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NUMERICAL SIMULATIONS OF CAPSULE DEFORMATION

USING A DUAL TIME-STEPPING LATTICE BOLTZMANN

METHOD

CHARLES ARMSTRONG AND YAN PENG

Abstract In this work a quasi-steady, dual time-stepping lattice Boltzmann
method is proposed for simulation of capsule deformation. At each time step the
steady state lattice Boltzmann equation is solved using the full approximation
storage multigrid scheme for non-linear equations. The capsule membrane is mod-
eled as an infinitely thin shell suspended in an ambient fluid domain with the
fluid structure interaction computed using the Immersed Boundary Method. A
finite element method is used to compute the elastic forces exerted by the capsule
membrane. Results for a wide range of parameters and initial configurations are
presented. The proposed method is found to reduce the computational time by a
factor of ten.

1. Introduction

Capsules are elastic, fluid-filled membranes enclosing a Newtonian fluid, which
serve as a useful model for biological and synthetic membranes. One prominent
application of capsules has been to model the material properties of red blood
cells. A number of experiments have been conducted on suspensions of red blood
cells in a shear flow (e.g. [1, 2, 3, 4]). As such, shear-induced capsule deformation
has been the subject of extensive mathematical modeling.

Early analytical work was conducted by Barthés-Biesel [5] and Barthés-Biesel
and Rallison [6] who used perturbation theory to predict the deformation of spher-
ical capsules in shear flow in the limit of small deformations. Keller and Skalak [7]
studied the behavior of rigid two dimensional ellipsoids in shear flow. This work
was later extended to ellipsoids with elastic [8] and viscoelastic [9] membranes.

Because of the complex dynamics associated with capsule deformation, numer-
ical studies have also drawn interest from researchers. Early numerical studies in-
clude the boundary element method (BEM) simulations done by Pozrikidis [10, 11]
and Ramanujan and Pozrikidis [12] and the three dimensional Immersed Boundary
Method (IBM) [13] simulations reported by Eggleton and Popel in [14]. As comput-
ing power has progressed the body of research on capsule simulations of red blood
cells has grown considerably, including BEM simulations in [15, 16, 17, 18, 19, 20]
and front-tracking and IBM simulations in [21, 22, 23, 24, 25, 26, 27, 28].

In this work we propose a quasi-steady, dual time-stepping (DTS) scheme that
couples the multigrid lattice Boltzmann method (LBM) [29] to a IBM method in
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order to reduce the computational time required to simulate flow-induced capsule
deformation at low Reynolds numbers. The fluid structure algorithm used here is
similar to the LBM-IBM implementations discussed in [22, 30, 31]. The elasticity
of the membrane is modeled using the finite element method proposed by Charrier
et al. in [32], where a constitutive law determines the membrane response to
in-plane tensions. The capsule’s bending resistance is described by the Helfrich
bending functional [33, 34] and viscosity jumps across the membrane surface are
handled using the front-tracking method proposed by Zhang et al. in [35].

For LBM-IBM simulations of capsule deformation the resolution of the fluid
velocity plays an outsized role in the accuracy of the method [30]. Because of
this, a relatively fine Eulerian mesh is desirable. Due to the coupling between the
temporal and spatial discretizations of the lattice Boltzmann equation this places
a stringent constraint on the time step. For LBM-IBM simulations this limitation
results in a time step that is orders of magnitude smaller than the elastic and fluid
time scales of the problem.

The large separation between the relevant temporal and spatial scales suggests
that de-coupling the LBM time step from the physical time step by employing
a DTS scheme could reduce the computational time required for capsule simula-
tions. Applications of DTS have been reported for spectral [36] and finite volume
[37] models of the lattice Boltzmann equation. More recently a DTS procedure
was incorporated into a LBM-IBM scheme for simulation of flow past a cylinder
[38]. The transient terms were added as a source into the LBE, and the resulting
equations are solved using the multigrid lattice Boltzmann method originally de-
veloped by Mavriplis in [29]. The authors reported speed up of approximately 4
when compared with the traditional LBM for unsteady flow past a cylinder [38].

In this work we propose a quasi-steady implementation of the LBM-IBM cap-
sule model, treating each time step as a steady flow problem. This allows us to
de-couple the LBM time discretization, which is tied to the spatial discretization,
from the capsule discretization. This allows for a physical time step orders of
magnitude larger than the one required by traditional LBM-IBM capsule mod-
els. Neglecting the transient terms of the incompressible Navier-Stokes equations
reduces the computational and memory requirements when compared with the
method proposed in [38] without sacrificing accuracy in the low Reynolds number
regime of capsule deformation. The proposed quasi-steady scheme also allows for
easy incorporation into pre-existing LBM-IBM capsule codes, offering efficiency
gains of one order of magnitude with the newly proposed scheme.

The structure of this paper is as follows: Section 2 discusses the physical model
of capsule deformation in shear flow. Section 3 discusses the multigrid lattice
Boltzmann method. Section 4 presents the methods used for computation of the
capsule forces. Section 5 discusses the fluid-structure interaction algorithm. Sec-
tion 6 discusses the coupling of the multigrid LBM to the capsule model. Section
7 presents the results from the capsule model for a variety of capsule geometries
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and parameters. Section 8 discusses the efficiency gains resulting from the multi-
grid DTS implementation. Section 9 concludes the paper with a discussion of the
validity and applicability of the quasi-steady scheme proposed here.

2. Problem Description

In this work we simulate the flow-induced deformation of a capsule in shear
flow. The capsule membrane is modeled as a two-dimensional, fluid-filled, elastic
membrane surrounded by an ambient fluid. The plane of shear is the x-y plane,
with periodic boundaries in the z coordinate direction. The capsule is initially
inclined by π/4 radians with respect to the x axis.

A schematic illustration of the plane of shear can be seen in Figure 1. The shear
rate for the flow is [k] = s−1. The ambient fluid has viscosity, [µa] = Pa · s, and the
interior fluid has viscosity [µc] = Pa · s. The capsule size is parametrized by the
equivalent radius, [a] = m, defined as the radius of a sphere with the same volume
as the capsule. The elasticity of the capsule is parametrized by the Young’s surface
modulus, [Es] = N ·m−1, and the capsule’s bending resistance is parametrized by
the bending stiffness modulus, [EB] = J.

Figure 1. The initial configuration for a spheroidal capsule in shear flow.

These parameters can be combined into a number of dimensionless parameters
that characterize the dynamics of shear-induced capsule deformation. The capil-
lary number, also referred to as the dimensionless shear rate by some researchers,
is the ratio of the viscous to elastic forces and is given by:

(1) Ca =
µaak

Es

.

The dimensionless bending stiffness is the ratio of the bending forces to the elastic
forces and is given by:

(2) Eb =
EB

a2Es

.
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The viscosity ratio is the ratio of the internal capsule viscosity, µc, to the ambient
fluid viscosity, µa:

(3) V =
µc

µa

.

For numerical studies typical ranges of these parameters are as follows: Ca =
0.01− 1, V = 0.1− 10, and Eb = 0− 0.1.

