
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bounding generalized relative entropies: Nonasymptotic
quantum speed limits

Diego Paiva Pires, Kavan Modi, and Lucas Chibebe Céleri
Phys. Rev. E 103, 032105 — Published  5 March 2021

DOI: 10.1103/PhysRevE.103.032105

https://dx.doi.org/10.1103/PhysRevE.103.032105


Bounding generalized relative entropies: Non-asymptotic quantum speed limits

Diego Paiva Pires,1 Kavan Modi,2 and Lucas Chibebe Céleri3, 4
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Information theory has become an increasingly important research field to better understand quan-
tum mechanics. Noteworthy, it covers both foundational and applied perspectives, also offering
a common technical language to study a variety of research areas. Remarkably, one of the key
information-theoretic quantities is given by the relative entropy, which quantifies how difficult is to
tell apart two probability distributions, or even two quantum states. Such a quantity rests at the core
of fields like metrology, quantum thermodynamics, quantum communication and quantum informa-
tion. Given this broadness of applications, it is desirable to understand how this quantity changes
under a quantum process. By considering a general unitary channel, we establish a bound on the
generalized relative entropies (Rényi and Tsallis) between the output and the input of the channel. As
an application of our bounds, we derive a family of quantum speed limits based on relative entropies.
Possible connections between this family with thermodynamics, quantum coherence, asymmetry and
single-shot information theory are briefly discussed.

I. INTRODUCTION

Since its formulation decades ago by Shannon [1], in-
formation theory has played a major role in both applied
and fundamental science, ranging from neuroscience [2]
to quantum gravity [3, 4], and along the way has im-
pacted thermodynamics [5], finance [6], and evolution-
ary biology [7]. A central element in this theory is the
Shannon entropy, which measure how much informa-
tion is contained in a probability distribution. Shan-
non entropy also plays a role on the speed of evo-
lution of classical stochastic processes [8]. However,
when the basic assumptions of the theory do not hold,
e.g., extensivity or very large data set (non-asymptotic
regime), another information measures appear as gene-
ralizations of the Shannon entropy. Indeed, such family
of information-theoretic measures include the paradig-
matic cases of Tsallis [9] and Rényi [10] entropies.

Each of these developments is based on the idea that a
physical process could be understood as an information
processing protocol. In such tasks, distinguishing clas-
sical probability distributions or quantum states plays a
fundamental role. The relative entropy [11], also called
divergence [12], stand as a remarkable information-
theoretic distinguishability metric, thus exhibiting dis-
tinct operational meanings in several fields. For ins-
tance, relative entropy quantifies the dissipated work in
a driven evolution [13], the amount of entanglement [14]
and quantum coherence in a given state [15, 16]. More-
over, it unveils the role of entropy production in thermal
relaxation processes [17–19], and also the asymmetry of
a state or process [20].

Rényi relative entropy (RRE) determine an entire fam-
ily of second laws of thermodynamics in the quan-
tum regime [21], which also applies to black hole
physics [22], and cut-off rate in the hypothesis testing
theory [23], quantum Gaussian states [24], just to name

a few results. Furthermore, RRE is linked to an entropic
energy-time uncertainty relation for time-independent
systems [25], also being related to the concept of multi-
ple quantum coherences [26].

Tsallis entropy is mainly considered in the field of
non-extensive statistical mechanics [27]. However, im-
portant applications of this theory also appear in several
other areas [28]. Interestingly, it has been shown that
Tsallis relative entropies (TRE) define a bona fide quan-
tum coherence quantifier [29]. Furthermore, TRE satis-
fies a class of bounds derived from Pinsker and Fannes
type inequalities [30].

Here we consider the fundamental problem of boun-
ding the change in the generalized relative entropies un-
der an arbitrary unitary process. Specifically, we de-
rive an upper bound on both asymmetric and symmetric
versions of RRE and TRE, between the initial and final
states. As an application of this result, we show that
this upper bound implies an entirely family of quantum
speed limits (QSLs).

The importance of our results is twofold. First, it es-
tablishes a bound on entropic quantifiers that are em-
ployed in distinct fields, from quantum communication
to biology [31, 32]. In general, since the computation of
relative entropies are usually difficult, our main result
can directly be applied in all of these fields by providing
bounds on central quantities. Secondly, our family of
QSLs provide non-asymptotic bounds on the time evo-
lution of quantum systems in the sense of the so-called
single-shot information theory [33]. Furthermore, due
to the broadness application of RRE, it provides a bridge
among the speed of quantum evolution, thermodynam-
ics [34] and quantum resources, e.g., entanglement, co-
herence and asymmetry [35]. Importantly, since our re-
sults apply to TRE, it also provides a non-extensive ver-
sion of the QSL, which can found several applications,
both on fundamental and practical aspects [36].
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The paper is organized as follows. In Sec. II we briefly
review the main properties of Rényi and Tsallis relative
entropies, which in turn can be recasted in terms of a
generalized entropy. In Sec. III, we introduce the phys-
ical setting and present an upper bound on those gen-
eralized entropies. Next, in Sec. IV we discuss an entire
family of QSLs derived from the referred upper bound
on Rényi and Tsallis relative entropies. In Sec. V we
illustrate our findings via the prototypical case of the
single-qubit state, thus presenting analytical results for
the family of QSLs, and also discussing the tightness of
the main bound on generalized entropies. Finally, in
Sec. VI we close the paper discussing these results and
comment on possible applications.

II. GENERALIZED RELATIVE ENTROPIES

Let us start by defining our physical system, which is
described by a finite-dimensional Hilbert space H, with
d = dim(H). In general, the state of the system will be
given by a density matrix ρ ∈ Ω, where Ω = {ρ ∈ H |
ρ† = ρ, ρ ≥ 0, Tr(ρ) = 1} defines the convex space of
density operators. In this setting, given two states ρ, ω ∈
Ω, the Rényi (RRE) and Tsallis (TRE) relative entropies
are defined, respectively, as [37]

Rα(ρ‖ω) =
1

α− 1
ln [gα(ρ, ω)] , (1)

and

Hα(ρ‖ω) =
1

1− α
[1− gα(ρ, ω)] , (2)

where gα(ρ, ω) = Tr
(
ραω1−α) is the α-relative purity,

also called Petz-Rényi relative quasi-entropy [24], with
the parameter α ∈ (0, 1) ∪ (1,+∞) labelling the fami-
ly of quantum relative entropies [38]. Equation (1) is
also called Petz-Rényi relative entropy [39], standing
as the first quantum extension of the classical RRE. In-
deed, due to the noncommutativity of quantum states,
the non-uniqueness of quantum information-theoretic
quantifiers has triggered the search for a plethora of
quantum entropies, e.g., sandwiched Rényi relative en-
tropy [37, 40–42], and α-z-relative Rényi entropy [43].

Importantly, relative purity satisfies the property
gα(ω, ρ) = g1−α(ρ, ω), i.e., it is skew symmetric with
respect to α. In particular, when ρ = ω we have
gα(ρ, ρ) = 1 for all α, and thus one gets Rα(ρ‖ρ) =
Hα(ρ‖ρ) = 0. Noteworthy, for α = 1/2 one recov-
ers the so-called quantum affinity, which is related to
Hellinger angle [44]. In turn, Hellinger angle is asso-
ciated to Wigner-Yanase skew information metric, and
characterizes the length of the geodesic path connecting
states ρ, ω ∈ Ω [45, 46].

In the following we summarize the main proper-
ties of RRE and TRE. A more complete presentation
can be found in Ref. [47]. Starting with RRE, the

limit α → 1 recovers the well-known quantum rela-
tive entropy R1(ρ‖ω) = S(ρ‖ω) := Tr(ρ ln ρ − ρ lnω).
For α = 0, RRE reduces to the min-relative entropy
R0(ρ‖ω) = − ln Tr(Πρ ω), with Πρ being the projector
onto the support of the state ρ [48]. Noteworthy, for
0 ≤ α ≤ 2, RRE satisfies the data-processing inequa-
lity, i.e., Rα(Λ(ρ)‖Λ(ω)) ≤ Rα(ρ‖ω), thus being mono-
tonic under any completely positive and trace preser-
ving map Λ(•) [49]. This is a fundamental inequality
not only within information theory, but also for physics
(see, for instance, Ref. [50] where the second law of ther-
modynamics is obtained from such inequality). Moving
to Tsallis relative entropy, it has been shown that, for
0 ≤ α < 1, TRE is (i) nonnegative, i.e., Hα(ρ‖ω) ≥ 0
for all ρ, ω ∈ Ω, with the equality holding if and only if
ρ = ω; (ii) jointly convex; (iii) nonaditive; and (iv) con-
tractive under completely positive and trace preserving
maps [28, 51, 52]. Importantly, TRE also recovers the
standard quantum relative entropy in the limit α → 1,
i.e., H1(ρ‖ω) = S(ρ‖ω).

We shall stress that RRE and TRE are asymmetric with
respect to states ρ, σ ∈ Ω. However, a bona fide dis-
tance measure within the information geometry theory
is usually symmetric. For instance, the so-called quan-
tum Jensen-Shannon divergence, i.e., the square-root of
symmetrized quantum relative entropy, was proved to
be a metric on the space of density matrices [53]. For
the case at hand, the aforementioned entropies can be
symmetrized as

Oα(ρ : ω) := Oα(ρ‖ω) +Oα(ω‖ρ) , (3)

where index O ≡ {R,H} labels RRE and TRE, respec-
tively. We are now ready to present our main result.

