 3(b).
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III. MESOSCOPIC LOCALIZATION

In this section, we fully characterize the emergence of
mesoscopic localization, where the epidemic is localized only
within the largest groups near βc for power-law distributions
of membership and group size. In Sec. III A, we derive
general asymptotic expressions to distinguish the localization
regimes, establishing a partition of the (γm, γn) space. We then
investigate in Sec. III B the effect of finite cut-offs on the lo-
calization regimes, and how our results relate to earlier works
using the inverse participation ratio.

A. Asymptotic localization regimes

Let us assume that both nmax → ∞ and mmax → ∞. As it
will be shown, the relation between the cut-offs nmax and mmax
influences the localization regimes. Henceforth, let us assume
a general asymptotic relationship of the form

mmax ∼ nαmax , (12)

where the exponent α ≥ 0 encodes how both limits nmax → ∞

and mmax → ∞ are taken.
To gain some insights on the meaning of Eq. (12), let us

assume for the sake of the argument that we have a finite-size
network with N nodes and 〈m〉N/〈n〉 ∼ N groups. We could
impose cut-offs that are agnostic to the underlying distribu-
tion gm and pn, for instance mmax ∼ N1/2 and nnmax ∼ N1/2.
This would correspond to α = 1. Another option, borrowed
from extreme value theory, would be to use the natural cut-
offs of the two power-law distributions, mmax ∼ N1/(γm−1)

and nmax ∼ N1/(γn−1) [38, 39]. This would correspond to
α = (γn − 1)/(γm − 1). Finally, fixing one of the two cut-offs
while letting the other go to infinity would correspond to the
limit cases α→ 0 or α→ ∞.

We now turn to the extraction of the asymptotic behavior
of the epidemic threshold in the limit nmax → ∞ for different
combinations of γn and γm—this will inform us on the type of
phase transition, i.e. a localized or a delocalized one.

First, we obtain a tighter upper-bound on βc in the limit
nmax → ∞ for power-law group size distributions pn ∝ n−γn .
Formally, there exists some n′ ∈ N such that for all nmax > n′,

βc ≤ min
[

1
Ω(gm, pn)

,
1

nmax − 2

]
. (13)

Details are provided in Appendix B, but the general idea is
to combine Eq. (9b) with another bound found by forbidding
Anmax to grow exponentially with nmax. The lower bound of
Eq. (9a) and the upper bound of Eq. (13) tightly constrain the
asymptotic behavior of βc, which we write as

β−1
c ∼ Ω(gm, pn) + nmax . (14)

Second, let us examine the asymptotic behavior of the cou-
pling Ω(gm, pn). The first factor in Eq. (10) has the following

behavior

〈m(m − 1)〉
〈m〉

∼


nα(3−γm)

max if γm < 3 ,
α ln nmax if γm = 3 ,
1 if γm > 3 ,

(15)

and the second one has a similar form

〈n(n − 1)〉
〈n〉

∼


n3−γn

max if γn < 3 ,
ln nmax if γn = 3 ,
1 if γn > 3 .

(16)

Combining Eqs. (15) and (16) for different γm and γn leads to
different scalings for Ω(gm, pn).

As a result, we find three cases for the scaling of βc in the
limit nmax → ∞:

1. Ω(gm, pn)n−1
max → ∞ =⇒ βcnmax → 0 ,

2. Ω(gm, pn)n−1
max → O(1) =⇒ βcnmax → q < 1 ,

3. Ω(gm, pn)n−1
max → 0 =⇒ βcnmax → 1 .

This classification allows us to asssociate an asymptotic be-
havior to each pair (γm, γn). If γm ≥ 3, we necessarily have
βcnmax → 1. Otherwise, if 2 < γm < 3 and

• 2 < γn < 3, then

βcnmax →


0 if 3 − γn + α(3 − γm) > 1 ,
q < 1 if 3 − γn + α(3 − γm) = 1 ,
1 if 3 − γn + α(3 − γm) < 1 ,

(17a)

• γn = 3, then

βcnmax →

{
0 if α(3 − γm) ≥ 1 ,
1 if α(3 − γm) < 1 ,

(17b)

• γn > 3, then

βcnmax →


0 if α(3 − γm) > 1 ,
q < 1 if α(3 − γm) = 1 ,
1 if α(3 − γm) < 1 .

(17c)

Note that the asymptotic behavior βcnmax → q < 1 never
fills an area in the (γm, γn) space—it is simply a limiting
case. The two other cases fill the (γm, γn) space, and we in-
terpret them as different localization regimes using the def-
initions of Sec. II B. In the region where βcnmax → 0, we
have Inmax/I2 = O(1) near the epidemic threshold, and the epi-
demic is delocalized since groups of all sizes are involved. In
the region where βcnmax → 1, we have, near the epidemic
threshold (β = βc + ε with ε � 1), β > n−1

max, and therefore
Inmax/I2 = O(n1/2

maxebnmax ). The epidemic is therefore localized,
thriving only in the largest groups.

