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Singularities of dynamical large-deviation functions are often interpreted as the signal of a dy-
namical phase transition and the coexistence of distinct dynamical phases, by analogy with the
correspondence between singularities of free energies and equilibrium phase behavior. Here we
study models of driven random walkers on a lattice. These models display large-deviation sin-
gularities in the limit of large lattice size, but the extent to which each model’s phenomenology
resembles a phase transition depends on the details of the driving. We also compare the behavior of
ergodic and non-ergodic models that present large-deviation singularities. We argue that dynamical
large-deviation singularities indicate the divergence of a model timescale, but not necessarily one
associated with cooperative behavior or the existence of distinct phases.

I. INTRODUCTION

Phase transitions are collective phenomena that occur in
the limit of large system size and whose presence can be
detected in finite systems [1–3]. Phase transitions cause
singularities in thermodynamic potentials and dynamical
large-deviation functions, which quantify the logarithmic
probability of observing particular values of extensive
order parameters [4–7]. An important example of this
singularity-phase coexistence correspondence in equilib-
rium is the 2D Ising model below its critical tempera-
ture [1–3, 8]. In dynamical models, singularities (kinks)
of large-deviation functions develop in certain limits, and
can signal the emergence of a dynamical phase transition
and the coexistence of distinct dynamical phases [9–22].

However, large-deviation singularities do not necessarily
indicate the existence of cooperative phenomena or dis-
tinct phases. For instance, singular features are seen in
the large-deviation functions of finite systems in the re-
ducible limit, when the connections between microstates
are severed [23–27]. We show here that singularities
can also appear in the limit of large system size of dy-
namical models, if the model’s basic timescale (mixing
time) diverges with system size. Such singularities ap-
pear whether or not this divergence results from cooper-
ative behavior or is accompanied by evidence of distinct
phases.

We study models of driven random walkers on a lattice,
which display dynamical large-deviation singularities in
the limit of large system size. If the walker is driven in
one direction then we see the emergence of dynamical
intermittency within trajectories conditioned to produce
particular values of a dynamical order parameter. The
switching time of this intermittency grows with system
size. If the walker is undriven, the singularity results in-
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stead from a divergence of the diffusive mixing time of
the model, with no intermittency present in conditioned
trajectories (both behaviors have a thermodynamic real-
ization in terms of a lattice polymer). We present an ar-
gument to rationalize when to expect random-walk mod-
els to exhibit intermittency of their conditioned trajec-
tory ensembles, and show that this argument correctly
predicts the mixed intermittent/non-intermittent char-
acter of the conditioned trajectory ensemble of a ran-
dom walker whose driving varies with position. We also
comment on the relationship between ergodic and non-
ergodic dynamical systems that exhibit large-deviation
singularities.

In Section II and Section III we consider two random-
walk models that display large-deviation singularities,
but whose conditioned trajectory ensembles are of dif-
ferent character. In Section IV we present a simple ar-
gument to rationalize when such models display inter-
mittency of their conditioned trajectories. In Section V
we compare the behavior of ergodic and non-ergodic dy-
namical models that present large-deviation singularities.
We conclude in Section VI, arguing that dynamical large-
deviation singularities indicate the divergence of a model
timescale, but not necessarily one associated with coop-
erative behavior or the existence of distinct phases.

II. DRIVEN RANDOM WALKER

We start with a model similar to one studied in Ref. [13],
a driven random walker on a closed (non-periodic) lattice
of L sites. We choose L to be odd, and work in discrete
time [38]. Let the instantaneous position of the walker
be x ∈ {−(L − 1)/2, . . . , (L − 1)/2}. At each time t the
walker moves right (x → x + 1) with probability p(x),
or left with probability 1 − p(x). In this section we set
p(x) = 1/4, and so the walker’s typical location is near
the left-hand side of the lattice, x = −(L − 1)/2. If the
walker sits at either edge of the lattice then it moves away
from the edge with probability 1 (so p(−(L − 1)/2) = 1
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FIG. 1: (a–c) Large-deviation functions for the time-averaged position a of a driven discrete random walker on a closed lattice
of L sites. (d) Walker trajectories showing the instantaneous position x/L under the biased dynamics corresponding to the
point k = k? of greatest curvature of λ(k). These trajectories show intermittency, with the walker switching between two
locations on either side of the lattice. The timescale for residence in the distinct lattice locations increases with increasing L.
(e) Histograms of the instantaneous position x/L for the trajectories in (d).

and p((L−1)/2) = 0), analogous to reflecting boundaries
in the continuum limit.

