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Molecular expressions for thermodynamic properties and derivatives of the Gibbs energy up to
third order in the isobaric-isothermal (NpT ) ensemble are systematically derived using the method-
ology developed by Lustig for the microcanonical and canonical ensembles [J. Chem. Phys. 100,
3048 (1994); Mol. Phys. 110, 3041 (2012)]. They are expressed by phase-space functions, which
represent derivatives of the Gibbs energy with respect to temperature and pressure. Additionally,
expressions for the phase-space functions for temperature-dependent potentials are provided, which,
for example, are required when quantum corrections, e.g. Feynman–Hibbs corrections, are applied
in classical simulations. The derived expressions are validated by Monte Carlo simulations for the
simple Lennard-Jones model fluid at three selected state points. A unique result is that the phase-
space functions contain only ensemble averages of combinations of powers of enthalpy and volume.
Thus, the calculation of thermodynamic properties in the NpT ensemble does not require volume
derivatives of the potential energy. This is particularly advantageous in Monte Carlo simulations
when the interactions between molecules are described by empirical force fields or very accurate ab
initio pair and nonadditive three-body potentials.

I. INTRODUCTION

In statistical mechanics, thermodynamic properties of
fluids can be calculated in various ensembles. Each en-
semble is characterized by three independent variables, a
thermodynamic potential, from which all thermodynamic
properties can be obtained as combinations of derivatives
of the potential with respect to the independent vari-
ables, and a weight factor, with which the systems are
distributed in the ensemble. The ensemble theory forms
the basis for molecular-dynamics or Monte Carlo sim-
ulation techniques [1]. The well-known microcanonical
(NVE), canonical (NV T ), and grand canonical (µV T )
ensembles were originally introduced by Gibbs [2]. In
1939, Guggenheim [3] proposed two further ensembles,
the isobaric-isothermal (NpT ) ensemble and the gener-
alized (µpT ) ensemble, in which the chemical potential
µ, the pressure, and the temperature are independent
variables. Later, Byers Brown [4] suggested the HpN
ensemble, Ray et al. [5] the LVµ ensemble, and Ray
and Graben [6] the Rpµ ensemble. Graben and Ray [7]
summarized the interrelations between these eight en-
sembles. The microcanonical, canonical, grand canoni-
cal, and isothermal-isobaric ensembles are routinely ap-
plied in molecular simulations, while the HpN , LVµ, and
Rpµ ensembles are rarely used. The generalized ensemble
has no applications because the three independent vari-
ables are intensive quantities and, thus, the size of the
system is indefinite. Moreover, the intensive state of a
pure fluid is fixed by two intensive variables, so that the
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third variable must be known a priori in order to specify
it consistently with the other two.

The theory of the microcanonical ensemble, in which
the number of particles N , the volume V , and the en-
ergy E are independent variables, is well developed. Al-
though it is the starting point for the theoretical for-
mulation of statistical mechanics and forms the natural
basis for molecular-dynamics simulations, the exact ex-
pressions for the calculation of thermodynamic properties
were not known until 1985, when Pearson et al. [8] in-
troduced a Laplace transform technique to evaluate the
integrals over the momenta of the particles in the mi-
crocanonical partition function. This was key for the
development of the theory of the microcanonical ensem-
ble. In molecular-dynamics simulations at constant en-
ergy, the three components of the total momentum of the
particles P =

∑
pi, where pi is the momentum vector

of particle i, are three additional constants of motion.
Thus, molecular-dynamics simulations are carried out in
a subset of the microcanonical ensemble, the molecular-
dynamics ensemble with constant NVEP. Caǧin and
Ray [9] used the Laplace-transform technique to extend
the treatment of the microcanonical ensemble to the
molecular-dynamics ensemble by including the additional
constraint of constant total momentum. In a subsequent
work, Ray and Zhang [10] recognized that a further quan-
tity G = Pt+

∑
miri which is related to the initial posi-

tion of the center of mass of the system is also a constant
of motion in molecular-dynamics simulations. They once
more extended the theory of the molecular-dynamics en-
semble to include this additional constraint.

Based on the works of Pearson et al. and Ray and
co-workers, Lustig [11–15] developed a rigorous method-
ology to derive expressions for thermodynamic proper-
ties, such as the isochoric and isobaric heat capacities,
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isothermal compressibility, isochoric pressure coefficient,
or speed of sound, in the molecular-dynamics and mi-
crocanonical ensembles. By introducing so-called phase-
space functions to represent derivatives of the parti-
tion functions with respect to the independent variables,
Lustig derived expressions for thermodynamic properties
in terms of the kinetic energy, potential energy, and vol-
ume derivatives of the potential energy of the system in
a systematic way. Recently, Lustig [16, 17] applied the
methodology also to the canonical ensemble, in which the
number of particles, the volume, and the temperature T
are independent variables, and provided expressions for
various thermodynamic properties and derivatives of the
Helmholtz energy up to third order. With this methodol-
ogy, essentially exact expressions for all thermodynamic
properties and derivatives of arbitrary order of the ther-
modynamic potential in an ensemble can be derived.