III. BOUNDS ON GENERALIZED RELATIVE
ENTROPIES

The dynamics of our system is governed by a time-
dependent Hamiltonian Ht ∈ B(H), with B(H) being
the set of bounded operators acting on H. In general,
the Hamiltonian Ht is not self-commuting at different
times, i.e., [Hs, Ht] 6= 0 for s 6= t. The initial state
ρ0 ∈ Ω undergoes the unitary evolution ρt = Ut ρ0U

†
t ,

for t ∈ [0, τ ], where Ut = T e−i
∫ t
0
dsHs is the time-

ordered unitary evolution operator satisfying the equa-
tion −i(dUt/dt) = HtUt. From now on, we will work in
natural units, ~ = kB = 1.

Based on this physical setting, our goal is to provide
a class of nontrivial upper bounds for RRE and TRE. In
Appendix A.2 we have proved that, for α ∈ (0, 1), RRE
and TRE satisfy the inequality

Oα(ρτ‖ρ0) ≤ τ 〈〈GOα (t)〉〉τ
|1− α|

, (4)

where 〈〈•〉〉τ = τ−1
∫ τ
0
• dt stands for the time average,
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and

GOα (t) := ΦOα ‖ρ1−α0 ‖2 ‖[Ht, ρ
α
0 ]‖2 , (5)

with ‖A‖2 =
√

Tr (A†A) being the Schatten 2-norm.
Here, ΦOα is an auxiliary function which reads

ΦOα =

{
|1 + (1− α) ln(λmin(ρ0))|−1 , for O ≡ R
1 , for O ≡ H ,

(6)

where λmin(ρ0) sets the smallest eigenvalue of the input
state ρ0. Noteworthy, Eq. (4) is the first main result of
this article. Remarkably, the bound mostly depends on
ρ0 and Ht. Naturally, a similar bound can be obtained
for the case in which the arrangement of states ρ0 and
ρτ in Eq. (4) is swapped, which is given by (see Ap-
pendix A.2)

Oα(ρ0‖ρτ ) ≤
τ 〈〈GO1−α(t)〉〉τ
|1− α|

. (7)

Furthermore, the corresponding inequality for sym-
metrized forms of RRE and TRE is then obtained,
roughly speaking, by combining the two non-symmetric
upper bounds, and reads (see details in Appendix A.3)

Oα(ρτ : ρ0) ≤
τ 〈〈GOα (t) + GO1−α(t)〉〉τ

|1− α|
. (8)

Remarkably, such bounds do not depend on the time-
ordered evolution operator Ut, neither on the evolved
state of the system. Thus, for states ρ0 and ρτ of a given
closed quantum system, our results provide a route to
estimate both RRE and TRE entropies which will de-
pend mostly on the spectral properties of the initial state
ρ0 and the driving Hamiltonian.

Importantly, Eq. (4) can be recasted in terms of the
Fröbenius norm of the initial state of the system, while
being a function of the time-average of the Schatten 2-
norm of the Hamiltonian. To see this, we first point
out that for two arbitrary complex matrices X and Y ,
it has been proved the Schatten 2-norm fulfills the ine-
quality ‖[X,Y ]‖2 ≤

√
2 ‖X‖2‖Y ‖2 [54–56]. Hence, from

Eq. (5) one readily obtains the upper bound GOα (t) ≤√
2 ‖ρ1−α0 ‖2 ‖ρα0 ‖2 ‖Ht‖2. Therefore, the bound in Eq. (4)

can be recasted as

Oα(ρτ‖ρ0) ≤
√

2 τ ΦOα ‖ρ1−α0 ‖2 ‖ρα0 ‖2 〈〈 ‖Ht‖2〉〉τ
|1− α|

. (9)

In particular, note that 〈〈 ‖Ht‖2〉〉τ = ‖H‖2 for the case in
which the Hamiltonian is time-independent, i.e., Ht ≡
H . Overall, the bound in Eq. (9) does requires minimal
information about the system, e.g., its initial state ρ0 and
the energy levels of the Hamiltonian Ht. Indeed, the lat-
ter comes from the fact that, given the spectral decompo-
sition Ht =

∑d
j=1 εj(t)|φj(t)〉〈φj(t)|, with d = dimH the

dimension of the Hilbert space, where the eigenvalues

{εj(t)}j=1,...,d and eigenstates {|φj(t)〉}j=1,...,d are time-
dependent, thus one obtains ‖Ht‖22 =

∑d
j=1 εj(t)

2.
Finally, regardless of the simplicity and usefulness of

the bound in Eq. (9), we shall point out the original
bound in Eq. (4) might stand as the general and tighter
one. Before discussing the physical significance of this
bound, we will make use of it to obtain a family of QSLs.

IV. QUANTUM SPEED LIMITS

The quantum speed limit (QSL) signals the mini-
mum time of evolution between two quantum states
undergoing an arbitrary dynamics. Indeed, Mandel-
stam and Tamm addressed this question around 75
years ago for closed quantum systems, thus show-
ing the QSL time for orthogonal states is given by
τQSL = ~π/(2∆E), where (∆E)2 = 〈ψ0|H2|ψ0〉 −
〈ψ0|H|ψ0〉2 stands for the variance of the Hamilto-
nian with respect to the initial state |ψ0〉 of the sys-
tem [57]. Later on, Margolus and Levitin derived the
QSL time τQSL = ~π/(2〈ψ0|H|ψ0〉) for the same phys-
ical setting, i.e., closed quantum systems evolving be-
tween orthogonal states [58]. Importantly, both lower
bounds can be combined accordingly onto a tighter one
as τ ≥ max{~π/(2∆E), ~π/(2〈ψ0|H|ψ0〉)} [59]. In the
last decade, several bounds were introduced in the lit-
erature covering the QSL time for different physical set-
tings, e.g., addressing pure and mixed states, for closed
and open quantum systems [60–72].

Here we will present a family of QSLs by time ave-
raging the right-hand side of Eq. (4), thus followed by
a rearrangement of the resulting inequality. Indeed, the
time τ required for an arbitrary unitary evolution driv-
ing a closed quantum system from ρ0 to ρτ is lower
bounded as

τ ≥ τOα := max{τOα (ρτ‖ρ0), τOα (ρ0‖ρτ ), τOα (ρ0 : ρτ )} ,
(10)

where

τOα (ρτ‖ρ0) :=
|1− α| Oα(ρτ‖ρ0)

〈〈GOα (t)〉〉τ
, (11)

and

τOα (ρ0‖ρτ ) :=
|1− α| Oα(ρ0‖ρτ )

〈〈GO1−α(t)〉〉τ
, (12)

while the QSL time due to symmetrized relative en-
tropies reads [see Appendix A.3]

τOα (ρ0 : ρτ ) :=
|1− α| Oα(ρ0 : ρτ )

〈〈 GOα (t) + GO1−α(t) 〉〉τ
. (13)

Equation (10) stands as our second main result, thus
establishing a family of entropic QSLs, i.e., RRE and
TRE provide lower bounds on the time of evolution be-
tween the initial and final states of the quantum sys-
tem. Recently, a related family of QSLs, based on
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the relative entropy, were derived bounding the time
it takes to generate or consume a given quantum re-
source such as entanglement, asymmetry, and athermal-
ity [73]. These bounds, dubbed as resource speed limits
(RSL) were shown to be tighter than QSLs in several
instances. However, as RSLs are constructed using the
standard relative entropy (α→ 1), thus being only mea-
ningful in the asymptotic limit. RSLs for single shot sce-
narios requires working with Rényi relative entropies.
Here, we have taken the first step in this direction.

We shall stress that the previous discussion is valid
for α ∈ (0, 1). In the following, we will discuss the li-
miting cases α → 1 and α → 0, which crucially reduce
to the standard relative entropy and the so-called min-
relative entropy, respectively. Importantly, these results
cannot be simply obtained from the results above. While
the case α → 1 is clearly delicate from the definition of
RRE and TRE given in Eqs. (1) and (2), respectively, the
case α→ 0 must be carefully considered since simply ta-
king α = 0 in Eq. (4) would provide us a trivial bound,
independently of the initial state and the dynamics.

A. Limiting case of α→ 1

Let us start by considering the limit α → 1, in which
both RRE and TRE recover the quantum relative en-
tropy, i.e., limα→1Oα(%‖ω) = S(%‖ω). In this case, it can
be proved that the following upper bound applies (see
details in Appendix B)

S(ρτ‖ρ0) ≤ τ ‖ ln ρ0‖2 〈〈 ‖[Ht, ρt]‖2〉〉τ . (14)

In this case, the corresponding QSL family reads

τ ≥ τRE
1 := max{τRE

1 (ρτ‖ρ0), τRE
1 (ρ0‖ρτ ), τRE

1 (ρ0 : ρτ )}
(15)

where

τRE
1 (A‖B) :=

S(A‖B)

‖ ln ρ0‖2 〈〈 ‖[Ht, A]‖2〉〉τ
, (16)

and

τRE
1 (ρ0 : ρτ ) :=

S(ρτ‖ρ0) + S(ρ0‖ρτ )

‖ ln ρ0‖2 〈〈 ‖[Ht, ρt]‖2 + ‖[Ht, ρ0]‖2〉〉τ
.

(17)
In particular, when the Hamiltonian is time-

independent, i.e., Ht ≡ H , one obtains ‖[H, ρt]‖2 =

‖[H, ρ0]‖2 = 2
√
IL(ρ0, H), where we have used the

fact that Schatten 2-norm is unitarily invariant. Here
IL(ρ0, H) = (1/4) ‖[H, ρ0]‖22 = −(1/4) Tr([ρ0, H]2) de-
fine a time-independent quantum coherence quantifier
which sets a lower bound on Wigner-Yanase skew
information [74, 75]. Now, since IL(ρ0, H) ≤ (∆H)2,
where (∆H)2 = Tr(ρ0H2) − [Tr(ρ0H)]2 is the squared
deviation of the Hamiltonian, thus Eq. (16) implies the
lower bounds τRE

1 (ρ0‖ρτ ) ≥ S(ρ0‖ρτ )/(2 ∆H ‖ ln ρ0‖2),
and τRE

1 (ρτ‖ρ0) ≥ S(ρτ‖ρ0)/(2 ∆H ‖ ln ρ0‖2).

