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High resolution single-shot non-relativistic ultrafast electron microscopy(UEM) relies on adap-
tive optics to compress high intensity bunches using Radio Frequency (RF) cavities. We present
a comprehensive discussion of the analytic approaches available to characterize bunch dynamics as
an electron bunch goes through a longitudinal focal point after an RF cavity where space charge
effects can be large. Methods drawn from the Coulomb explosion literature, the accelerator physics
literature and the analytic Gaussian model developed for UEM are compared, utilized and extended
in some cases. In particular the longitudinal focus may occur in two different regimes, a bounce-
back regime and a crossover regime; and we characterize the critical point separating these regimes
in the zero-emittance model. Results from N-particle simulations using efficient multipole meth-
ods are compared to the theoretical models revealing features requiring extensions of the analytic
approaches; and in particular mechanisms for emittance growth and transfer are discussed.

I. INTRODUCTION

Modern ultrafast microscopy has the goal of resolv-
ing sub-picosecond time periods at sub-nanometer length
scales [1, 2]. Consistently obtaining such resolution
would allow scientists to visualize chemistry as it happens
thus opening up a deeper understanding of mechanisms
at the nano-scale that are important to life and mod-
ern technology[3, 4]. While a number of techniques are
being explored to realize such microscopy [3–15], weakly-
relativistic ultrafast electron microscopy (UEM), where
the electron bunch has energies that are at most a sig-
nificant fraction of the rest energy of the electron, has
a number of attractive advantages. The first advantage
is the engineering fact that the device needed for such
experiments can be built on top of existing electron mi-
croscopes keeping additional engineering and expenses to
a minimum. The second advantage is the physical fact
that the use of strongly interacting electrons means that
the number of electrons required to form an image is a
relatively small number as compared to x-rays for exam-
ple [12]. The ultimate goal is to reach the single-shot
limit where the number of electrons in a bunch is large
enough to form an image, but weakly-relativistic UEM
also introduces technological hurdles as the space-charge
effects of a high-density probing electron bunch is consid-
erable at a number of points within the column[16–22].
These effects need to be characterized to provide an ac-
curate model for design of high-intensity beamlines. In
this paper we present such a model that can capture such
space-charge effects at a longitudinal focal point.

While such so-called space-charge dominated regimes
have been well described by accelerator physicists for
cylindrical beams[23], the weakly-relativistic bunched na-
ture, which can be thought of as ellipsoids with finite
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longitudinal extent, of the electrons in UEM requires ad-
ditional tools. Some work has already characterized such
dynamics in the non-relativistic regime near the electron
source. Models of the longitudinal evolution of the bunch
have been developed to describe the early dynamics of a
bunch within an acceleration field before the center of
mass motion becomes relativistic[24–28]; although we re-
cently showed that the transverse dynamics should not
be ignored when attempting to capture the important as-
pects of the electron bunch evolution[22]. Furthermore,
once the bunch has expanded sufficiently, it is often ar-
gued that the internal space-charge effects become negli-
gible; however, for weakly-relativistic UEM the bunch is
recompressed resulting in the space-charge effects becom-
ing significant at and near focal points where the density
of the bunch is again high.

Fortunately, there have been tools developed in the as-
trophysics and Coulomb explosion literature where the
mean-field effects of a uniform ellipsoidal electron bunch
can be modeled through ordinary differential equations.
Specifically, Lin et al. developed a model of gravitational
collapse of an oblate ellipse that could be written as a sys-
tem of differential equations for the ellipses’ widths[29].
Similar techniques using the repulsive electrostatic force
were developed by Grech et al. to model the inverse prob-
lem of Coulomb explosion[30]. Both techniques require a
tractable force, and to simplify the analysis, both tech-
niques assumed a uniform ellipsoid throughout the bunch
evolution. However, such models assume a on-to-one re-
lation between particle location and particle momentum,
which is unphysical.

Separate from these efforts, Michalik and Sipe intro-
duced an Analytic Gaussian (AG) model that is able to
capture the effect of local momentum spread at every
location [31–33]. To capture such effects, Michalik and
Sipe utilize a measure common in accelerator physics, the
normalized rms emittance, henceforth emittance, that
represents the phase-space area occupied by the ensem-
ble and which we will define mathematically later in
the text. The AG model is presented in the reference
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frame of the bunch, so it is only applicable as long as
the bunch remains non-relativistic within the lab frame.
Further, we argue here that the AG model is equivalent
to the much older Kapchinskij-Vladimirskij (KV) enve-
lope equations initially developed to describe the evo-
lution of uniform ellipsoidal distributions[34]. Sacherer
provided a simple perspective that showed that the KV
envelope equations could be derived from basic, funda-
mental statistical considerations with applications of the
mean-field force present from a uniform distribution[35],
and the mathematical form of the AG model may be de-
rived from similar considerations again assuming emit-
tance conservation. We provide such a derivation later
in this manuscript.

We have recently argued that emittance is an impor-
tant measure in the statistical description of any ensem-
ble of particles as it appears in the dynamics of the second
order moments, as we will show here. We emphasize that
the use of emittance is valid for understanding collective
particle effects reflected in the statistical description of
any physical situation — not just the one component
plasma situation we investigate here. Of special note,
the emittance is conserved for systems where all forces
are perfectly linear, therefore ideal uniform distributions
within the fields of gravitation and electromagnetism are
of specific theoretical interest to the understanding of
the dynamics of such ensembles[24]. Furthermore, the
collective effects of an ensemble of particles may be con-
veniently partitioned into mean-field effects[36, 37], mo-
mentum spread effects[31, 35], finite size effects[38], and
particle-particle scattering-like effects, and such effects
drive changes within the emittance. Therefore, the anal-
ysis of emittance is fundamental in understanding the
collective effects of any ensemble.