Until now, expressions for thermodynamic properties
in the NpT ensemble, in which the number of particles
N , the pressure p, and the temperature T are indepen-
dent variables, were derived for only a few thermody-
namic properties, and properties related to second-order
derivatives of the Gibbs energy are rarely calculated in
molecular simulations. Following Guggenheim’s work [3],
Hill [18], Byers Brown [4], Münster [19], and Sack [20]
elaborated on the theory of the NpT ensemble. Hill [18]
and Byers Brown [4] derived expressions for the volume,
enthalpy, isobaric heat capacity, isothermal compressib-
lity, and thermal expansion coefficient. More recently,
Lagache et al. [21] applied these expressions to calcu-
late isothermal compressibilities, isobaric heat capacities,
thermal expansion coefficients, and Joule–Thomson coef-
ficients by Monte Carlo simulations with force field mod-
els for n-alkanes. In this work, we derive explicit expres-
sions for thermodynamic properties and derivatives of the
Gibbs energy up to third order in the NpT ensemble by
applying the rigorous methodology developed by Lustig
for the microcanonical and canonical ensembles.

This article is organized as follows. The next section
provides the theoretical background for the calculation
of thermodynamic properties in the NpT ensemble and
presents the general expression for the phase-space func-
tions. The derived equations are validated by Monte
Carlo simulations at three state points of the Lennard-
Jones model fluid in Sec. III, and Sec. IV presents con-
clusions.

II. EXPRESSIONS FOR THERMODYNAMIC
PROPERTIES

In the NpT ensemble, the Gibbs energy G is the ther-
modynamic potential, and the number of particles, the
pressure, and the temperature are independent variables.
As the Helmholtz energy is related to the canonical parti-
tion function, the Gibbs energy is related to the partition
function Z(N, p, β) of the NpT ensemble by

G = −kBT lnZ(N, p, T ) = −β−1 lnZ(N, p, β), (1)

where kB is the Boltzmann constant and β = 1/kBT is
used as an abbreviation. In the following, it is convenient
to use the dimensionless Planck function −βG = lnZ
as thermodynamic potential instead of the Gibbs energy
because it reduces applications of the product rule when
calculating temperature derivatives.

The partition function of the isothermal-isobaric en-
semble was subject to a controversial discussion in the
literature. Since the volume of the system is not constant,
but fluctuates in the NpT ensemble, the partition func-
tion includes an integration over all volumes accessible to
the system, that is, from zero to infinity [3]. This inte-
gration introduces the unit of volume into the partition
function, which must be compensated for by an appro-
priately chosen volume scale, so that it is dimensionless.
Moreover, for small systems, for instance when studying
nucleation phenomena of small droplets or nanoparticles,
the volume of the system must be unambiguously defined
in order to remove redundant volume states from the par-
tition function. To solve the latter problem, Koper and
Reiss [23] introduced a “shell particle,” which is chosen
as the particle with the farthest distance from a fixed
reference point in the system. The volume of the system
is then unambiguously defined by fixing its boundary at
the position of the shell particle.

Different proposals for the volume scale were made by
Attard [22], Koper and Reiss [23], and Corti and Soto-
Campos [24]. Han and Son [25] finally resolved the con-
troversy on the volume scale for small systems. Further-
more, they proved that in simulations of homogeneous
systems within periodic boundary conditions the shell
particle is not required. If all distances between the par-
ticles are fixed in a configuration, identical configurations
are generated when the shell particle samples the entire
instantaneous volume, since systems in periodic bound-
ary conditions are invariant under translations. Since
this work aims at the determination of thermodynamic
properties of homogenous macroscopic systems in the
thermodynamic limit with simulations performed in pe-
riodic boundary conditions, the shell particle is not re-
quired here. Han and Son showed that, in this case, the
partition function of the NpT ensemble is given by

Z(N, p, T ) = N

∞∫
0

e−βpV Q(N,V, T )V −1dV, (2)

where Q(N,V, T ) denotes the canonical partition func-
tion and N/V represents the volume scale. This volume
scale was also derived earlier by Attard using informa-
tion theory [22]. The influence of the volume scale is
largest for small systems, but decreases with increasing
number of particles and vanishes in the thermodynamic
limit (N → ∞). As will be shown later, it has no influ-
ence on the equations for thermodynamic properties, but
must be taken into account in the acceptance criterion for
volume moves in Monte Carlo simulations.