The master equation associated with this dynamics is

Px(t+ 1) =
∑
x′

Wx′xPx′(t), (1)

where Px(t) is the probability that the walker resides
at lattice site x at time t, and the generator Wx′x =
p(x′)δx,x′+1 + (1− p(x′))δx,x′−1 is the probability of the
transition x′ → x.

We take the time-averaged position a of the walker as

our dynamical observable. This quantity is

a(ω) = (TL)−1
T∑
t=1

xωt , (2)

where xωt is the position of the walker at time t = 1, . . . , T
within a trajectory ω. We have normalized a(ω) by the
size of the lattice, L. The typical value of a, which we call
a0, corresponds to the value of (2) in the limit of large T .
Because the walker prefers to sit near the left-hand side
of the lattice, a0 ≈ −1/2.

To calculate the probability distribution ρT (A = aT ) of
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FIG. 2: Analog of Fig. 1, now for an undriven walker. (a–c) As for the driven walker, large-deviation functions show increasingly
sharp behavior as L increases. (d) Trajectories showing the instantaneous position x/L of the walker at the point of greatest
curvature of λ(k), k? = 0. These trajectories do not exhibit intermittency. (e) As a result, histograms of the instantaneous
position x/L for the trajectories in (d) are unimodal.

the walker’s time-averaged position, we appeal to the
tools of large-deviation theory. The probability distri-
bution adopts in the long-time limit the large-deviation
form

ρT (A) ≈ e−TI(a), (3)

where I(a) is the rate function (on speed T ) [4, 5]. I(a)
quantifies the probability with which the walker achieves
a specific, and potentially rare, time-averaged position.
When I(a) is convex, as it is for ergodic Markov chains, it
can be recovered from its Legendre transform, the scaled

cumulant-generating function (SCGF) [5],

λ(k) = a(k)k − I(a(k)). (4)

Here k is a conjugate field, and a(k) = λ′(k) is the value
of a associated with a particular value of k. If the lat-
tice is not too large then the SCGF can be calculated by
finding directly the largest eigenvalue of the tilted gen-
erator, W k

x′x = ekxWx′x. The rate function can then be
obtained by inverting (4). We use this standard method
to calculate λ(k), a(k), and I(a).

In Fig. 1 we show the large-deviation functions for the
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FIG. 3: (a–c) The large-deviation functions of Fig. 2 (a–c), rescaled by L2 to account for the timescale associated with
diffusion. The resulting collapse indicates that these systems behave similarly when viewed on the natural timescale T/L2.
The large-deviation singularity in this case results from divergence of the diffusive timescale.

time-averaged position a of the driven walker. As the
lattice size L increases, the SCGF and a(k) bend increas-
ingly sharply, and portions of the rate function become
increasingly linear.

In Fig. 1(d) we show biased dynamical trajectories of
the walker, generated at the points k = k? at which the
SCGF bends most sharply. We generated these trajec-
tories using the exact eigenvectors of the tilted genera-
tor [28, 29]. Because the SCGF is convex, biased trajec-
tories generated using field k correspond to trajectories
that produce a value a(k) = λ′(k) of the time-integrated
observable a [28], and are the “least unlikely of all the
unlikely ways” [4] of achieving the specified time aver-
age. For this model these trajectories are intermittent,
with the walker switching abruptly from one location on
the lattice to another. As a result, histograms of the
instantaneous position of the walker are bimodal [panel
(e)]. As the lattice size increases, the residence time at
each location increases.

The intermittent behavior has a simple physical origin.
The probability per unit time for the walker to sit at
(fluctuate about) its preferred location is greater than
that to sit at any site in the lattice interior, but the lat-
ter probability is essentially independent of position (see
Section IV). If conditioned to achieve a time-averaged
position a at (say) the center of the lattice, it could sit
for all time at the corresponding lattice location. But
it could also spend half its time at its preferred loca-
tion, and half its time near the far end of the lattice.
Given that sitting near the far end of the lattice is not
more costly than sitting in the middle, the intermittent
strategy is more probable than the homogeneous one.
This argument holds for time T much longer than τ(L),
the emergent mixing time governing intermittency. The
probability of crossing the lattice in the difficult direc-
tion is ∼ pL, and so the timescale for doing so increases
exponentially with L.

