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A wake of vortices with sufficiently-spaced cores may be represented via the point-vortex model
from classical hydrodynamics. We use potential theory representations of vortices to examine the
emergence and stability of complex vortex wakes, more particularly the von-Kármán vortex street
composed of regular polygonal-like clusters of same-signed vortices. We investigate the existence and
stability of these streets represented through spatially periodic vortices. We introduce a physically
inspired point-vortex model that captures the stability of infinite vortex streets with a finite number
of procedurally-generated vortices, allowing for numerical analysis of the behavior of vortex streets
as they dynamically form.

I. INTRODUCTION

The traditional von-Kármán (VK) vortex street
(VKVS) is a classical problem in wake vortex dynamics
and has been analyzed in great detail in existing litera-
ture (see, for instance, Refs. [1–4]). It has been shown
that the VKVS of alternating, opposite-charge vortices is
the only neutrally stable state of two rows of point vor-
tices. More recently, variants of the VKVS have been
observed in Bose-Einstein condensates [5, 6]. For in-
stance, it has been observed that instead of producing
a VKVS comprised of single vortices at the wake of an
impurity [7, 8], a Bose-Einstein condensate produces a
vortex street where the single vortices are replaced by ro-
tating, like-charge vortex pairs [5]. Furthermore, vortex
streets comprised of vortex pairs have been observed in
flapping foils experiments [9]. With the notable exception
of the works from Basu, Stremler and co-workers [10–14],
the stability of the vortex pair VKVS has not been inves-
tigated in great detail, nor have cases of larger, regular
polygonal-like vortex clusters. In the present work, we
study, within the realm of point-vortex models, the sta-
bility of vortex streets comprised of vortex K-gons and
examine the changes to parameter space needed to min-
imize the effects of instability on the street. These vor-
tex configurations correspond to vortex arrays that un-
dergo periodic orbits in an appropriate co-moving refer-
ence frame. In Sec. II we consider the traditional, single-
vortex VKVS and its regions of neutral stability. Then,
in Secs. III through V, we discuss the implementation of
a dynamic generation model for single vortex streets and
the stability of the created streets. We then discuss in
Sec. VI a second method for computing the stability of
streets of vortex pairs through a spatially periodic model
and discuss the various configurations that lead to neu-
tral stability. Finally, in Sec. VII we further explore cases
with larger vortex clusters and relate this to the stability
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FIG. 1: Von-Kármán vortex street. The topological charge of
the vortices denoted by “+” (charge Γ) has equal magnitude
but opposite circulation with respect to the vortices denoted
by “−” (charge −Γ).

conditions for the vortex pair case.

II. THE STANDARD VON-KÁRMÁN STREET

The VKVS is defined as two parallel interlaced arrays
of equidistant vortices bearing, respectively, vortices of
topological charge Γ and −Γ. The (horizontal) spacing
between vortices in each array is 2b while the (vertical)
distance between the arrays is 2a. The street corresponds
to a series of alternating vortices in a zig-zag configura-
tion (see Fig. 1). The line of positively charged vortices
is placed on top of the line of negatively charged vortices
and thus the inherent velocity of the VKVS is from left-
to-right. We consider two particular cases in the present
paper: the case of solid walls being imposed on the flow
at positions y = 0 and y = 2c (see Fig. 2), and the case
where the street exists in an unbounded domain (equiv-
alent to the limit as c approaches infinity).

We generalize the VKVS configuration by replacing
each individual vortex by a cluster of K like-charged vor-
tices arranged in a K-gon. For completeness and to jus-
tify our analysis, we first discuss the literature results of
the standard VKVS where K = 1. The K = 1 street
is neutrally stable to perturbations when the ratio be-
tween the vertical and horizontal spacings is 2a/(2b) =

coth−1(
√
2)/π ≈ 0.281; otherwise, the street is unstable

[1]. This so-called Von-Kármán ratio, at which the street
is neutrally stable, with some variation due to physi-
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FIG. 2: VKVS in a channel. The parameters of the street are
defined such that 2a is the separation between the positive
and negative vortex arrays, 2b the spacing between like-signed
vortices, and 2c the overall width of the channel.

cal parameters, is seen naturally in systems which show
VK vortex shedding for appropriate Reynolds number
regimes [15].
Despite the existence of a neutrally stable steady state,

it is worth discussing whether it is possible to create a
VKVS with a wider range of stability beyond the par-
ticular VK ratio. One possible modification to enhance
the stability is by imposing boundary conditions onto
the fluid, more specifically by creating the street within
a confining parallel channel. We refer to the case of a
domain that is defined to be unbounded in the horizon-
tal direction and bounded vertically in a strip of width
2c to be the channel case (see Fig. 2). For complete-
ness, the analysis of the VKVS in a channel, obtained by
Rosenhead in 1929 [4], is summarized below.
To represent the infinite horizontal VKVS in a chan-

nel, we fix vortices of charge Γ at the complex valued
(z = x+ iy) locations z = 2mb+ i(c+ a), and of charge
−Γ at z = (2n− 1)b− i(c− a), ∀m,n ∈ Z. We represent
the presence of the channel by the method of images, in
order to impose streamlines at the wall locations (i.e., no
flux across the channel walls), by adding ‘mirror’ (oppo-
site sign) vortices to the right hand side of the system
of equations whose positions are functions of the corre-
sponding actual vortex positions. The infinite sum of the
complex valued potential ω(z) of channel vortices in the
VK configuration may be written as the following infinite
sum of a point-vortex lattice [4]:

ω(z) = − Γa

2bc
z − iΓ

2π
ln
(

f
( z

2b
;
a

2b

))

, (1)

where

f (z;α) =
ϑ1 (z − iα; τ) ϑ3 (z − iα; τ)

ϑ2 (z + iα; τ) ϑ4 (z + iα; τ)
, (2)

where ϑm(z; τ) is defined as themth Jacobi theta function
and τ = 2ic/b. We note that the Jacobi theta functions,
defined through infinite sums, encompass the contribu-
tion of the infinite series of mirror images induced by the
channel walls.

FIG. 3: (Color online) Largest real eigenvalue components of
a von-Kármán street in a channel, with the magenta curve
delineating the transition to stability [i.e., eigenvalues such
that Re(λ) = 0]. As the relative horizontal spacing µ increases
relative to the channel width, a region of parameter ratios
becomes neutrally stable, allowing for more a wider range
of physically relevant VKVS configurations. The horizontal
black dashed line at µ1 represents the µ-value above which
non-zero areas of stability start to appear while the horizontal
white dashed line at µ2 represents the µ-value above which
all configurations are stable. The diagonal dashed white line
indicates the von-Kármán stability ratio.