Equations (17a-c) are thus used to identify the region where
we expect mesoscopic localization, as illustrated in Fig. 4 for
different values of α. One striking observation is the ubiq-
uity of mesoscopic localization: for a large portion of the pa-
rameter space, we expect a disease to be localized around the
largest groups. It is worth to recall that the average degree
of a node is proportional to 〈n(n − 1)〉, hence sparse networks
correspond only to the upper portion (γn > 3) of the phase
diagrams in Fig. 4.
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FIG. 4. Asymptotic localization regimes for power-law membership and group size distributions, and for different cut-off relationships
mmax ∼ nαmax. In the pale green regions, the epidemic is localized near the epidemic threshold βc, while it is delocalized in the darker blue
regions. The boundary separating the two regions is inferred from Eqs ((17)a-c).
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FIG. 5. Impact of finite cut-offs on the boundary separating the local-
ized and delocalized regimes for power-law membership and group
size distributions. We used m, n ∈ {2, . . . , nmax}, hence α = 1, and
different values of nmax. Finite cut-offs boundaries are obtained by
imposing βc = n−1

max and solving Eq. (7) for different pairs (γm, γn).
The asymptotic case nmax → ∞ is obtained from Eqs. (17a-c).

B. Finite cut-offs and mesoscopic inverse participation ratio

The results of Sec. III A were obtained in the asymptotic
limit nmax → ∞. However, cut-offs in real systems are always
finite. A finite value for nmax relaxes the conditions defined
in Eqs. (17a-c). For a pair (γm, γn) in the asymptotically lo-
calized regime, it is possible to have either βc ≷ n−1

max. To
stay coherent with our definition for a localized epidemic, we
must have βc ≥ n−1

max. Therefore, the condition βc ≡ n−1
max leads

to the finite cut-offs boundary, given by solutions to Eq. (7)
in terms of γm and γn. In Fig. 5, we illustrate the bound-
ary separating the delocalized and localized regimes for in-
creasing values of nmax, slowly converging on the asymptotic
conditions. The size of the mesoscopic localization region is
smaller compared with that of the asymptotic limit, but it still
fills most of the parameter space corresponding to sparse net-

works (γn > 3).
Another consequence of finite cut-offs is to blur the line

between localized and a delocalized epidemic. Taking pairs
(γm, γn) closer to the finite-size boundary, we show how this
affects the group prevalence in Fig. 6(a) and Fig. 6(b), with
βc < n−1

max and βc > n−1
max respectively. Near βc, we still as-

sociate Fig. 6(a) and 6(b) with a delocalized and localized
outbreak respectively, but the difference is less marked com-
pared to Fig. 3(a) and Fig. 3(b). Therefore, even though the di-
chotomy is sharp and clear in the asymptotic limit nmax → ∞,
we need to keep in mind that for realistic systems, localization
lives on a spectrum. Our next goal is to quantify mesoscopic
localization.

At the node level, an epidemic is considered localized if the
contagion is mostly present within a subset of nodes L ⊂ V,
referred to as the localization set, andV = {1, . . . ,N} is the set
of all nodes. An important result from quenched mean-field
theory is that the marginal probability for each node j of be-
ing infected near βc is proportional to v j, where {v j} j∈V are the
elements of the principal eigenvector (PEV) of the adjacency
matrix. Epidemic localization can thus be mapped onto eigen-
vector localization [20, 40–43]. With a normalized eigen-
vector satisfying

∑
j v2

j ≡ 1, a completely delocalized epi-
demic at the level of nodes implies v j ∼ N−1/2 ∀ j ∈ V, while
a purely localized one corresponds to v j ∼ |L|

−1/2 ∀ j ∈ L and
v j ∼ 0 ∀ j < L. A standard scalar to quantify the localization
is the inverse participation ratio Y4(N). We use the following
rescaled version

Ỹ4(N) ≡ N
N∑

j=1

v4
j . (18)

For a delocalized eigenvector, Ỹ4(N) ∼ 1, while for a localiza-
tion set of size |L| ∼ Nδ, then Ỹ4(N) ∼ N1−δ. Consequently,
Ỹ−1

4 is an effective measure for the fraction of nodes belonging
to the localization set.