III. UNDRIVEN RANDOM WALKER

We now consider an undriven walker whose probabil-
ity of moving right at any site away from the edges is
p(x) = 1/2. Again we choose the time-averaged position
of the walker as our dynamical observable. As shown in
Fig. 2, the large-deviation functions λ(k) and a(k) again
show the emergence of sharp features as L grows, and
I(a) flattens, reminiscent of the free energy for the Ising
model below its critical temperature [2]. These sharp fea-
tures become singular in the limit L→∞, with the kink
occurring at k? = 0 (the untilted generator for a random
walker has a spectral gap that vanishes as L−2).

However, the implication of the emergence of distinct
“phases” or dynamic intermittency is at odds with the
physics of the system. Because of the model’s symme-
try, the point k = k? at which the SCGF shows greatest
curvature is k? = 0, corresponding to the unbiased trajec-
tory ensemble. Such trajectories do not display switching
behavior, as shown in panels (d) and (e). We also verified
that switching behavior occurs at no other values of k:
histograms of x/L for biased or conditioned trajectory
ensembles are always peaked about a single value. Why
then the emergent singularity?

To answer this question we note that the rate function
for dynamics controls the rate at which atypical fluctu-
ations decay, and so measures both the probability and
basic timescale of those fluctuations. Thus I(a) can be
small if the fluctuation a is almost typical, or if the ba-
sic timescale governing the establishment and decay of a
fluctuation a is large. For diffusive systems such as the
walker, the latter factor is important. The natural way
to compare systems of different L is at fixed scaled obser-
vation time TL ≡ T/L2, which in large-deviation terms
is equivalent to adopting TL as the new large-deviation
speed, such that ρT (A) ≈ e−TI(a) = e−TLIL(a). The
object IL(a) ≡ I(a)L2 is the rate function on this new
speed.
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FIG. 4: Negative log-probability per unit time for the driven
walker to achieve a time-averaged position a = x/L in a ho-
mogeneous way (blue lines) or a two-state intermittent way
(cyan and red lines). In panel (a) the walker’s driving is
constant, p(x) = 1/4, while in panel (b) the tendency of
the walker to move left increases with rightward distance,
p(x) = [1 − (x/L)2]/4. The lattice size L = 20. When the
straight lines lie below the blue lines it is more likely for the
system to achieve the time-averaged position a corresponding
to x/L in an intermittent way. This construction is consistent
with conditioned trajectories of these models (Fig. 5), as long
as the trajectory time comfortably exceeds the time on which
switching occurs.

In Fig. 3 we show the large-deviation functions for the
walker in this new frame of reference. Each panel is
a rescaling of the panels shown in Fig. 2(a–c). These
rescaled functions show no sharpening of their features
as L increases, and the collapse of the functions confirms
that the long timescale associated with the walker is the
diffusive one. The natural scales for comparison of these
systems is T/L2 and kL2, not T and k.

Therefore in this case it is a divergence of the diffusive
mixing time L2 that causes the singularity, not the emer-
gence of intermittent behavior. One additional issue re-
solved by the rescaling is the apparent vanishing of the
rate function in the limit L → ∞. If a large-deviation
principle applies then the rate function I(a) has a unique
zero at the point a0 at which the system displays its typ-
ical behavior [5]. Given the symmetry of the system, the
walker’s typical location in the long-time limit is a0 = 0.
It is clear that Fig. 3(c) is consistent with this idea, and
the notion that time is “long”.

In Appendix A we point out that both walker models
have a thermodynamic interpretation as lattice polymers,
confirming that the existence of a first-order singularity
in a thermodynamic system does not automatically imply
phase coexistence.