In this work, we have three primary goals: 1.) We
extend the model of Grech et al. to capture focussing
events, 2.) we place the envelope equations within the
context of the UEM and accelerator physics literature,
and 3.) we analyze changes in emittance during well-
controlled focusing and crossover, as a leading indicator
of typical non mean-field interaction effects within the
ensemble. We start by extending the model employed by
Grech et al. to include linear initial momentum-spatial
correlations, aka chirp, in Sec.II. We show that the use
of a chirp to introduce crossover can be treated precisely
in the zero emmitance limit by an important extension of
the mathematics utilized in the paper of Grech et al. We
call this the modified Coulomb explosion (MCE) model in
the text. We find that this MCE model naturally leads to
the concept of a critical chirp that describes a collective
behavior transition for particles within this model. Next,
in Sec.III, we derive the AG formalism from a statisti-

cal vantage point assuming a linear force. We explicitly
demonstrate how the Gaussian assumption differs from
the uniform assumption only by a constant that can be
absorbed into the number of particles in the bunch if the
model is used to represent experimental data for exam-
ple (see Appendix B 2). Further we point out that the
envelope equations we derive from this statistical per-
spective are a generalization of the MCE model. This
observation allows us to partially disentangle the effects
of the collective self force and momentum spread on the
predicted dynamics of the bunch, and we analyze some
important physics of bunch evolution using this insight.
As the deviation of real systems from such a model is
due to stochastic effects that simultaneously result in
emittance change, the theoretical predictions are com-
pared to N -particle simulations where such stochastic
scattering events are present. Consistent with previous
theory[23], we show that emittance is transferred from
hotter to colder dimensions; however, we also show that
emittance increases almost simultaneously in both the
transverse and longitudinal directions around crossover
when the initial chirp is larger than the critical chirp. We
note that this can not be explained through the standard
mechanism of heat transfer; and we postulate two mech-
anisms that may be important in the collective dynamics
of a focussed, charged bunch.

II. SPATIAL EVOLUTION

We revisit Grech et al.’s model for Coulomb explosion.
Broadly, this model assumes that the force acting on a
particle within the uniform ellipsoidal ensemble is the
mean-field force calculated by the application of Laplace
equations to a uniform distribution of electrons. The
modification we introduce is an initial linear relationship
between the initial position and the initial velocity of the
particle, which we will call the “chirp”, and this modi-
fication naturally leads to the identification of a critical
chirp that demarcates two qualitatively different regimes
of bunch behavior within this model.

A. The mean-field framework

We first recall the well-known quadratic form of the
electrostatic potential for position (x, y, z) inside a uni-
form electron ellipsoidal bunch with semi-axes of (a, b, c)
and charge number density n that can be obtained using
Laplace’s equations[39]:

V (x, y, z) =
n · abc · e

4ε0
·
∫ ∞
0

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds√

(a2 + s)(b2 + s)(c2 + s)
, (1)
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where ε0 is the vacuum permittivity. We assume rota-
tional symmetry about the z axis enabling us to intro-

duce the radial coordinate r =
√
x2 + y2. Although the

detailed calculations below are performed specifically for
prolate ellipsoids (a = b < c), similar results are valid for
general uniformly charged ellipsoidal bunches.

The electrostatic field may be obtained from Eq. (1)

using ~E = −~∇V . Due to the symmetry, the angular
portion of the field is 0. Thus the electric field may be
written as:

~E(r, z) = Er(r)r̂ + Ez(z)ẑ (2)

with r̂ and ẑ representing the radial and longitudinal unit
vectors, respectively, and

Er(r) =
ne

2ε0
ξr(α) · r (3a)

Ez(z) =
ne

2ε0
ξz(α) · z (3b)

where α = a/c is the ellipsoid aspect ratio and the cor-
responding geometry coefficients ξr(α) and ξz(α) are

ξr(α) = α2

∫ ∞
0

ds

(α2 + s)2(1 + s)1/2
(4a)

ξz(α) = α2

∫ ∞
0

ds

(α2 + s)(1 + s)3/2
(4b)

Provided that the initial velocity of the particles in the
ellipsoid can be expressed as linear functions of their co-
ordinates, the linear relation between the electric field
felt by a particle and the particle’s position results in the
preservation of the uniformity of the ellipsoidal bunch.
This greatly simplifies our analysis as the formulation
presented above applies to the bunch for all time and the
evolution reduces to the determination of two degrees of
freedom. Specifically, the temporal evolution of the en-
tire bunch can be represented by the evolution of two
dimensionless scaling functions, R(t) and Z(t), i.e. the
trajectory of any particle with initial position (r0, z0) in-
side the uniform ellipsoid is given by (r0R(t), z0Z(t)),
where R and Z are independent of the initial position
(r0, z0). Thus, the parameters for describing the bunch
changes accordingly: (i) the semi-axis of the ellipsoids
can be written as (a, c) = (a0R, c0Z), (ii) the transient
aspect ratio can be written as α(t) = α0 · R/Z, (iii)
the number density can be derived using conservation
of charge Ntotal = n0 · (4π/3)a20c0 = n(t) · (4π/3)a2c giv-
ing n(t) = n0/(R

2Z), and (iv) the spatial variance of the
bunch change to σ2

z(t) = σ2
z0 · Z2 and σ2

r(t) = σ2
r0 · R2.

Therefore, it should be apparent that any parameter in
the problem can be determined from R and Z, which we
set out to determine for all time.

In the non-relativistic limit, the equations of motion
(EOM) of a particle inside the field determined in Eq.

(3) can be simply determined using ~̈x = q
m
~E. These

EOM reduce to two dimensionless ordinary differential

equations (ODEs) for our scaling parameters:

d2R

dτ2
=
ξr(α)

RZ
(5a)

d2Z

dτ2
=
ξz(α)

R2
(5b)

with dimensionless reduced time,

τ = t ·

√
e2n0
2ε0m

= t · Ω0 (6)

and electron mass m. Notice that: (i) the time scaling

factor Ω0 = 1√
2
ωp0 where ωp0(n0) =

√
e2n0

ε0m
is the ini-

tial plasma frequency and (ii) the geometry coefficients
ξr and ξz solely depend on the aspect ratio α rather than
specific value of a and c. This means that starting with
the same initial conditions for the ODEs, bunches with
the same initial aspect ratio α0 but different initial den-
sity n0 will lead to identical behaviors only differing by
the time scaling factor Ω0 determined by the initial num-
ber density n0. Eq. (5) are more or less the ODE’s
used by Lin et al.[29] and Grech et al.[30] except we have
scaled the time to be more general, so the model we have
presented so far does not significantly differ from those
works.