At the mesoscopic level, we consider an epidemic local-
ized if the contagion is mostly present within a subset of the
groups. The difference is subtle, but important : if we observe
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FIG. 6. Comparison of the stationary state and the level of localization near the epidemic threshold for networks closer to the finite cut-offs
boundary. We used power-law membership and group size distributions with m, n ∈ {2, . . . , 100}. (a)-(b) Group prevalence (solid lines) and
global prevalence (dashed line) as a function of the transmission rate. (a) γm = γn = 2.6, yielding βc < n−1

max. (b) γm = γn = 3.1, yielding
βc > n−1

max. (c) Quantification of the mesoscopic localization phenomenon using the inverse participation ratio defined at Eq. (19). The solid line
corresponds to the boundary between the localized and delocalized regimes, obtained by imposing βc = n−1

max and solving Eq. (7) for different
pairs (γm, γn).

a delocalized epidemic at the mesoscopic level, it could still
be localized at the level of nodes. To quantify mesoscopic
localization, we use an inverse participation ratio as well

Ŷ4(pn) =

∑
n pnI4

n(∑
n pnI2

n
)2 =

1 if In ∝ 1 ∀n ,

p−1
n′ if In ∝ δn,n′ .

(19)

As a result, Ŷ−1
4 is an effective measure for the fraction of

groups participating to the epidemic. Interestingly, Eq. (19)
can be obtained with our analytical formalism, using In eval-
uated at the epidemic threshold βc, or through the connection
with quenched mean-field theory. In the latter case, one ex-
tracts the PEV of a network with cliques, then compute

In ∝
1
|Cn|

∑
S∈Cn

∑
j∈S

v j

n
, (20)

where Cn is the set of cliques of size n and S is the set of
nodes belonging to a specific clique. The group distribution
then correspond to pn ∝ |Cn|. Note that this measure relies
on an explicit knowledge of Cn, which is already given for
synthetic networks (see Appendix C), or could be extracted
using a clique decomposition for real networks.

In Fig. 6(c), we illustrate the behavior of Ŷ4(pn) as a func-
tion of (γm, γn), obtained with our analytical formalism. As
expected, the inverse participation ratio changes drastically
near the boundary separating the delocalized and localized
regimes for finite cut-offs. The change would become sharper
and sharper as we let nmax → ∞, and the position of the
boundary would move closer to the asymptotic limit, as in
Fig. 5. This inverse participation ratio is therefore a good
measure for mesoscopic localization, and could be used to get
insights on how the epidemic changes from a localized to a
delocalized phase as we increase β beyond βc.

In Fig. 7, we compare the finite-size scaling of the inverse
participation ratios for nodes and groups, obtained by gen-
erating synthetic networks in the delocalized and localized

regime and extracting their PEV. Although our analytical for-
malism effectively describes groups of a sub-extensive size,
this is not a necessary condition to observe mesoscopic local-
ization. We have therefore relaxed this assumption to generate
the synthetic networks: we have used cut-offs that scale with
the number of nodes mmax = N1/(γm−1) and nmax = N1/(γn−1).
These are more appropriate for the finite-size scaling analysis.

In Fig. 7(a), we see that the inverse participation ratio for
nodes Ỹ4 increases in both the delocalized and the mesoscopic
localization regime. It scales similarly to the inverse fraction
of the nodes belonging to the maximal K−core, in agreement
with previous works on the subject [19, 20, 42]. The localiza-
tion set can thus be associated with the innermost core in both
cases, and despite a different scaling law, there is no clear sign
of a change of regime between the two curves. Figure 7(b)
tells us another story: the inverse participation ratio for groups
Ŷ4 converges to 1 in the delocalized regime, but scales as a
power law in the mesoscopic localization regime, clearly in-
dicating a transition of regime.

Figure 7 strongly advocates for a change of perspective if
we want to detect potentially hidden localized phase at the
mesoscopic level. We need to focus on the higher-level orga-
nization, the groups, and find better ways to characterize their
impact on the dynamics. If we focus our attention at the node
level, Fig. 7(a) tells us that an epidemic localized at the meso-
scopic level is no different from a delocalized one—the conta-
gion is mostly present within the innermost core in both cases.
However, the composition of this core and of the outer shells is
quite different, as can be inferred from Ŷ4 in Fig. 7(b). In the
localized regime, the innermost core is composed mostly of
the largest groups, while groups of all sizes compose the core
in the delocalized regime. Recall that a bias toward larger
groups has dramatic consequences on the dynamics, leading
to a smeared phase transition instead of a clean one.