The stability of the VKVS is characterized by the
rescaled parameters µ = πb/(2c) and ν = πa/(2c)
which represent the previously defined spacing param-
eters scaled relative to the width of the channel. As all
the systems under consideration here are Hamiltonian,
for simplicity, we interchangeably use the terms stable

and neutrally stable. The results of the channel analy-
sis are fully explored in Ref. [4], and are replicated in
Fig. 3 for K = 1. For low µ and ν values (when the
channel walls are far apart relative to the spacing pa-
rameters) the behavior of the system recovers that of the
unbounded domain case, with neutral stability for a µ
and ν ratio equal to the VK ratio. Above a critical µ
value, dependent on ν, the system becomes stable. At
µ = µ1 ≈ 1.28 (b ≈ 0.815c; see horizontal black dotted
line) regions of stability in parameter space appear, and
at µ = µ2 ≈ 2.23 (b ≈ 1.419c; see horizontal white dot-
ted line) the system is stable for all values of a and b
(see Fig. 3). In terms of the system, the increasing re-
gion of stability corresponds to the relative size of the
street growing to a larger scale compared to that of the
channel, the walls providing a stabilizing influence on the
street. The presence of a channel close to the street rela-
tive to the spacing of the street itself permits the vortex
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wake to persist for a variety of configurations, providing a
broader stability for the region and allowing for a VKVS
to persist despite perturbations in its structure. The sta-
bility diagram seen here has been reproduced in physical
experiments [16], with the added constraint of the vor-
tex width preventing configurations where the vortices
are too close to each other or to the walls such that the
point-vortex assumption no longer holds.
There has been a significant body of work over the past

century discussing the presence, propagation, and insta-
bilities in the classic VKVS, more particularly in cases
of finite size (i.e., with an intrinsic width rather than
being point-wise) vortices, much of it centered on dis-
cussing the modes of the instabilities. It was discovered
by Jiménez [17] that the common feature among the in-
viscid models was the existence of stability only for a par-
ticular street parameter value. While attempts have been
made to find broader regions, these have been broadly
unsuccessful without some external feature such as the
restricting channel wall in the work of Rosenhead [4].
While some stable regions were found by Saffman and
Schatzman [18] for the pairing instability in finite-sized
vortices (which Kármán identified as the most unsta-
ble), it was found in the work of Kida [19] and in later
sources [20] that, for finite-sized vortices, the pairing in-
stability was not the dominant instability. In the work
of Mowlavi et al. [21] the street was found to feature a
strong convective instability such that perturbations to
the street were carried far enough away from the source
that they had little effect on the majority of the street.
For our present analysis, we primarily focus on the

presence of instabilities rather than an in-depth consid-
eration of the associated instability modes. The instabil-
ities present in the dynamic generation model are largely
the result of asymmetric zig-zag modes. An analysis of
the modes becomes more relevant in the discussion of
VKVS with K > 1 in Sec. VI. While we do see the ap-
pearance of pairing and convective instabilities, we are
less focused with the form of the instability and more
interested in the existence of stable configurations. Our
focus is in the particular geometric structure (i.e., the
shape parameters for the different configurations) of the
finite and infinite streets that lead to stability. A more
detailed discussion of the instability modes and their role
in the dynamical destabilization of the steady state con-
figurations is left to future work.

III. DYNAMIC MODEL OF VORTEX

GENERATION

From the analysis of the point-vortex street, we have
a theoretical system that represents an infinite vortex
street (in the horizontal direction) and the stability of its
co-moving steady states. Such a system is physically rel-
evant for situations where the street is well-spaced, such
that successive vortex cores have minimal influence on
each other and, thus, the dominant interaction term be-

tween vortices is through the rotation that they induce
on the fluid. However, to represent the behavior of vor-
tices generated by an impurity and investigate the sta-
bility of the K = 2 case seen in Bose-Einstein condensate
models [5], it is not realistic to represent infinitely many
independent vortices. Instead, we must consider finite
vortex streets (explained in more detail below), where
a finite collection of N vortices are positioned in a VK
pattern and allow to evolve forward in time. Considering
the problem in terms of finitely-many vortices is closer
to reality, given that the infinite street will not appear in
an actual fluid. We propose a model that qualitatively
imitates the generation of a vortex street at the wake
of an impurity through baroclinic effects via a system of
ODEs which will allow for increased understanding of the
dynamics of the vortex street and its evolution.
Consider a system of N point vortices located in some

domain, either infinite in all directions or in a channel,
at positions zk, k ∈ ZN . Let us represent the motion of
the kth vortex by

dz̄k
dt

=
dxk

dt
− i

dyk
dt

= Fk(z1, ..., zN ), (3)

where Fk is a nonlinear function of the positions of all
vortices. In the case of the, no channel, unrestricted do-
main (which we call from now on the unbounded domain
case), the dynamics of interacting point vortices is de-
scribed by the following velocity terms [22]

Fk(z1, ..., zN ) =
1

2πi

N
∑

j=1,j 6=k

Γj

zk − zj
. (4)

On the other hand, when the vortices are placed in a
channel of finite width with the walls at y = 0 and y = 2c,
one can apply the method of images [23] to obtain the
following velocity terms [24]

Fk(z1, ..., zN ) =
iΓk

8c
coth

(

π
zk − z̄k

4c

)

−
N
∑

j 6=k

iΓj

8c

[

coth

(

π
zk − zj

4c

)

− coth

(

π
zk − z̄j

4c

)]

.

Each of these equations forms a system of N complex,
nonlinear ODEs, which may be solved numerically by
considering either the complex system or the correspond-
ing 2N system in Cartesian coordinates, such that

dx

dt
= Re

(

dz

dt

)

, (5)

dy

dt
= −Im

(

dz

dt

)

. (6)

Vortices are generated by assuming a constant back-
ground velocity, corresponding to a situation where a
constant right-to-left flow passes around a stationary im-
purity (which is equivalent to an obstacle moving to the
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right though a stationary fluid). In addition to the back-
ground flow (at constant velocity), we add, at regular
time intervals, vortices at positions z+ and z− corre-
sponding to the street we are creating. For a K = 1
VKVS, the seeding would occur at z± = i(c ± a), with
the seeding time being determined by the background ve-
locity and the b parameter. Whether a generated street
takes the form of a parallel (rectangular) or antiparallel
(zig-zag) configuration depends on whether the vortices
at z+ and z− are generated at the same time (parallel) or
in an alternating fashion (antiparallel). Horizontal spac-
ing, represented by b, is determined by (ignoring again
vortex-vortex interactions) both the time between alter-
nating (top and bottom) seedings and the background
horizontal velocity. As we consider a background flow at
a fixed right-to-left velocity v around a stationary obsta-
cle, in order to maintain the b vortex spacing, b and the
background velocity may be used to determine the time
between seedings ts with the relationship 2vts = b.
We can further generalize the algorithm for any regular

pattern of vortex generation. At the end of each inter-
val, we introduce some number of new vortices at pre-
determined locations, and integrate the system forward
based on the relative interactions between the vortices,
the background flow, and the boundaries of the system.
From results seen in the literature [25], we also assume
the vortex is created fully formed at a sufficient distance
away from the obstacle so as to minimize the influence
of the obstacle on the flow, which is valid for vortices of
sufficient distance from the point of origin. Therefore,
from this point forward, we neglect the dynamical effects
exerted by the impurity and, thus, it is not directly in-
cluded in the model and it is not depicted in Fig. 4 (nor
in Fig. 10).
It is important to mention that, per construction, when

no background flow nor impenetrable walls are consid-
ered, the VKVS on its own moves left-to-right (i.e. to-
wards the fictitious impurity) while the background flows
in the opposite direction. Furthermore, the net effect of
the impenetrable walls is to slow down the intrinsic veloc-
ity of the VKVS. The combination of these three effects
(intrinsic VKVS speed, effects of the walls, and back-
ground flow) results on a combined right-to-left VKVS
velocity when measured in the stationary frame (in which
the impurity is fixed at x = 0).