IV. WHEN SHOULD WE EXPECT
INTERMITTENCY?

The previous sections show that intermittent conditioned
trajectories can accompany dynamical large-deviation

singularities, but that singularities can result from the
emergence of a large timescale absent intermittency. We
show in this section that driven walkers on a lattice can
display both intermittent and non-intermittent condi-
tioned dynamics, depending upon the the details of the
walker rules and the timescale of observation. The ar-
gument we use is analogous to the classic equilibrium
procedure of comparing the free energies of homogenous
and coexisting phases [1, 2].

Consider again a lattice of L sites, and let the probability
that a walker steps right from lattice site x ∈ {1, . . . , L}
be p(x) (we have shifted the origin of the lattice rela-
tive to the previous sections). Define q(x) ≡ 1 − p(x).
Let the lattice be closed, so that p(1) = 1 and p(L) =
0. The time-integrated position of the walker is a =

(LT )−1
∑T
t=1 xt, where xt is the walker’s position at dis-

crete time t.

The probability for a walker at an interior site x to fluc-
tuate about that site, i.e. to step right, left, left and then
right again is p(x)q(x + 1)q(x)p(x − 1). Thus the nega-
tive logarithmic probability per unit time for the walker
to remain localized near interior site x is the negative
logarithm of this quantity divided by 4. Accounting for
the different rates at the edges of the lattice, the nega-
tive logarithmic probability per unit time for the walker
to remain localized near site x is

U(x) =


− 1

2 ln[p(x)q(x+ 1)] x = 1

− 1
4 ln[p(x)q(x+ 1)q(x)p(x− 1)] 1 < x < L

− 1
2 ln[q(x)p(x− 1)] x = L.

(5)
The negative logarithmic probability per unit time for a
homogeneous trajectory, one localized at x = aL for all
time, is

Jhomog = U(x). (6)

(The quantity J is not the rate function I(a), which re-
lates to the log-probability by which the system achieves
the value a by any means.)

By contrast, the negative logarithmic probability per unit
time for an intermittent trajectory built from sections
of trajectory localized at x′ = a′L for time φT and at
x′′ = a′′L for time (1− φ)T is

Jint = φU(x′) + (1− φ)U(x′′), (7)

ignoring switches back and forth between x′ and x′′. For
the intermittent trajectory to achieve the same time av-
erage as the homogeneous one requires

φx′ + (1− φ)x′′ = x. (8)

If, for a given value of x = aL, (7) is smaller than (6),
then intermittent trajectories are more probable than ho-
mogeneous trajectories. There may be other types of tra-
jectory that are more probable still, but this simple and
approximate argument, which essentially reduces to an
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FIG. 5: Large-deviation rate function I(a) for the time-
averaged position of the driven lattice random walker from
Section II (red), together with that for a super-driven walker
(cyan) for which the probability to move left increases with
distance from the left-hand edge. Shown below are histograms
of the instantaneous walker position from trajectories of the
two models conditioned to produce various atypical values of
a. Consistent with the simple arguments developed in this
section, the driven walker displays intermittency, for most
values of a, involving sites near the edges of the lattice. By
contrast, the super-driven walker shows intermittency for a
not too far from the typical value a0, involving sites near the
middle of the lattice. For a far from a0, its conditioned tra-
jectories are homogeneous. For both models, L = 20.

assessment of where U(x) is concave, provides a starting
point for understanding when intermittency will appear
in the conditioned dynamics of the walker.

In Fig. 4(a) we show the quantities (6) and (7) for the
driven walker of Section II, for which p(x) = 1/4. The
negative log-probability per unit time for homogeneous
trajectories, Eq. (6), is shown in blue. The most probable
intermittent trajectory for any x is the one built from the
lattice edges, shown in red in the figure. This line lies
below the homogeneous result for all x away from the

edges, showing that intermittency is the more probable
way to achieve a time average in the interior of the lattice.

In Fig. 4(b) we consider a “super-driven” walker whose
probability of moving in one direction increases with dis-
tance in the opposite direction, p(x) = [1 − (x/L)2]/4.
For intermittent trajectories to be more likely than ho-
mogeneous ones we need to be able to draw a straight
line between two points on the function U(x) and have
the line lie below U(x). We see that this is possible for
some points but not others, and that the lower-lying line
(the more probable intermittent strategy) connects the
typical point x ≈ 1 with a point that is near the middle
of the lattice, not the edge. Based on this picture we
expect the conditioned trajectory ensemble of the super-
driven walker to be intermittent for values of a near the
typical value a0 ≈ 1/L, but not far away, and for the in-
termittent trajectories to involve locations on the lattice
different to the edges occupied by the driven walker.