For shear-induced capsule deformation the Reynolds number is given by:

(4) Re =
ρka2

µa

.

For biological and microcapsule applications Re ≪ 1 [3, 4, 39, 40] and thus, nu-
merical studies often use the Stokes approximation [12, 15, 16, 41]. Numerical
studies that do consider the fluid inertia use Reynolds numbers in the range of
Re = 0.01− 0.1 [21, 22, 26, 30, 31, 42].

The capsule dynamics are analyzed by looking at the the deformation param-
eter, Dxy, and the inclination angle, θ. Initially proposed by Taylor in [43], the
deformation parameter of a two dimensional capsule is computed from the lengths
of the major and minor axes (denoted by L and ℓ respectively in Figure 1) of the
capsule as follows:

(5) Dxy =
L− ℓ

L+ ℓ
.

The inclination angle is the angle between the capsule’s major axis and the x
coordinate axis.

For spherical capsules at moderate capillary numbers (Ca . 0.2) the capsule
will deform until reaching an approximately constant equilibrium shape [5, 6].
After reaching a constant shape, the flow causes the membrane to rotate around
the internal fluid without further deformation. This phenomenon, known as tank-
treading, has also been observed experimentally for spherical [40] and biconcave
[1] capsules.

The dynamics of capsules with non-spherical geometries and capsules at larger
values of Ca exhibit a wide variety of behaviors [4, 8, 9, 40]. In general, higher
values of Ca result in more deformation and greater rotation of the capsule toward
the x-axis. For large values of Ca, capsule breakup will occur [39]. For non-
spherical capsules the dynamics typically do not reach a steady deformed shape
or orientation, and instead orientation and deformation will exhibit oscillatory or
intermittent behavior [3, 8].



NUMERICAL SIMULATIONS OF CAPSULE DEFORMATION USING A DUAL TIME-STEPPING LATTICE BOLTZMANN

3. Fluid Solver

The fluid motion inside and outside the capsule is governed by the incompressible
Navier-Stokes equations:

ρ(∂tu+ u · ∇u) = −∇p + µ∇2u+ p(6)

∇ · u = 0(7)

where ρ is the fluid density, u is the fluid velocity, µ is the fluid viscosity, p is the
pressure and p is the external force.

As discussed above, the typical Reynolds number for numerical simulations of
capsule deformation are on the order of 10−2, and thus the inertial terms in the
Navier-Stokes equations have only a small effect on the flow field. Due to this
observation, we neglect the transient term in Equation (6) and instead solve the
steady-state system:

ρu · ∇u = −∇p + µ∇2u+ p(8)

∇ · u = 0(9)

at each time step. This allows us to de-couple the LBM discretization from the
temporal discretization. Furthermore, treating the fluid computation at each time
step as a steady flow, we can use the multigrid lattice Boltzmann method proposed
in [29] to accelerate the fluid computation.

3.1. The lattice Boltzmann Method. In this work we solve Equations (8) and
(9) using the lattice Boltzmann method (LBM). In LBM the fluid is modeled as a
system of discrete particles whose distribution function evolves based on the lattice
Boltzmann equation (LBE) given by:

(10) fi(x+ ciδt, t+ δt)− fi(x, t) = Ωi(f), i = 0, 1, . . . , N

where Ω describes the collisions between particles, h is the spatial step, δt is the
time step, N + 1 is the number of discrete velocities in the model, ci is the ith

discrete velocity, and fi is the distribution function associated with the ith velocity.
The discretization of space, time, and velocity in the LBE are inter-related as

follows:

δt =
∆x

c
ci = c ei cs =

1√
3
c(11)

where cs is the speed of sound in the material and c is dependent on the lattice.
For the D3Q19 discretization used here, the values of ei are given as:

[e0,e1, e2, . . . , e18] =




0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1





.

(12)
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For the above ei, a choice of c = 1 m/s results in the particle distribution func-
tions moving exactly one grid point at each time step, eliminating the need for
interpolation.

In this work, the collision term, Ω, in Equation (10) is approximated using
the multiple relaxation time (MRT) collision model discussed in [44]. The MRT
collision operator maps the distribution function to the physical moments of the
system where each moment is relaxed to its corresponding equilibrium moment.
With the above discretization, the MRT collision model can be implemented in
the following two-step procedure:

Collision: f ∗

i (x) = fi(x, tn)−M−1
ij Sjk[Mklfl(x, tn)−meq

k (x, tn)]

Advection: fi(x+ ciδt, tn + δt) = f ∗

i (x), i = 0, 1, . . . , 18 .
(13)

Here meq
k is the kth equilibrium moment, Sjk are the components of the relaxation

matrix, S, and Mjk are the components of the collision matrix mapping f to the
moment space. meq and the collision matrix, M, are the same as derived in [44].

The relaxation matrix, S, is defined as:
(14)

S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18).

s0, s3, s5, and s7 correspond to the conserved moments and hence are set equal to
zero. The parameters s4 = s6 = s8 = s9 = s11 = s13 = s14 = s15 are related to the
kinematic viscosity, ν, as follows:

(15) ν = c2sδt

(

1

s4
− 1

2

)

.

s1 is related to the bulk viscosity, ξ, by:

(16) ξ =
2

3
c2sδt

(

1

s1
− 1

2

)

.

The parameters, s2, s10, s12, s16, s17, s18 correspond to higher order moments that
do not affect the solutions in the hydrodynamic regime and are thus set to 1.8 [44].

Once the distribution function has been updated we can compute the macro-
scopic variables associated with Equations (8) and (9) by computing moments of
the distribution function as follows:

ρ =

N
∑

i=0

fi j = ρu =

N
∑

i=0

fici .(17)

Additional macroscopic variables can be obtained by computing higher order mo-
ments of the distribution function and are defined by the rows of matrix M [44].

To incorporate the forces, p(x), into the LBM we follow the method described
in [45]. First, the momentum computed using Equation (17) is updated as follows:

(18) j′(x) = j(x) +
δt

2
p(x) .
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Next, j′ is used to compute the equilibrium moments, meq, in Equation (13). After
computing the equilibrium moments, the momentum is updated once more using:

(19) j′′(x) = j′(x) +
δt

2
p(x)

Finally, j′′ is used to update the moments corresponding to the fluid momentum,
m3, m5, and m7.

3.2. The Multigrid Lattice Boltzmann Method. For steady flows the LBM
becomes an iterative procedure. Due to the improved error damping properties of
relaxation schemes, Mavriplis [29] introduced a relaxation step following the colli-
sion and advection stages of the LBM, resulting in an iterative method analogous
to the Jacobi under-relaxation scheme for linear systems. On the fine grid the Ja-
cobi under-relaxation scheme is carried out in the following three-step procedure:

Collision: f ∗

i (x) = fn
i (x)−M−1

ij Sjk[Mklfl(x)−meq
k (x)]

Advection: f ∗∗

i (x + ei∆x) = f ∗

i (x), i = 0, 1, . . . , 18

Relaxation: fn+1
i (x) = γf ∗∗

i (x) + (1− γ)fn
i (x)

(20)

where γ is a relaxation parameter such that 0 < γ < 1.
A key component of multigrid schemes is the residual, which is used to estimate

the error of the iterative solution. For the LBE the ith component of the residual
is given by:

(21) ri(f) = fi(x)− fi(x− ei∆x) +M−1
ij Sjk [Mklfl(x− ei∆x)−meq

k (x− ei∆x)]

where f := [f0, f2, ..., f18]
T . On the fine grid the error equation is given by:

(22) rhi (fh) = 0.