B. Limiting case of α→ 0

Considering now the case α → 0, in Appendix C we
have proved that Rényi min-relative entropy is upper
bounded as

|R0(ρτ‖ρ0)| ≤ τ 〈〈Qt0(ρ0,Πρ0)〉〉τ , (18)

with

Qt0(A,B) :=
‖A‖2 ‖[U†tHtUt, B]‖2
|Tr(AUtBU

†
t )|

. (19)

Here Πρ0 is the projector onto the support of the initial
state ρ0. From Eq. (18), we can derive the QSL time as

τ ≥ τR
0 := max{τR

0 (ρτ‖ρ0), τR
0 (ρ0‖ρτ ), τR

0 (ρ0 : ρτ )} ,
(20)

where

τR
0 (ρτ‖ρ0) :=

|R0(ρτ‖ρ0)|
〈〈Qt0(ρ0,Πρ0)〉〉τ

, (21)

and

τR
0 (ρ0‖ρτ ) :=

|R0(ρ0‖ρτ )|
〈〈Qt0(Πρ0 , ρ0)〉〉τ

, (22)

while the QSL related to the symmetric min-entropy is
given by

τR
0 (ρ0 : ρτ ) :=

|R0(ρτ‖ρ0) + R0(ρ0‖ρτ )|
〈〈Qt0(ρ0,Πρ0) +Qt0(Πρ0 , ρ0)〉〉τ

. (23)

Noteworthy, the ‘speed’ contribution Qt0 is closely re-
lated to the QSL derived with respect to Euclidean dis-
tance in the Bloch sphere [76, 77]. Importantly, when the
density matrix ρ0 has full-rank, i.e., dim(ρ0) = supp(ρ0),
thus Rényi min-relative entropy vanishes and implies
that τ (0)R = 0. To see this, let ρ0 =

∑d
`=1 p`|ψ`〉〈ψ`|

be the spectral decomposition of the input state, with
d = dim(H). Note the projector Πρ0 onto the sup-
port of the full-rank state ρ0 is equal to the identity,
Πρ0 =

∑
`:p` 6=0 |ψ`〉〈ψ`| = I. Hence, it is straightfor-

ward to verify the symmetric min-entropy is identically
zero because R0(ρτ‖ρ0) = − ln[Tr(U†τ ρ0Uτ )] = 0 and
R0(ρ0‖ρτ ) = − ln[Tr(Uτρ0U†τ )] = 0. Furthermore, from
Eq. (19) one readily getsQt0(ρ0,Πρ0) = 0, while the func-
tional Qt0(Πρ0 , ρ0) =

√
d ‖[U†tHtUt, ρ0]‖2 remains finite

for t ∈ [0, τ ].

V. EXAMPLE

We now provide an analytical example in order to
make clearer the physical implications of our results.
Let us consider a single-qubit state, whose Bloch sphere
representation is written as ρ0 = (1/2)(I + ~r · ~σ), where
~σ = (σx, σy, σz) is the vector of Pauli matrices, ~r = r r̂ is
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TABLE I. Theoretical-information quantifiers related the single
qubit state ρ0 = (1/2)(I + ~r · ~σ), evolving under the Hamilto-
nian Ht = $ I + n̂t · ~σ. Note that µ̂t := n̂t − sin(2|~ut|) (ût ×
n̂t) + 2 sin2(|~ut|) [(ût · n̂t)ût − n̂t], with ût = ~ut/|~ut|, and
~ut =

∫ t
0
ds n̂s. If the Hamiltonian is time-independent, i.e.,

n̂t = n̂, one must apply the changes ût → n̂, |~ut| → t, and
µ̂t → n̂ into the listed quantities.

Quantifier Analytical value

‖[Ht, ρα0 ]‖2 ξ−α
√

2 (1− (n̂t · r̂)2)

‖[Ht, ρ0]‖2 r
√

2 (1− (n̂t · r̂)2)

‖[Ht, ρt]‖2 r
√

2 (1− (µ̂t · r̂)2)

S(ρt‖ρ0) r ln
(

1+r
1−r

) (
1− (ût · r̂)2

)
sin2(|~ut|)

‖ln ρ0‖2
√

ln2
(
1−r
2

)
+ ln2

(
1+r
2

)
‖ρα0 ‖2

√
ξ+2α

the Bloch vector, with r̂ = {sin θ cosφ, sin θ sinφ, cos θ},
0 < r < 1, θ ∈ [0, π] and φ ∈ [0, 2π], while I is the 2 × 2
identity matrix. Particularly, for 0 < α < 1, the operator
ρα0 respective to the initial single-qubit state is written as

ρα0 =
1

2

[
ξ+α I + ξ−α (r̂ · ~σ)

]
, (24)

where

ξ±α = 2−α [(1 + r)α ± (1− r)α] . (25)

The dynamics of the system is governed by the
time-dependent Hamiltonian Ht = $ I + n̂t · ~σ,
where n̂t = {nxt , n

y
t , n

z
t } is a time-dependent unit

vector, |n̂t| = 1, and $ ∈ R. In this case,
the time ordered evolution operator becomes Ut =
e−it$ [cos(|~ut|) I− i sin(|~ut|) (ût · ~σ)], where ût = ~ut/|~ut|
is a unit vector, with ~ut :=

∫ t
0
ds n̂s. In particular, if

Ht ≡ H is time-independent, i.e., n̂t = n̂ is a constant
unit vector, we directly obtain ût = n̂. Next, by per-
forming a lengthy but straightforward calculation, one
may verify the evolved single-qubit state becomes

ραt = Ut ρ
α
0U
†
t =

1

2

[
ξ+α I + ξ−α (ν̂t · ~σ)

]
, (26)

with the unit vector ν̂t := r̂ + sin(2|~ut|) (ût × r̂) +
2 sin2(|~ut|) [(ût · r̂)ût − r̂]. Hence, by considering the
range 0 < α < 1, from Eqs. (24) and (26) we thus have
that α-relative purity reads

gα(ρt, ρ0) = 1− ξ−α ξ−1−α
(
1− (ût · r̂)2

)
sin2(|~ut|) . (27)
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FIG. 1. (Color online) Density plot of QSL (a) τR
α , and (b)

τH
α , as a function of time τ and α, for the time-dependent

Hamiltonian Ht = n̂t · ~σ, with n̂t = γ−1{∆, 0, vt}, and γ :=√
∆2 + (vt)2. Here the initial state is defined by {r, θ, φ} =
{1/4, π/4, π/4}, and the ratio ∆/v = 0.5.

Interestingly, since relative purity is skew symmet-
ric over the index α, Eq. (27) implies that gα(ρt, ρ0) =
g1−α(ρt, ρ0) = gα(ρ0, ρt). In turn, both RRE and TRE
will satisfy the constraint Oα(ρt‖ρ0) = Oα(ρ0‖ρt) for
single-qubit states. Furthermore, from Eq. (27), note that
α-relative purity is equal to 1 for |~ut| = nπ, with n ∈ Z
and t ∈ [0, τ ]. Furthermore, gα(ρt, ρ0) = 1 if vectors ût
and r̂ are parallel. Conversely, α-relative purity becomes
gα(ρt, ρ0) = 1 − ξ−α ξ−1−αsin2(|~ut|) if vectors ût and r̂ are
orthogonal. In Table I we summarize the quantities re-
quired to evaluate the QSL bounds τOα , τRE

1 , and τR
0 , for

the case of a single-qubit state.
For simplicity, let us focus on a Hamiltonian with

$ = 0 and n̂t = γ−1{∆, 0, vt}, with γ :=
√

∆2 + (vt)2,
where v stands as a ’level velocity’ of the energies of the
system, and ∆ is the level splitting [78]. Figure 1 shows
the QSL τR

α and τH
α as function of time τ and the param-

eter α, for the initial single-qubit state with {r, θ, φ} =
{1/4, π/4, π/4}, also setting the ratio ∆/v = 0.5. In Ap-
pendix D we provide a complementary numerical study,
thus exploiting in details the qualitative behaviour de-
picted in Fig. 1 for RRE and TRE.

Finally, we will investigate the tightness of our
bounds for non-symmetric and symmetric relative en-
tropies. Overall, the tightness of the bounds is related
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FIG. 2. (Color online) Density plot of the normalized figure of merit δ̃Ol (α, τ) = δOl (α, τ)/max
[
δOl (α, τ)

]
, with l = {1, 2, 3}

[see Eqs. (28), (29) and (30)], for Rényi relative entropy (a) δ̃R
1 (α, τ), (b) δ̃R

2 (α, τ), and (c) δ̃R
3 (α, τ); and for Tsallis relative entropy

(d) δ̃H
1 (α, τ), (e) δ̃H

2 (α, τ), and (f) δ̃H
3 (α, τ). Here we set the initial single-qubit state with {r, θ, φ} = {1/4, π/4, π/4}, and also the

ratio ∆/v = 0.5.

with the tightness of the QSL. To see this, we introduce
the following figures of merit for non-symmetric RRE
and TRE

δO1 (α, τ) := τ 〈〈 GOα (t)〉〉τ − |1− α|Oα(ρτ‖ρ0) , (28)

and

δO2 (α, τ) := τ 〈〈 GO1−α(t)〉〉τ − |1− α|Oα(ρ0‖ρτ ) , (29)

while for the symmetrized relative entropies one gets

δO3 (α, τ) := δO1 (α, τ) + δO2 (α, τ) , (30)

with O ≡ {R,H}. We note that Eqs. (28), (29), and (30)
will quantify how much the bounds deviate from the
actual value of RRE and TRE entropies, for both non-
symmetric and symmetric cases. Hereafter, we will set
the initial single-qubit state parameterized as {r, θ, φ} =
{1/4, π/4, π/4}, and also fixing the ratio ∆/v = 0.5.
Figure 2 shows the plot of the normalized quantity
δ̃Ol (α, τ) = δOl (α, τ)/max

[
δOl (α, τ)

]
, with l = {1, 2, 3}.