IV. VORTEX STREET PARAMETERS

For a system generated dynamically, it is worth consid-
ering the role that the finite and dynamic nature of the
system plays in determining the street spacing parame-
ters a and b (i.e., ν and µ in the channel case). Nonlinear
interactions between vortices in the system render it an-
alytically impossible to determine the asymptotic (final)
spacing values. We define the a-priori estimates, cor-
responding to the original locations where we seed the
vortices, as aini and bini, and we evaluate the settled val-

FIG. 4: (Color online) Dynamical generation of a (stable) von-
Kármán vortex wake inside an impenetrable channel (hashed
regions). The vortices are initially seeded at x = 0 (location
of the fictitious obstacle) and move to the left following the
background velocity of the fluid. Blue (Red) circles (trian-
gles) represent vortices with positive (negative) charge. To
estimate the width (see horizontal lines) of the street we con-
sider vortices with a y position within a tolerance of 0.005c
of the final (average) vertical location of the street. Here
µ = 2.5, ν = π/4, and c = 10. Vortices between the two ver-
tical dashed lines are considered inside the von-Kármán vor-
tex configuration. It is clear from the figure that the selected
vortices form a reasonable approximation of a consistent von-
Kármán vortex street.

ues afin and bfin when the VKVS has settled. To allow
for the dynamic adjustment of the VKVS parameters,
we allowed the system to run long enough to generate
a large number of vortices and define the estimates for
afin and bfin (correspondingly µfin and νfin in the pres-
ence of the channel) given a large enough subset of the
vortices. This subset was determined to be all vortices
(excluding the two most recent) within a vertical devia-
tion tolerance from the other vortices in the subset. After
some testing, we chose an arbitrary tolerance of 0.005c
(c being the half-width of the channel). We found that
varying this tolerance does not significantly affect the
results that follow, thus, from now on the tolerance is
set to 0.005c. An example of the dynamical procedure
generating a stable wake is depicted in Fig. 4 where the
vertical dashed lines bound the region of the converged
subset of vortices. The parameter updating procedure
was repeated for varying numbers of vortices to find an
ideal number of vortices after which the parameter shift-
ing did not noticeably change, which, as shown in Fig. 5,
is around fifty vortices. These updated estimates for the
spacing parameters are the parameters we use in all of
our subsequent results.

Let us now study in more detail the relation between
the estimated (seeded) shape parameters (aini and bini)
determined by the dynamical vortex seeding and the con-
verged shape parameters (afin and bfin). Our dynamical
model seeds the vortices at (0, c ± aini) every ts time
units yielding bini = 2vts. It is important to note that
the final values afin and bfin depend on the background
velocity and the channel width. For instance, Fig. 6 de-
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FIG. 5: Maximum change in estimates for µ and ν values after
seeding N number of vortices for µ between 0.5 and 3 and ν
between 0.1 and π/2. Top (bottom) panels depict results for µ
(ν). Left (right) panels show the maximum (mean) deviation.
We see that after about fifty vortices are seeded, the change
in the estimated parameters is minimal. The only exception,
see bottom-left panel, is the maximum deviation for ν, ∆ν,
which does not seem to converge as N increases.

picts the dependence of the final values (as ratios with
their initial counterparts) as the background velocity is
increased for the case of a narrow (c = 10) and a wide
(c = 100) channel. In all of these results we chose aini
and bini at the von-Kármán ratio to ensure a stable for-
mation of the VKVS. The results in the figure show that
the b shape parameter (horizontal spacing) has a strong
dependence on the background velocity and the channel
width. In contrast, the a shape parameter (vertical spac-
ing) has a much weaker dependence on the background
velocity and the channel width (|afin/aini − 1| < 0.01).
As the background velocity v is increased, both afin and
bfin tend to their initial counterparts. The main effect
of the presence of the channel is to (through the inter-
action of the vortices with their opposite-signed images
emulated by the impenetrable walls) speedup the down-
stream vortices. This effect results in the stretching of
the horizontal distance between vortices which, in turn,
results in an increase of the ratio bfin/bini. Note that a
wide channel (cf. see dashed curves for the c = 100 case
in Fig. 6), having a weaker influence on the forming vor-
tex street, results, naturally, in relatively small variations
between the initial and final values of the shape param-
eters. For simplicity, as here we are only concerned with
the final (converged) shape parameters, in what follows
we drop the “fin” subindex used in the shape parameters
in the previous section. Namely, from now on, νfin → ν
and µfin → µ.

Finally, let us comment on the velocity for the front
and back ends of the street. We refer to the “front end”
of the street as the side furthest from the seeding point,
and the “back end” the side closest to it. We monitor the
position of the front and back ends with time using the
horizontal extent limits of the forming VKVS as defined

FIG. 6: (Color online). Convergence of the VKVS spacing pa-
rameters a and b as a function of the right-to-left background
velocity v for two channel widths (c = 10 and c = 100).
We depict the ratios bfin/bini (blue curves) and afin/aini (red
curves) for c = 10 (solid curves) and c = 100 (dashed curves)
with bini = 19.1 and aini chosen at the von-Kármán ratio. The
results are plotted after 100 vortices were seeded. The final
spacing parameters tend to their initial counterparts as both
the background velocity and the channel width increase.

above; see positions of the vertical dashed lines in Fig. 4.
From these positions we compute the respective average
velocities until hundred vortices are seeded (and discard-
ing a short initial transient). Our simulations reveal that,
after a short initial formation period, the back end of the
VKVS remains practically stationary. This consequently
slaves the vertical spacing of the street to the seeding
process and, thus, precludes noticeable variations in afin.
As for the front end, we found that, generally, its veloc-
ity was essentially equivalent to the background velocity,
with deviations becoming more pronounced in unstable
street cases. The deviations in these unstable cases were
the result of decreasing front end velocities signaling the
progressive destruction of the street at the front end to-
wards an irregular (chaotic) wake (see for instance Fig. 10
where an unstable VKVS “sheds” vortices in its wake
that, in turn, accelerates its destabilization).