After solving this system for fh, we approximate the error by computing the resid-
ual using Equation (21). We then use point-wise injection to map the distribution
function to the coarse grid and an averaging operator to map the error to the
coarse grid.

On the coarse grid levels, the correction equation is written as:

rHi (fH) = DH
i(23)

DH
i = rHi (Î

H
h fh)− 2IHh rhi (fh)(24)

where rHi is computed using Equation (21) and DH
i is known as the defect correc-

tion. The factor of 2 in the second term on the right side of Equation (24) is used
to scale the relaxation parameters on the coarse grids [29]. Equation (23) is solved
for fH in almost the same manner as Equation (20), with a modification to the
relaxation step so that DH

i can be added to the distribution function as follows:

(25) Relaxation: fn+1
i (x) = γ

[

f ∗∗

i (x) +DH
i (x)

]

+ (1− γ)fn
i (x).
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After solving for the error on the coarse grid, the error is mapped back to the
fine grid using an averaging operator and is added to our approximation of the
distribution function.

3.3. Selecting the Relaxation Parameter. In order to determine the optimal
value of γ in Equation (20) we conduct a simulation similar to the two-dimensional
study conducted by Patil et al. in [46]. Simulations are conducted for three-
dimensional lid driven cavity flow with the primary Reynolds number used in this
paper, Re = 0.05. In this work the fluid velocity is assumed to have converged to
the correct velocity field when the following constraint has been met:

(26)

∑

i|un+1(xi)− un(xi)|2
∑

i|un+1(xi)|2
≤ ǫ.

In Equation (26) ǫ is a user-defined tolerance and | · |2 is the L2 norm.
For each simulation the number of multigrid cycles needed to reach a tolerance

of ǫ = 10−5 and ǫ = 10−8 is recorded. The domain of the simulations is [0, 1]3,
with a discretization of N = 129 nodes in each direction. The w-cycle multigrid
schedule was used for these tests.

In Figure 2 the number of multigrid cycles required to reach convergence for
values of γ ranging from 0.1 to 0.9 is shown. The trend for both values of ǫ is the
same: increasing γ results in faster convergence until reaching a minimum between
0.8 and 0.9. Based on this, we have set γ = 0.8 for the simulations presented below.

Figure 2. The number of multigrid iterations for solution of lid-
driven cavity flow using the multigrid lattice Boltzmann method for
various values of the relaxation parameter, γ.

4. Capsule Model

The capsule membrane is modeled as a two dimensional surface with trans-
verse forces caused by in-plane tensions and normal forces caused by the capsule’s
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(a) (b)

Figure 3. (a) The spherical and (b) biconcave meshes used in this
work. These discretizations have 5120 triangles composed of 2562
Lagrangian nodes.

bending resistance. The membrane discretization is a triangular mesh where each
triangle’s vertices are tracked as Lagrangian nodes. The positions of the vertices
are advected based on the fluid velocity near the capsule membrane using the Im-
mersed Boundary Method [13]. In this work we consider three capsule geometries:
spherical, spheroidal and biconcave discoid. The mesh used for the spherical and
biconcave capsules can be seen in Figures 3(a) and 3(b) respectively.

4.1. Elastic Forces. The elasticity of the capsule is modeled by a constitutive
law describing the strain energy of the membrane. In this work we use two strain
energy functions: the Neo-Hookean law and Skalak’s law. The Neo-Hookean law
was originally developed for three-dimensional solids, and is a function of the three
dimensional principle stretches, λ1, λ2, and λ3. By assuming volume incompress-
ibility, λ1λ2λ3 = 1, we can write the strain energy function in terms of λ1 and λ2

in the following form:

(27) WNH =
Es

6

[

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
]

.

The second strain energy function used in this work is Skalak’s law. Proposed by
Skalak et al. in [47], Skalak’s law is a two-dimensional constitutive law developed
to account for the resistance to surface area dilation exhibited by red blood cell
membranes. The strain energy function for Skalak’s law is given by:

(28) W SK =
Es

8

[

(λ2
1 + λ2

2 − 2)2 + 2(λ2
1 + λ2

2 − 2)− 2(λ2
1λ

2
2 − 1) + C(λ2

1λ
2
2 − 1)2

]

The final term on the right hand side of Equation (28) can be used to approximate
area incompressibility by selecting C ≫ 1. Although Skalak’s law was designed to
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capture the area-incompressible red blood cell membrane, for values of C ∼ O(1)
the law can be used to simulate a general elastic membrane [41, 48].

It should be noted that there are multiple definitions of the surface elasticity
modulus in the literature, varying by a constant scalar. For the Neo-Hookean law
we follow the definition used in [12, 22], which results in Es = 3Gnh, where Gnh is
the Neo-Hookean elasticity modulus used in [48]. For Skalak’s Law we follow the
definition used in [22, 26], which results in Es = 2Gsk, where Gsk is the Skalak
elasticity modulus used in [48]. Care should be taken when comparing results
from different researchers as the capillary number, Ca, Skalak parameter, C, and
dimensionless bending modulus, Eb, all depend on the definition of the surface
elasticity modulus that is used.

Figure 4. Computation of the deformation is done by mapping
both triangles to a common plane.

With a constitutive law chosen, the capsule’s elastic forces are computed using
the linear finite element method originally proposed by Charrier et al. in [32].
First, each deformed triangular element is mapped into a common plane with
its initial configuration, whereby the displacement vector, [u, v]T , can be easily
computed at each vertex of the triangle. The displacement vector is then fitted to
a linear shape function, allowing for the computation of the right Cauchy-Green
tensor and its eigenvalues, the principle stretch ratios, λ1 and λ2.

With uk, vk, λ1, and λ2 known we can use the principle of virtual work to obtain
the following relation for the in-plane forces at the k-th vertex of the triangle:

P k
x = Ve

∂W

∂λ1

∂λ1

∂uk
+ Ve

∂W

∂λ2

∂λ2

∂uk

P k
y = Ve

∂W

∂λ1

∂λ1

∂vk
+ Ve

∂W

∂λ2

∂λ2

∂vk
.

(29)

Here W is the strain energy function given by either Equation (27) or Equation
(28) and Ve is the element area in the undeformed state. The forces at each
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vertex are then mapped back to the physical coordinates and added to the node’s
Lagrangian force term. For a mesh with 5120 triangles, each node is the vertex of
5 or 6 triangles. The full elastic force at a given Lagrangian node, Pe, is the sum
of the forces at each of these 5 or 6 triangles.