The following derivation of expressions for thermody-
namic properties proceeds in two steps. First, derivatives
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of the Planck function with respect to the independent
variables and thermodynamic properties are expressed by
phase-space functions. Then, equations for the phase-
space functions in terms of ensemble averages of combi-
nations of powers of instantaneous values of the volume
and enthalpy of the system are derived by comparing
derivatives of the partition function with a general equa-
tion for an ensemble average in the NpT ensemble. In the
first step, derivatives of the Planck function −βG with
respect to β and pressure are expressed in a systematic
way through derivatives of the partition function Z with
respect to β and pressure by introducing the abbrevia-
tions

Gmn =
∂m+n(−βG)

∂βm∂pn
, m, n = 0, 1, 2, . . . (3)

and

Zmn =
1

Z

∂m+nZ

∂βm∂pn
, m, n = 0, 1, 2, . . . . (4)

In analogy to the phase-space functions of the micro-
canonical ensemble Ωmn introduced by Lustig, the Zmn
are termed phase-space functions of the NpT ensemble.
Note the special case Z00 = 1. Derivatives of the phase-
space function Zmn with respect to β and pressure can
be readily found by using the two recursion formulas

∂Zmn
∂β

= Zm+1,n − Z10Zmn, m+ n ≥ 1, (5)

∂Zmn
∂p

= Zm,n+1 − Z01Zmn, m+ n ≥ 1, (6)

which can be established by applying the product rule
on Eq. (4). Using −βG = lnZ and Eqs. (4) to (6), the
relations presented in Table I for the derivatives of −βG
are obtained. The first derivatives with respect to β and
p are found directly by derivation of −βG = lnZ. From
that point onwards, the recursion formulas can be applied
to successively calculate the higher derivatives. All rela-
tions have the same mathematical structure as the corre-
sponding relations for derivatives of the Massieu function
−βA with respect to β and volume in the canonical en-
semble [17], with the volume derivatives in the canonical
ensemble being replaced by pressure derivatives in the
NpT ensemble.

Next, expressions for the enthalpy and volume in terms
of the phase-space functions are derived since they form
the basis for the derivation of expressions for further
thermodynamic properties and higher derivatives of the
Gibbs energy. With the definition of the Gibbs energy
G = H − TS, in which H is the enthalpy and S denotes
the entropy, and the thermodynamic relation

S = −
(
∂G

∂T

)
p

= kBβ
2

(
∂G

∂β

)
p

, (7)

the enthalpy

H = G+ β
∂G

∂β
= −∂(−βG)

∂β
= −Z10 (8)

TABLE I. Expressions for partial derivatives Gmn of −βG up
to third order in terms of phase-space functions.

G10 =
∂ (−βG)

∂β
=
∂ lnZ

∂β
=

1

Z

∂Z

∂β
= Z10

G20 = Z20 − Z2
10

G30 = Z30 + 2Z3
10 − 3Z10Z20

G01 =
∂(−βG)

∂p
=
∂ lnZ

∂p
=

1

Z

∂Z

∂p
= Z01

G02 = Z02 − Z2
01

G03 = Z03 + 2Z3
01 − 3Z01Z02

G11 = Z11 − Z10Z01

G21 = −Z01Z20 + Z21 + 2Z01Z
2
10 − 2Z11Z10

G12 = −Z10Z02 + Z12 + 2Z10Z
2
01 − 2Z11Z01

is expressed by the phase-space function Z10. Similarly,
the volume is related to the phase-space function Z01 by

V =

(
∂G

∂p

)
T

= −β−1
[
∂(−βG)

∂p

]
β

= −β−1Z01. (9)

With Eqs. (8) and (9), expressions for further thermody-
namic properties can be established. The isobaric heat
capacity is given by

Cp =

(
∂H

∂T

)
p

= −kBβ2

[
−∂

2(−β G)

∂β2

]
p

= kBβ
2
(
Z20 − Z2

10

)
. (10)

The thermal expansion coefficient is defined as

αp =
1

V

(
∂V

∂T

)
p

. (11)

Applying Eq. (9) for the volume in Eq. (11) leads to

αp =
kBβ

3

Z01

[
β−2

∂(−βG)

∂p
− β−1 ∂

2(−βG)

∂β∂p

]

=
kBβ

Z01
[Z01 − β (Z11 − Z10Z01)] . (12)

Analogously, the equation for the isothermal compress-
ibility

βT = − 1

V

(
∂V

∂p

)
T

= −Z02 − Z2
01

Z01
(13)
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is obtained. To derive an equation for the isochoric heat
capacity

CV =

(
∂E

∂T

)
V

= −kBβ2

(
∂E

∂β

)
V

, (14)

the partial derivative at constant volume must be trans-
formed into derivatives at constant pressure. This trans-
formation is readily performed by the method using Ja-
cobian determinants described by Münster [28, p. 97],
which was also applied by Lustig in the canonical en-
semble for the derivation of equations for the isobaric
heat capacity and other properties [16]. First, the par-
tial derivative is expanded by its invariant property, here
V . Then, both numerator and denominator are differen-
tiated with respect to the independent variables of the

ensemble β and p, which leads to

(
∂E

∂β

)
V

≡ ∂(E, V )