V. FINITE STREET RESULTS

With the stability of the ideal K = 1 case extensively
addressed in the literature, we now examine the results
of the finite model for both the unbounded domain and
channel cases. The method of generation is the one intro-
duced above; spacing parameters, background velocity,
and the channel width are varied while all other features
held constant. We consider all point vortices to have
topological charge Γ = ±1.
To compute the stability of the dynamically gener-

ated street, we build the numerical Jacobian along vor-
tex street trajectories. We create the Jacobian by first
iteratively constructing the street by the successive gen-
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FIG. 7: (Color online) Stability diagram of the dynamically
generated K = 1 vortex street in an unbounded domain across
the parameter space determined by the a-priori initial esti-
mates of the spacing parameters, with background velocity
v = 0.1. Depicted is the corresponding maximum real eigen-
value component of the stability spectrum. The system is
clearly unstable in such a fundamental way that the tradi-
tional structure of the VKVS does not fully display the char-
acteristic VK ratio (see dashed line) except for higher param-
eter values.

eration of vortices. Once the street has been formed, we
successively apply a small perturbation to each position
variable, allow the street to develop for a fixed time inter-
val, then map the vortices back by their overall average
horizontal displacement, compute the difference between
the initial and final positions, and from there estimate
the entries of the associated numerical Jacobian. This
allows us to analyze the stability of the street on a co-
moving reference frame in which the VKVS is a fixed
point. Though the true fixed point only exists for an in-
finitely long street, the numerical Jacobian approach used
here will converge to the results of the infinite street given
a sufficient number of vortices. Tantamount to the spac-
ing parameters convergence observed in Fig. 5, we also
find that the eigenvalues extracted from this numerical
Jacobian exhibited little variance after fifty vortices had
been generated. We thus extract the maximal real eigen-
value component from this procedure as a measure of the
trajectory’s stability. If the largest unstable eigenvalue
is of sufficiently small magnitude, the destabilization will
only become noticeable after a significant amount of time
elapses. As we do not expect a real VKVS to continue in-
definitely (due to any number of physical boundary con-
ditions or flow features), we consider the street to be ef-
fectively stable if the largest real eigenvalue is relatively
small.

Plotting the stability diagram for the unbounded do-
main case, we do see in Fig. 7 a decrease in the size

FIG. 8: (Color online) Stability diagram for the dynamically
generated K = 1 vortex street in a channel of width 2c = 20.

of the largest real eigenvalue, corresponding mainly to
an increase in the spacing parameters. The correlation
between a finite collection of vortices spaced far apart
and the effect of perturbations on the structure of the
vortices as a whole is clear: with a finite number of vor-
tices, the effect of increasing the vortex-vortex spacing
is to decrease the effect of any one vortex on all others,
indicating that whether or not the vortices do form a
VKVS, the perturbations have little effect. For high a
and b values, despite the presence of some instabilities,
we do see traces of the expected VK ratio. This indicates
that, even in the case of vortices generated one at a time
in an unrestricted domain, the VK stability ratio is still
present.

For the horizontally finite K = 1 case in a channel, we
consider stability in terms of the scaled parameters µ and
ν. The stability diagram for the finite vortex street case
in a channel of width c = 10 is depicted in Fig. 8. We
find that for values that correspond to highly unstable
vortex streets, maximum real eigenvalues fall on the or-
der of 10−3, and for those where the only instability is the
expected unwinding at the free end of the street, the max-
imum eigenvalues are on the order of 10−5. As a result,
we consider eigenvalues of around 10−4 as the boundary
between in-practice stable and unstable regimes. As seen
in Fig. 8, by considering eigenvalues above 10−3 as unsta-
ble, the reconstructed parameter sweep strongly mimics
the results for the ideal, infinite, VKVS (see Fig. 3).

As depicted in Fig. 9, we further note that the num-
ber of vortices that converged in a VKVS configuration
within vertical tolerance of 0.005c had a similar qual-
itative distribution as the one displayed by the stabil-
ity diagram. The final a and b (or ν and µ) values are
most accurate when a large percentage of vortices are
in a street structure which corresponds to a stable case.
A low number indicates a relatively small sample size
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FIG. 9: (Color online) Number of vortices used in creating
the updated µ and ν estimates, for fifty seeded vortices. We
note that in the more stable region, a majority of the vortices
are within vertical alignment tolerance 0.005c of each other,
supporting that not only are the results stable, but that they
form a well-established VKVS.

to make any fair estimate. It also implies minimal ad-
justment of the parameter near the point of generation.
For stable cases, relatively large number of vortices are
used, while for unstable cases, fewer contribute to the
“von-Kármán” street (see also Fig. 10). We also note
in Fig. 9 that the number of vortices within tolerance
for stable cases is significantly higher than for unstable
ones, and that the majority of these cases seems to be for
high µ and ν values, where the dominant effect on the
vortices would be from the channel influence (and thus
lower chance for instability).

In Fig. 10 we depict a characteristic example of a wake
for an unstable street in the channel. There is a clear
difference between the stable wake depicted in Fig. 4 and
the unstable one in Fig. 10, marked by the behavior in
the tail-end of the street. The impact of the channel walls
appears to effectively stabilize the tail-end of the street.
Interestingly, the effect of the channel’s nearest wall on
a seeded vortex is to increase its velocity away from the
point of origin. Thus, vortices that break from the street
formation in stable cases will move further away from
the street, minimizing the effect the divergent vortex has
on the street as a whole. Example eigenvalue spectra
for stable and unstable wakes are depicted in Fig. 11.
The spectra, computed using the numerical Jacobian as
explained above, display a symmetric distribution across
both axes, which is the expected distribution for a Hamil-
tonian system. Nonetheless, it is important to mention
that we are computing the numerical Jacobian on a sub-

set of vortices as explained above and, thus, the subsys-
tem under consideration, is not strictly Hamiltonian. As
it can been seen from the inset zoom in the stable case

FIG. 10: (Color online) An example of a von-Kármán vortex
wake generated dynamically inside an impenetrable channel
(hashed regions). The vortices are initially seeded at x = 0
(location of the fictitious obstacle) and move to the left follow-
ing the background velocity of the fluid. The particular case
corresponds to an unstable wake for an initial vortex seeding
with ν = π/4 and µ = 0.5. Compared to the stable wake seen
in Fig. 4, we see that although both wakes retain some de-
gree of the von-Kármán structure, the unstable one develops
a disordered (chaotic) wake after a certain distance while the
stable one is essentially preserved in its entirety. The hori-
zontal dashed lines mark vertical positions of the converged
vertical spacing. Of the two scenarios, clearly the unstable
case has fewer vortices within the von-Kármán configuration,
while the majority of the vortices in the stable case can be
considered in a von-Kármán configuration.