In Fig. 5 we show that these expectations are borne out.
In the main panel we show the rate functions I(a) for
the time-averaged position of the driven walker (red) and
super-driven walker (cyan). Shown below are position
histograms for trajectories conditioned to produce vari-
ous atypical values of a. Consistent with the simple argu-
ments developed in this section, the super-driven walker
shows intermittency near a = a0, involving sites near the
center of the lattice. For a far from a0 its conditioned
trajectories are homogeneous. The driven walker shows
intermittency for a wider range of values of a, and its
intermittency always involves sites near the edges of the
lattice.

To produce Fig. 5 we used the VARD method [30] to cal-
culate the conditioned dynamics of the walker. The un-
conditioned model has probability p(x) of moving right
from lattice site x. We introduce a reference random
walker whose probability of moving right, p̃(x), is an ar-
bitrary function of x, which we chose to express as a ra-
dial basis function neural network. The network has one
input node, which takes the value x/L, a single hidden
layer of 1000 neurons, each with Gaussian activations,
and one output node, p̃(x). For sufficiently long trajec-
tories the optimal dynamics is Markovian, and can be
represented exactly by this ansatz if suitably optimized.

Following Ref. [31] we used neuroevolution of the param-
eters of the network, equivalent to gradient descent in the
presence of Gaussian white noise [32], to extremize the
sum of values of T−1 ln[p̃(x)/p(x)] over a trajectory of T
steps of the reference random walker’s dynamics, subject
to its achieving a specified value of the time-averaged
position a. For T long enough, i.e. longer than any
emergent mixing time of the reference model, these cal-
culations are equivalent to the eigenvalue calculations of
Section II and Section III [33], and we recover the rate
function of the model and its conditioned dynamics at
each point on the rate function.

For T/τ(L) not large, conditioned trajectories do not re-
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semble their long-time counterparts. For example, for
T = L the most probable trajectory whose time-averaged
location is the middle of the box, given free choice of ini-
tial conditions, is the one that starts at the right-hand
wall and crosses the box in L steps. The histogram
ρ(x/L) associated with that trajectory is flat. For T � L
the only viable trajectories respecting the conditioning
are those localized near the appropriate value of x/L.

V. SINGULARITIES IN NON-ERGODIC
MODELS

We end by noting that dynamical large-deviation singu-
larities also arise in non-ergodic models, such as the ir-
reversible growth model of Refs. [15, 16], and that these
singularities are associated with phenomenology of a dis-
tinct type to that exhibited by the walker models.

Briefly, the growth model possesses two types of particle
x ∈ {−1, 1}, added to an urn at discrete timesteps with a
relative probability that depends on the quantity γ(a) =
e−Ja/(2 cosh Ja), where J is a parameter. Here a, the
dynamical observable, is the sum of values of x at each
timestep, divided by total time T . This model can also be
viewed as a two-state switch with a switching probability
that depends on the history of switching [27].

This model undergoes a phase transition, at a value of
J = 1, between a regime in which trajectories display one

FIG. 6: Summary of the biased trajectory ensembles associ-
ated with three model systems, each generated at the point
k? at which the SCGF associated with the time-integrated
observable has largest curvature. For the undriven walker
(left) and the growth model (right) we have k? = 0, while for
the driven walker (center) we have k? 6= 0. The top panels
show the instantaneous dynamical observable associated with
a single trajectory (two trajectories in the case of the growth
model). The lower panels show a, the time-integrated version
of x, for an ensemble of 100 trajectories. The trajectories of
the top panels are indicated in the bottom panels by the dark
blue or red lines.

type of characteristic behavior and a regime in which tra-
jectories display two types of characteristic behavior. At
the critical point the trajectory ensemble displays anoma-
lous fluctuations. Associated with this transition is a
change of shape of the model’s large-deviation rate func-
tion (see Appendix B), and a dynamical large-deviation
singularity.