B. Initial conditions

The behavior predicted by a specified system of non-
chaotic ODE’s is entirely determined by its initial condi-
tions, and the initial conditions we consider are

R(τ = 0) = 1 (7a)

Z(τ = 0) = 1 (7b)

dR

dτ

∣∣∣∣
τ=0

= −ν∗r (7c)

dZ

dτ

∣∣∣∣
τ=0

= −ν∗z (7d)

where ν∗i is trivially proportional to the linear chirp. We
call ν∗z the reduced longitudinal chirp, and its propor-
tionality to the linear chirp can be obtained by noting
pz(z0) = m · (ν∗zΩ0 · z0) = mCz · z0 where Cz is the lon-
gitudinal linear chirp. Notice that Eqs. (7a) and (7b)
represent the initial scaling of the ellipsoid and are by
definition set to 1 as these parameters represent the scal-
ing of the transverse and longitudinal dimensions, respec-
tively, from their initial values. On the other hand, Eqs.
(7c) and (7d) represent the initial rate of change of the
scale functions R and Z, which can be roughly thought
of as the velocity of the expansion. Lin et al. and Grech
et al. set ν∗r = ν∗z = 0 to model gravitation collapse and
Coulomb explosion, respectively, where the bunch is as-
sumed to start from rest. The Coulomb explosion results
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were found to be in good agreement with molecular dy-
namics (MD) simulations for time-dependent energy dis-
tributions and particle-in-cell (PIC) simulations for tem-
poral ellipsoid radii evolution[30]. For our purposes, we
assume ν∗r = 0 and ν∗z 6= 0 to model the effect of a longi-
tudinal lens, e.g. a RF cavity. Specifically, notice that if
the reduced longitudinal chirp is positive, i.e. dZ

dτ

∣∣
τ=0

is
negative, Z will initially decrease, and the bunch will be
focused in the longitudinal direction. In summary, the
focusing process of a uniform charged ellipsoid is entirely
determined by its initial aspect ratio and its reduced lon-
gitudinal chirp as the density of initial bunch determines
only the time scale of the evolution. We call this gen-
eral form of Grech et al.’s model the modified Coulomb
explosion (MCE) model.

In particular note that the reduced longitudinal chirp
is dimensionless while the longitudinal chirp has dimen-
sions of inverse time. This is because the reduced chirp is
the actual chirp scaled by Ω0, and this cancels the time
dimension. As Ω0 depends solely on density, the reduced
chirp is more general as the density determines the time
scale and therefore the ODE represents the interplay be-
tween the geometry and the electrostatic force. However,
if the density is not important in our discussion of some
physical observation, we will often drop the “reduced”
when discussing the chirp as the statement should apply
to both the reduced chirp as well as the actual chirp.

C. Critical reduced chirp

As the effect of aspect ratio on the evolution has been
well studied previously[30], we examine the effect of the
reduced longitudinal chirp on the bunch focusing of a
pre-specified aspect ratio, α0 = 10/75. Specifically, we
are interested in modeling the bunch reaching a mini-
mum in longitudinal extent after τ = 0 which occurs
when −ν∗z < 0. We define the time to focus, τf , as the
dimensionless time at which the bunch reaches its mini-
mum longitudinal width. As can be seen in Fig. 1, τf is
a function of the reduced chirp, i.e. τf = τf (ν∗z ).

Furthermore, define Zf to be the longitudinal scal-
ing parameter at the focal point, i.e. Zf = Z(τf ) =
min(Z(t)). Moreover notice that Z(t) ≥ 0, so Zf ≥ 0;
in fact, for sufficiently large reduced chirps Zf = 0 as
can be seen in Fig. 1. This is because the evolution of
the longitudinal scaling parameter, seen in Eq. (5b), is
dependent only on 1/R2, and R > 1 in our model. This
means that if ν∗z is sufficiently large, the initial longi-
tudinal chirp overcomes the repulsion of the electrostatic
force and the bunch briefly collapses to a two-dimensional
object at the focal point. We call the smallest magni-
tude of the reduced chirp for satisfying this condition
the critical chirp, ν∗z,c. Notice that τf (ν∗z,c) = ∞ and

that
dτf
dν∗z

{
> 0, ν∗z < ν∗z,c
< 0, ν∗z > ν∗z,c

again as can be seen in Fig.

1.

FIG. 1: Longitudinal width evolution Z = Z(τ) of
prolate ellipsoids with (α0 = 10/75) driven by different
initial chirps in numeric solutions of the MCE model
ranging from below the critical chirp (0.35 ν∗z,c) to well
above (2.0 ν∗z,c). The sub-graph shows the dependence
of minimum width on initial reduced chirp. The red dot
represents the critical value ν∗z,c for the particular
α0 = 10/75, and the bounce-back and crossover regimes
a separated by the vertical, dashed, red line at this
point.

In other words, the behavior of the model can be par-
titioned into two categories characterized by whether the
initial longitudinal chirp is greater than or less than the
critical chirp. More specifically, as the magnitude of fo-
cusing chirp is increased from 0, the minimum width of
the bunch decreases and the time to focus increases. This
trend continues until the critical chirp is reached where
the corresponding time to the focal point becomes in-
finitely large, i.e. τf →∞ as ν∗z → ν∗z,c. Above the crit-
ical chirp, the bunch will overcome the Coulomb repul-
sion and be compressed through a longitudinal crossover
as electrons starting from one side of the bunch cross the
center of mass and then begin to expand on the other
side. We refer to this as the “crossover” regime, and in
this regime further increasing the chirp has no effect on
the 0 minimum width but decreases the time to focus. In
contrast, we call the regime below the critical chirp the
“bounce-back” regime as a particle within the bunch with
such a chirp follows a trajectory that reverse its initial
direction.