(bottom panel), there are roughly four orders of mag-
nitude separating the size of the largest real eigenvalue
component when comparing the stable (bottom panel)
and unstable (top panel) cases.

Let us now discuss the impact of vortex street velocity
on the system as a whole. If we consider two arbitrary
vortices at some distance d apart, we note that as the
distance between the two increases, the mutual effects
on their velocity converges to zero at a rate 1/d. Thus,
for any configuration of vortices in a channel, the infinite
images created by the system and the others will have
little noticeable effect after a certain distance, leaving the
background velocity as the dominant term. While in the
infinite street case the background velocity is a constant
dependent on the parameters, the finite case will instead
have its velocity converge to zero as the strength of the
vortex-vortex interactions diminishes the further apart
the vortices are positioned.

Finally, it is relevant to mention that, in contrast to
the infinite street case, for the finite street case, varying
the channel width does have an effect on the stability of
the system even in the normalized µ and ν shape param-
eters. The effects can be attributed to the finiteness of
the model, where, unlike in the infinite street, proximity
to the walls have an unbalanced effect between the bulk
and the tail-end of finite street. Seeding the vortices with
parameters relative to a wider channel will minimize the
overall influence of the vortices on each other and, thus,
lessening the influence of instabilities.



8

FIG. 11: Typical eigenvalue distributions for the unstable
(µ = 1, ν = π/4; see top panel) and stable (µ = 3, ν = π/4;
see bottom panel) cases of a dynamically generated (finite)
VKVS. The symmetry across the axes is a consequence of the
near Hamiltonian structure of the underlying system.

VI. PERIODIC MODEL RESULTS FOR K > 1

A VKVS configuration with K > 1 is composed of K-
gons (of radius r = d/2 and centered at the positions of
the original K = 1 vortices) of evenly spaced point vor-
tices that replace the original individual vortices for the
K = 1 case. The vortex clusters in turn, for sufficiently
small radius relative to a and b, act on the other clus-
ters as a single vortex of charge KΓ, causing the street
as a whole to move horizontally like in the K = 1 case
with time rescaled by Γ. It is important to note that it
has been shown in the literature that an isolated K-gon
configuration is only stable for K ≤ 7 (see Refs. [26–28]).
As a result, there exists a hard upper limit on the possi-
ble stable streets that can be created. We consider as a
base case the K = 2 configuration as depicted in Fig. 12.
Note that a K > 1 VKVS will possess at least two new
parameters: the diameter d of the K-gon and the relative
angle ∆θ between the positively and negatively charged
K-gons.

As before, the 2a and 2b respectively denote the ver-
tical and horizontal spacings of the pairs, while a new
parameter r is introduced to define the radius of the sin-

2b

2a
d

Δθ

FIG. 12: An example K = 2 vortex street. Note that a and
b are now defined to be the vertical and horizontal spacings
between the centers of vortex pairs instead of the spacings
between vortices themselves. We also see the addition of new
parameters d, which refers to the diameter of a vortex pair
within the street, and ∆θ, which indicates the relative angle
of rotation between the positive and negative pairs.

gle like-signed vortex cluster. We may further consider
the parameters 2c (defined as before to be the channel
width) and ∆θ (defined to be the difference in rotational
angle between positive and negative vortex pairs). In ad-
dition, the K > 1 case does not typically exhibit steady
states even in a co-moving reference frame (the princi-
pal exception being the K = 2 case where b = d and
∆θ = 0, which is a street of parallel vortices shown to be
universally unstable [1]). Rather, in a co-moving frame
the K > 1 case displays periodic orbits corresponding
to the rotation of the like-signed vortex pairs. Due to
the intrinsic nonlinearity of the problem, it is difficult
to produce analytical stability results for these nonlinear
periodic orbits on a co-moving reference frame. There-
fore, we rely on a numerical strategy based on elementary
unit cells. We define a periodic, unit, cell to be a portion
of the infinite street of horizontal width 2b containing
one positive and one negative sign cluster, with periodic
boundary conditions to the left and right. In particular,
for the unbounded domain, the equations of motion may
be obtained as the sum of the equation for a single peri-
odic point vortex obtained from Refs. [11, 29], and takes
the general form

dz̄k
dt

=
1

4bi

N
∑

j=1,j 6=k

Γj cot
( π

2b
(zk − zj)

)

. (7)

On the other hand, for the channel case, we recall that
the equations used by Rosenhead to model the VKVS in a
channel represent two vortices in predetermined positions
repeated periodically in the x-direction every 2b distance.
Following the derivation in Rosenhead [4] for a single
vortex of arbitrary position zk, it is straightforward to
show that the equations of motion for N point vortices
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repeated periodically in a channel take the form

d

dz
ωk =

1

4bπ

N
∑

j=1,j 6=k

Γj

(

4π

τ
(z̄j − zj)

− i
ϑ′
1(

1

2b
(zk − zj); τ)

ϑ1(
1

2b
(zk − zj); τ)

+ i
ϑ′
4(

1

2b
(zk − z̄j); τ)

ϑ4(
1

2b
(zk − z̄j); τ)

)

.

(8)

With the notable exception of the works of Basu,
Stremler and co-workers [10–14], there is little explicit
literature on the K = 2 case. Therefore, let us numeri-
cally tackle the stability analysis of the K = 2 configu-
ration, both in an unbounded domain and in a channel,
through the lens of point-vortex models. To examine the
stability of the K = 2 street, we find periodic orbits for
streets with various values of a, b and d, by integrating
forward a single expected period, correcting for average
displacement of mass, and computing as error how far
the corrected value is from the initial point on the or-
bit. To find a “true” orbit, we minimize the error using
a standard nonlinear least square numerical procedure.
It is crucial to note that, because of periodicity, not

only configurations are periodic but also are their re-
spective perturbations. Thus, any perturbation in the
cell corresponds to a periodic perturbation of the infinite
street across all cells. Therefore, to consider perturba-
tions with non-trivial y dependence (i.e., not only ho-
mogeneous across all cells due to periodicity), we must
consider instead the system of vortices created by hori-
zontally concatenating n unit cells and adjusting the pe-
riod to be 2bn in the x direction.