Long trajectories of the conditioned driven walker and
the growth model show two-state switching behavior, but
in the growth model’s case the probability of switching
depends on the history of switching. As a result, tra-
jectories that adopt one type of behavior become more
likely, as time advances, to remain committed to that
behavior [34]. The result is ergodicity breaking and an
ensemble of trajectories that in the long-time limit spon-
taneously adopt one of two characteristic behaviors.

The nature of the trajectory ensemble of the growth
model and walker models is summarized in Fig. 6. Condi-
tioned trajectories of the driven walker display intermit-
tency and a bimodal distribution of the instantaneous co-
ordinate x/L, but the distribution of the time-integrated
quantity a is unimodal. In the growth model, the distri-
bution of the time-integrated quantity a is bimodal.

VI. DISCUSSION & CONCLUSIONS

Phase transitions are collective phenomena that occur in
the limit of large system size, and which influence the
behavior of finite systems [1–3]. Phase transitions in-
duce singularities in thermodynamic potentials and large-
deviation functions. However, similar-looking singulari-
ties can arise in the absence of collective phenomena. For
instance, abrupt features are seen in the large-deviation
functions of finite systems in the reducible limit, when
the connections between microstates are severed [23–27].
Here we have shown that singularities can also emerge
in the limit of large system size if a model becomes slow
as it becomes large, whether or not it exhibits behavior
reminiscent of a phase transition.

The undriven walker of Section III has a rate function
I(a) [Fig. 2(c)] that in the limit L→∞ looks similar to
that of the 2D Ising model’s magnetization rate function
below Tc [2, 5]. Interpreting the walker in this context
suggests that it can be switched between two behaviors
(corresponding to walkers localized either size of the lat-
tice) with an infinitesimal field k. Moreover, because the
switching occurs about the value k? = 0, a large unbi-
ased version of the system appears poised on the brink
of phase coexistence between these behaviors. However,
the conditioned trajectory ensemble of the walker shows
no evidence of distinct dynamical phases. In our view
a more natural interpretation is that the walker’s diffu-
sive timescale diverges as L2. When time T and field k
are rescaled in order to view systems of different size at
fixed T/L2, is clear that the probability distribution of a
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remains regular (Fig. 3). Departures from the typical be-
havior (a time average in the middle of the lattice) remain
rare. The distinction between large-deviation singulari-
ties induced by cooperative behavior or by dynamics that
is simply slow is the idea expressed in Fig. 1 of Ref. [27].

The driven walker of Section II displays emergent inter-
mittency when its trajectories are conditioned to pro-
duce particular time-averaged positions, provided that
T � τ(L), the emergent switching time. In Section IV we
show that the details of the walker’s rules and the value
of the imposed time averaged determine whether inter-
mittency or homogeneity dominates. Other authors have
noted the similarity of dynamical intermittency to mag-
netization stripes in the Ising strip crystal, if we associate
time with the long Ising box direction and regard the two
walker lattice positions as “phases” [13]. However, if we
swap the long and short directions of the Ising box then
the direction of the interface changes, but the identity of
the phases does not. If we do similarly with the walker,
and make L � T , then its conditioned trajectories can
no longer be intermittent. This change switches the di-
rection of the walker’s space-time “interface”, but also
alters the identity and number of the “phases” seen.

The growth model (or two-state switch with memory)
discussed in Section V is unlike the other models dis-
cussed in that it possesses only one independent dimen-
sion, that of time T . It is clearly different in detail
to models with spatial degrees of freedom, but its phe-
nomenology is similar to that of the 2D Ising model in
several important respects, with T playing the role of
system size. The growth model’s large-deviation func-
tion changes from being regular to being singular upon
changing a model parameter J . In the singular regime
the steady-state rate function of the time-extensive quan-
tity is concave (Section B), reflecting two distinct dynam-
ical behaviors and an associated ergodicity breaking. The
origin of this behavior is cooperativity, the tendency of
the model to favor one behavior the more it exhibits it.