Before closing this section, it is probably useful to stress
once more the versatility and generality of our approach. The
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FIG. 7. Mesoscopic localization is imperceptible using the stan-
dard inverse participation ratio on nodes. We performed a finite-
size scaling of the inverse participation ratio in the delocalized and
mesoscopic localization regime, for nodes and groups. We gener-
ated multigraphs of various sizes with different power-law member-
ship and group size distributions [see Appendix C]. In the delocal-
ized regime, we used γm = 2.3 and γn = 3.5 ; in the localized
regime, we used γm = γn = 3.5. In both regimes, m ∈ {2, . . . ,mmax}

and n ∈ {2, . . . , nmax} with natural cut-offs mmax = N1/(γm−1) and
nmax = N1/(γn−1). (a) The solid lines represent the average inverse
participation ratio Ỹ4 for nodes [Eq. (18)]. The dashed (dotted) line
is the average inverse of the fraction of nodes associated to the max-
imal K−core in the delocalized (localized) regime. (b) The solid
lines represent the average inverse participation ratio Ŷ4 for groups
[Eq. (19)]. We extracted In from the PEV. The shaded regions in
both panels correspond to one standard deviation.

results on synthetic networks are representative of results that
can also be obtained on real complex systems. More com-
plex networks are generally made of mesoscopic substruc-
tures, dense or sparse—not necessarily cliques—with possi-
bly weighted and directed edges. The important observation
is that the details of these substructures do not matter much.
As long as it is possible to identify them, using community de-
tection [44, 45], random clique cover [46], or hypergraph re-
construction [47], one can construct a higher-order represen-
tation of the original network with nodes belonging to groups
and evaluate the localization on these groups using a measure
similar to Eq. (20). Following this line, the original structure
does not even need to be a network of pairwise interactions.
It could already be a higher-order representation, such as a
simplicial complex or a hypergraph [31].

IV. DISCUSSION

One of the important factors behind the success of net-
work science to study contagions, from infectious diseases to
the spread of information, is that it provides a mathematical
framework to go beyond the assumption of a homogeneous
population [7]. Contagions are rarely driven by the average
individual, mostly because some individuals are simply more
connected than others but also potentially more central. Be-
yond the fact that they drive the dynamics of contagions, these
key actors are also critical to their control. On the one hand,
it allows the mathematical formulation of targeted immuniza-
tion and interventions [48, 49]: Which individuals should be
immunized or removed from the network to minimize the
spread on an infectious disease? On the other hand, it also

permits the identification of influential spreaders [50]: Which
individuals should seed a contagion in order to maximize its
spread? These different ideas all revolve around a control the-
ory for contagions, but also all depend on a theoretical under-
standing of what type of structures matters for contagions.

In practice, however, social networks are not randomly
mixed but contain a higher-level organization determined by
workplaces, schools, events, etc.; such that key actors can be
places, social gatherings, or more abstractly groups, rather
than the individuals themselves. Thankfully, multiple new ap-
proaches to handle higher-order interactions have been pro-
posed in recent years. In the thermodynamic limit, the net-
works used in this paper can equivalently be represented us-
ing ideas of topological simplexes from topology [51], hyper-
graphs [52, 53], or projections of bipartite networks [17, 34].
Under the right level of mean-field approximation, these are
all equivalent. However, their dynamics at the mesocopic
level can be very heterogeneous, as in Fig. 3(f), since groups
can take considerably more different states than individuals
who are usually only susceptible or infected. Therefore, ad-
equate care should be exercised not to over-simplify (coarse
grain) the mathematical description in order to embrace this
heterogeneity. Our group-based approximate master equation
framework acknowledges fully this warning.

Using this approach, we have observed and analyzed a phe-
nomenon of mesoscopic localization where contagions can
concentrate around groups that are large enough to allow a
local, self-sustained outbreak in the presence of some weak
external group coupling. Interestingly, while there is little
empirical evidence for localization of real contagions around
hubs in a contact network, there are well-known cases of dy-
namics resembling mesoscopic localization. For example,
bacterial infections in hospitals (e.g. C. difficile [54]) are al-
ready a well-documented example of mesocopically localized
contagions, but are simply never studied analytically as such.

In this mesocopic localization phase, influential groups are
naturally found to be the larger ones around which a contagion
can localize. Intervention or control operating at a structural
level (i.e. on groups rather than on individuals) should there-
fore focus around these influential groups. The large toolbox
developed for targeted immunization [55] and identification
of influential spreaders [56] could now be leveraged, at the
mesoscopic level, to better understand and control contagions
on networks capable of mesocopic localization. In Ref. [33],
we investigate the impact of removing groups as a model of
school closures and event cancellations. We find that delocal-
ized dynamics are characterized by a linear relationship be-
tween outbreak size and the strength of our intervention, akin
to mass-action models. Conversely, localized dynamics show
a non-linear relationship that varies with the importance of the
localization effects. For strongly localized epidemics, there is
an increasing effectiveness of interventions, leading to a sud-
den collapse of the epidemic.