The crossover event adds complexity to simulations of
the model. Specifically, the linearity of both the force
and the velocities of the particles in the model indicates
that all the crossover incidents happen simultaneously
across the bunch at τf within the crossover regime, cre-
ating a 2D singularity in the EOM with Z → 0. Be-
fore the crossover, the chirp is negative while after the
crossover the chirp becomes positive. As the force in the



5

z-direction is very small due to geometric considerations,
the speed of the particles do not change substantially, just
the sign of the linear relationship in phase space. This
necessitates careful treatment of the chirp through the
crossover event. We accomplish this treatment by using
a small time step to propagate the EOM up until Z goes
below zero. As Z is a scale, the negative sign has no phys-
ical meaning and indicates that crossover occurred within
the previous time step. So, we stop the simulation and
flip the value of both longitudinal position scaling, Z, and
longitudinal momentum, pz. After this, the same EOM
are used to integrate the parameters. In effect, this skips
the singularity by an infinitesimal step size in time. In
addition, this also implies that the crossover case, where
Z will pass through 0 in this fashion, will have a sudden
change in longitudinal chirp as compared to the bounce-
back case where such Z does not pass through 0 and the
chirp instead smoothly changes due to the effect of the
repulsive mean-field force.

Analogous to our longitudinal treatment, a radial chirp
can also be added by setting ν∗r in Eq.7c to a non-zero
value. Furthermore, this treatment may be combined
with the longitudinal chirp to model bunches focused in
both degrees of freedom simultaneously – a treatment
that is outside of the scope of this paper. However, in
contrast to the longitudinal dimension, this model pre-
dicts that there is no such critical chirp or crossover in
radial focusing. This occurs because of d2R/dτ ∝ 1/R as
can be seen in Eq. (5). This indicates that the force in the
transverse direction diverges as the bunch focuses radi-
ally preventing the singularity in the longitudinal scaling
parameters seen when only the longitudinal direction is
focused.

In the general situation, this difference between be-
ing able to focus through a singularity longitudinally but
not transversely is a result of attempting to focus two
dimensions, i.e. x̂ and ŷ, simultaneously. Focusing in
more than one dimension in this model is not possible
even when all dimensions are treated separately as the
Coulomb repulsion on one dimension is inversely depen-
dent on the widths of the other two dimensions. In other
words, there is only the bounce-back regime when more
than one dimension is focussed concurrently. We will
later (in Sec.III) discuss how emittance influences the
minimum width of the bunch, and this statistical mea-
sure reintroduces the ability of particles to crossover even
when the bunch is in the bounce-back regime. For the
rest of this manuscript, though, we will only focus on
the longitudinal focusing where both the crossover and
bounce-back regimes are accessible in the model.

One important feature of the critical reduced chirp,
ν∗z,c, is its exclusive dependence on the initial aspect ra-
tio α0. This fact stems from the governing EOM solely
depending on the aspect ratio. In Fig. 2, we present the
reduced critical chirp as a function of the initial aspect
ratio. Specifically, note that for large α0 often referred
to as the “pancake” regime [22, 24–28], we always have
α� 1, where the geometry coefficients ξr and ξz can be

approximated in closed forms, with

ξr(α→∞) ' π/(2α)→ 0 (8a)

ξz(α→∞) ' 2− πα2(α2 − 1)−3/2 → 2 (8b)

Therefore, the longitudinal motion can be treated as the
elementary constant acceleration kinematic equation:

Z(τ) = Z0 − ν∗z,cτ +
1

2
· ξz(∞) · τ2 (9)

with τf = ν∗z,c/ξz(∞) and Z(τf ) = 0. In essence, this
equation corresponds to the longitudinal crossover within
the planar model, which gives an analytic critical reduced
chirp of 2. This value corresponds to the asymptote seen
Fig. 2. That is, for sufficiently large aspect ratios, the en-
velope model may be analyzed for small amounts of time
using the planar model, which should be unsurprising.

FIG. 2: Dependence of critical reduced longitudinal
chirp, ν∗z,c, on the initial aspect ratio, α0. The green
dashed line represents the horizontal asymptote,
η∗z,c(α0 →∞) = 2. The red dot represents the aspect
ratio of our MD simulation.

III. ENVELOPE EQUATIONS

In this section, we present a brief derivation of the
envelope equations, and we compare this model to the
Analytic Gaussian (AG) formalism. Our derivation is
essentially identical to Sacherer’s derivation of the KV
envelope equations[35] and closely follows our recent
derivation presented with our discussion of the sample
perspective[38].

A. Derivation

We first introduce the statistics of the bunch and their
dynamics. In each degree of freedom (x, y, z), we need
three quantities to describe the second order statistics of
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the phase space: si, spi and si,pi , with i = T, z for the
transverse (T = x, y) or longitudinal direction. The basic
statistics are then

s2i = i2 − ī2 (10a)

s2pi = p2i − p̄
2
i (10b)

si,pi = ipi − īp̄i (10c)

where the bar operator indicates the mean, e.g. xpx =
1
N

∑N
j=1 xjpx,j . As the number of particles is a con-

stant, derivatives commute with sums, and derivatives of
products can be determined by the chain rule, we have
d
dt ā = da

dt and it is straightforward to show

d

dt
sa,b = s da

dt ,b
+ sa, dbdt

(11)

Thus the time derivatives of our phase-space statistics
are

ds2i
dt

=
2

m
si,pi (12a)

dsi,pi
dt

= si,Fi
+

1

m
s2pi (12b)

ds2pi
dt

= 2spi,Fi
(12c)

assuming non-relativistic dynamics.
We have been calling this system of equations the sec-

ond order statistical kinematics as they exactly specify
the evolution of the second order statistics in the same
way as kinematics exactly describes the evolution of a
single particle. Notice that each dimension has 3 de-
grees of freedom — these degrees of freedom describe the
2D covariance matrix in (x,px) space, etc. Moreover,
alternative choices of parameters, other than the covari-
ance matrix elements above, may be chosen. In fact,
one such well known choice of these degrees of freedom
are the Courant-Snyder parameters used in accelerator
physics; we provide context on why we chose not to use
the Courant-Snyder parameters for this manuscript and
how the statistical kinematics inform the evolution of the
Courant-Snyder parameters including the effect of adia-
batic damping in Appendix A. However, the statistical
kinematics apply generally and are important in the un-
derstanding of non-equilibrium dynamics in any field; in
this manuscript, we look at parameters that are more in
line with existing literature in the UEM community.