On the one hand, Figs. 2(a) and 2(b) show that, for 0 ≤
α ≤ 1, both quantities δ̃R

1 (α, τ) and δ̃R
2 (α, τ) approaches

zero for short times (0 . τ . 2). On the other hand,
Figs. 2(d) and 2(e) indicate that, as the time increases,
the figure of merit δ̃H

1 (α, τ) will remain close to zero as
long as α . 0.4, while δ̃H

2 (α, τ) approaches a small value
for α & 0.4 during the range 0 . τ . 4. Finally, Figs. 2(c)
and 2(f) suggest that, for the chosen initial parameters,
both quantities δ̃R

3 (α, τ) and δ̃H
3 (α, τ) behave similarly,

being slightly tight in the time window 0 . τ . 2, for

0 ≤ α ≤ 1. Nonetheless, we stress that a more general
analysis requires varying those parameters to include a
larger class of initial states and Hamiltonians. Of course,
this subject should deserve further investigation, also
including a detailed study of Eqs. (28), (29) and (30), as
well as the family of QSLs bounds presented in Sec. IV,
for higher-dimensional systems.

VI. DISCUSSION

The main contribution of this paper is to provide an
upper bound on generalized entropies when the phys-
ical system undergoes a unitary transformation. As
the first application of our bound, we derived a fam-
ily of QSLs in Eqs. (11), (12), and (13). From this re-
sult, the minimum time required for the state transfor-
mation is inversely proportional to a quantity that in-
volves the average energy of the system [see Eq. (5)].
In turn, this determines the evolution speed, while be-
ing directly proportional to Oα, and thus implying the
entropies play the role of distances. Furthermore, our
derivations of QSLs, based on RRE, is first step toward
resource speed limits quantifying consumption of resource
in single shot scenarios [73].

Another interesting connection can be built based on
asymmetry monotones (AMs), which in turn character-
ize conservation laws for general quantum systems, in
the sense of Noether’s theorem [20]. In short, AM is a
function f : B(H) → R that quantifies how much the
state of the system breaks a given symmetry. Mathemat-
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ically, the action of a symmetry group G on a quantum
system is described by the operation Ug(ρ) = Ug ρU

†
g ,

where the variable g labels the group elements. The
key idea behind AMs is to recognize the orbit of each
quantum state as an encoding process, while the map
Ug(ρ0) → Ug(ρτ ) is viewed as data processing. This im-
plies that we can employ any contractive information
measure to characterize the orbit of each state, which
leads to an AM satisfying f(Ug(ρ)) ≤ f(ρ) [20].

Considering the range of α in which RRE and TRE
are contractive under the action of a completely-positive
and trace-preserving map, we immediately see the sym-
metrized relative entropies in Eq. (3) (as well as its non-
symmetric versions) define an entire family of AMs. In-
deed, the standard relative entropy (α → 1) was previ-
ously considered as an asymmetry monotone [79].

Next, since Eqs. (4), (7), and (8) are valid for unitary
transformations encoding any unknown parameter into
the state of the system, i.e., it goes beyond the paradig-
matic case of time evolutions, thus we can replace t by
the group variable g. Indeed, this is due to the fact the
unitary representation of the symmetry group leads to
the evolution equation dρg/dg = −i[K, ρg], with K be-
ing the generator of the transformation. Therefore, our
results provide upper bounds on how much the state
breaks the symmetry generated by K. This sets up-
per bounds of how much the conservation of the asso-
ciated physical quantity can be broken. In the specific
case of QSLs, this implies the minimum evolution time
is determined by the asymmetry measure respective to
non-symmetric and symmetric RRE and TRE, which in
turn stands as a measure of how much the initial state
breaks the time-translation symmetry [see Eqs. (11), (12),
and (13)].

Finally, we will discuss the relation between our re-
sults and the concept of non-equilibrium entropy pro-
duction. We begin by setting the initial state of the sys-
tem as a thermal one, ρ0 = ρβ = exp{−βH0}/Z , where
Z is the partition function, and H0 is the ‘bare’ Hamil-
tonian of the system, i.e., [H0, Ht] 6= 0 for all t 6= 0.
From Eq. (16), one may verify the lower bound on the
time of evolution is proportional to S(ρτ‖ρβ), which in
turn stands as the entropy production associated with
the process under consideration. Therefore, a natural
question arises about the extension of this connection
to general entropies and systems. Indeed, such a gen-
eral picture could be addressed by exploiting the en-
tire family of second laws of thermodynamics based on
RRE [21, 34]. This may open an avenue for the com-
prehension of QSLs [57, 58, 60–62, 80, 81], asymmetry
monotones [79], and quantum thermodynamics [19, 82–
84], based on a strictly geometric framework.

The results presented here raise another questions.
First, we could consider the extension of our results to
open quantum systems. Moreover, given the link be-
tween quantum coherence and TRE [85], we could in-
vestigate the trade-off among entropy production, QSL
and quantum coherence in this scenario. Furthermore,

since our results also apply for the min-entropy, i.e., the
limit α → 0 regarding to RRE, they can be employed in
the single-shot information theory, where the relations
among asymmetry, QSL, and thermodynamics can be
further developed into the non-asymptotic regime.
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APPENDIX

A. BOUND ON RELATIVE ENTROPIES

In this Appendix we will present in details the deriva-
tion of the results discussed in Sec. II.

A.1. Bounding α-relative purity

Here we will derive a non-trivial lower bound on the
α-relative purity, which will be useful throughout this
Supplementary Material. Let ρ1, ρ2 ∈ Ω be two arbitrary
density matrices, with Ω ⊂ H, where Ω = {ρ ∈ H | ρ† =
ρ, ρ ≥ 0, Tr(ρ) = 1} sets the convex space of quantum
states, while H is a d-dimensional Hilbert space, with
d = dim(H). The Tsallis relative entropy (TRE) is de-
fined as Hα(ρ1‖ρ2) = (1− α)−1 [1− gα(ρ1, ρ2)] where
gα(ρ1, ρ2) = Tr(ρα1 ρ

1−α
2 ) stands for the α-relative pu-

rity [37]. In particular, for 0 ≤ α ≤ 1, it has been proved
that TRE is upper bounded as follows [86]

Hα(ρ1‖ρ2) ≤ S(ρ1‖ρ2) , (A1)

where S(ρ1‖ρ2) = Tr[ρ1(ln ρ1 − ln ρ2)] is the ‘standard’
quantum relative entropy. Interestingly, from Eq. (A1),
we readily derive the lower bound on α-relative purity

gα(ρ1, ρ2) ≥ 1− (1− α)S(ρ1‖ρ2) . (A2)
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Noteworthy, bound in Eq. (A2) exhibits two important
features. On the one hand, for α = 1, it trivially satu-
rates since g1(ρ1, ρ2) = 1 for all states ρ1, ρ2 ∈ Ω. On the
other hand, for α = 0 one recovers the Klein’s inequality,
S(ρ1‖ρ2) ≥ 0, due to the fact that g0(ρ1, ρ2) = 1 for all
ρ1, ρ2 ∈ Ω, thus stating the quantum relative entropy is
non-negative. Next, quantum relative entropy satisfies
the following lower bound [87, 88]

S(ρ1‖ρ2) ≤ − ln(λmin(ρ2)) , (A3)

where λmin(•) sets the minimum eigenvalue of the re-
ferred density matrix. Importantly, authors in Refs. [87,
88] have derived a plethora of lower and upper bounds
on S(ρ1‖ρ2), which in turn depend on some distance
measures as the operator norm, Schatten 1-norm, and
Fröbenius norm. However, we shall stress the bound in
Eq. (A3) is more suitable for our purposes, mostly be-
cause it stands as one of the simplest non-trivial lower
bounds on quantum relative entropy. Therefore, by
combining Eqs. (A2) and (A3), we thus have that

gα(ρ1, ρ2) ≥ 1 + (1− α) ln(λmin(ρ2)) , (A4)

which implies the following upper bound on α-relative
purity

[gα(ρ1, ρ2)]−1 ≤ [1 + (1− α) ln(λmin(ρ2))]−1 . (A5)

A.2. Bound on non-symmetric relative entropies

Here we will address the upper bound for non-
symmetric quantum relative entropies. From now on,
we will focus on both Rényi, Rα(ρt‖ρ0), and Tsallis,
Hα(ρt‖ρ0), relative entropies, where ρ0 is the initial state
of the system, and ρt = Utρ0U

†
t its respective evolved

state, with Ut = T e−i
∫ t
0
dsHs being the unitary time-

ordered evolution operator. The absolute value of the
time-derivative of Rényi relative entropy (RRE) of states
ρ0 and ρt is given by
∣∣∣∣
d

dt
Rα(ρt‖ρ0)

∣∣∣∣ =
1

|1− α| gα(ρt, ρ0)

∣∣∣∣
d

dt
gα(ρt, ρ0)

∣∣∣∣ . (A6)

In Appendix A.1 we have derived an upper bound on
the inverse of the α-relative purity, which in turn will
exhbit a logarithmic dependence on the smallest eigen-
value of the initial state of the system. Indeed, by sub-
stituting Eq. (A5) into (A6), one obtains the following
inequality
∣∣∣∣
d

dt
Rα(ρt‖ρ0)

∣∣∣∣ ≤
∣∣ d
dtgα(ρt, ρ0)

∣∣
|1− α| |1 + (1− α) ln(λmin(ρ0))|

.