A. Existence of Periodic Orbits

Before studying the stability of the K = 2 configura-
tion, let us briefly comment on its regions of existence.
Figure 13 depicts the families of K = 2 periodic orbits
(in their corresponding co-moving reference frame) for
∆θ = 0 (top) and ∆θ = π/2 (bottom) for different val-
ues of the distance d between vortices in each pair and
while keeping the shape parameters a and b constant. As
it can be seen from the figure, relatively small d values
(when compared to the b) result in almost circular or-
bits as the positively and negatively charged vortex pairs
are relatively distant from each other and thus interact
weakly. However, as d is increased, the vortex pairs in-
teract more strongly and the orbits deform into config-
urations with a triangular-like shape. As d is increased
further, our optimization routine is unable to converge
suggesting the existence of a maximum threshold value
above which K = 2 solutions cease to exit. In fact, as
d increases, there will be a threshold value when vor-
tices across pairs will be closer than in their own pair.
For ∆θ = 0, as the orbits are symmetric with respect
to the origin, this critical distance dc corresponds to the
minimum between (i) dc =

√
4a2 + b2 (distance between

FIG. 13: (Color online) K = 2 von-Kármán trajectories in
a unbounded domain plotted in a co-moving reference frame
for a = 1, b = 3/2, and ∆θ = 0 (top) and ∆θ = π/2 (bot-
tom). The different orbits correspond to different values for
the initial inter-vortex pair distance d (measured on the top-
right pair). Initial conditions are depicted with circles. The
VKVS velocities for the ∆θ = 0 case (top) correspond to
v = −0.1301, −0.1300, −0.1297, −0.1293, and −0.1307, for,
respectively, d = 0.5, 1, 1.5, 2, and 2.5, while for the ∆θ = π/2
case (bottom) they correspond to v = −0.1301, v = −0.1295,
v = −0.1274, v = −0.121, and v = −0.107 for, respectively,
d = 0.5, 1, 1.4, 1.65, and 1.75.

opposite signed-vortices across pairs) when a <
√
3b/2

and (ii) dc = 2b (distance between same signed-vortices

across pairs) when a >
√
3b/2. For the parameter values

of Fig. 13 (a = 1 and b = 3/2; i.e., a <
√
3b/2) this

happens at dc =
√
4a2 + b2 = 5/2. For ∆θ = π/2, the

traces of the orbits are indeed symmetric with respect to
the origin (see bottom panel in Fig. 13), however the or-
bits themselves do not follow this symmetry as the orbit
of the positively-charged pair is shifted by half a period
with respect to the orbit of the negatively-charged pair.
Therefore, the critical distance in this case cannot be
computed a-priori. Nonetheless, we have checked that
our optimization routine ceases to converge at dc ≈ 2.91
which is precisely when the inter pair distance is equal
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FIG. 14: (Color online) Convergence residual of a K = 2
orbit for a = 1, b = 10, and d = 1 as ∆θ is varied, for mul-
tiple channel widths. Depicted is the logarithm of the sum
of square errors (sse) on our optimization routine as a func-
tion of ∆θ. Clearly, in the wide channel limit, the only valid
orbits are for ∆θ = kπ/2, as convergence is poor elsewhere.
Contracting the channel eventually destabilizes even the π/2
case.

to the distance across pairs (see thin dark lines in the
bottom panel of Fig. 13).

On the other hand, let us briefly study the existence of
K = 2 configurations as the channel wall width and the
relative angle between vortex pairs ∆θ are varied. In par-
ticular, as observed in Fig. 14, convergence to the steady
state is hindered when the channel walls get tighter into
the vortex street configuration. Namely, when the chan-
nel width 2c gets closer to the vortex street width 2a+d.
This is a direct consequence of the effects induced by
the mirror image vortices introduced by the channel wall
which preclude the vortex pairs to follow their natural
rotation. On the other hand, we find that convergence
to a periodic state is enhanced when the symmetry of
the orbits is preserved. Namely, when the relative an-
gle between positive and negative pairs, ∆θ is such that
∆θ = kπ/2, ∀k ∈ Z.

B. Floquet Stability Analysis

To compute the stability spectrum of the numerically
found periodic orbits in the co-moving reference frame,
we call on the method of Floquet analysis (see Ref. [30]
and references therein). The analysis is motivated by the
need to adapt the methods for computing the stability of
a steady state to a system which, in a co-moving frame,
has a periodic orbit. We can adapt these methods by
computing the effects of small perturbations on the tra-
jectory over one period and, importantly, on a co-moving

frame. Using optimization solvers, we first numerically
find a periodic (over a single period) orbit u(t) of the sys-
tem on a co-moving reference frame. We then cast the
linearization along this orbit on a co-moving reference

FIG. 15: Dependence of the spectral stability on the number
n of units cells used in the model. Real (top) and imaginary
(bottom) eigenvalue spectra for d = 1, a = b = 2.3673. We see
that, after relatively few cells, the maximal real components
of the eigenvalues show good convergence.

frame as follows:

ṗ = DF [u, t]p. (9)

This system of equations for the perturbation along all
directions corresponds to a linear system of ODEs with
periodic coefficients (through the periodic orbit u), where
p(t) is the vector determining the direction and size of the
perturbation in perturbation space. In practice, since the
orbit u(t) can only be found numerically, an explicit form
for the above ODE is not readily available. Therefore,
we have to recur to numerical integration of the above
system of ODEs with the numerically pre-computed or-
bit u(t). We thus construct numerically the correspond-
ing Jacobian by introducing an initial small perturba-
tion along a chosen dynamical direction and measure the
rate of change for all dynamical directions over a pe-
riod (again, in a co-moving reference frame). Repeating
this initial small perturbation along all possible direc-
tions allows us to build, column-by-column, the numer-
ical Jacobian. This procedure allows us to numerically
compute the eigenvalues for the discrete map induced by
perturbations on the dynamics over one period (in the
co-moving frame), the so-called Floquet multipliers. We
then extract the corresponding stability eigenvalue spec-
trum by taking the logarithm of these Floquet multipli-
ers. In what follows we use these stability eigenvalues
to probe for instabilities. In particular, stability eigen-
values with positive real parts correspond to dynamical
instabilities for the co-moving periodic orbits.

C. K = 2 Unbounded Domain Stability

For the unbounded domain case, using the numerical
methods explained above, we examine the stability for
K = 2 VKVS orbits on n unit cells. Figure 15 depicts the
stability spectra as the number of periodic cells n is in-
creased. Interestingly, the most unstable mode is already
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FIG. 16: Example of the eigenvalue spectra (top) and the
most dominant eigenvector (bottom, on a visually scaled vor-
tex street) for the case where a = 20, b = 20, and d = 0.1.
We note the characteristic Hamiltonian distribution of the
eigenvalues, as well as the sawtooth (zig-zag) mode instabil-
ity being seen in the most unstable mode (which correspond
to a repeated pair of real eigenvalues λ = ±0.00097).

picked up for n = 2. In fact, our numerics show a notable
convergence of the maximum real part of the eigenvalue
with a relative variation below 10−10 (i.e., at the level
of the precision for our numerical eigenvalue computa-
tions) across all the values of n shown in the figure. This
strongly suggests that the most unstable mode is safely
picked when using n = 2 unit cells. Therefore, from now
on, we restrict our analysis to the n = 2 cell case as we
are focusing on the actual stabilization of these config-
urations. Examining the eigenvectors corresponding to
the most unstable eigenvalues for a wide variety of a and
b values, we see that the most unstable mode corresponds
to a “sawtooth” mode, where alternating like-signed pairs
are both moved in opposite directions (see Fig. 16). This
result is tantamount to the instabilities observed in the
K = 1 VKVS case where the most unstable mode corre-
sponds to a zig-zag, or pairing, instability mode [3, 19].
Note that in order to capture this most unstable mode
with our periodic cell methodology one requires a mini-
mum of two unit cells. This, in turn, explains the strong
convergence of the maximum real part of the stability
spectrum when using two or more unit cells.