∂(β, V )
=

∂(E,V )
∂(β,p)

∂(β,V )
∂(β,p)

≡

∣∣∣∣∣∣
(
∂E
∂β

)
p

(
∂E
∂p

)
β(

∂V
∂β

)
p

(
∂V
∂p

)
β

∣∣∣∣∣∣∣∣∣∣∣∣
(
∂β
∂β

)
p

(
∂β
∂p

)
β(

∂V
∂β

)
p

(
∂V
∂p

)
β

∣∣∣∣∣∣
=

(
∂E
∂β

)
p

(
∂V
∂p

)
β
−
(
∂E
∂p

)
β

(
∂V
∂β

)
p(

∂V
∂p

)
β

. (15)

The determinant in the denominator simplifies since
(∂β/∂p)β = 0 and (∂β/∂β)p = 1. Using additionally
E = H − pV in the numerator yields

(
∂E

∂β

)
V

=

(
∂H

∂β

)
p

−

[(
∂H

∂p

)
β

− V

] (∂V
∂β

)
p(

∂V
∂p

)
β

. (16)

Next, the partial derivatives in Eq. (16) are expressed by
partial derivatives of the Gibbs energy using Eqs. (8) to
(10). Finally, the equation

CV = −kBβ2

−∂2(−βG)

∂β2
−
[
−∂

2(−βG)

∂p∂β
+ β−1

∂(−βG)

∂p

]
β−2 ∂(−βG)

∂p − β−1 ∂
2(−βG)
∂β∂p

−β−1 ∂
2(−βG)
∂p2


= −kBβ2

{
−
(
Z20 − Z2

10

)
−
[
(−Z11 + Z10Z01) + β−1Z01

] [
β−2Z01 − β−1(Z11 − Z10Z01)

]
−β−1(Z02 − Z2

01)

}
(17)

= kB

{
β2
(
Z20 − Z2

10

)
− [Z01 − β (Z11 − Z10Z01)]

2

Z02 − Z2
01

}

for the isochoric heat capacity in terms of phase-space
functions is obtained.

With the equations for the thermal expansion coeffi-
cient, the isothermal compressibility, and the isobaric and
isochoric heat capacities, expressions for further thermo-
dynamic properties such as the thermal pressure coeffi-
cient γV , isentropic compressibility βS , speed of sound w,
and Joule–Thomson coefficient µJT can be formed. The
expressions for all considered thermodynamic properties
in terms of phase-space functions are summarized in Ta-
ble II. In the expression for the speed of sound, M is the
molar mass.

In the second step, the phase-space functions are re-
lated to ensemble averages of combinations of the instan-
taneous values of volume and enthalpy. In this article,

only systems of pure fluids, which consist of spherical
particles with three translational degrees of freedom, are
considered. The corresponding results for the thermody-
namic properties of systems of particles with additional
rotational degrees of freedom are readily obtained by re-
placing 3N in all equations in the remainder of this arti-
cle by the total number of degrees of freedom fN , where
f is the number of degrees of freedom of one molecule.
The generalization to mixtures is also straightforward
and therefore omitted here. For systems of spherical par-
ticles, the classical canonical partition function is given
by [29]

Q(N,V, T ) =
1

N !h3N

∫ ∫
e−βEdpNdrN , (18)
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TABLE II. Relations for important thermodynamic properties in terms of phase-space functions Zmn.

isobaric heat capacity Cp =

(
∂H

∂T

)
p

= kBβ
2
(
Z20 − Z2

10

)
isochoric heat capacity CV =

(
∂E

∂T

)
V

= kB

{
β2(Z20 − Z2

10)− [Z01 − β(Z11 − Z10Z01)]2

Z02 − Z2
01

}

thermal expansion coefficient αp =
1

V

(
∂V

∂T

)
p

=
kBβ

Z01
[Z01 − β (Z11 − Z10Z01)]

isothermal compressibility βT = − 1

V

(
∂V

∂p

)
T

= −Z02 − Z2
01

Z01

thermal pressure coefficient γV =

(
∂p

∂T

)
V

=
αp

βT
= −kBβ

Z01 − β (Z11 − Z10Z01)

Z02 − Z2
01

isentropic compressibility βS = − 1

V

(
∂V

∂p

)
S

= βT
CV

Cp
= −Z02 − Z2

01

Z01

{
1− [Z01 − β(Z11 − Z10Z01)]2

β2(Z02 − Z2
01) (Z20 − Z2

10)

}

speed of sound w2 = − V 2

NM

(
∂p

∂V

)
S

=
V

NMβS
=

Z2
01

NMβ (Z02 − Z2
01)

{
1− [Z01 − β(Z11 − Z10Z01)]2

β2(Z02 − Z2
01) (Z20 − Z2

10)

}
Joule–Thomson coefficient µJT =

(
∂T

∂p

)
H

=
Z11 − Z10Z01

kBβ2 (Z20 − Z2
10)

where h is the Planck constant, E denotes the energy of
the system, and dpN and drN represent 3N -fold integra-
tions over the momenta and coordinates of the particles.
Insertion of Eq. (18) into Eq. (2) yields the expression

Z(N, p, T ) =
N

N !h3N

∞∫
0

∫ ∫
e−β(E+pV )V −1 dpNdrNdV

(19)
for the partition function of the NpT ensemble. Thus, in
the NpT ensemble, systems are distributed according to
the distribution

exp[−β(E + pV )]V −1 = exp(−βH)V −1.