In a broader context, higher-order structures were found to
be important for a wide range of dynamics, from competi-
tive dynamics [57] to social contagion [51]. Several of these
studies highlight non-trivial effects of higher-order structures
on dynamics using numerical tools or very coarse-grained an-
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alytical methods. These approaches, ignoring the heteroge-
neous states of groups, limit the type of questions and be-
haviors that can be answered and analyzed. We wish to em-
phasize that master equation descriptions provide valuable in-
sights into the mechanisms of these dynamics and their inter-
play with higher-order structures. For instance, we conjecture
that mesoscopic localization is even more present in systems
with social reinforcement mechanisms [58], and that its im-
pacts on the global state of the dynamics are even more dra-
matic.

There are now several avenues open to broaden the appli-
cability of our simple approach. In its current form, the only
inputs required are a membership distribution gm and a group
size distribution pn, along with the specification of the local
dynamics. As a first step, our future works will focus on im-
proving the heterogeneous mean-field coupling between mas-
ter equations. We could, for example, refine our description
of the states of the nodes in order to capture dynamical corre-
lations with the state of the groups in which they are found,
include structural correlations between the memberships of
nodes and the sizes of groups through a joint distributions
P(m, n), or allow groups with more complex inner contact pat-
terns. We hope that our work on mesoscopic localization and
the framework that has emerged will provide a solid founda-
tion for the continuing efforts to improve our understanding of
dynamics on complex networks.
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Appendix A: Detailed development for the epidemic threshold

The function F(ρ) corresponds to

F(ρ) = r(ρ)
[∑

m m(m − 1)sm(ρ)gm∑
m msm(ρ)gm

]
.

To find its derivative with respect to ρ, let us note that
sm(ρ) = 1 + O(ρ) and r(ρ) = O(ρ) as ρ → 0, which can be
deduced from Eq. (2a) by using cn,i = δi,0 + hn,iρ + O(ρ2).
Therefore,

dF
dρ

∣∣∣∣∣
ρ→0

=
〈m(m − 1)〉
〈m〉

dr
dρ

∣∣∣∣∣
ρ→0

, (A1)

and the derivative of r(ρ) is

dr
dρ

∣∣∣∣∣
ρ→0

=

∑
n,i βi(n − i)hn,i pn∑

n npn
. (A2)

In terms of the generating functions Hn(x; β), with

H′n(1; β) =
∑

i

ihn,i ,

H′′n (1; β) =
∑

i

i(i − 1)hn,i ,

we obtain the relation,∑
i

i(n − i)hn,i = (n − 1)H′n(1; β) − H′′n (1; β) . (A3)

Combining Eqs. (A1), (A2), and (A3), we arrive at

dF
dρ

∣∣∣∣∣
ρ→0

= β
〈m(m − 1)〉
〈m〉〈n〉

〈
(n − 1)H′n(1; β) − H′′n (1; β)

〉
.

(A4)

With the integral representation of Hn(x; β), Eq. (5), and the
derivatives

H′n(1; β) = n
∫ ∞

0
(1 + βu)n−1e−udu ,

H′′n (1; β) = n(n − 1)
∫ ∞

0
(1 + βu)n−2βue−udu ,

we end up with the simplification

(n − 1)H′n(1; β) − H′′n (1; β) = n(n − 1)An(β) ,

where

An(β) ≡
∫ ∞

0
(1 + βu)n−2e−udu . (A5)

Inserting in Eq. (A4) and setting the derivative to 1, we finally
obtain the implicit expression for the epidemic threshold given
by Eq. (7).

Appendix B: Bounds on the epidemic threshold

Let us bound βc for any nmax by bounding An(β) [Eq. (A5)]
for all n. First, since βu ≥ 0, then

An(β) ≥
∫ ∞

0
e−udu = 1 . (B1)

Second, we rewrite

An(β) =

∫ ∞

0
eφ(u;β)du ,

where φ(u; β) = (n − 2) ln(1 + βu) − u. Since ln(1 + x) ≤ x,
φ(u; β) ≤ β(n − 2)u − u, which implies

An(β) ≤


∞ if β(n − 2) ≥ 1 ,

1
1 − β(n − 2)

if β(n − 2) < 1 .
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We relax the conditions by replacing n by nmax everywhere on
the right-hand side

An(β) ≤


∞ if β(nmax − 2) ≥ 1 ,

1
1 − β(nmax − 2)

if β(nmax − 2) < 1 .
(B2)

By inserting Eqs. (B1) and (B2) in Eq. (7) and solving for
β, we find the bounds of Eq. (9). Only the second case of
Eq. (B2) leads to a coherent bound for βc.