Specifically, we compare the second order statistical
kinematics to the three degrees of freedom represented in
the AG model. In Appendix B 1, we show that the AG
model can be simply derived from the statistical kine-
matics without integration of the phase space. Specifi-
cally, a single assumption reproduces Michalik and Sipe’s
published model from the statistical kinematics; namely,
assume that the force on a particle in the AG model is
linear and can be written as

Fi(i) =
1

4πε0

Ne2

6
√
πσ3

i

Li(ξ)i. (13)

Further details showing this explicitly can be found in
Appendix B 1.

However, this linear force assumption has 2 somewhat
subtle, and related, problems. The first has to do with
the description of the relationship between the position
of a particle in the distribution and the force it expe-
riences on average. The line of best fit has slope

si,Fi

s2i
,

so si,Fi
can be thought of as the slope of the best fit

line times the spatial variance. While the slope of the
line for a Gaussian is essentially described by the force
in Michalik and Sipe’s AG model, we note that the as-
sumption that the distribution will remain Gaussian has
been found to be incorrect[22]. Specifically, the slope
of the best fit line is specific to the given distribution,
and as the Gaussian distribution evolves toward a ringed
distribution, the slope of this line changes partially just
in response to this change in distribution. This issue
can be partially avoided theoretically by assuming a uni-
form distribution that does continue to be uniform as it
evolves — at least in the continuum, mean-field, non-
relativistic, zero-emittance limit. For this work, we as-
sume Fi(i) = (mω2

p0/2)ξi(α)i which leads to the enve-
lope equations we use as well as the equations used by
Sacherer[35]. The difference between the AG model and
these uniform envelope equations can be mathematically
shown to be nothing more than a difference in a dimen-
sionless constant relating the force used in the analysis
of Michalik and Sipe, the force we use. In Appendix B 2,
we calculate this constant and find that it is only 1.05
indicating that these models are essentially equivalent.
Because these two models differ by only about 5% in the
force, either set of equations can be used in most appli-
cations to experiment.

However, the linear assumption results in a more se-
rious issue. Specifically the force in a real bunch dif-
fers from the linear approximation. This is even true
for the uniform distribution although the more consis-
tent non-linearities of the Gaussian distribution result in
more significant deviations. So while the sx,Fi can be
captured in many situations with the mean-field force,
it is important to understand these deviations espe-
cially for the term relating the momentum and the force,
m2c2

s2i

dε2i,pi
dt = 2

s2i

(
s2i spi,Fi

− si,pisi,Fi

)
, cannot be likewise

captured. As the Gaussian distribution results in signif-
icant deviations between the linear force and the mean-
field force, the rms emittance has additional effects on the
evolution of the emittance growth than the uniform dis-
tribution’s purely stochastic driven emittance changes.
This second point has not been examined in the liter-
ature, and we begin to evaluate the stochastic driven
aspects of emittance growth in this manuscript by in-
vestigating the emittance change during simulation as
compared to the uniform envelope equation predictions.
As the gold standard for simulating realistic forces is N -
particle simulation, we conduct N -particle simulations in
our exploration of these effects.

In terms of understanding the physics, it is convenient
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to introduce a variable representing the average local
variance in the momentum,

ηi =

√
s2pi −

s2i,pi
s2i

(14)

Notice that η2i has dimensions of momentum and 1
2mη

2
i

has dimensions of energy. Furthermore, the emittance
can be written as εi,pi = ηisi similar to Michalik and
Sipe’s notation[31]. With this notation and an assump-
tion of a linear force, Fi = KFi(α) · i = (mω2

p/2)ξi(α)i,
our system of ODEs becomes

ds2i
dt

=
2

m
si,pi (15a)

dsi,pi
dt

=
1

m

(
s2i,pi
s2i

+ η2i

)
+KFi(α)s2i (15b)

dη2i
dt

= −2si,piη
2
i

ms2i
(15c)

Although the above derivations have been performed
for the Coulomb interaction, we would like to stress
that the same conclusions can be drawn for any inter-
action that leads to linear dependence between force and
position. Additionally, the generalization to any gen-
eral ellipsoid is simple using three degrees of freedom
with i = X,Y, Z and corresponding geometry coefficients
(ξx, ξy, ξz) as functions of the ratio between three axes.

B. Dynamics of the envelope equations

Notice that the non-interacting bunch model can be
obtained by setting KFi(α) = 0 in Eq. (B2). Further,
notice that the MCE model gives identical predictions to
the zero-emittance limit of the envelope equations above,
as can be seen in in Fig.3.

The bunch dynamics can be better understood analyt-
ically by investigating the dynamics of the linear chirp,
Ci =

si,pi
s2i

,

d

dt
Ci = KFi(α) +

mc2ε2i,pi
(s2i )

2
− 1

m
C2
i (16)

That is, the chirp evolution is influenced by three factors.
These factors can be decomposed into an interacting ef-
fect, KFi(α), and two expansion effects: (a) expansion

due to velocity spread,
mc2ε2i,pi
(s2i )

2 , and expansion due to

the chirp, − 1
mC

2
i . This realization leads us to identify

four ways to investigate the physics of the bunch dy-
namics: 1.) the non-interacting model with 0 emittance
where the dynamics are entirely driven by the chirp, 2.)
the non-interacting model with non-zero emittance where
the dynamics are driven by existing emittance and the
chirp, 3.) the MCE model or equivalently the envelope
equations with 0 emittance whose bunch dynamics are

FIG. 3: Longitudinal width evolution, σz, divided by
the initial longitudinal width, σz,0, of prolate ellipsoids
with (α0 = 10/75) focused by different initial chirps: (a)
0.7 ν∗z,c, (b)1.0 ν∗z,c, (c) 1.5 ν∗z,c. In each figure, the red
solid line represents the prediction from the MCE model
and the dotted lines represent the envelope equations
with different emittance ranging from 0 to 10 nm.
Notice that the envelope equations with zero emittance
and the MCE model are in perfect agreement. Also
notice that (1) increasing the emittance makes the waist
larger and moves it earlier and (2) the evolution of the
width statistic is more responsive to emittance when
the chirp is in the vicinity of the critical chirp.

driven entirely by the internal Coulomb repulsion and
existing chirp, and 4.) the full envelope equations where
all three effects and their interaction effects may be ex-
amined. We discuss the effects of these contributions in
the rest of this section by isolating them.