(A7)
For completeness, the absolute value of the time-
derivative of Tsallis relative entropy (TRE) of states ρ0
and ρt is given by

∣∣∣∣
d

dt
Hα(ρt‖ρ0)

∣∣∣∣ =
1

|1− α|

∣∣∣∣
d

dt
gα(ρt, ρ0)

∣∣∣∣ . (A8)

Next, the time-derivative of relative purity
gα(ρt, ρ0) = Tr

(
ραt ρ

1−α
0

)
is evaluated as follows.

Because ρt evolves unitarily, it is possible to verify
the operator ραt = Ut ρ

α
0 U
†
t satisfies the von Neumann

equation dραt /dt = −i [Ht, ρ
α
t ], where we used the

identity Ut(dU
†
t /dt) = −(dUt/dt)U

†
t = −iHt. Hence, we

thus have that
d

dt
gα(ρt, ρ0) = −iTr

(
ραt [ρ1−α0 , Ht]

)
, (A9)

where we have used the cyclic property of trace. By
taking the absolute value of Eq. (A9), and applying the
Cauchy-Schwarz inequality, |Tr(A1A2)| ≤ ‖A1‖2‖A2‖2,
with ‖A‖2 =

√
Tr(A†A), one readily gets

∣∣∣∣
d

dt
gα(ρt, ρ0)

∣∣∣∣ ≤ ‖ρα0 ‖2 ‖[Ht, ρ
1−α
0 ]‖2 , (A10)

where we have used that ‖ραt ‖2 = ‖Utρα0U
†
t ‖2 = ‖ρα0 ‖2,

i.e., Schatten 2-norm is unitarily invariant. Hence, by
substituting Eq. (A10) into Eqs. (A7) and (A8), one finds
the generalized upper bound

∣∣∣∣
d

dt
Oα(ρt‖ρ0)

∣∣∣∣ ≤ |1− α|−1GOα (t) , (A11)

where we define the functional

GOα (t) := ΦOα ‖ρα0 ‖2 ‖[Ht, ρ
1−α
0 ]‖2 , (A12)

while the auxiliary function reads

ΦOα =

{
|1 + (1− α) ln(λmin(ρ0))|−1 , for O ≡ R
1 , for O ≡ H .

(A13)
Just to clarify, in the remainder of the paper the index
O ≡ {R,H} will label RRE and TRE, respectively. Fi-
nally, by integrating Eq. (A11) over the interval 0 ≤ t ≤
τ , we thus obtain the upper bound

Oα(ρτ‖ρ0) ≤ |1− α|−1
∫ τ

0

dtGOα (t) , (A14)

where we have invoked the inequality
∣∣∫ dxf(x)

∣∣ ≤∫
dx|f(x)|, and used the fact that both RRE and TRE are

nonnegative, real-valued, information-theoretic mea-
sures.

Importantly, an analogous bound can be derived for
the case in which the states ρ0 and ρτ are swapped.
We will briefly sketch the proof since the calculations
are similar to the previous discussion. The property
gα(ρ0, ρt) = g1−α(ρt, ρ0) for the relative purity impli-
cates the skew symmetry

(1− α)Oα(ρ0‖ρt) = αO1−α(ρt‖ρ0) , (A15)

which holds for all ρ0, ρt and 0 < α < 1. In turn, the
identity in Eq. (A15) allow us to write down the time-
derivative

∣∣∣∣
d

dt
Oα(ρ0‖ρt)

∣∣∣∣ =
α

|1− α|

∣∣∣∣
d

dt
O1−α(ρt‖ρ0)

∣∣∣∣ . (A16)
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Invoking Eq. (A11) and mapping α→ 1−α, one obtains
|dO1−α(ρt‖ρ0)/dt| ≤ α−1GO1−α(t). Hence, by inserting
this expression into the right-hand side of Eq. (A16), we
thus have that

∣∣∣∣
d

dt
Oα(ρ0‖ρt)

∣∣∣∣ ≤ |1− α|−1GO1−α(t) , (A17)

which implies the upper bound

Oα(ρ0‖ρτ ) ≤ |1− α|−1
∫ τ

0

dtGO1−α(t) . (A18)

A.3. Bound on symmetric relative entropies

Here we will address the upper bound for symme-
tric quantum relative entropies. We shall begin with the
symmetric relative entropy

Oα(ρt : ρ0) := Oα(ρt‖ρ0) +Oα(ρ0‖ρt) , (A19)

where ρ0 is the initial state of the system, while ρt =

Utρ0U
†
t is the evolved state. Let |dOα(ρt : ρ0)/dt| be

the absolute value of the time-derivative of Eq. (A19).
Hence, by applying the triangle inequality |a1 + a2| ≤
|a1|+ |a2|, one obtains

∣∣∣∣
d

dt
Oα(ρt : ρ0)

∣∣∣∣ ≤
∣∣∣∣
d

dt
Oα(ρt‖ρ0)

∣∣∣∣+

∣∣∣∣
d

dt
Oα(ρ0‖ρt)

∣∣∣∣ .
(A20)

Based on Eqs. (A11) and (A17), it follows that

∣∣∣∣
d

dt
Oα(ρt : ρ0)

∣∣∣∣ ≤ |1− α|−1
[
GOα (t) + GO1−α(t)

]
. (A21)

Finally, by integrating Eq. (A21) over the interval t ∈
[0, τ ], and using the fact that

∣∣∫ dxf(x)
∣∣ ≤

∫
dx|f(x)|, one

finds the upper bound for symmetric relative entropies

|Oα(ρτ : ρ0)| ≤ |α− 1|−1
∫ τ

0

dt
[
GOα (t) + GO1−α(t)

]
.

(A22)

B. RECOVERING RELATIVE ENTROPY

In this Appendix we present the details in the calculation of the limit α → 1. The idea here is going back few
steps and pinpoint the main features needed to properly address such nontrivial limit. For the two states ρ0 and
ρt = Utρ0U

†
t , we shall begin evaluating the limiting case α→ 1 of the time-derivative of symmetric relative entropy

defined in Eq. (A19), i.e.,

lim
α→1

d

dt
Oα(ρt : ρ0) = lim

α→1

d

dt
Oα(ρt‖ρ0) + lim

α→1

α

(1− α)

d

dt
O1−α(ρt‖ρ0) , (B1)

where we have used the fact that Oα(ρ0‖ρt) is skew symmetric [see Eq. (A15)]. Next, by taking the absolute value of
Eq. (B1), then applying the triangle inequality |a1 + a2| ≤ |a1|+ |a2|, and finally integrating the resulting expression
over interval t ∈ [0, τ ], we thus have that

∫ τ

0

dt

∣∣∣∣ limα→1

d

dt
Oα(ρt : ρ0)

∣∣∣∣ ≤
∫ τ

0

dt

∣∣∣∣ limα→1

d

dt
Oα(ρt‖ρ0)

∣∣∣∣+

∫ τ

0

dt

∣∣∣∣ limα→1

α

(1− α)

d

dt
O1−α(ρt‖ρ0)

∣∣∣∣ . (B2)

Based on the definition of the relative entropy, S(A‖B) = Tr[A(lnA− lnB)], note that one may write down

|S(ρτ‖ρ0) + S(ρ0‖ρτ )| =
∣∣∣ lim
α→1
Oα(ρτ : ρ0)

∣∣∣ =

∣∣∣∣
∫ τ

0

dt lim
α→1

d

dt
Oα(ρt : ρ0)

∣∣∣∣ ≤
∫ τ

0

dt

∣∣∣∣ limα→1

d

dt
Oα(ρt : ρ0)

∣∣∣∣ . (B3)

Just to clarify, here we assume that RRE and TRE are continuous real-valued functions over the set α ∈ (0, 1)∪(1,+∞)
and t ∈ [0, τ ]. In this sense, we are formally able to switch the limit on parameter α with the integration sign over
variable t. Thus, by combining Eqs. (B2) and (B3), one readily obtains

|S(ρτ‖ρ0) + S(ρ0‖ρτ )| ≤
∫ τ

0

dt

∣∣∣∣ limα→1

EOα (ρt, ρ0)

(1− α)

d

dt
gα(ρt, ρ0)

∣∣∣∣+

∫ τ

0

dt

∣∣∣∣ limα→1

EO1−α(ρt, ρ0)

(1− α)

d

dt
g1−α(ρt, ρ0)

∣∣∣∣ , (B4)

where we have used that
∣∣∣∣ limα→1

d

dt
Oα(ρt‖ρ0)

∣∣∣∣ =

∣∣∣∣ limα→1

EOα (ρt, ρ0)

(1− α)

d

dt
gα(ρt, ρ0)

∣∣∣∣ , (B5)
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and
∣∣∣∣ limα→1

α

(1− α)

d

dt
O1−α(ρt‖ρ0)

∣∣∣∣ =

∣∣∣∣ limα→1

EO1−α(ρt, ρ0)

(1− α)

d

dt
g1−α(ρt, ρ0)

∣∣∣∣ , (B6)

with the auxiliary functional EOs (A,B) defined as

EOs (A,B) =

{
[gs(A,B)]

−1
, for O ≡ R

1 , for O ≡ H .
(B7)

Interestingly, one may verify the right-hand side of Eq. (B4) exhibits an indeterminacy in the limit α → 1. Indeed,
since (dρst/dt) = −i [Ht, ρ

s
t ], it follows that

lim
α→1

[dgα(ρt, ρ0)/dt] = (−i) lim
α→1

Tr
(
ρ1−α0 [Ht, ρ

α
t ]
)