The scaled cumulant-generating functions (SCGFs) of
these models, which display kinks in certain limits, do not
specify which type of dynamics the model exhibits. It is
worth noting that nor do the rate functions to which they
are Legendre dual. For the walker models, the SCGF
kinks are related to portions of the rate function that are
linear with zero gradient (the undriven walker) and with
nonzero gradient (the driven walker). The latter is sug-
gestive of intermittency, although linear rate functions
also arise in other types of process, such as relaxation
to an absorbing state [5, 35]. Moreover, simple switch-
ing models, which are by design intermittent, display, as
the switching time increases, rate functions that broaden
and vanish, becoming linear with zero gradient [23–25]
(see e.g. Fig. 5 of Ref. [27]). Those rate functions there-
fore resemble the rate functions of the undriven walker,
although the latter shows no intermittency. Explicit cal-
culation of the dynamics that gives rise to the rate func-
tion is necessary to determine how the model realizes its

rare behavior.

All of the models discussed here display kinks of their
dynamical large-deviation functions in certain parameter
regimes, but show phase transition-like behavior to differ-
ent extents. On this basis we suggest that phenomenol-
ogy should guide the classification of singularity-bearing
models discussed in the literature.
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Appendix A: Thermodynamic interpretation of
walker models

The random walkers of Section II and Section III have
a thermodynamic interpretation, if we interpret the time
dimension of the walker as a second spatial dimension.
Then every trajectory ω of the walker becomes a config-
uration of a lattice polymer. On each row n ∈ {1, . . . , N}
of the lattice (formerly the time direction), the polymer
occupies a single site xn ∈ {−(L − 1)/2, . . . , (L − 1)/2}.
The polymer is held at reciprocal temperature β =
(kBT )−1, and we define the energy of configuration ω
to be

βE(ω) = − lnπ1(xω0 )−
N∑
i=2

lnWxω
i x

ω
i+1
. (A1)

Here π1(x) is the probability that the polymer has posi-
tion x on the first row of the lattice.

The probability that the thermodynamic system has con-
figuration ω is equal to the probability that the dynami-
cal system generates trajectory ω. The probability of the
polymer achieving a row-averaged mean position a is

ρN (a) = e−βNgN (a), (A2)

where

βgN (a) = − 1

N
ln

∑
ω:a(ω)=a

e−βE(ω). (A3)

is the reduced free energy per lattice row. In the limit
that N becomes large, the function gN (a) goes over to
an N independent function g(a), leading to the large de-
viation principle

ρN (a) ≈ e−βNg(a), (A4)
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FIG. 7: Time-integrated observable a for ensembles of trajectories of the irreversible growth model of Refs. [15, 16]. From left
to right we show the one-phase region, the critical point, and the two-phase region. Panels are labeled by the values of the
model parameter J . The black lines are derived from (B1).

the thermodynamic analog of (3). Taking the Legendre
transform of g(a) produces the function f(k) with field
k. Then g(a) = I(a) and f(k) = λ(k).

As a result, the thermodynamic polymer exhibits the
same behavior as the dynamical walker, but does so in
space rather than time. In particular, in the case p = 1/2
the correlation length of the polymer diverges as L di-
verges, leading to a broadening of the free energy g(a)
and the emergence of a kink in f(k). However, analo-
gous to the dynamical case, the probability distribution
of polymer positions remains uniform, and no distinct
“phases” accompany the singularity.

Appendix B: Large-deviation functions of the
growth model

The irreversible growth model of Refs. [15, 16], summa-
rized in Section V, is sketched at the top of Fig. 7 in
the form of a two-state switch with memory. In that fig-
ure we show trajectories of the model at and at either
side of the dynamical critical point Jc = 1. Associated
with this phase transition is a large-deviation singularity:
the rate function for a becomes non-convex at the crit-
ical point, and the associated SCGF is kinked [15, 16].
The non-convexity in the two-phase region is of different
character to that seen in ergodic models that display dy-
namical intermittency. In this appendix we explore this
point further.

The black lines in Fig. 7 are the rate-function bound

I0(a) =
1− a

2
ln (1− a) +

1 + a

2
ln (1 + a)

− Ja2 + ln cosh Ja, (B1)

derived in Ref. [16] under the assumption of steady-state
growth. We will call Eq. (B1) the steady-state rate func-

tion. It is convex for J < 1 and non-convex (concave) for
J > 1.