When the potential energy depends only on the coordi-
nates of the particles, the energy of the system is split
into the kinetic energy K =

∑
p2
i /2mi and the potential

energy U . The integrals over the momenta can then be
evaluated as in the canonical ensemble, so that

Z(N, p, T ) = C

∞∫
0

∫
β−3N/2e−β(U+pV ) V −1 drNdV

(20)
is obtained, where the abbreviation

C =
N (2πm)

3N/2

N !h3N
(21)

has been introduced. The ensemble average of an arbi-
trary property A in the NpT ensemble, denoted as 〈A〉,

is given by

〈A〉 =

C

∫ ∫
Aβ−3N/2 e−β(U+pV ) V −1 drNdV

C

∫ ∫
β−3N/2 e−β(U+pV ) V −1 drNdV

. (22)

Since the constant C cancels and does not affect deriva-
tives with respect to pressure and temperature, it is omit-
ted in the following, whereas the term β−3N/2 must be
retained because it plays an important role in the deriva-
tion of expressions for derivatives with respect to tem-
perature.

Expressions for the phase-space functions Zmn are
found by differentiating Eq. (20) with respect to β and
p and comparing the result with the integrand in the
numerator in Eq. (22) to identify the expression corre-
sponding to the property A. Since the enthalpy depends
linearly on pressure, the derivatives with respect to p are
readily obtained. For example, the phase-space function
Z01 is found as

Z01 =

∫ ∫
β−3N/2(−βV ) e−β(U+pV )V −1 drNdV∫ ∫

β−3N/2 e−β(U+pV ) V −1 drNdV

, (23)

in which the numerator on the right hand side is the
derivative of the partition function with respect to pres-
sure, and the denominator corresponds to the partition
function in the term 1/Z in the definition of the phase-
space function. Comparing Eq. (23) with Eq. (22) yields

Z01 = −β 〈V 〉 . (24)
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This comparison also reveals that the volume scale has no
influence on the expressions for the phase-space functions
because the term V −1 appears in both equations in the
integrands in the numerators.

Similarly, the phase-space function Z10 (the first
derivative of the partition function with respect to β)
follows as

Z10 =

∫ ∫
−3N

2
β−3N/2−1 e−β(U+pV ) V −1 drNdV∫ ∫

β−3N/2 e−β(U+pV ) V −1 drNdV

+

∫ ∫
β−3N/2 (−U − pV ) e−β(U+pV ) V −1 drNdV∫ ∫

β−3N/2 e−β(U+pV ) V −1 drNdV

= −3N

2
β−1 −

〈
U + pV

〉
= −3N

2
β−1 −

〈
Ĥ
〉
.

(25)

The quantity Ĥ = U + pV is the sum of the potential
energy and the product of pressure and volume. It was
termed configurational enthalpy by Lagache et al. [21].
The kinetic energy is explicitly shown by the first term in
the last line of Eq. (25), whereas the pressure in the con-
figurational enthalpy contains kinetic and potential con-
tributions. Expressions for phase-space functions with
higher and mixed derivatives can be derived accordingly.
The expressions for phase-space functions up to third or-
der are listed in Table III.

It is a remarkable result that the expressions for the
phase-space functions do not contain volume derivatives
of the potential energy as in the microcanonical and
canonical ensembles. Here, only averages of combina-
tions of the volume and configurational enthalpy appear,
which can be calculated with little computational effort
in a Monte Carlo simulation.

By mathematical induction, the general representation
for the phase-space functions

Zmn =

(
3N/2

−β

)m m∑
j=0

(
m

j

)
P3N/2
−n,m−j

〈(
βĤ

3N/2

)j
(−βV )n

〉
(26)

can be obtained. The symbol PXx′,x denotes the Pochham-

mer polynomials [30] defined by Lustig as [17]

PXx′,x =



1, for x = 0 or (x′ = 0 and x = 1),(
1 +

x′

X

)(
1 +

x′ + 1

X

)
...

(
1 +

x′ + x− 1

X

)
,

otherwise.


(27)

They describe the terms arising from the derivatives of
the term β−3N/2 in the partition function with respect
to β.