4.2. Bending Forces. The capsule’s bending resistance is modeled using the
shape energy functional proposed by Helfrich in [33]:

(30) Wb =
EB

2

∫

S

(2κ− c0)
2dS

where κ is the mean curvature, c0 is the spontaneous curvature and EB is the bend-
ing stiffness modulus of the capsule. The spontaneous curvature is a parameter
that defines the reference configuration for the capsule’s bending energy.

The bending force density, fb, is obtained by taking the first variation of Equa-
tion (30), which we can express in terms of the mean curvature, κ, spontaneous
curvature, c0, and Gaussian curvature, κg as follows [34]:

(31) fb = EB[(2κ+ c0)(2κ
2 − 2κg − c0κ) + 2∇LBκ]n

where ∇LB is the Laplace-Beltrami operator. The nodal bending force, Pb, is
obtained from Equation (31) by multiplying fb by a given node’s Voroni area, Avor

[49].
Computation of the various terms in Equation (31) has been the subject of re-

views by Guckenberg et al. in [49, 50]. In this work we compute the curvatures in
Equation (31) using the method proposed by Garimella and Swartz [51], where, at
each node, a quadratic surface is fitted to the node and its nearest neighbors. The
mean and Gaussian curvatures, as well as the normal vector, of the Lagrangian
nodes, can then be approximated from their analytical expressions using the stan-
dard formulas for an implicit surface [51].

The only term in Equation (31) remaining to be calculated is the Laplace-
Beltrami of the mean curvature, ∆LBκ. Here we use the cotan Laplacian outlined
in the review by Reuter et al. [52]:

(32) ∇LBκ(Xi) =
1

2Avor

∑

j∈N(Xi)

(cotαij + cot βij) [κ(Xi)− κ(Xj)]

where αij and βij are the exterior angles of the two triangles containing the edge
created by Xj and Xi [53]. Consistent with the notation above, Avor is the area of
the Voroni region.

5. Fluid-Structure Interaction

5.1. Immersed Boundary Method. The interaction between the membrane
and surrounding fluid is computed using the Immersed Boundary Method (IBM).
Developed by Charles Peskin and reviewed in [13], in IBM the capsule is modeled
as a set of Lagrangian coordinates suspended in a fluid-filled domain described
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using Eulerian coordinates. The computation of the Lagrangian fluid velocity, U,
from the Eulerian flow velocity, u, and the Eulerian external force, p, from the
Lagrangian forces, P, are achieved through the following integrals:

U(Xc) =

∫

V

u(xj)δ(Xc − xj) dx,(33)

p(xj) =

∫

S

P(Xc)δ(Xc − xj) dX .(34)

The Lagrangian force, P, in Equation (34) is given by P = −Pb −Pe, where Pb

and Pe are the bending and elastic forces at a given node. The negative signs
reflect the fact that the forces are exerted by the capsule on the fluid [49].

In this work, the integrals in Equations (33) and (34) are approximated numer-
ically using the following discrete delta function:

(35) δh(x) =

{

1
4∆x

[1 + cos πx
2∆x

] |x| ≤ 2∆x

0 |x| > 2∆x .

With this approximation and the convention that δh(X) = δh(x)δh(y)δh(z), the
computation of the integrals in Equations (33) and (34) can be written as:

U(Xc) =
∑

u(xj)δh(Xc − xj)∆x3

p(xj) =
∑

P(Xc)δh(Xc − xj)∆x2 .
(36)

The forces, p, computed above are then incorporated into the LBM model through
Equations (18) and (19), which give us the moments of the distribution function
used to compute the Eulerian fluid velocity as described above in Section 3.

Once the Lagrangian velocity has been obtained we can update the capsule’s
position through numerical integration of the following equation:

(37)
∂Xc

∂t
= U(Xc, t) .

In this work we use 2nd order Adams-Bashforth to integrate Equation (37), giving
us the following formula for updating the capsule nodes:

(38) Xc(tn+1) = Xc(tn) +
∆t

2

[

3U(Xc, tn+1)−U(Xc, tn)
]

.

Note that in our multigrid implementation, ∆t is not the same value as δt, the
time step in the lattice Boltzmann equation. In fact, as discussed below, values of
∆t several orders of magnitude larger than δt are sufficient to produce physically
accurate results using the multigrid implementation outlined in Section 6.

For explicit numerical integration of the capsule position, such as the scheme
proposed here, the stability of the algorithm is given as follows [54, 55, 56]:

(39) ∆t < α
Ca · h
ka
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where h is the size of the mesh elements and α is a constant that depends on the
method of integration used to solve Equation (37).

5.2. Fluid Viscosity. When there is a jump between the viscosity inside the
capsule, µc, and the viscosity of the ambient fluid, µa, we use the front-tracking
method originally proposed by Zhang et al. in [35] for LBM-IBM models. A
smoothed Heaviside function is used to compute the viscosity at points near the
capsule membrane as follows:

(40) µ(x) = µc + (µa − µc)H [d(x)]

where d(x) is the minimum distance between a given Eulerian point, x, and the
capsule membrane.

As in [35], the following continuous approximation to the Heaviside function in
Equation (40) is used in this work:

(41) H(d) =











0 d < −2∆x
1
2
(1 + d

2∆x
+ 1

π
sin πd

2∆x
) −2∆x ≤ d ≤ 2∆x

1 d > 2∆x

With the viscosity updated we can use µ(x) in Equation (15) to update the cor-
responding relaxation parameters associated with the LBM.

6. Multigrid Implementation

In order to demonstrate the potential for speed-up offered a dual time-stepping
(DTS) scheme, we first estimate the physical time scales of the problem using k,
µa, Es, Eb, and a. The fluid time scale is given by τf = k−1, the elastic time
scale is given by τe = µaa/Es = Cak−1 and, when bending stiffness is considered,
the bending modulus time scale is given by τb = µaa/(EbEs) = Cak−1/Eb. Since
typical parameter ranges are given by Ca ∼ 10−2 − 1 and Eb ∼ 10−3 − 10−1, τe is
the most restrictive time scale.

To illustrate the limitations of the standard LBM-IBM time step we consider
the ratio of τe to the LBM time step:

(42)
τe
δt

=
Ca

kδt
.

In the LBM-IBM capsule model, δt is determined by the grid resolution based
on Equation (11), and thus, for a fixed value of Ca and a fixed grid resolution,
τe/δt can only be adjusted by the shear rate, k. The shear rate is restricted by
the stability constraint given by Equation (39). In this work we find that a shear
rate, k, on the order of 10−4 s−1 is required for numerical stability. Inserting k =
10−4 s−1 and the time step determined by the Eulerian grid resolution, δt = 0.1 s,
the ratio into Equation (42) results in τe/δt ∼ 105 · Ca. The large value of τe/δt
indicates that there is a large separation between the physical and LBM time scales
of the problem.
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(a) (b)

Figure 5. (a) Dxy for various choices of the iterative tolerance, ǫ.
(b) Dxy for various time steps, ∆t.