The steady-state rate function is consistent with the em-
pirical large-deviation rate function of the model in the
one-phase and two-phase regions. In Fig. 8 we show em-
pirical rate functions −T−1 ln ρT (A) for unbiased trajec-
tories of the growth model, compared with the form (B1).
To measure histograms ρT (A) we used of order 106 tra-
jectories, propagated for the times shown, and sampled a
using 500 evenly-spaced bins (in Fig. 8(b) we used 5000
bins and simulation times one-fifth of those in the other
panels). Panels are labeled with the value of the coupling
J , and all simulations (except those in Fig. 8(c)) were
begun from time T0 = 0, corresponding to an “unassem-
bled” structure.

For couplings J well below and well above the critical
point, the empirical rate functions are convex and con-
cave, respectively, and are consistent with the steady-
state rate function (B1) (see particularly the enlargement
of the right-hand side of the plot in Fig. 8(b)). Near the
critical point, on either side, the relaxation time of the
model is large [15], and empirical rate functions, for the
times simulated, depart from the form (B1). (The distri-
bution ρT (A) (not the rate function) at the critical point
Jc = 1 is bimodal, similar to the magnetization distri-
bution of the 2D critical Ising model in square geome-
try [36].) In the two-phase regime, close to the critical
point, we can detect by direct simulation a population of
transient trajectories that linger for some time near the
unstable fixed point a = 0 (see Fig. 9), and later commit
to one of the stable attractors. These trajectories popu-
late the middle portions of the empirical rate functions
close to the critical point. In this regime the empirical
rate function consists of two convex pieces joined by a
bar, and in the limit of large T the height of this bar
moves to zero.
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FIG. 8: Empirical rate functions −T−1 ln ρT (A) for different values of trajectory time T (denoted by symbols) for the irreversible
growth model, compared with the steady-state rate function (B1) (black lines). Panels are labeled by values of the parameter
J . (a) Far from the critical point Jc = 1 the empirical rate functions are convex in the one-phase region (J < 1) and concave
in the two-phase region (J > 1). Close to the critical point the behavior of the model, on the times simulated, is influenced
by a population of transient trajectories. (b) Enlargement of the right-hand portion of the plot for J = 3 shows the empirical
rate function to be consistent with the form (B1), indicating steady-state growth. (c) We again consider the case J = 1.3, but
now initiate simulations from a pre-made structure of size T0 = 1000 and composition a, consistent with the position of the
right-hand minimum of the steady-state rate function (B1). Doing so allows us to effectively access longer timescales than we
could from “unassembled” initial conditions. The empirical rate function derived from the resulting ensemble of trajectories is
again consistent with the form (B1).

This behavior is consistent with Ref. [37], which showed
that the rate function I(a) accounting for steady-state
and transient trajectories is zero between the stable min-
ima in the two-phase regime. However, whether the em-
pirical rate function is described by this result or by the
steady-state rate function bound (B1) depends strongly
upon where in parameter space we operate. Simulations
for the times and couplings used in Ref. [37] (e.g. at the
point J = 1.3; see panel in Fig. 8) are dominated by
transient effects, and are not representative of the long-
time behavior of the model in the two-phase regime, con-
trary to the claim made in [37]. As the trajectory time
T becomes large, or J is made larger (so reducing the

relaxation time of the model), the number of trajectories
required to observe transient trajectories. For instance,
at J = 3 and T > 105, none of 108 trajectories was of
the transient type. By contrast, trajectories in the vicin-
ity of the stable attractors can be seen at all times, and
the rare trajectories detected by direct simulation result
from invasion from those attractors. As a result, for long
times and a large but computationally feasible number
of trajectories, the empirical rate function of the model
in the two-phase region is non-convex (concave), and is
consistent with the steady-state rate function (B1). This
concavity reflects ergodicity breaking and the presence of
distinct dynamical phases.
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FIG. 9: In the two-phase regime of the growth model, trajectory ensembles begun from structures of increasing size T0,
having composition a0 = 0 (top row), become increasingly strongly confined by the unstable dynamical attractor at a = 0,
corresponding to the central minimum of the function (B1). By contrast, large structures of initial composition a0 6= 0 not
consistent with any of the minima are driven toward the stable dynamical attractors (in this figure only, the symbol a0 denotes
initial composition, and not a typical value of the trajectory ensemble.)

The behavior of the growth model compared to that
of the walker models reinforces the importance of phe-
nomenology to any classification scheme: these models
display similar large-deviation singularities, but support
phase transition-like behavior to different extents.
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