Inserting the expressions from Table III for the classi-
cal phase-space functions into the relations for the ther-
modynamic properties in Table II yields the following
equations for the thermodynamic properties in terms of
ensemble averages of combinations of the volume and
configurational enthalpy:

Cp =
3

2
NkB +

1

kBT 2

(〈
Ĥ2
〉
−
〈
Ĥ
〉2)

, (28)

CV =
3

2
NkB +

1

kBT 2

(〈
Ĥ2
〉
−
〈
Ĥ
〉2)

− 1

kBT 2

(〈
ĤV

〉
−
〈
Ĥ
〉
〈V 〉
)2

〈V 2〉 − 〈V 〉2
, (29)

αp =
1

kBT 2

〈
ĤV

〉
−
〈
Ĥ
〉
〈V 〉

〈V 〉
, (30)

βT =
1

kBT

〈
V 2
〉
− 〈V 〉2

〈V 〉
, (31)

γV =
1

T

〈
ĤV

〉
−
〈
Ĥ
〉
〈V 〉

〈V 2〉 − 〈V 〉2
. (32)

These equations agree with those reported by Hill [18]
and Byers Brown [4]. Thus, the rigorous methodology
of Lustig yields the same expressions for thermodynamic
properties in the NpT ensemble as those derived by the
standard theory of fluctuations [18]. The equations for
the isentropic compressibility, speed of sound, and third-
order derivatives of the Gibbs energy in Tables I to III,
to the best of our knowledge, have not yet been reported
in the literature. In principle, equations for derivatives
of the Gibbs energy of arbitrary order can be derived by
using the recursion formulas, Eqs. (5) and (6), and the
general equation for the phase-space functions, Eq. (26).

Finally, we discuss the extension of the formalism
to temperature-dependent potentials (TDP). In molec-
ular simulations with accurate ab initio potential energy
surfaces of real fluids, quantum effects are often taken
into account semi-classically by applying temperature-
dependent corrections such as the Feynman–Hibbs quan-
tum corrections [32]. When calculating temperature
derivatives, the dependence of the potential on temper-
ature must be taken into account. For example, the
extended expression for the phase-space function corre-
sponding to the first temperature derivative of the parti-
tion function reads

ZTDP
10 = −3N

2
β−1 −

〈
U(β) + β

∂U(β)

∂β
+ pV

〉
. (33)
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Expressions for phase-space functions for temperature-
dependent potentials up to third order are also reported
in Table III. They have the same mathematical struc-
ture as the corresponding expressions for the canonical
ensemble [31]. The expressions are generally valid for
any temperature-dependent potential. For the lowest-
order Feynman–Hibbs quantum corrections, the deriva-
tives of the potential with respect to β of second and
higher orders vanish. In contrast, the classical expres-
sions for phase-space functions corresponding to pure
pressure derivatives remain unchanged for temperature-
dependent potentials.

III. VALIDATION BY MONTE CARLO
SIMULATIONS OF A MODEL FLUID

To validate the expressions derived in Sec. II, Monte
Carlo simulations of the simple Lennard-Jones model
fluid at three state points were performed in the NpT en-
semble with the Metropolis algorithm [33] as decribed by
Allen and Tildesley [1]. The original Metropolis Monte
Carlo algorithm for the canonical ensemble was first ex-
tended to the NpT ensemble by Wood for simulations of
hard disks [34, 35] and subsequently by McDonald [36, 37]
for simulations of particles interacting by continuous po-
tentials. A Fortran 90 program was developed from the
code F.12 provided as supplement with the book of Allen
and Tildesley [1]. Since a different volume scale in the
partition function was used by Allen and Tildesley, the
acceptance criterion for volume moves had to be modi-
fied in order to include the volume scale N/V applied in
Eq. (2). Thus, the Metropolis scheme was implemented
to generate a Markov chain whose limiting distribution
is proportional to

exp[−βĤ + (N − 1) lnV ],

which contains the term N−1 instead of N in the original
code of Allen and Tildesley. Thus, volume moves were
accepted with the probability

min{1, exp[−β∆Ĥnm + (N − 1) ln(Vn/Vm)]},

where ∆Ĥnm denotes the difference of the configurational
enthalpy between states n andm of the Markov chain and
Vn and Vm are the volumes of the system in the nth and
mth state of the Markov chain.

Throughout this section, the usual Lennard-Jones di-
mensionless quantity system is used, in which all ther-
modynamic properties are reduced by the length param-
eter σ and well depth ε of the Lennard-Jones potential.
All symbols used in this section represent dimensionless
quantities. The state points (T = 1.2, p = 0.05) in the
gas region, (T = 1.0, p = 1.0) in the liquid region, and
(T = 3.0, p = 9.0) in the supercritical region were sim-
ulated. With this choice, three characteristic states in
the fluid region are investigated. Since we are interested
in thermodynamic properties of macroscopic systems in