In order to de-couple the physical time step from the LBM algorithm we propose
a quasi-steady, DTS LBM scheme. At each physical time step, computation of the
fluid velocity is treated as a steady state problem, which is solved iteratively using
the multigrid lattice Boltzmann method [29, 46, 57]. The LBM time step, δt,
defined in Equation (11) becomes a pseudo-time step related to the iterative LB
scheme. This allows us to introduce a new physical time step, ∆t, used to update
the capsule position in Equation (38), which can be adjusted without compromising
the lattice structure of the LBM discretization.

6.1. Convergence Criterion. For iterative solution of the fluid velocity a proper
choice of ǫ in Equation (26) is essential to obtaining the correct flow. In Figure
5(a) the deformation parameter, Dxy, is shown for values of ǫ ranging from 10−3

to 10−7 for simulations of an initially spherical capsule with Ca = 0.05, V = 1,
Eb = 0, k = 2 × 10−4 s−1, and k∆t = 0.02. As can be seen in the figure, the
deformation converges to the correct final deformation for all of the values shown,
however, the intermediate dynamics show slight deviations for larger tolerances,
ǫ. For ǫ = 10−3 and ǫ = 10−4 the deformation occurs at a slightly faster pace,
however, the curves for ǫ ≤ 10−5 are all nearly identical.

This is best seen in the inset of Figure 5(a), which shows the differences between
the values of Dxy between kt = 0.9 and kt = 1.1. The curves for ǫ = 10−5,
ǫ = 10−6 and ǫ = 10−7 exhibit close agreement. The curves for ǫ = 10−3 and
ǫ = 10−4 deviate from the curves for smaller values of ǫ, with ǫ = 10−4 showing
better agreement than ǫ = 10−3, indicating convergence of Dxy as ǫ → 0. Similar
results were obtained for other values of V , Eb, Ca and ∆t as well as for other
initial capsule geometries.
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6.2. Time Step Selection. Because ∆t is no longer linked to the spatial dis-
cretization, selection of the time step can be determined based on the desired
accuracy of the simulation. In Figure 5(b) the deformation parameter is plotted
for various values of the dimensionless time step, k∆t, along with the deformation
parameter from the standard MRT LBM for simulations of an initially spherical
capsule with Ca = 0.05, V = 1, Eb = 0, and k = 2 × 10−4 s−1. For the multigrid
LBM simulations a tolerance of ǫ = 10−5 was used.

From the figure it’s clear that while k∆t = 0.2 captures the qualitative behavior
of the deformation, the time step is too large to accurately resolve the dynamics.
k∆t = 0.1, k∆t = 0.02 and k∆t = 0.002, however, all closely follow the defor-
mation curve of the standard LBM simulation, with convergence to the standard
LBM method as k∆t → kδt = 2 × 10−5. From the inset to Figure 5(b) it can be
seen that the curves for k∆t = 0.002 and k∆t = 0.02 fall on top of each other,
with only a slight deviation from the deformation obtained from the standard
LBM model, while the curve for k∆t = 0.1 shows slightly larger deviations from
the standard LBM curve. Similar results are also found for larger values of Ca.

For a fixed value of k, the elastic time scale, τe = Ca · k−1, is proportional to
Ca. To account for this we set k∆t = 0.02 for Ca ≥ 0.05, while for Ca< 0.05
the time step is decreased proportionally with the capillary number. This can be
summarized by the following equation:

(43) k∆t = min (0.4 · Ca, 0.02) .

In our simulations Equation (43) has been found to be sufficient for stable simula-
tions for other values of k, Eb, V , and Ca, as well as for other capsule geometries.

7. Capsule Simulations

7.1. Numerical Setup. For the simulations presented here a mesh consisting
of 2562 Lagrangian nodes, comprising 5120 triangular elements was used. The
capsule is placed in the center of the fluid domain with its major axis aligned π/4
radians above the x-axis. The Eulerian grid is discretized into a 1293 grid, with a
domain of [0, 12.8a] in x, y and z, which results in a step size of ∆x = ∆y = ∆z =
0.1a. The simulations below are conducted with a Reynolds number of Re = 0.05,
a capsule radius of a = 1 m, a density of ρ = 1 kg · m−3, and a shear rate of
k = 2× 10−4 s−1.

The simulations presented here were conducted with the time step, ∆t, selected
using Equation (43). The convergence criterion for the multigrid LBM was set to
ǫ = 10−5 based on the results from Section 6. Each multigrid cycle uses a 5 grid
level w-cycle multigrid schedule. The finest grid has a resolution of 1293 and the
coarsest grid has a resolution of 53.
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The MRT relaxation parameters s4 and s1 are set according to Equations (15)
and (16) respectively. The parameters s0, s3, s5, and s7 correspond to the con-
served moments and are thus set equal to zero. The remaining relaxation param-
eters are set equal to 1.8.

The deformation parameter and inclination angle are computed using the method
discussed in [12, 21]. First, we compute the capsule’s moment of inertia:

(44) Iij =

∫

V

(rkrkδij − rirj)dV,

where r is the radial vector, pointing outward from the capsule center. Both Dxy

and θ are then obtained from the eigenvalues and eigenvectors of I. The eigenvalues
of I correspond to the lengths of the axis of an ellipsoid with moment of inertia I.
The lengths of the major and minor axis for this ellipsoid are used to approximate
L and ℓ in Equation (5) [21]. The inclination angle, θ, is computed by finding the
principle value of the angle between the capsule’s major axis and the x axis.

7.2. Spherical capsules. The dynamics of spherical capsules in shear flow have
been studied theoretically [5, 6] and numerically (e.g. [12, 14, 21, 22, 30]) and are
well-known. Initially, the flow results in deformation of the sphere until the capsule
reaches an ellipsoidal equilibrium shape. After reaching an equilibrium shape, the
ambient shear flow causes the membrane to rotate about the internal fluid. This
phenomenon, known as tank-treading, has also been observed experimentally for
spherical [40] and biconcave [1] capsules.

In Figure 6 the results for simulations of initially spherical capsules are given
for a variety of capillary numbers, Ca. Figures 6(a) and 6(b) plot the deformation
parameter and inclination angle of the capsule as a function of time. The results
are compared to the published results in [12] and [22] showing close agreement.
As can be seen in the figures, the flow causes the sphere to gradually deform and
rotate toward the x-axis. This process occurs until the capsule obtains a steady
shape and inclination, as can be seen by the constant values of Dxy and θ/π for
later values of the simulation. Increased values of Ca result in greater deformation
and more rotation.

Figure 7(a) shows the final shapes obtained from our simulations as a function
of the capillary number. As can be seen the final shapes move farther away from
a sphere as Ca is increased. In Figure 7(b) the trajectory of a particle on the
membrane surface is tracked for a capillary number of Ca=0.05. As can be seen,
once the capsule reaches its final shape the particle rotates around the capsule in
the tank-tread motion discussed above.

In Figure 8(a) the evolution of Dxy is plotted for initially spherical capsules with
varying values of the dimensionless bending modulus, Eb. The capillary number is
fixed at Ca=0.05, the viscosity ratio is fixed at V = 1, the spontaneous curvature
is set at c0 = 0. The capsules exhibit the same tank-treading behavior discussed
above with close agreement between results from the present study and the results
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(a) (b)

Figure 6. (a) The deformation parameter and (b) inclination angle
for various values of Ca with V = 1 and Eb = 0.