= 0, (B8)

and also

lim
α→1

[dg1−α(ρt, ρ0)/dt] = (−i) lim
α→1

Tr
(
ρα0 [Ht, ρ

1−α
t ]

)
= 0 . (B9)

Similarly, one readily verifies that limα→1 (1 − α)[EOα (ρt, ρ0)]−1 = 0 and limα→1 (1 − α)[EO1−α(ρt, ρ0)]−1 = 0, where
we used the fact that limα→1 [EOα (ρt, ρ0)]−1 = 1, and limα→1 [EO1−α(ρt, ρ0)]−1 = 1, for all O ≡ {R,H}. In this case, one
obtains

lim
α→1

EOα (ρt, ρ0)

(1− α)

d

dt
gα(ρt, ρ0) −→ 0

0
, (B10)

and

lim
α→1

EO1−α(ρt, ρ0)

(1− α)

d

dt
g1−α(ρt, ρ0) −→ 0

0
, (B11)

which in turn suggests the right-hand side of Eq. (B4) is not well-behaved. We note, however, this such issue is
readily circumvented by applying the L’Hospital rule, leading us to

lim
α→1

EOα (ρt, ρ0)

(1− α)

d

dt
gα(ρt, ρ0) = lim

α→1

d [d gα(ρt, ρ0)/dt] /dα

d ((1− α) [EOα (ρt, ρ0)]−1) /dα
, (B12)

and

lim
α→1

EO1−α(ρt, ρ0)

(1− α)

d

dt
g1−α(ρt, ρ0) = lim

α→1

d [d g1−α(ρt, ρ0)/dt] /dα

d
(
(1− α) [EO1−α(ρt, ρ0)]−1

)
/dα

. (B13)

In the following, we will discuss in details each contribution in the right-hand side of Eqs. (B12) and (B13). Let us
start by evaluating the following derivatives

lim
α→1

d

dα

(
d

dt
gα(ρt, ρ0)

)
= −i lim

α→1

d

dα

(
Tr
(
ρ1−α0 [Ht, ρ

α
t ]
))

= −i lim
α→1

∑

j,`

d

dα

(
p1−αj pα`

)
〈ψj | [Ht, Ut|ψ`〉〈ψ`|U†t ] |ψj〉

= −i
∑

j,`

p`(ln p` − ln pj) 〈ψj | [Ht, Ut|ψ`〉〈ψ`|U†t ] |ψj〉

= iTr (ln ρ0 [Ht, ρt]) , (B14)

and

lim
α→1

d

dα

(
d

dt
g1−α(ρt, ρ0)

)
= −i lim

α→1

d

dα

(
Tr
(
ρα0
[
Ht, ρ

1−α
t

]))

= −i lim
α→1

∑

j,`

d

dα

(
pαj p

1−α
`

)
〈ψj | [Ht, Ut|ψ`〉〈ψ`|U†t ] |ψj〉

= i
∑

j,`

pj(ln p` − ln pj) 〈ψj | [Ht, Ut|ψ`〉〈ψ`|U†t ] |ψj〉

= −iTr
(
Ut ln ρ0U

†
t [Ht, ρ0]

)
, (B15)
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where we have used that d (p1−αj pα` )/dα = (ln p` − ln pj)p
1−α
j pα` . Moving forward, note that

d

dα

(
(1− α) [EOα (ρt, ρ0)]−1

)
= −[EOα (ρt, ρ0)]−1 + (1− α)

d

dα
[EOα (ρt, ρ0)]−1 , (B16)

and

d

dα

(
(1− α) [EO1−α(ρt, ρ0)]−1

)
= −[EO1−α(ρt, ρ0)]−1 + (1− α)

d

dα
[EO1−α(ρt, ρ0)]−1 . (B17)

From Eqs. (B16) and (B17), we point out that limα→1 [EOα (ρt, ρ0)]−1 = 1, and limα→1 [EO1−α(ρt, ρ0)]−1 = 1, for all
O ≡ {R,H}. Hence, from now on it suffices to proceed by showing the derivatives d [EOα (ρt, ρ0)]−1/dα, and
d [EO1−α(ρt, ρ0)]−1/dα, are indeed well-behaved for α → 1. On the one hand, for Tsallis relative entropy the auxi-
liary functional becomes EH

α (ρt, ρ0) = EH
1−α(ρt, ρ0) = 1, for all α, and the aforementioned derivatives are identically

zero. In this case, from Eqs. (B16) and (B17), one obtains

d

dα

(
(1− α) [EH

α (ρt, ρ0)]−1
)

=
d

dα

(
(1− α) [EH

1−α(ρt, ρ0)]−1
)

= −1 . (B18)

On the other hand, for Rényi relative entropy the auxiliary functional behave as [ER
α(ρt, ρ0)]−1 = gα(ρt, ρ0) and

[ER
1−α(ρt, ρ0)]−1 = g1−α(ρt, ρ0), and the calculation is more involved. To see this, let ρ0 =

∑
` p`|ψ`〉〈ψ`| be the spectral

decomposition of the initial state, with 0 ≤ p` ≤ 1 and
∑
` p` = 1. In this case, given the evolved state ρt = Ut ρ0U

†
t ,

we thus have that ραt =
∑
` p
α
` Ut|ψ`〉〈ψ`|U

†
t , and the relative purity becomes gα(ρt, ρ0) =

∑
j,` p

1−α
j pα` |〈ψj |Ut|ψ`〉|2.

Hence, the derivative with respect to the parameter α is simply given by

lim
α→1

d

dα
[ER
α(ρt, ρ0)]−1 = lim

α→1

d

dα
Tr(ραt ρ

1−α
0 )

= lim
α→1

∑

j,`

pα` p
1−α
j (ln p` − ln pj) |〈ψj |Ut|ψ`〉|2

= S(ρt‖ρ0) , (B19)

and

lim
α→1

d

dα
[ER

1−α(ρt, ρ0)]−1 = lim
α→1

d

dα
Tr(ρ1−αt ρα0 )

= − lim
α→1

∑

j,`

p1−α` pαj (ln p` − ln pj) |〈ψj |Ut|ψ`〉|2

= S(ρ0‖ρt) . (B20)

Hence, by combining Eqs. (B16), (B17), (B18), (B19), and (B20), we get the result

lim
α→1

d

dα

(
(1− α) [EOα (ρt, ρ0)]−1

)
= lim
α→1

d

dα

(
(1− α) [EO1−α(ρt, ρ0)]−1

)
= −1 . (B21)

Therefore, by inserting Eqs. (B14), (B15), (B18) and (B21), into Eqs. (B12) and (B13), we conclude

lim
α→1

EOα (ρt, ρ0)

(1− α)

d

dt
gα(ρt, ρ0) = −iTr (ln ρ0 [Ht, ρt]) , (B22)

and

lim
α→1

EO1−α(ρt, ρ0)

(1− α)

d

dt
g1−α(ρt, ρ0) = iTr

(
Ut ln ρ0U

†
t [Ht, ρ0]

)
. (B23)

Finally, by substituting Eqs. (B22) and (B23) into Eq. (B4), and then applying the Cauchy-Schwarz inequality,
|Tr(A1A2)| ≤ ‖A1‖2‖A2‖2, with ‖A‖2 =

√
Tr(A†A), it yields the result

|S(ρτ‖ρ0) + S(ρ0‖ρτ )| ≤ ‖ ln ρ0‖2
∫ τ

0

dt (‖[Ht, ρt]‖2 + ‖[Ht, ρ0]‖2) . (B24)
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C. RECOVERING MIN-RELATIVE ENTROPY

In this Appendix we will discuss the case α = 0 for symmetric Rényi relative entropy, which is related to the
min-relative entropy

R0(ρ : ω) := R0(ρ‖ω) + R0(ω‖ρ) , (C1)

where R0(ρ‖ω) = − ln Tr(Πρ ω), with Πρ being the projector onto the support of the state ρ. Here we will focus on
the time-independent initial state ρ0, and its evolved state ρt = Utρ0U

†
t . By using the triangle inequality |a1 + a2| ≤

|a1|+ |a2|, the absolute value of the time-derivative of Eq. (C1) is written as
∣∣∣∣
d

dt
R0(ρt : ρ0)

∣∣∣∣ ≤
∣∣∣∣
d

dt
R0(ρt‖ρ0)

∣∣∣∣+

∣∣∣∣
d

dt
R0(ρ0‖ρt)

∣∣∣∣ . (C2)

From now on we will discuss the evaluation of each contribution in right-hand side of Eq. (C2). In order to do
so, let ρ0 =

∑
j p`|ψ`〉〈ψ`| be the spectral decomposition of the initial state ρ0 into the basis {|ψ`〉}`=1,...,d, with

0 ≤ p` ≤ 1 and
∑
` p` = 1. By hypothesis, the support of ρ0 has dimension dρ0 := dim[supp(ρ0)], and is given by

supp(ρ0) = span{|ψ`〉 : p` 6= 0}. Thus, the projector onto the support of state ρ0 is defined as Πρ0 :=
∑
`: p` 6=0 |ψ`〉〈ψ`|.