The upper bound on the epidemic threshold is not very
tight, but we can do better if we assume pn ∝ n−γn and the
limit nmax → ∞. It follows that there exists some n′ ∈ N such
that for all nmax > n′, the epidemic threshold must respect
βc ≤ (nmax − 2)−1. Let us make a proof by contradiction: we
start with the premise that β = a(nmax − 2)−1 for some arbi-
trary constant a > 1. We know that ln(1 + x) ≥ x(1 − x) for
all x ≥ 0, hence

φ(u; β) ≥ −β2(n − 2)u2 + [β(n − 2) − 1]u .

Making the change of variable y = β
√

n − 2u and defining
d ≡ [β(n − 2) − 1]/(2β

√
n − 2), we arrive at

An(β) ≥
ed2

β
√

n − 2

∫ ∞

0
e−(y−d)2

dy ∀n > 2 ,

≥

√
πed2

2β
√

n − 2
.

Let us focus on n = nmax. In this case, using our premise for
β, we have

d2 =
(a − 1)2(nmax − 2)

4a2 ≡ b(nmax − 2) ,

where b > 0. Therefore, there always exists a constant B1 > 0
independent from nmax and a such that

Anmax (β) ≥
1
a

(
1
2

√
π(nmax − 2)e−2b

)
ebnmax ≥

B1

a
ebnmax ,

This provides a lower bound for the following term

〈n(n − 1)An(β)〉 ≥ pnmax nmax(nmax − 1)Anmax (β) ,

≥
B2

a
n2−γn

max ebnmax ,

where we assumed pn ∝ n−γn with γn < ∞. For some constant
B2 < ∞. Inserting this and our premise on β in Eq. (7), we
obtain an expression of the form

n1−γn
max ≤ B3e−bnmax . (B3)

For some constant B3 < ∞. Equation (B3) is clearly not re-
spected in the limit nmax → ∞, hence completing the proof by
contradiction.

Note that a solution βc > (nmax − 2)−1 is not ruled out if pn
decrease exponentially for large n.

Appendix C: Generation of networks with cliques

We generated multigraphs using a stub matching pro-
cess. First, each node j ∈ V is assigned a member-
ship m drawn from gm, resulting in a membership sequence
m = (m1,m2, . . . ,mN). Then, we create a group size sequence
of length N′, n = (n1, n2, . . . , nN′ ), by drawing sizes nk ac-
cording to pn. We must additionally constrain the sequence
such that the number of membership stubs and the number of
group stubs (available spot for the nodes) are the same

N∑
j=1

m j =

N′∑
k=1

nk . (C1)

In practice, if the right-hand side of Eq. (C1) is smaller than
the left-hand side, we add another group with size n drawn
from pn. If it is bigger, we remove a group uniformly at ran-
dom. We repeat this process until the number of stubs is equal
on both sides. N′ is therefore not fixed, but it is expected that
N′ ∼ 〈m〉N/〈n〉 since both 〈m〉 and 〈n〉 are bounded.

Once we have the membership and group size sequences,
we match the stubs uniformly at random—an edge is added
between each pair of nodes belonging to a same group. This
effectively creates loopy multigraphs, but the loops and multi-
edges represent a vanishing fraction of the total number of
edges for N → ∞ ; we do not remove them since they have a
marginal impact on the dynamics.

Appendix D: Validation with Monte Carlo simulations

In Fig. 8, we compare the predictions of our approximate
master equation approach with the results of extensive Monte
Carlo simulations. Our analytical framework accurately re-
produce the behavior of the SIS model on synthetic networks
generated with the method presented in Appendix C. Figure
8 also confirms the existence of the mesoscopic localization
phenomenon predicted by our approach.

To simulate the SIS model on multigraphs, we used the ef-
ficient algorithm provided by Ref. [59] to evolve the state of
the system. Since the system typically reaches the absorbing-
state for finite-size networks near the epidemic threshold,
we sampled the quasi-stationary state using the state-of-the-
art method presented in Refs. [60, 61]. We kept a his-
tory of 100 previous states that were each updated at a rate
ω ∈ [10−3, 10−2] by the current state of the system. If the sys-
tem fell on the absorbing-state, it was replaced by a random
state picked in the history—after a sufficient burn-in period,
this method samples the quasi-stationary state.