(a) (b)

Figure 7. (a) Steady state shape of capsules for various values of
Ca. (b) The trajectory of a particle for an initially spherical capsule
with Ca=0.05.

published by Le in [42]. For a fixed capillary number, increasing Eb results in
reduced deformation.

In Figure 9(a) the internal to external viscosity ratio is set to V = 5 for varying
values of the capillary number. The effects of the membrane’s bending stiffness are
ignored by setting Eb = 0. Close agreement can be seen between the present results
and those published by Le and Tan in [25] and Ramanujan and Pozrikidis in [12].
The capsules exhibit tank-treading behavior, however the increased viscosity ratio
results in reduced deformation of the capsule when compared with the deformation
seen for V = 1.
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(a) (b)

Figure 8. (a) The deformation parameter and (b) inclination angle
for initially spherical capsules with Ca = 0.05 and V = 1 for various
values of Eb.

(a) (b)

Figure 9. (a) The deformation parameter and (b) inclination angle
for initially spherical capsules V = 5 and Eb = 0 for various values
of Ca.

In order to assess the range of validity for the quasi-steady approach proposed
here, Figure 10 compares Dxy and θ/π for Re=0.05, Re=0.1, and Re=0.25 using
the standard LBM, which solves the time-dependent incompressible Navier-Stokes
equations, and the quasi-steady approach proposed here. In this figure the thin
lines are the deformation parameter and the bold face lines are the inclination
angle. Both simulations are conducted for spherical capsules with Ca = 0.05,
V = 1, and Eb = 0 for a Neo-Hookean membrane. In Figure 10(a), for Re=0.05,
the two numerical schemes are seen to produce nearly equivalent results, suggesting
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(a) (b) (c)

Figure 10. (a) The deformation parameter and inclination angle
for (a) Re = 0.05, (b) Re = 0.1, and (c) Re = 0.25.

that for Re=0.05 neglecting the transient term of the Navier-Stokes equations
does not affect the dynamics of the capsule deformation. In Figures 10(b) and
10(c), the deformation parameter and inclination angles are seen to reach the
same equilibrium values for both fluid solvers, which is unsurprising since the
capsule’s attainment of an equilibrium shape results in a steady flow pattern.
Before reaching the equilibrium shape, however, the deformation and inclination
of the quasi-steady simulation can be seen to deviate from the standard LBM,
with larger deviations occurring for the case with the larger Reynolds number,
Re = 0.25. Based on these results, care should be taken when simulating the
dynamics of phenomena with Re ≥ 0.1, as neglecting the transient term in the
Navier-Stokes equations may affect the dynamics.

7.3. Spheroid capsules. To further demonstrate the efficacy of our method we
consider the deformation of an oblate spheroid in shear flow. An oblate spheroid
resembles a flattened sphere, with two axes of equal length and the length of the
third axis less than that of the other two. The parametrization for an oblate
spheroid can be given in terms of the azimuthal angle, φ, and polar angle, θ, as
follows:

x = R sin θ cosφ z = R sin θ sinφ y = R
b

a
cos θ.(45)

In Equation (45) R is used to adjust the radius so that the spheroid has a volume
equivalent to the volume of a sphere with radius 1.

Unlike initially spherical capsules, the spheroids do not reach a constant steady
shape. Instead, the capsule’s shape and inclination oscillate while the membrane
rotates around the interior fluid. For small enough values of Ca, the capsule’s
motion will transition from tank-treading to a tumbling motion [9, 58, 59].

In Figure 11 Dxy and θ/π are shown for a spheroid with b/a = 0.9 for V = 1,
Eb = 0 and capillary numbers, Ca=0.05, Ca=0.1 and Ca=0.2. These simulations
have been conducted by a number of authors including [12, 22, 42, 25, 27] Here,
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(a) (b)

Figure 11. (a) The deformation parameter and (b) inclination an-
gle for various values of Ca for a spheroid with b/a = 0.9.

the results are plotted alongside those reported by Le and Tan in [25]. Close
agreement is observed between the present simulations and those in [25].

In Figure 12 Dxy and θ/π are shown for a spheroid with b/a = 0.5 for V = 1,
Eb = 0 and capillary numbers, Ca=0.05, Ca=0.1 and Ca=0.2. For Ca=0.2 the
results are compared with those reported by Sui et al. in [22], with close agreement
seen between the two studies. For Ca=0.05 and Ca=0.1 Figure 12 provides a
comparison between Dxy and θ/π for two fluid solvers: the quasi-steady method
proposed in this work and the standard MRT lattice Boltzmann method. As can
be seen in the figures, the results using the two fluid solvers are indistinguishable.
This finding was true for all of the simulations presented in the present study,
further suggesting that the quasi-steady approach is valid for Re = 0.05.

In Figures 13(a) and 13(b) the trajectory of a sinlge Lagrangian node on the
capsule membrane is plotted for a simulation up to kt = 20 with Ca=0.05, V = 1
and Eb = 0 for spheroids with b/a = 0.9 and b/a = 0.5 respectively. Each arrow
represents the particles current velocity for the duration of the simulation. The
particle completes more than rotation around the capsule membrane during the
simulation, illustrating the deviations in capsule shape for spheroid capsules. In
Figure 13(a), the capsule with b/a = 0.9, undergoes, slight changes in the shape as
the particle revolves around the interior fluid. In Figure 13(b) the capsule’s shape
and inclination angle oscillate more dramatically during tank treading. The larger
deviations seen in Figure 13(b) are due to the larger difference between the major
and minor axis of the spheroid, indicated by the lower value of b/a.

7.4. Biconcave capsules. Next we consider the deformation of an initially bi-
concave capsule in shear flow. The parametrization for a biconcave capsule used
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(a) (b)

Figure 12. (a) The deformation parameter and (b) inclination an-
gle for various values of Ca for a spheroid with b/a = 0.5.

(a) (b)

Figure 13. (a) The trajectory of a particle on an initially spher-
oidal capsule with b/a=0.9 with Ca=0.05. (b) The trajectory of a
particle on an initially spheroidal capsule with b/a=0.5 with
Ca=0.05.

here is given by Fung in [60] as:

x = aαsinθcosφ y =
aα

2
(k0 + k1sin

2θ − k2sin
4θ)cosθ z = aαsinθsinφ(46)

where α = 1.3858, k0 = 0.207, k1 = 2.003, and k2 = 1.123, and a is the radius of
a sphere with the same volume as the capsule. The resulting mesh can be seen in
Figure 3(b).
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(a) (b) (c) (d) (e) (f)

Figure 14. The profile of an initially biconcave capsule at (a) kt =
5, (b) kt = 8, (c) kt = 11, (d) kt = 15, (e) kt = 18, and (f) kt = 21.
The black dot is the location of a marker point on the membrane.

(a) (b) (c) (d) (e) (f)

Figure 15. The profile of an initially biconcave capsule at (a) kt =
4, (b) kt = 10, (c) kt = 16, (d) kt = 22, (e) kt = 28, and (f) kt = 30.
The black dot is the location of a marker point on the membrane.