The evolved state is given by ρt = Utρ0U
†
t =

∑
j p`|ψt`〉〈ψt`|, with |ψt`〉 := Ut|ψ`〉, and its support is defined as

supp(ρt) = span{|ψt`〉 : p` 6= 0}. Noteworthy, since the unitary evolution does not change the purity of the initial
state, i.e., both states ρ0 and ρt share the same set of eigenvalues, we thus have dim[supp(ρt)] = dim[supp(ρ0)]. The
projector Πρt onto the support of ρt read as

Πρt =
∑

`: p` 6=0

|ψt`〉〈ψt`|

=
∑

`: p` 6=0

Ut|ψ`〉〈ψ`|U†t

= Ut Πρ0U
†
t . (C3)

Interestingly, starting from Eq. (C3), the projector Πρt fulfills the von Neumann-like equation (dΠρt/dt) =

−i [Ht,Πρt ], where we applied the identity Ut(dU
†
t /dt) = −(dUt/dt)U

†
t = −iHt. Thus, the time-derivative of min-

relative entropy R0(ρt‖ρ0) = − ln Tr(Πρtρ0) read as

d

dt
R0(ρt‖ρ0) =

iTr(ρ0 [Ht,Πρt ])

Tr(Πρtρ0)

=
iTr(U†t ρ0 Ut[U

†
tHtUt,Πρ0 ])

Tr(Πρ0U
†
t ρ0 Ut)

, (C4)

where we have explicitly used the property obtained in Eq. (C3). By taking the absolute value of Eq. (C4), and thus
applying the Cauchy-Schwarz inequality, |Tr(A1A2)| ≤ ‖A1‖2‖A2‖2, with ‖A‖2 =

√
Tr(A†A), one obtains

∣∣∣∣
d

dt
R0(ρt‖ρ0)

∣∣∣∣ ≤
‖ρ0‖2 ‖[U†tHtUt,Πρ0 ]‖2
|Tr(Πρ0U

†
t ρ0 Ut)|

. (C5)

Let us now move to the the second term in the right-hand side of Eq. (C2), which is related to the time-derivative
of R0(ρ0‖ρt) = − ln Tr(Πρ0 ρt). In this case, one readily obtains

d

dt
R0(ρ0‖ρt) =

iTr(Πρ0 [Ht, ρt])

Tr(Πρ0ρt)

=
iTr(U†t Πρ0Ut[U

†
tHtUt, ρ0])

Tr(Πρ0Utρ0U
†
t )

, (C6)

where we used the fact that ρt fulfills the von Neumann equation (dρt/dt) = −i [Ht, ρt]. By taking the absolute value
of Eq. (C6), and thus applying the aforementioned Cauchy-Schwarz inequality, one obtains

∣∣∣∣
d

dt
R0(ρ0‖ρt)

∣∣∣∣ ≤
‖Πρ0‖2‖[U

†
tHtUt, ρ0]‖2

|Tr(Πρ0Utρ0U
†
t )|

. (C7)
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Hence, by substituting Eqs. (C5) and (C7) into Eq. (C2), we thus have that
∣∣∣∣
d

dt
R0(ρt : ρ0)

∣∣∣∣ ≤ Qt0(ρ0,Πρ0) +Qt0(Πρ0 , ρ0) , (C8)

where the functional Q0(ρt, ρ) is defined as follows

Qt0(A,B) :=
‖A‖2 ‖[U†tHtUt, B]‖2
|Tr(AUtBU

†
t )|

. (C9)

Finally, by integrating Eq. (C8) over the interval t ∈ [0, τ ], and thus applying the inequality
∣∣∫ dxf(x)

∣∣ ≤
∫
dx|f(x)|,

one gets the inequality

|R0(ρτ : ρ0)| ≤
∫ τ

0

dt
[
Qt0(ρ0,Πρ0) +Qt0(Πρ0 , ρ0)

]
. (C10)

D. EXAMPLE: SINGLE-QUBIT STATE

D.1. Tsallis relative entropy (TRE)

We shall begin showing that, for an initial single-qubit state evolving unitarily according the physical setting
presented in Sec. V, the Tsallis relative entropy is given by

Hα(ρτ‖ρ0) = Hα(ρ0‖ρτ )

=
1− gα(ρτ , ρ0)

1− α

=
ξ−α ξ

−
1−α |1− (ûτ · r̂)2| sin2(|~uτ |)

1− α
, (D1)

where the first equality follows from the property gα(ρ0, ρτ ) = g1−α(ρτ , ρ0) = gα(ρτ , ρ0) which holds for single-qubit
states ρ0 and ρτ [see Eq. (27)]. From Eqs. (5) and (6), we thus have that [see details in Table I]

〈〈GH
α (t)〉〉τ = ΦH

α ‖ρ1−α0 ‖2 〈〈‖[Ht, ρ
α
0 ]‖2〉〉τ

=
√

2 ξ+2−2α ξ
−
α

1

τ

∫ τ

0

dt
√

1− (n̂t · r̂)2 , (D2)

and

〈〈GH
1−α(t)〉〉τ = ΦH

1−α ‖ρα0 ‖2 〈〈‖[Ht, ρ
1−α
0 ]‖2〉〉τ

=

√
2ξ+2α ξ

−
1−α

1

τ

∫ τ

0

dt
√

1− (n̂t · r̂)2 . (D3)

Based on Eqs. (D1), (D2) and (D3), the QSL time for TRE in Eqs. (11) and (12) can be written, respectively, as

τH
α (ρτ‖ρ0) =

ξ−1−α |1− (ûτ · r̂)2| sin2(|~uτ |)√
2 ξ+2−2α

(
1
τ

∫ τ
0
dt
√

1− (n̂t · r̂)2
) , (D4)

and also

τH
α (ρ0‖ρτ ) =

ξ−α |1− (ûτ · r̂)2| sin2(|~uτ |)√
2 ξ+2α

(
1
τ

∫ τ
0
dt
√

1− (n̂t · r̂)2
) , (D5)

while the QSL time for symmetrized TRE in Eq. (13) reads

τH
α (ρ0 : ρτ ) =

√
2 ξ−α ξ

−
1−α |1− (ûτ · r̂)2| sin2(|~uτ |)(√

ξ+2−2α ξ
−
α +

√
ξ+2α ξ

−
1−α

)(
1
τ

∫ τ
0
dt
√

1− (n̂t · r̂)2
) . (D6)

In Fig. 3 we plot the QSL time τH
α = max{τH

α (ρτ‖ρ0), τH
α (ρ0‖ρτ ), τH

α (ρ0 : ρτ )}, as a function of time τ and α, for the
initial single qubit state ρ0 = (1/2)(I+~r ·~σ) with {r, θ, φ} = {1/4, π/4, π/4}, and also varying the ratio (a) ∆/v = 0.5,
(b) ∆/v = 1, (c) ∆/v = 5, and (d) ∆/v = 10.
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FIG. 3. (Color online) Density plot of QSL time τH
α , as a function of time τ and α, respective to the unitary evolution generated

by the time-dependent Hamiltonian Ht = n̂t · ~σ, with n̂t = N−1{∆, 0, vt} and N :=
√

∆2 + (vt)2. Here we choose the initial
single qubit state ρ0 = (1/2)(I + ~r · ~σ) with {r, θ, φ} = {1/4, π/4, π/4}, and also setting the ratio (a) ∆/v = 0.5, (b) ∆/v = 1, (c)
∆/v = 5, and (d) ∆/v = 10.

D.2. Rényi relative entropy (RRE)

We shall begin showing that, for an initial single-qubit state evolving unitarily according the physical setting
presented in Sec. V, the Rényi relative entropy is given by

Rα(ρτ‖ρ0) = Rα(ρ0‖ρτ )

=
ln[gα(ρτ , ρ0)]

α− 1

=
ln
(
1− ξ−α ξ−1−α

(
1− (ûτ · r̂)2

)
sin2(|~uτ |)

)

α− 1
, (D7)

where the first equality follows from the identity gα(ρ0, ρτ ) = g1−α(ρτ , ρ0) = gα(ρτ , ρ0), which holds for single-qubit
states ρ0 and ρτ [see Eq. (27)]. From Eqs. (5) and (6), we thus have that [see details in Table I]

〈〈GR
α(t)〉〉τ =

‖ρ1−α0 ‖2 〈〈‖[Ht, ρ
α
0 ]‖2〉〉τ

|1 + (1− α) ln(λmin(ρ0))|

=
τ−1

√
2 ξ+2−2α ξ

−
α

∫ τ
0
dt
√

1− (n̂t · r̂)2∣∣1 + (1− α) ln
(
1−r
2

)∣∣ , (D8)

and

〈〈GR
1−α(t)〉〉τ =

‖ρα0 ‖2 〈〈‖[Ht, ρ
1−α
0 ]‖2〉〉τ

|1 + α ln(λmin(ρ0))|

=
τ−1

√
2ξ+2α ξ

−
1−α

∫ τ
0
dt
√

1− (n̂t · r̂)2∣∣1 + α ln
(
1−r
2

)∣∣ . (D9)
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FIG. 4. (Color online) Density plot of QSL time τR
α , as a function of time τ and α, respective to the unitary evolution generated

by the time-dependent Hamiltonian Ht = n̂t · ~σ, with n̂t = N−1{∆, 0, vt} and N :=
√

∆2 + (vt)2. Here we choose the initial
single qubit state ρ0 = (1/2)(I + ~r · ~σ) with {r, θ, φ} = {1/4, π/4, π/4}, and also setting the ratio (a) ∆/v = 0.5, (b) ∆/v = 1, (c)
∆/v = 5, and (d) ∆/v = 10.