Appendix E: Scaling the transmission rate with group size

In the approximate master equations (1), an infected node
in a group transmits the disease to all susceptible nodes at rate
β. Even though it is reasonable to have more infections within
large groups, an individual might not interact with all others
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FIG. 8. Validation of the approximate master equation approach
with Monte Carlo simulations, using the efficient algorithm pro-
vided by Ref. [59]. We used a homogeneous membership distri-
bution gm = δm,3, a heterogeneous group size distribution of the
form pn ∝ n−γn , and n ∈ {2, . . . , 100}. The solid lines represent
the group prevalence and the dashed line represents the global preva-
lence obtained with Eqs. (3a) and (4). The markers represent the av-
erage group (circles) and global (squares) prevalences in the quasi-
stationary state over 20 network realizations of size N = 5 × 105.
The error bars (smaller than the markers) represent the standard de-
viation over these 20 realizations. For each network, 20% of the
nodes were initially infected at random, then after a burn-in period
∆t ∈ [50, 1000], between 100 and 1000 states have been sampled
to estimate the prevalences, each separated by a decorrelation period
∆t ∈ [1, 10]. Larger values for the burn-in period, the decorrelation
period and the number of states sampled were used near the epidemic
threshold. The epidemic threshold βc is the solution to Eq. (7).

as much as within smaller groups. For instance, assume two
groups of size n and n′, with n > n′, the first representing a
workplace and the second a household. An infected individual
belonging to both interact with more people in the first, but the
strength of the interaction is more important in the second.

Fortunately, our framework is highly flexible. We could
replace the term βi in Eq. (1b) by a general infection function
f (n, i) for the nodes in the group. For the matter at hand, we
simply scale the transmission rate as β 7→ βn−ν with 0 ≤ ν ≤ 1,
assuming that, on average, the interaction strength decreases
with the group size. The analysis already performed for ν = 0
is extended to arbitrary values of ν by direct substitutions.

1. Epidemic threshold

First, we have the following new definition for r(ρ) in the
stationary state

r(ρ) =

∑
n,i βn−νi(n − i)cn,i(ρ)pn∑

n,i(n − i)cn,i(ρ)pn
.

Near the absorbing-state, we redefine the generating function
as

Hn(x; β, ν) = hn,0 +
nν

β

∫ ∞

0

[(
1 +

βux
nν

)n

− 1
]

u−1e−udu .

The condition for the epidemic threshold then becomes

dF
dρ

∣∣∣∣∣
ρ→0

= β
〈m(m − 1)〉
〈m〉〈n〉

×
〈
n−ν

[
(n − 1)H′n(1; β, ν) − H′′n (1; β, ν)

]〉
,

≡ 1 .

After some algebraic manipulations, we arrive at a new im-
plicit expression for βc,

β
〈m(m − 1)〉
〈m〉〈n〉

〈
n1−ν(n − 1)An(β, ν)

〉
= 1 , (E1)

where

An(β, ν) ≡
∫ ∞

0

(
1 +

βu
nν

)n−2

e−udu .

Since An(β, ν) has a similar form as Eq. (A5), it is straight-
forward to reproduce the results of Appendix B in this more
general context. For a power-law distribution pn ∼ n−γn ,
we have the following asymptotic behavior for the epidemic
threshold

β−1
c ∼ Ω(gm, pn; ν) + n1−ν

max , (E2)

where the coupling between groups is

Ω(gm, pn; ν) =

(
〈m(m − 1)〉
〈m〉

) 
〈
n1−ν(n − 1)

〉
〈n〉

 . (E3)

2. Behavior near the absorbing-state

The group prevalence In near the absorbing-state can be es-
timated from a saddle-point approximation of H′n(1; β, ν) as
well. For large n,

H′n(1; β, ν) ∼


n

1 − βn1−ν if β < nν−1

n3/2 (βn1−ν)n e−n+nν/β if β ≥ nν−1 .

(E4)

For β = anν−1 where a > 1 is a constant independent of n, we
still have In = O

(
n1/2ebn

)
with b > 0. Therefore, ν affects the

value of β for which a group of size n can sustain an epidemic
locally, but the behavior of In is unaltered compared to the
ν = 0 case.

3. Mesoscopic localization

The form of Eqs. (E2) and (E3) is similar to Eqs. (14) and
(10). It is then straightforward to obtain the asymptotic local-
ization regimes as in Sec. III A by investigating the behavior
of βcn1−ν

max. Note that the scaling for the second term of the
coupling is now〈

n1−ν(n − 1)
〉

〈n〉
∼


n3−γn−ν

max if γn + ν < 3 ,
ln nmax if γn + ν = 3 ,
1 if γn + ν > 3 .

(E5)
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If ν = 1, we always have βcn1−ν
max → q < 1 or 0, hence the

epidemic is always delocalized. Therefore, let us focus on
ν ∈ [0, 1). If γm ≥ 3, we have βcn1−ν

max → 1 for all γn, as in
the case ν = 0, meaning that the outbreak is always localized.
This is surprising, since ν > 0 increases the value of β for
which a group of size n is able to sustain an epidemic locally.
The reason is that ν > 0 also decreases the coupling between
groups Ω(pn, gm; ν), hence both effects cancel each other.