the thermodynamic limit, simulations were carried out
with 108, 256, 500, 864, and 1372 particles at each state
point, and the results for all properties were extrapo-
lated to the thermodynamic limit N → ∞. All sim-
ulations were started from a cubic-face-centered lattice
configuration. After an equilibration phase of 105 cy-
cles, each simulation comprised 107 cycles with N − 1
particle moves and one volume move per cycle. The cut-
off radius was always set to half of the box length, and
the long-range correction for the potential energy to ac-
count for interactions between pairs of particles whose
distance is larger than the cutoff radius was calculated
as described by Allen and Tildesley [1]. Both cutoff ra-
dius and long-range correction were adapted when the
volume was changed. During the production phase of
the simulation, instantaneous values for all ensemble av-
erages required in the expressions for the phase-space in-
tegrals in Table III were accumulated at the end of each
cycle. After the production phase had been completed,
ensemble averages, and with them the phase-space func-
tions, were calculated. Values for the thermodynamic
properties were then obtained by using the relations in
Table II. The uncertainties of the simulation results were
estimated by means of the method of statistical ineffi-
ciency as recommended by Allen and Tildesley [1], which
is originally due to Friedberg and Cameron [38]. For the
uncertainty analysis, instantaneous values of thermody-
namic properties, which are combinations of several en-
semble averages, were estimated by the method proposed
by Lustig [11].

The extrapolation of the results to the thermodynamic
limit was carried out with a second-order polynomial fit
to the data for density and enthalpy as a function of the
inverse number of particles at the liquid and supercriti-
cal states because these data have very low uncertainties
and could not be represented within their uncertainty by
a linear fit. For the density and enthalpy at the gaseous
state and all other properties, a linear fit was used. The
results for the thermodynamic limit and their uncertain-
ties (at the 0.95 confidence level) are reported in Ta-
ble IV. Included in the table are values calculated with
the reference equation of state (EOS) by Thol et al. [39],
which has been shown by Stephan et al. [40] to be among
the most accurate representations of the properties of the
Lennard-Jones model fluid. According to Thol et al. [39],
the uncertainties of their EOS amount to 0.1% in den-
sity, 0.5% in isochoric heat capacity, 1% in isobaric heat
capacity and speed of sound, 2.5% to 10% in the Joule–
Thomson coefficient, 15% in the thermal expansion coef-
ficient, 3% in isothermal compressibility, and 1% in the
thermal pressure coefficient.

Results for selected properties are shown in Fig. 1 as a
function of the inverse number of particles. All extrapo-
lated simulation results agree with the equation of state
well within its uncertainty. The agreement ist best for
density and enthalpy, while the other properties that are
determined by combinations of second-order derivatives
of the Gibbs energy show somewhat larger deviations.
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TABLE III. Explicit expressions for phase-space functions Zmn up to third order for ordinary and temperature-dependent
potentials in the NpT ensemble.

Z10 = −3N

2
β−1 −

〈
Ĥ
〉

Z20 =
3N

2

(
3N

2
+ 1

)
β−2 + 3Nβ−1

〈
Ĥ
〉

+
〈
Ĥ2
〉

Z30 = −3N

2

(
3N

2
+ 1

)(
3N

2
+ 2

)
β−3 − 9N

2

(
3N

2
+ 1

)
β−2

〈
Ĥ
〉
− 9N

2
β−1

〈
Ĥ2
〉
−
〈
Ĥ3
〉

Z01 = −β 〈V 〉

Z02 = β2
〈
V 2
〉

Z03 = −β3
〈
V 3
〉

Z11 =

(
3N

2
− 1

)
〈V 〉+ β

〈
ĤV

〉
Z21 = −3N

2

(
3N

2
− 1

)
β−1 〈V 〉 − 2

(
3N

2
− 1

)〈
ĤV

〉
− β

〈
Ĥ2V

〉
Z12 = −

(
3N

2
− 2

)
β
〈
V 2
〉
− β2

〈
ĤV 2

〉

ZTDP
10 = −3N

2
β−1 −

〈
U(β) + β

∂U(β)

∂β
+ pV

〉

ZTDP
20 =

3N

2

(
3N

2
+ 1

)
β−2 + 3Nβ−1

〈
U(β) + β

∂U(β)

∂β
+ pV

〉
+

〈(
U(β) + β

∂U(β)

∂β
+ pV

)2
〉
−
〈

2
∂U(β)

∂β
+ β

∂2U(β)

∂β2

〉

ZTDP
30 = −3N

2

(
3N

2
+ 1

)(
3N

2
+ 2

)
β−3 − 9N

2

(
3N

2
+ 1

)
β−2

〈
U(β) + β

∂U(β)

∂β
+ pV

〉
−9N

2
β−1

〈(
U(β) + β

∂U(β)

∂β
+ pV

)2
〉

+
9N

2
β−1

〈
2
∂U(β)

∂β
+ β

∂2U(β)

∂β2

〉
−

〈(
U(β) + β

∂U(β)

∂β
+ pV

)3
〉

+ 3

〈(
U(β) + β

∂U(β)

∂β
+ pV

)(
2
∂U(β)

∂β
+ β

∂2U(β)