We now consider the two unit cells case (n = 2)
to compute the stability diagram for VKVSs consist-
ing of K-gon vortex clusters. In particular, as shown in
Fig. 17, we find that the K = 2 unbounded street case for
∆θ = π/2 strongly correlates with the stability diagram
of the K = 1 street. More important to the stability
is varying b, which decreases the largest real eigenvalue
component. We explain the dominance of b by noting

FIG. 17: (Color online) Stability diagram for a K = 2 vortex
street in the unbounded domain (no channel walls present)
using 2 unit cells and ∆θ = π/2. Depicted is the largest real
eigenvalue across a and b with d = 0.1. We note a stability
region about the VK ratio (see dashed line). The stability
diagram corresponding to d = 1 is depicted in the bottom
panel of Fig. 18.

that an increase in b will correspond to an increase in
distance between both positive and negative pairs, while
increasing a will increase the distance between opposite-
sign pairs but have no effect on the distance between
like-signed. Quantitatively speaking, for any given vor-
tex pair, the nearest opposite-signed pair is

√
4a2 + b2

away, while the nearest like-signed is 2b away. Therefore,
as b is increased, the effect of vortex pairs on each other
will converge to zero, lowering the magnitude of the ef-
fect of any perturbation. Clearly, the K = 2 case retains,
to some degree, the behavior of the K = 1 phenomenol-
ogy. For instance, stability is minimized along the VK
ratio. Thus, as intuitively expected, when the vortices
are positioned such that the vortex pairs do not notice-
ably interfere with the orbits of the other vortex pairs
(i.e., d being relatively small when compared to a and b,

or more precisely to
√
4a2 + b2 and 2b; see above), the

street will have an overall behavior resembling the K = 1
case.

In Fig. 18 we contrast the stability diagram for ∆θ = 0
and ∆θ = π/2 for d = 1. Notably, we find that the sys-
tem has enhanced stability for smaller a and b values
along the VK ratio when ∆θ = π/2 than when all pairs
are initially given the same rotational angle (∆θ = 0).
The improvement in stability for ∆θ = π/2 can be ex-
plained by noting that the interaction between individ-
ual vortices in separate pairs can be minimized by ef-
fectively positioning the vortex pairs out-of-phase (i.e.,
∆θ = π/2).
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FIG. 18: (Color online) Stability diagram for a K = 2 vortex
street in the unbounded domain as in Fig. 17 but for d = 1
and ∆θ = 0 (top) and ∆θ = π/2 (bottom).

D. K = 2 Periodic Channel Stability

We now extend the stability analysis to the channel
case. We depict in Fig. 19 the stability diagram for a
K = 2 VKVS with d = 0.1, c = 100, and ∆θ = π/2.
We see that, for this relatively small d value, the sta-
bility diagram imitates that of the K = 1 channel case.
Namely, for low µ and ν parameter values we see a simi-
lar stability behavior as in the unbounded domain case:
reduced instability along the VK ratio and the instabil-
ity decreasing as b (µ) increases. For high ν, the channel
wall effects override the vortex pair interactions and the
K = 2 case is unstable, seen as a sharp increase in the
greatest real eigenvalue. Beyond the previous two cases,
where the scaled parameters are high enough that the
effect of the channel is large, the behavior of the system
resembles that of the K = 1 in the channel. On the other
hand, we note that the impact of varying d is to desta-
bilize the system for d large relative to the parameter
spacing; while the stability region can still be recreated,
it requires larger b values for each pair to be considered
as a single vortex with respect to the other pairs (see
bottom panel of Fig. 18 corresponding to d = 1 while

FIG. 19: (Color online) Stability diagram for a K = 2 vortex
street in a channel for d = 0.1, c = 100, and ∆θ = π/2.

FIG. 20: Effect of varying (half) the channel width c on the
stability of a K = 2 vortex street with a = 10, b = 100,
d = 0.1, and ∆θ = π/2. Depicted is the largest real part
of the eigenvalue spectrum as a function of c normalized by
a. The case c = a + d/2 (see leftmost dashed vertical line)
corresponds to a channel that is perfectly tight on the vortex
street. See text for explanation on the four different regions.

Fig. 19 corresponds to d = 0.1).
On the other hand, varying the channel width and

keeping the K = 2 VKVS parameters constant (a, b,
and d), will elucidate the overall stabilization effects due
to the presence of the channel. Figure 20 depicts the
largest real part of the eigenvalue spectrum as a function
of (half) of the channel width c (normalized by a). As
the figure shows, there is a complex dependence of the
stability on the channel width. Namely, one can discern
four qualitatively different regions that can be explained
as follows. (I) For large c (c > c1) the effects of the chan-
nel are negligible and the K = 2 pair behaves like a single
vortex of charge 2Γ. In this case one recovers the stabil-
ity of the K = 1 VKVS. (II) For intermediately large c
(c2 < c < c1) the channel starts having a noticeable ef-
fect on the K = 2 pair despite this being a destabilizing
effect. In this c-range, the instability grows by about one
order of magnitude. (III) For intermediately moderate c
values (c3 < c < c2) the channel provides a stabilizing
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FIG. 21: Examples of larger coherent vortex clusters for K = 5
(left) and K = 7+1 (right) obtained through our numerical
fixed point routines. In the K = 7+1 case, the natural in-
stability of a vortex octagon is counteracted by placing the
eighth vortex at the center.

effect of the K = 2 VKVS. This stabilizing effect reduces
the instability by two orders of magnitude. (IV) Finally,
for small c values (c < c3) the channel starts to inter-
fere with the K = 2 pair and completely destabilizes the
VKVS solution. This region ceases to exist when c ap-
proaches a (or more precisely a + d/2) where the pair
“hits” the channel walls. The complex, non-monotonic,
dependence of the stability on the channel width suggest
that each type of instability (i.e., each unstable eigenvec-
tor) is affected in a different manner as the channel is
tightened.
To summarize, the K = 2 VKVS is shown to be most

stable for values that correspond to the VK ratio in an
unbounded domain. The addition of the channel provides
enhanced stability for carefully chosen channel widths
(c3 < c < c2) but otherwise might be detrimental towards
stabilization. Despite the fact that small instabilities are
always present in the K = 2 case, as these instabilities
are weak (of the order of 10−6) in some regions, direct
numerical integrations for long times suggest that these
K = 2 VKVS configurations may be long-lived for phys-
ically realistic time scales.