A variety of values of the spontaneous curvature, c0, can be found in the litera-
ture. In [26, 61] a constant negative value is used for the spontaneous curvature.
We have followed [20, 62] and set the spontaneous curvature, c0, in Equation (31)
to c0 = −2H0, where H0 is the initial curvature of the capsule. This selection of
the spontaneous curvature facilitates comparison between the present work and
[20, 62].

Although [20] and [62] used the same spontaneous curvature, they chose different
values for Eb. In this work we use the values reported by Sinha and Graham in
[20], which are Eb = 0.03 and C = 10. The surface elasticity modulus, Gs, used
in [20] corresponds to Es = 2Gs, requiring us to re-scale these quantities by 1/2.
Thus, in this work, the bending stiffness was held fixed at Eb = 0.015 and Skalak’s
strain energy functional was used with a value of C = 5, matching the values used
in [20].

The dynamics of biconcave capsules in shear flow can be broadly grouped into
two categories: a tumbling phase and a tank-treading phase. The tumbling phase
typically occurs at low shear rates and high viscosity ratios. In the tumbling
phase the capsule’s shape remains roughly constant while the capsule undergoes
rotations in the plane of shearing. Figure 14 shows the profile of an initially
biconcave capsule with Eb = 0.015, Ca=0.25, and V = 4 undergoing the tumbling
motion. As can be seen in the figure, the capsule retains the biconcave shape while
rotating around in the center of the domain.
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(a) (b)

Figure 16. (a) The inclination angle for capsules with various di-
mensionless shear rates. (b) The inclination angle for capsules with
various viscosity ratios.

The tank-treading phase, which typically occurs at higher shear rates and lower
viscosity ratios, is characterized by a rotation of the capsule membrane around the
interior fluid. Figure 15 shows the profile of an initially biconcave capsule with
Eb = 0.015, Ca=0.75, and V = 4 undergoing the tank-treading motion. As can
be seen, the shape and inclination angle remain roughly constant throughout the
motion, while the membrane rotates around the interior fluid. In between these
two phases are transition phases, where a capsule will oscillate between these two
behaviors or exhibit more complicated dynamics that combine the two motions
[18, 20, 26, 28].

Figure 16 shows the inclincation angle for biconcave capsules in shear flow with
Eb = 0.015, C = 5 and spontaneous curvature c0 = −2H0. Figure 16(a) illustrates
the effect of increased capillary numbers. The viscosity ratio for the simulations
in Figure 16(a) was V = 4. At Ca=0.25 the capsule undergoes tumbling motion.
At Ca=0.4 the capsule first begins a tumbling motion, rotating π radians before
reaching a roughly constant inclination angle with a tank-treading motion. At
Ca=0.75 the capsule undergoes tank-treading motion.

Figure 16(b) illustrates the effect of increasing the viscosity ratio. The capillary
number for the simulations in Figure 16(b) are Ca=0.4. At V = 2 the capsule
undergoes tank-treading motion, at V = 4 the capsule is in a transition phase,
and at V = 10 the capsule undergoes tumbling motion. As can be seen, increasing
the viscosity ratio has a similar effect to decreasing the capillary number.

A number of numerical [26, 62, 61, 20] and experimental [4] studies have been
conducted on the motion of red blood cells as a function of the capillary number and
viscosity ratio. In order to assess the fidelity of our model we ran simulations with
viscosity ratios ranging from V = 0.5 to V = 10 and capillary numbers ranging
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from Ca=0.05 to Ca=1. The simulations were then categorized as undergoing a
tank-treading phase, a tumbling phase or a transitional phase.

The results from these simulations can be seen in Figure 17. The plot also
includes the boundaries between the tank-treading and tumbling phases found by
Sinha and Graham in [20] and Le and Tan in [62]. The boundaries between the
different phases of motion exhibit close qualitative and quantitative agreement.

Figure 17. Classification of simulations with biconcave capsules
for a variety of capillary numbers and viscosity ratios.

8. Computational Efficiency

To demonstrate the efficiency gains attained with the dual-time stepping strat-
egy proposed in this work, we have conducted simulations for spherical and bicon-
cave capsules for a variety of dimensionless parameters using the standard LBM-
IBM capsule model and the DTS method proposed in this work. The simulations
were run on the Turing High Performance Computing Cluster at Old Dominion
University using 2.3 GHz CPUs with 128 GB RAM. The resolution on the fine
grid was N = 129 in each dimension for both the single grid and multigrid sim-
ulations. The Eulerian domain used was [0, 12.8a]3 for both simulations which,
coupled with the resolution of N = 129 in each direction, results in a time step of
δt = 0.1a s for the standard LBM simulation. As in Section 7, the simulations in
this section are normalized by setting Re=0.05, a = 1 m, and ρ = 1 kg ·m−3. The
capsule mesh consists of 5120 triangular elements comprised of 2562 Lagrangian
nodes. For the DTS scheme the time step was chosen using Equation (43) and an
iterative tolerance of ǫ = 10−5 was used.

8.1. Efficiency for Spherical Simulations. To study the speed-up offered by
the newly proposed method we conduct simulations for spherical capsules using
the standard LBM-IBM capsule model and the DTS scheme proposed here. The
capsules were assumed to have Neo-Hookean membranes with V = 1 and Eb =
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(a) (b) (c)

Figure 18. (a) The speed-up as a function of the shear rate, k. (b)
The speed-up as a function of the ratio ∆t/δt . (c) The speed-up as
a function of the ratio τe/δt .

0 with capillary numbers ranging from 0.00625 to 0.2 and shear rates ranging
from 2 × 10−4 s−1 to 1.6 × 10−3 s−1. To facilitate comparison across capillary
numbers, we alter the duration of the simulations based on the capillary number.
For simulations with Ca = 0.00625 the simulations are run up to kT = 0.5, for
Ca = 0.0125 simulations are run up to kT = 1, for Ca = 0.025 simulations are run
up to kT = 2, and for Ca ≥ 0.05 we simulate up to kT = 4. This accounts for the
smaller elastic time scales and smaller values of k∆t used at smaller values of Ca.

In Figure 18(a) the speed-up achieved by the DTS method is plotted against the
shear rate. As can be seen in the figure, the speed-up offered by the DTS method
is proportional to Ca and inversely proportional to k. Both of these relationships
can be understood by examining the time step constraint for the DTS scheme
given by Equation (43). The dimensionless time step for the standard LBM,
kδt, is determined by k for a fixed value of Ca, whereas for the DTS scheme the
dimensionless physical time step, k∆t, varies with Ca for a fixed value of k.

The size of the physical time step, ∆t, is a strong predictor of the potential
speed-up obtained by the DTS scheme. This relationship can be seen in Figure
18(b), which plots the speed-up against the ratio ∆t/δt. As can be seen in the
figure, when ∆t/δt = 100 a speed-up of 2 is achieved with the DTS scheme. The
speed-up increases proportionally as ∆t/δt increases, with peak efficiencies on the
order of 20 for larger values of Ca. Based on this, the physical time scale and
accuracy of the scheme should allow for increases of the physical time step by a
factor of 100 or more for efficient application of the DTS scheme proposed here.