∂β2

)〉
−
〈

3
∂2U(β)

∂β2
+ β

∂3U(β)

∂β3

〉

ZTDP
11 =

(
3N

2
− 1

)
〈V 〉+ β

〈(
U(β) + β

∂U(β)

∂β
+ pV

)
V

〉

ZTDP
21 = −3N

2

(
3N

2
− 1

)
β−1 〈V 〉 − 2

(
3N

2
− 1

)〈(
U(β) + β

∂U(β)

∂β
+ pV

)
V

〉
− β

〈(
U(β) + β

∂U(β)

∂β
+ pV

)2

V

〉
+β

〈(
2
∂U(β)

∂β
+ β

∂2U(β)

∂β2

)
V

〉

ZTDP
12 = −

(
3N

2
− 2

)
β
〈
V 2
〉
− β2

〈(
U(β) + β

∂U(β)

∂β
+ pV

)
V 2

〉

The data for density and enthalpy have the lowest un-
certainties of all calculated properties and agree with the
EOS within 0.04% and 0.07%, respectively. The isochoric
heat capacities and speeds of sound also show small devi-
ations of up to 0.2% from the EOS, while the data for the
Joule–Thomson coefficient exhibit the largest deviations

from the EOS with up to 0.65% at the liquid state, for
which the uncertainty of the EOS is also large. The devi-
ations of the other properties from the EOS range from
0.2% to 0.5%. The very good agreement between the
simulation results and the EOS confirms the correctness
of the equations derived in Sec. II.
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TABLE IV. Monte Carlo simulation results, their expanded uncertainty (at the 0.95 confidence level), and values calculated
with the equation of state of Thol et al. [39] for several thermodynamic properties at three state points of the Lennard-Jones
model fluid. Each simulation comprised 107 cycles. The simulations were carried out with 108, 256, 500, 864, and 1372 particles.
The values reported are extrapolated values in the thermodynamic limit N → ∞. Expanded uncertainties are given by the
numbers in parentheses, i.e., 4.323(17) means that the value 4.323 has an expanded uncertainty of 0.017.

gas liquid supercritical

T = 1.2, p = 0.05 T = 1.0, p = 1.0 T = 3.0, p = 9.0

property simulation EOS simulation EOS simulation EOS

ρ 0.051476(14) 0.051461 0.79878(48) 0.79847 0.80270(16) 0.80275

H/N 2.3382(7) 2.3393 −2.775(6) −2.773 11.6169(43) 11.6175

Cp/N 3.9074(11) 3.8889 4.79(7) 4.80 3.468(9) 3.471

CV /N 1.7171(24) 1.7136 2.379(5) 2.376 2.1285(22) 2.1288

αp 1.5580(23) 1.5505 0.399(8) 0.401 0.10465(5) 0.10489

βT 25.83(7) 25.77 0.0828(9) 0.0829 0.0306(9) 0.0306

γV 0.06031(7) 0.06017 4.815(40) 4.833 3.4233(45) 3.4234

βS 11.352(25) 11.355 0.041185(7) 0.041027 0.018765(23) 0.018793

w 1.3080(14) 1.3082 5.5159(24) 5.5251 8.148(5) 8.142

µJT 4.323(17) 4.300 −0.1573(43) −0.1563 −0.2465(11) −0.2460

IV. CONCLUSIONS

Using the systematic methodology developed by Lustig
for the microcanonical and canonical ensembles, equa-
tions have been derived that can be used in Monte Carlo
simulations in the NpT ensemble to calculate macro-
scopic thermodynamic properties of fluids. By introduc-
ing phase-space functions to represent derivatives of the
partition function, explicit expressions for all common
thermodynamic properties and derivatives of the Gibbs
energy up to third order have been obtained. In principle,
expressions for derivatives of the Gibbs energy up to ar-
bitrary order can be derived with the methodology. Fur-
thermore, expressions for temperature-dependent poten-
tial models are provided, which are required when quan-
tum corrections are taken into account. The expressions
for third-order derivatives of the Gibbs energy and for
temperature-dependent potentials are reported here for
the first time. All derived expressions are applicable for
spherical particles, rigid linear molecules, and rigid non-
linear molecules as well as mixtures. The derived equa-
tions were validated by Monte Carlo simulations of the

simple Lennard-Jones model fluid at three characteristic
state points.

Compared to the canonical and microcanonical ensem-
bles, our expressions for thermodynamic properties con-
tain only ensemble averages of combinations of the vol-
ume and enthalpy of the system, but no volume deriva-
tives of the potential energy. This is advantageous for
simulations with empirical force fields or ab initio poten-
tial energy surfaces for real molecules, which are much
more complex than the simple Lennard-Jones model po-
tential. Without the need to compute volume deriva-
tives of the potential energy, the computational effort for
the calculation of properties such as the isothermal com-
pressibility and the speed of sound in the NpT ensemble
is smaller than in ensembles in which the volume is an
independent variable.
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