Based on Eqs. (D7), (D8) and (D9), the QSL time for RRE in Eqs. (11) and (12) can be written, respectively, as

τR
α(ρτ‖ρ0) =

∣∣ln
(
1− ξ−α ξ−1−α

(
1− (ûτ · r̂)2

)
sin2(|~uτ |)

)∣∣√
2 ξ+2−2α ξ

−
α

(
1
τ

∫ τ
0
dt
√

1−(n̂t·r̂)2
)

|1+(1−α) ln( 1−r
2 )|

, (D10)

and

τR
α(ρ0‖ρτ ) =

∣∣ln
(
1− ξ−α ξ−1−α

(
1− (ûτ · r̂)2

)
sin2(|~uτ |)

)∣∣
√

2ξ+2α ξ
−
1−α

(
1
τ

∫ τ
0
dt
√

1−(n̂t·r̂)2
)

|1+α ln( 1−r
2 )|

, (D11)

while the QSL time for symmetrized RRE in Eq. (13) reads

τR
α(ρ0 : ρτ ) =

√
2 | ln

(
1− ξ−α ξ−1−α

(
1− (ûτ · r̂)2

)
sin2(|~uτ |)

)
|( √

ξ+2−2α ξ
−
α

|1+(1−α) ln( 1−r
2 )| +

√
ξ+2α ξ

−
1−α

|1+α ln( 1−r
2 )|

)(
1
τ

∫ τ
0
dt
√

1− (n̂t · r̂)2
) . (D12)

In Fig. 4 we plot the QSL time τR
α = max{τR

α(ρτ‖ρ0), τR
α(ρ0‖ρτ ), τR

α(ρ0 : ρτ )}, as a function of time τ and α, for the
initial single qubit state ρ0 = (1/2)(I+~r ·~σ) with {r, θ, φ} = {1/4, π/4, π/4}, and also varying the ratio (a) ∆/v = 0.5,
(b) ∆/v = 1, (c) ∆/v = 5, and (d) ∆/v = 10.
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FIG. 5. (Color online) Density plot of QSL time τRE
1 , as a function of time τ and the ratio ∆/v, respective to the unitary evolution

generated by the time-dependent Hamiltonian Ht = n̂t ·~σ, with n̂t = N−1{∆, 0, vt} and N :=
√

∆2 + (vt)2. Here we choose the
initial single qubit state ρ0 = (1/2)(I + ~r · ~σ) with (a) {r, θ, φ} = {1/4, π/4, π/4}, (b) {r, θ, φ} = {1/4, π/3, π/4}, (c) {r, θ, φ} =
{1/2, π/4, π/4}, and (d) {r, θ, φ} = {1/2, π/3, π/4}.

D.3. Relative entropy (RE)

For the case of single-qubit states ρ0 and ρτ discussed in Sec. V, it is possible to show that relative entropy fulfills
the identity S(ρτ‖ρ0) = S(ρ0‖ρτ ), with [see Table I]

S(ρτ‖ρ0) = r ln

(
1 + r

1− r

)(
1− (ûτ · r̂)2

)
sin2(|~uτ |) . (D13)

Next, by using the results in Table I, one readily obtains the time averages

〈〈 ‖[Ht, ρt]‖2 〉〉τ =
√

2 r
1

τ

∫ τ

0

dt
√

1− (µ̂t · r̂)2 , (D14)

and

〈〈 ‖[Ht, ρ0]‖2 〉〉τ =
√

2 r
1

τ

∫ τ

0

dt
√

1− (n̂t · r̂)2 . (D15)

Based on Eqs. (D13), (D14) and (D15), the QSL time related to the relative entropy in Eq. (16) implies that

τRE
1 (ρτ‖ρ0) =

ln
(

1+r
1−r

) (
1− (ûτ · r̂)2

)
sin2(|~uτ |)

√
2
√

ln2
(
1−r
2

)
+ ln2

(
1+r
2

) (
1
τ

∫ τ
0
dt
√

1− (µ̂t · r̂)2
) , (D16)

and by swapping the arrangement of states ρ0 and ρτ , it follows

τRE
1 (ρ0‖ρτ ) =

ln
(

1+r
1−r

) (
1− (ûτ · r̂)2

)
sin2(|~uτ |)

√
2
√

ln2
(
1−r
2

)
+ ln2

(
1+r
2

) (
1
τ

∫ τ
0
dt
√

1− (n̂t · r̂)2
) , (D17)
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while the QSL time for the symmetrized relative entropy in Eq. (17) reads

τRE
1 (ρ0 : ρτ ) =

√
2 ln

(
1+r
1−r

) (
1− (ûτ · r̂)2

)
sin2(|~uτ |)

√
ln2
(
1−r
2

)
+ ln2

(
1+r
2

) [
1
τ

∫ τ
0
dt
(√

1− (µ̂t · r̂)2 +
√

1− (n̂t · r̂)2
)] . (D18)

In Fig. 5 we plot the QSL time τRE
1 = max{τRE

1 (ρτ‖ρ0), τRE
1 (ρ0‖ρτ ), τRE

1 (ρ0 : ρτ )}, as a function of time τ and ∆/v, for
the initial single qubit state ρ0 = (1/2)(I + ~r · ~σ) with (a) {r, θ, φ} = {1/4, π/4, π/4}, (b) {r, θ, φ} = {1/4, π/3, π/4},
(c) {r, θ, φ} = {1/2, π/4, π/4}, and (d) {r, θ, φ} = {1/2, π/3, π/4}.

D.4. Min-relative entropy

Here we will present the details of the QSL time related to the min-relative entropy, with the latter defined as
R0(ρ‖ω) = − ln Tr(Πρ ω), with Πρ being the projector onto the support of the state ρ. From now on, we will choose
the initial state ρ0 being a pure one, i.e., a non full-rank density matrix. In particular, for a single-qubit state such
a condition is equivalent to imposing the purity value r = 1, i.e., ρ0 = (1/2)(I + r̂ · ~σ), which in turn implies the
spectral decomposition ρ0 =

∑
`=± p`|ψ`〉〈ψ`|, with eigenvalues p+ = 1 and p− = 0, and eigenstates |ψ+〉 = |θ, φ〉

and |ψ−〉 = |θ−π, φ〉, with |θ, φ〉 := cos(θ/2)|0〉+ e−iφ sin(θ/2)|1〉. Just to clarify, here |0〉 = (1 0)
T and |1〉 = (0 1)

T

define the standard states of the computational basis. In this case, the projector onto the support of ρ0 read as
Πρ0 = |ψ+〉〈ψ+|. Moving forward, one may proceed the calculation as follows

Tr(Πρ0Uτρ0U
†
τ ) = Tr(ρ0UτΠρ0U

†
τ )

= |〈ψ+|Uτ |ψ+〉|2

= 1− (1− (ût · r̂)2) sin2(|~ut|) . (D19)

Next, by using the result of Eq. (D19), the min-relative entropy becomes

R0(ρτ‖ρ0) = R0(ρ0‖ρτ )

= − ln
(
1− (1− (ût · r̂)2) sin2(|~ut|)

)
. (D20)

Furthermore, given that 〈ψ+|(U†tHtUt)
2|ψ+〉 = 1+$2 +2$(µ̂t · r̂) and also 〈ψ+|U†tHtUt|ψ+〉 = $+ µ̂t · r̂, one obtains

‖[U†tHtUt, ρ0]‖22 = ‖[U†tHtUt,Πρ0 ]‖22
= 2

(
〈ψ+|(U†tHtUt)

2|ψ+〉 − 〈ψ+|U†tHtUt|ψ+〉2
)

= 2
(
1− (µ̂t · r̂)2

)
. (D21)

From Eqs. (D19), and (D21), and also using the Schatten 2-norms ‖ρ0‖2 = ‖Πρ0‖2 = 1, we thus conclude that
Qt0(ρ0,Πρ0) = Qt0(Πρ0 , ρ0) [see Eq. (19)], which implies the following

〈〈Qt0(ρ0,Πρ0)〉〉τ = 〈〈Qt0(Πρ0 , ρ0)〉〉τ

=

√
2

τ

∫ τ

0

dt

√
1− (µ̂t · r̂)2

|1− (1− (ût · r̂)2) sin2(|~ut|)|
. (D22)

Based on Eqs. (D20) and (D22), the QSL time for min-entropy defined in Eqs. (21) and (22) satisfy the following
constraint

τR
0 (ρτ‖ρ0) = τR

0 (ρ0‖ρτ )

=
| ln
(
1− (1− (ût · r̂)2) sin2(|~ut|)

)
|

√
2

(
1
τ

∫ τ
0
dt

√
1−(µ̂t·r̂)2

|1−(1−(ût·r̂)2) sin2(|~ut|)|

) , (D23)

while the QSL time for the symmetrized min-relative entropy reads [see Eq. (23)]

τR
0 (ρ0 : ρτ ) =

| ln
(
1− (1− (ût · r̂)2) sin2(|~ut|)

)
|

√
2

(
1
τ

∫ τ
0
dt

√
1−(µ̂t·r̂)2

|1−(1−(ût·r̂)2) sin2(|~ut|)|

) . (D24)
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FIG. 6. (Color online) Density plot of QSL time τR
0 , as a function of time τ and the ratio ∆/v, respective to the unitary evolution

generated by the time-dependent Hamiltonian Ht = n̂t · ~σ, with n̂t = N−1{∆, 0, vt} and N :=
√

∆2 + (vt)2. Here we choose
the initial pure single qubit state ρ0 = (1/2)(I + r̂ · ~σ) with r = 1 and (a) {θ, φ} = {π/4, π/4}; (b) {θ, φ} = {π/3, π/4}; (c)
{θ, φ} = {π/4, π/3}; and (d) {θ, φ} = {π/3, π/3}.

In Fig. 6 we plot the QSL time τR
0 = max{τR

0 (ρτ‖ρ0), τR
0 (ρ0‖ρτ ), τR

0 (ρ0 : ρτ )}, as a function of time τ and ∆/v, for the
initial pure single qubit state ρ0 = (1/2)(I + r̂ · ~σ) with r = 1 and (a) {θ, φ} = {π/4, π/4}; (b) {θ, φ} = {π/3, π/4}; (c)
{θ, φ} = {π/4, π/3}; and (d) {θ, φ} = {π/3, π/3}.
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tion measures,” IEEE Trans. Inf. Theory 41, 26 (1995).

[24] K. P. Seshadreesan, L. Lami, and M. M. Wilde, “Rényi
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