If 2 < γm < 3 and

• 2 < γn + ν < 3, then

βcn1−ν
max →


0 if 3 − γn + α(3 − γm) > 1 ,
q < 1 if 3 − γn + α(3 − γm) = 1 ,
1 if 3 − γn + α(3 − γm) < 1 ,

(E6a)

• γn + ν = 3, then

βcn1−ν
max →

{
0 if α(3 − γm) + ν ≥ 1 ,
1 if α(3 − γm) + ν < 1 ,

(E6b)

• γn + ν > 3, then

βcn1−ν
max →


0 if α(3 − γm) + ν > 1 ,
q < 1 if α(3 − γm) + ν = 1 ,
1 if α(3 − γm) + ν < 1 .

(E6c)

Again, we see that for 2 < γn + ν < 3, Eq. (E6a), scaling
the transmission rate with n−ν does not affect the localization
regime in the (γm, γn) space. The effect becomes perceptible
for γn + ν ≥ 3, when the coupling Ω(pn, gm; ν) is dominated
by the first term depending solely on the membership distri-
bution.

Figure 9 shows the impact of ν > 0 on the boundary sepa-
rating the localized and delocalized regimes. The top portion
of the boundary moves to higher values of γm as ν is increased,
reducing the size of the mesocopic localization region. In the
limit ν → 1−, there still exists a non-vanishing portion of the
parameter space allowing localization, i.e. γm ≥ 3. At ν = 1,
mesocopic localization is impossible for all γm, γn, and thus
there is no boundary.

Appendix F: Localized portion of the bifurcation diagram

As β is increased beyond βc, groups of smaller sizes can
self-sustain the epidemic locally, until a point where the
disease is present in all groups—the epidemic is not local-
ized anymore. When the epidemic becomes delocalized, the
global prevalence curve reaches an inflexion point—the sec-
ond derivative with respect to β turns negative because all
groups sustain the epidemic and saturation effects becomes
more important. This can be seen for instance in Fig. 10
around β/βc = 4.3. But how do we define the range for β
where the epidemic is considered localized, and how is this
range affected by the structure?

An informal definition is to consider an epidemic localized
for β ∈ [βc, β

∗], where β∗ ≡ Ω(gm, pn; ν)−1 acts as a delocal-
ization threshold. Indeed, in the delocalized regime, we have
that βc ≈ Ω(gm, pn; ν)−1. This reinforces the interpretation of
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FIG. 9. Impact of scaling the transmission rate on the boundary sep-
arating the localized and delocalized regimes for power-law mem-
bership and group size distributions. We used m, n ∈ {2, . . . , nmax},
hence α = 1, and different values of ν for the relation β 7→ βn−ν. The
boundaries are obtained from Eqs (E6a-c).

FIG. 10. Localized portion of the bifurcation diagram in the meso-
scopic localization regime. The shaded region represents the lo-
calized portion, defined as [βc,Ω(gm, pn; ν)−1]. We used the same
structure as in Fig. 3(e), but with β 7→ βn−ν, where ν = 1/3. The
solid lines represent the group prevalence and the dashed line repre-
sents the global prevalence. Stationary state solutions were obtained
from Eqs. (3a) and (4). The epidemic threshold βc is the solution to
Eq. (E1).

Ω(gm, pn; ν) as a structural coupling between the groups: for
βΩ(gm, pn; ν) > 1, the disease is able to efficiently spread be-
tween groups, and the disease is sustained collectively.

It is analogous to the observation made in Ref. [62] that
the epidemic threshold predicted by the heterogeneous mean-
field theory seems to predict the delocalization threshold. In
fact, if we take pn = δn,2 (equivalent to having configuration
model networks with degree distribution gm), the threshold β∗

is equivalent to the one predicted by pair heterogeneous mean-
field theory [63], i.e.,

β∗ =
〈m〉

〈m(m − 1)〉
.

In Fig. 10, the shaded region highlights the localized por-
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tion of the bifurcation diagram. Note that the right-hand side of this region roughly corresponds to the inflexion point of the
global prevalence.
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[25] W. Cota, G. Ódor, and S. C. Ferreira, “Griffiths phases in
infinite-dimensional, non-hierarchical modular networks,” Sci.
Rep. 8, 9144 (2018).

[26] T. Vojta, “Rare region effects at classical, quantum and nonequi-
librium phase transitions,” J. Phys. A. Math. Gen. 39, R143–
R205 (2006).
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