To demonstrate the limiting effects of the physical time scales and the accuracy
requirements we have plotted the speed-up achieved by the DTS method against
the ratio, τe/δt using a logarithmic scale for the x axis in Figure 18(c). The ratio
τe/δt indicates the separation of scale between the physical time scales and the
LBM time step. From Equation (43) we see that for Ca ≤ 0.05 ∆t is limited by
the elastic time scale of the problem, whereas for Ca = 0.1 and Ca = 0.2 the
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time step is limited by the desired accuracy of the simulation. This relationship
is apparent in the figure, where the speed-up curves for Ca ≤ 0.05 are nearly
identical, while Ca = 0.1 and Ca = 0.2 have distinct speed-up curves. From
the figure we recommend that τe/δt be on the order of 200 or more for efficient
implementation of the DTS scheme proposed here.

While the speed-up achieved using the DTS scheme diminishes as k increases,
for long simulations and non-spherical geometries k is limited by the stability
constraint in Equation (39). Indeed, even for the spherical simulations discussed
here k > 1.2 × 10−3 s−1 resulted in instability for some values of Ca. It should
also be mentioned that, since small values of Ca reach equilibrium in a shorter
time frame, declines in efficiency with the DTS scheme for small values of Ca are
not a major concern because the standard LBM-IBM capsule model can simulate
these in a reasonable amount of time. The most dramatic speed-up from the DTS
scheme occur for Ca ≥ 0.0125 where simulation with the standard LBM-IBM
capsule model can be much more expensive. In this regime, speed-up between 4
and 20 times the standard LBM-IBM capsule model are achieved.

8.2. Efficiency for Biconcave Simulations. Simulating the dynamics of non-
spherical capsules require much longer simulations because the capsules do not
reach an equilibrium shape or flow field. These long simulations place more strin-
gent constraints on the shear rate k, increasing the potential speed-up offered by
the DTS scheme. We find that k ≤ 2 × 10−4 s−1 is required for simulations long
enough to capture the dynamics of biconcave capsules. For the standard LBM-
IBM capsule model this results in a dimensionless time step of kδt = 2 × 10−5,
which is far below the time step of the DTS scheme, which is set to k∆t = 0.02
for the simulations in this section.

To study the efficiency gains for capsule simulations where the flow does not
reach a steady state, we have run simulations with a biconcave capsule for each of
the cases illustrated in Figure 16(a). As in the figure, the viscosity ratio was set to
V = 4, the bending stiffness was set to Eb = 0.015, and Skalak’s modulus was set
to C = 5. Simulations were run up to kt = 30 for Ca=0.25, Ca=0.4 and Ca=0.75.
These three cases were chosen to demonstrate the effect that the different capsule
behaviors has on the computational efficiency of the model, as Ca=0.25 results in
a tumbling capsule, Ca=0.4 results in a transient regime, and Ca=0.75 results in
a tank-treading capsule.

Table 1. CPU time comparison for a biconcave capsule with V = 4
and Eb = 0.015 for the cases shown in Figure 16(a) run until kt = 30

Ca=0.25 Ca=0.4 Ca=0.75
LBM mgLBM LBM mgLBM LBM mgLBM

Time (s) 322,339 43,693 322,373 16,661 322,423 9147
Efficiency 1.0 7.4 1.0 19.3 1.0 35.2
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The results for these tests can be seen in Table 1. As can be seen, the efficiency
gains of the simulation improve as the capillary number increases. It should be
noted that unlike the spherical case above, the relationship between Ca and CPU
time is not related to ∆t. As mentioned above, k∆t = 0.02 for each value of Ca
considered here. Instead the relationship between Ca and CPU time is due to the
behavior of the capsule at the various capillary numbers as illustrated in Figure
16(a).

In the tumbling regime at Ca=0.25, the position of the capsule within the fluid
changes at each time step. This alters the flow field near the capsule, requiring
more iterations of the multigrid LBM algorithm at each time step. In the transient
regime at Ca=0.4, the capsule begins by tumbling before oscillating slightly around
θ = 0 with minimal deformation. Thus, after the tumbling phase is completed
and changes in the capsule’s inclination angle are reduced, variations in the flow
field decrease allowing faster convergence with the multigrid LBM at each time
step. Finally, in the tank-treading regime at Ca=0.75, the capsule’s angle remains
roughly constant as the membrane rotates around the capsule. Thus, after reaching
the steady shape, variation in the flow field is reduced between time steps, requiring
fewer iterations of the fluid solver at each time step.

9. Discussion

In this work a quasi-steady, dual time-stepping lattice Boltzmann method was
presented for flow-induced capsule deformation simulations using the Immersed
Boundary Method. The method was validated by comparing the results to those
reported in previous studies for a wide range of dimensionless parameters and
capsule geometries. Separating the LBM time step from the capsule time step
results in simulations on the order of 10 times faster than those achieved by the
standard LBM-IBM capsule model. Furthermore, de-coupling the physical time
step from the LBM time step allows us to choose the physical time step based on
the stability constraints of the elastic problem, without consideration for the LBM
scheme.

The proposed method treats the flow as a quasi-steady problem and thus the
method is limited to flows in the low Reynolds number regime. In order to ensure
physical fidelity, careful consideration of the expected dynamics is required when
using this numerical scheme for Re ≥ 0.1. For phenomena where the quasi-steady
assumption does not hold, the method proposed by Gsell et al. in [38] could
be employed. In the low Reynolds number regime discussed in this work, the
proposed method has some advantages over the method from [38]. Neglecting the
transient term reduces the memory footprint of the algorithm by avoiding storage
of the previous velocity and density fields. The present method also employs the
standard LBM procedures for the collision and streaming steps, allowing for quick
implementation into current LBM-IBM capsule codes.
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For efficient application of the DTS scheme the physical time step should be
several orders of magnitude larger than the tradition LBM time step in order to
defray the additional computational cost per time step. We find that the DTS
scheme is twice as fast as the LBM scheme when a physical time step 100 times
larger than the LBM time step is used. Larger differences between the two time
steps increase the speed-up of the DTS scheme proportionally. For a given appli-
cation the suitability of the proposed scheme is related to the ratio of the physical
time scale to the LBM time step. For elastic capsule simulations the minimum
ratio of τe/δt for a speed-up of 2 using the DTS scheme is approximately 200.

For the parameter regime in which standard LBM-IBM models of capsule de-
formation are most computationally expensive, the DTS scheme presented in this
work results in speed-up on the order of 20. Even for parameter regimes in which
the increasing the physical time step is limited by the separation of scales we find
speed-up on the order of 4-10 times the standard LBM-IBM capsule. Future direc-
tions could include the consideration of additional membrane forces such as those
arising from the membrane’s viscosity or those exerted on the membrane by an
electrostatic field. The development of a more efficient iterative solver or a refined
residual equation could also offer potential improvements to the fluid algorithm
presented in this work.
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