Notice that in the case that all other terms except the
chirp term of Eq. (16) are zero, then we can obtain an
analytic solution for the chirp:

Ci =
1

Ci,0t− 1
Ci,0 (17)

where Ci,0 represents the initial chirp in the ith direction
at time 0. Notice that there is a singularity for this so-
lution when t = 1

Ci,0
. Before this singularity, the bunch
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is moving in and the chirp is becoming more negative.
After this singularity, the chirp is positive, the bunch is
moving out, and the chirp approaches 0.

Notice that the emittance term is always positive, that
is it is driving the chirp to increase in time. In isolation,

this is because local velocity spread, for which
c2ε2i,pi
s2i

is an

estimate, drives faster particles to move out more quickly
thus resulting in a higher correlation between the spatial
and momentum components. If emittance is conserved
and present along with the chirp term, the evolution of
chirp will never pass through the singularity as the ve-
locity spread will increase inversely proportionally to the
inverse quartic power of the size of the bunch and will
eventually overwhelm the squared chirp contribution. At

the point where they are equal, i.e. C2
i =

m2c2ε2i,pi
(s2i )

2 , the

chirp turns around and begins to either increase (if chirp
is negative) or decrease (when chirp is positive). It may
be argued that the region between the two points where
the emittance and chirp are equal can be thought of as
the emittance dominated portion of the dynamics.

The force term in isolation is generally understood.
The outward repulsion of the Coulomb force drives a
chirp increase. This repulsion decreases as the bunch ex-
pands and thus has a similar interaction with the chirp
as the emittance, which is likewise strictly positive and
decreases with expansion; of course, the details of where
this effect dominates differ as the effect on the chirp falls
roughly, with a geometric effect, inversely to the cubic
power of the size of the bunch. Thus the emittance and
the electric repulsion cooperate to increase the chirp and
expand the bunch. If we were to consider gravitation in-
stead, the sign of the force effect flips and the emittance
and force effect react antagonistically.

In Fig. 3 we vary the emittance in the envelope model
to specifically demonstrate its role on the dynamics. We
can see that the width trajectories largely follow one an-
other before the larger emittance predictions break off
and reach their minima at a short time later. This is
due to the fact that the emittance term increases rapidly
with decreases in the bunch size. While there is a small
effect of this emittance effect on the bunch width, to first
order, it is primarily the shift in the time to the focus
that increases the size of the waist.

The kinetic energy can also be modeled through the
envelope equations. The kinetic energy can be exactly

written as KE =
∑
i
p2i
2m and can be decomposed into

KE = KEx+KEy+KEz where KEi = N
2m (p2i,CoM+s2pi)

and where pi,CoM is the momentum of a single particle
at the center of mass of the bunch in the ith direction.
Assuming the center of mass momentum doesn’t change,
the kinetic energy evolution along the ith dimension can
be written as:

d

dt
KEi =

N

2m

ds2pi
dt

=
N

m
si,piKFi(α), (18)

in any linear model. That is, the kinetic energy can be
transferred via the mean-field force into or out of the po-
tential. Furthermore, as the different components (x, y,
and z) can be independently controlled so that in effect
energy is being transferred into the potential by one com-
ponent but out of the potential by another, this mecha-
nism can lead to kinetic energy width transfers between
the dimensions. The result of this mechanism can be
seen in Fig. 4 for a bunch in the crossover regime. Fur-

FIG. 4: The longitudinal and transverse kinetic energy
for the crossover case (1.5 ν∗z,c corresponding to panel
(c) in Fig.3), with solid lines for the MCE model and
dotted lines for the envelope equations with different
emittance (circle for KEz and triangle for KET ). The
sudden change of direction for the slope of the MCE
model prediction of the longitudinal kinetic energy
comes from the sign flip of chirp discussed in Sec.II.

thermore, notice that the effect of the emittance can also
be seen Fig. 4. Specifically, the transfer of kinetic en-
ergy between the components is reduced by increasing
the emittance. This occurs as the non-zero emittance
results in the minimum width being both larger and oc-
curring earlier than the MCE model. In turn, this larger
size reduces the forces experienced reducing this trans-
fer. Moreover, the earlier focal time results in the trans-
fer finishing earlier, and all of these effects are factors in
determining the amount of energy transferred between
dimensions. We will provide more details of this aspect
of the model in future publications.

IV. N-PARTICLE SIMULATIONS

Now that details of the models are understood, we
compare the models to N -particle simulations. While
the models describe the evolution of the bunch under
specific conditions, i.e. conserved emittance for the enve-
lope equations and zero emittance for the MCE model, no
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such assumption is present in the N -particle simulations.
The only assumption that we make in these simulations
is that the bunch remains non-relativistic and thus elec-
trostatics can be used to model the inter-particle inter-
action.

The simulations were conducted using in-house code.
This code has been validated through comparison to
other in-house code implementing the PIC algorithm
from Warp[22]. This code employs the non-relativistic
equations of motion for every electron using velocity Ver-
let integration where we used the Fast Multipole Method
(FMM) from the fmmlib3d library[40] to calculate the
field. As emittance increases initially due to disorder-
induced heating (DIH) [41], the bunch needs to equili-
brate before the focusing simulation. We first place elec-
trons inside a simulation box with periodic boundaries
at the target density, which is 10, 000 electrons for a pro-
late ellipsoid with the semi-axes of (10µm, 10µm, 75µm).
The starting position of the electrons are randomly drawn
from a uniform distribution and the starting momen-
tum is zero. Then the electrons are thermalized us-
ing Particle-Particle-Particle-Mesh (PPPM) methods in
LAMMPS[42] (http://lammps.sandia.gov) for over 10
plasma oscillation periods. At the end of thermalization,
we select electrons inside the desired prolate ellipsoidal
region to construct one sample of initial conditions. To
mitigate the stochastic effects in this procedure, we pre-
pare 90 such samples. This process results in 90 ellipsoids
of particles with non-zero emittance that experience only
minor additional DIH at the beginning of the focusing
simulation. We call these initial conditions “warm” due
to the non-zero emittance.