E. K > 2 Cases

Employing point-vortex models to represent more com-
plex VKVS states may be further extended to cover cases
with greater numbers of vortices. We note that for an
isolated K-gon of point vortices, cases where K > 7 are
always unstable [22, 26–28]. Therefore, to construct long-
lived VKVS configurations with vortex clusters consist-
ing of regular K-gons, one must choose K ≤ 7. Beyond
seven vortices, larger constructs can be created and form
periodic orbits, but it requires more complicated geome-
tries. These geometries include the so-called N + 1 vor-
tex configurations consisting of a regular polygon of N
vortices with an extra single-charged vortex at the cen-
ter [31] or even semi-concentric polygonal rings of vor-
tices [32, 33]. For instance, Fig. 21 depicts VKVS con-

FIG. 22: Same as in Fig. 14 but for the K = 3 case (i.e.,
equilateral triangle vortex clusters). We observe convergence
of the K = 3 VKVS when the relative angle between the
equilateral triangles is a multiple of π/3.

figurations with higher K values obtained through our
numerical fixed point iteration routines. Specifically, the
figure shows a K = 5 VKVS (left) with a regular pen-
tagonal vortex clusters and a K = 7+1 VKVS consisting
of a regular septagon with an extra (single) vortex at is
center.
Similarly, we find that for higher values of K, the

streets exist most clearly when ∆θ = nπ/K (see for in-
stance the convergence results for the K = 3 case in
Fig. 22). The result is that the system tends towards
two broad states, given that the states are identical across
even and odd values of n which correspond, respectively,
to in-phase and out-of-phase K-gons between the posi-
tively and negatively charged clusters. Given the results
from the K = 2 case, we predict that the configuration
corresponding to ∆θ = π/K will be stable for relatively
low values of a and b, and thus will be more readily ob-
servable.

VII. DISCUSSION AND CONCLUSIONS

In this work we extend the results on the standard von-
Kármán (VK) vortex street (VKVS) with and without
a confining channel by implementing a reduced point-
vortex ODE model that dynamically generates a vortex
street. This model is tantamount as how these vortex
streets are created in nature at the wake of an impurity
moving through a fluid. These dynamically generated
wakes inherit their stability from the fully formed, infi-
nite VKVS. For instance, we are able to generate stable
wakes around the so-called VK ratio between horizontal
and vertical spacings between vortices. In case of insta-
bility, the tail-end of the VKVS breaks into a disordered
(chaotic) collection of vortices.
We also generalize the concept of a VKVS by replacing

each vortex by a small cluster of K co-rotating vortices.
In its simpler form, these clusters correspond to a regu-
lar K-gon. We study the existence and stability of the



14

K = 2 VKVS case comprised of co-rotating vortex pairs.
We find that the K = 2 VKVS inherits the stability prop-
erties of its K = 1 counterpart when the diameter of each
pair is relatively small compared to the distance between
pairs. In particular, we find that K = 2 VKVSs are sta-
ble for relatively large values of the horizontal separation
(compared to the channel width) and along the VK ratio.
This stability is progressively lost as the diameter of the
vortex pair increases. We also note that the K = 2 (or
in general for any K) VKVS has, in addition to the size
of the K-cluster, an extra shape parameter as oppositely
charged clusters may be placed at an angle ∆θ with re-
spect to each other. Our results suggest that the case
of ∆θ = π/2 has enhanced stability when compared to
the ∆θ = 0 case. This is explained by the fact that in
the ∆θ = π/2 case, the vortices across clusters are kept
further away during evolution (i.e., weaker interactions)
than when ∆θ = 0.
On the other hand, our results reveal, for certain shape

parameter combinations, a complex dependence of the
stability of the K = 2 VKVS on the channel width. In
particular we have shown cases where the stability is
described by four different regions as follows: for large
channel width the K = 2 VKVS mirrors the stability
of the K = 1 VKVS; for intermediately large channel
width the channel has a destabilizing effect; for interme-
diately moderate channel widths there exist small inter-
vals where the channel enhances stability; and finally, as
the channel becomes too tight to the VKVS, large insta-
bilities ensue as the vortices get too close to the channel
walls. This complex dependence is attributed to the dif-
ferent unstable eigenmodes being affected differently by
the presence of the channel.
Also, our analysis suggests that the appearance of the

K = 2 VKVS instead of the K = 1 VKVS in Bose-
Einstein condensates is not due to a combination of insta-
bility of the K = 1 with stability (or weaker instability)
of the K = 2 VKVS. In fact, our results suggest that
a K = 2 VKVS will always be more unstable than its
K = 1 counterpart. However, our study does not reveal
why indeed K = 2 are prevalent in Bose-Einstein con-
densates. We postulate that, in this case, the generation
of the K = 2 VKVS, instead of the K = 1, is due to the
way the vortices are generated around the impurity. For
instance, it is possible that a symmetry breaking mech-
anism could be responsible for the early generation of a
single vortex close to the impurity. Close proximity to

the impurity will induce the vortex to quickly migrate
along the periphery of the impurity (due to the effects
of its mirror image) and pair up with another vortex on
the other side of the impurity thus creating the K = 2
pair. This pertinent speculation deserves further consid-
eration.

We point to the possibility of creating VKVSs com-
prised of larger clusters of vortices. These clusters, if sta-
ble on their own right (i.e., when isolated), might replace
each vortex in the K = 1 VKVS to create a VK vortex-
cluster street. Our preliminary analysis suggests that
VKVSs comprised of K-gons only exist when positively
and negatively charged K-gons are in-phase (∆θ = 0)
or out-of-phase (∆θ = π/K). It would be relevant to
study in more detail the stability properties of VKVSs
comprised of K-gons (or other stable tight clusters like
the concentric-type polygons cataloged in Refs. [32, 33])
with larger values of K. In the same vein, even at the
level of existence, it would be interesting to study VKVSs
comprised of positively-charged clusters that are differ-
ent than the negatively-charged ones. For instance, it
is interesting to ask whether the total charge of each of
these clusters should be same in order to support a steady
state. Work in these directions is under way and will be
reported in a future publication.

Finally, it is worth mentioning that a helical vortex [34]
has a transverse cut that is precisely a VKVS. Therefore,
one could consider VKVSs as the low-dimensional (2D)
cousin of 3D helical vortices and thus their properties
could be related. For instance, a prevalent destabiliza-
tion mode observed in helical vortices correspond to the
sawtooth (zig-zag) mode [35] that is precisely one of the
most unstable modes identified in our work. Further-
more, K > 1 streets also have their higher-dimensional
equivalent in the form of interlaced helical vortices [36].
The intriguing connection between VKVSs and helical
vortices could be exploited to elucidate some configura-
tional and dynamical properties (i.e., stability) for the
latter.
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