A. Longitudinal width and kinetic energy evolution

Simulations were performed with 3 representative ini-
tial chirps: (i.) 0.7 ν∗z,c in the bounce-back regime, (ii.)
1.0 ν∗z,c at the critical chirp, and 1.5 ν∗z,c within the
crossover regime. N-particle simulations were conducted
by first thermalizing the bunch without chirp and with
periodic boundary conditions before allowing the bunch
to evolve with the appropriate chirp. The average initial
phase-space statistics of the bunch post-thermalization
were used to initialize the envelope equations.

The envelope model prediction is largely in agreement
with the N-particle simulation except for the simulation
at the critical chirp as can be seen in Fig. 5, and this
prediction deviates most significantly at the focal point.
Similar results can be seen with the kinetic energy evo-
lution except for some noticeable deviation in the pre-
diction for the bounce-back regime (0.7 ν∗z,c). These dis-
crepancies arise from momentum spread as supported by
re-examining the envelope equations using the average
emittance from the N-particle simulation at every time
step (dotted lines).

Further as shown in Fig. 5, the envelope equation pre-
dictions deviate from the N -particle simulations in three

FIG. 5: Comparison of spatial width evolution and
average kinetic energy in the longitudinal direction,
1
NKEz = 1

2m

(
η2z +

s2z,pz
s2z

)
= 1

2ms
2
pz , of the bunch

focused by three different initial chirps, 0.7 ν∗z,c, 1 ν∗z,c,
and 1.5 ν∗z,c. The line style of the plot indicates the
simulations type: solid = mean of 90 N-particle
simulations with the region shaded within 1 standard
deviation of the mean (sim), dashed = envelope
equation with conserved emittance (env), and dotted =
envelope equation with emittance provided from
simulation (env ∆ε).

aspects: 1.) a slightly larger minimum width occurring
at 2.) an earlier tf with 3.) a faster expansion after the
focal point. These deviations are most significant at the
critical chirp, where the bunch evolution is most sensitive
to changes in velocity spread measured by emittance as
we discussed in a previous section. We previously saw
similar trends in the minimum width, the time to the
minimum width, and the post focus expansion rate as we
increased the emittance in the envelope equations as can
be seen in Fig. 3. This suggests that the model used
to predict the evolution of the width statistic likewise
uses a larger longitudinal emittance than is seen in the
N -particle simulation at crossover. As the envelope equa-
tions use the longitudinal emittance of the initial warm
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FIG. 6: (rms) Emittance evolution in (a) longitudinal
εz,pz and (b) transverse εx,px directions for the three
different initial chirps, 0.7 ν∗z,c (orange), 1 ν∗z,c (blue),
and 1.5 ν∗z,c (magenta). All results were obtained from
N -particle simulations. Notice the initial bump in the
longitudinal emittance within the first 100 ps; this is
driven by disorder induced heating that is not
completely resolved by the protocol we used to
thermalize the bunches. Further notice that the
longitudinal emittance decreases while transverse
emittance increases after this point and before the focal
point. Also notice that the longitudinal emittance
continues to decrease after the focal point for the chirps
that are at or below the critical chirp; however, the
longitudinal emittance increases at and after the focal
point in the crossover regime. This occurs while the
transverse emittance continues to increase, so the
standard theoretical explanation of heat transfer
between the dimensions does not describe this behavior
and new theory is required to understand what is going
on. This is discussed further in the text.

distribution that is used in the N -particle simulations,
this suggests that the longitudinal emittance is in fact
decreasing during the N -particle simulations. Tracking
the rms emittance of the N -particle simulations, as seen
in panel (b) of Fig. 6, confirms that the longitudinal
emittance decreases prior to the focal point.

As discussed previously, the conservation of emit-
tance in the envelope equations is a result of the term
m2c2

2

dε2i,pi
dt = s2i spi,Fi

− si,pisi,Fi
being 0 in Eq (B2c);

conversely, the non-conservation of emittance suggests
that this term is non-zero. Currently, there is no the-
ory to predict the value of these terms, but we can use
the change in emittance seen in simulations in this term

within the envelope equations to better capture the evo-
lution. Specifically, we replace Eq. (15c) by

dη2i
dt

=
d

dt

(
ε2i,pi
σ2
i

)
= −2γiηi

mσ2
i

+
1

σ2
i

dε2i,pi
dt

(19)

in our envelope equations with
dε2i,pi
dt taken from the sim-

ulation results. We note that this procedure was origi-
nally examined by Sacherer[35]. The spatial width and
longitudinal kinetic energy evolution using these enve-
lope equations with the simulation change in emittance
squared term can be seen as the dotted lines in Fig.
5. Excellent agreement between these modified envelope
equations suggests that varying emittance is the main
factor causing the discrepancy between the longitudinal
spatial variance and longitudinal kinetic energy evolu-
tion of the constant-emittance envelope equations and
N -particle simulations. This suggests that if the physics
of the covariance terms spi,Fi

and si,Fi
can be understood

and modeled, that we should be able to obtain envelope
equations that capture the expected behavior of electron
bunches to a high degree of accuracy.

V. DISCUSSION

To provide context for the models examined in this
manuscript, we consider an ensemble of N electrons. A
full N-particle simulation would find and apply the elec-
tric, and if appreciable, the magnetic field at every lo-
cation. Using the Fast Multipole method[40], this field
calculation has a computational order of O(N lnN). One
computation-saving approximation that can be made is
to replace this field calculation by the mean-field al-
though doing such an approximation requires an under-
standing of the distribution at time t. If we make the
further assumption that the distribution is always uni-
form, this field becomes exceedingly simple and can be
parameterized by the standard deviations of the ensem-
ble. Applying this field to the real distribution has a
computation order of O(N) as the field needs to be ap-
plied to the N particles at every step. We call this simu-
lation the uniform mean-field real distribution simulation
UMFRDS.

As can be seen in Fig. 7, the envelope model ex-
actly reproduces the dynamics of the statistics seen in
the UMFRDS despite the computation order of the en-
velope model having no dependence on N . This is not
to say that the UMFRDS and the envelope equations
are the same. It is true that the envelope model is able
to capture the local velocity spread information that is
present in the real distribution through the application of
what the accelerator physics field terms normalized rms
emittance, and this is the reason for the similarity be-
tween the simulation and the model. On the other hand,
the UMFRDS has information about the position of the
N particles that is lacking in the envelope model. Such
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FIG. 7: Plot showing the equivalence between the
prediction of the longitudinal standard deviation from
the envelope model and the longitudinal standard
deviation seen in a N -particle simulation where the
force experienced by the particles is assumed to
correspond to the uniform mean-field force of an
ellipsoid, abbreviated as UMFRDS in the text. The
solid lines represent envelope model predictions for 4
different initial parameter choices and the circles
correspond to the standard deviation from the
UMFRDS.

particle distribution information is important in explain-
ing the shock that occurs in Coulomb explosion[43], the
similar shock that arises in a dense Gaussian distribution
of electrons within the electron gun[22], or dark matter
halos in galaxy formation[44, 45] among other distribu-
tion effects. Nonetheless, if such distribution informa-
tion is not being utilized by the researcher and all that
is being examined is some statistic like the width or ki-
netic energy spread in some dimension, the elimination of
any dependence of the algorithm on the number of par-
ticles through the use of the envelope model allows us to
investigate ensembles of different N with no additional
computational cost.

However, this is not the only benefit of the sample per-
spective we have used here. The statistical kinematics we
have used here can be used to show that the evolution of
the second order statistics of N particles under a full N -
particle simulation can be exactly captured by 9 degrees
of freedom assuming there is no force, like a magnetic
force, mixing the dimensions. The envelope equation al-
ready represents 6 of these degrees of freedom (2 degrees
for each of 3 dimensions); the other 3 degrees of free-
dom can be captured by the evolution of the emittance
along the 3 dimensions. Indeed, this is the mathemati-
cal foundation underlying Sacherer’s observation that a
priori knowledge of the emittance evolution results in an
exact prediction of the statistics evolution[35].

In our work we, are interested in the evolution of these

statistics, and we have presented the envelope equation
which assumes conserved emittance. The comparison we
have done between the MCE model and the envelope
equations can be interpreted as the effect that local veloc-
ity spread has on the dynamics of the statistics; however,
the envelope model does not currently include stochas-
tic effects. Nonetheless, N -particle simulation have forces
that differ from the mean-field assumption implicit in the
envelope model and are therefore able to capture such ef-
fects. Here, we examined stochastic effects of on the ad-
ditional 3 degrees of freedom (2 by cylindrical-symmetric
assumption) by examining the evolution of the emittance
seen in N -particle simulations. Ideally, if we could un-
derstand and model the emittance change dynamics, we
should eventually be able to exactly (on average) capture
the full dynamics of the statistics. Indeed, we find that
modeling a distribution that passes through a controlled
longitudinal crossover represents an ideal, as well as prac-
tically applicable, process where the growth of stochastic
effects and hence emittance can be large with a sudden
onset of growth at close to the crossover event.

The emittance evolution in Fig. 6, especially within
the crossover regime where the emittance in both the
longitudinal and transverse directions increase simultane-
ously, cannot be explained by the standard heat transfer
mechanism employed in the literature. We provide some
insight into these dynamics here. As can be seen in Fig
6, the longitudinal emittance rapidly increases at the be-
ginning of the simulation followed by a gradual decrease.
For the simulations within the crossover regime, there is
another rapid increase in the longitudinal emittance close
to the focal point. In contrast, the transverse emittance
has a rapid increase at the beginning of the simulation
followed by a more gradual increase. Notice that there is
again a rapid increase in the transverse emittance around
the focal point. We emphasize that the rapid increase in
the emittance of both directions is almost coincidental —
an observation not currently predicted from theory.

Within the literature, there seem to be two macro-
scopic ideas for the mechanisms involved in this process:

1. Emittance transfer between degrees of freedom
(Heat transfer): As emittance can be thought as
proportional to the square root of the heat times
the spatial extent, this heat transfer results in emit-
tance transfer between the degrees of freedom.

2. Disorder-induced heating (DIH): DIH in the plasma
community describes the heating process during
the transition from a disordered state to one which
is structured by Coulomb forces.

We point out that these two ideas have previously been
described in the literature. Specifically, Reiser’s stan-
dard book in accelerator physics describes the heat
transfer[23], and DIH has phenomenologically been de-
scribed by Gericke et. al and Maxson et. al[41, 46]. Fur-
ther, Struckmeier discussed these two ideas in his work
on modeling envelope equations with additional Fokker-
Planck style random terms[47–49] with slightly different
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language and a more mathematical presentation; how-
ever, it is not clear to us if these effects are truly stochas-
tic in the manner that should be modeled by Fokker-
Planck statistics as Struckmeier has presented. We also
point out that these ideas are mechanisms in the language
of thermodynamics but do not describe mechanisms in
the statistical physics sense as their definition does not
lead to any inherent time scale.

Nonetheless, using these two ideas and our own nota-
tion, we can phenomenologically explain the emittance
evolution seen in Fig. 5. First we define the linear heat
along i by 1

2mη
2
i , which can be viewed as the kinetic en-

ergy contained in the random fluctuations (from linear-
ity), and we use this measure as a proxy for the heat of
the distribution. Recall that the emittance can be writ-
ten as εi,pi = 1

mcsiηi, which can be thought as being
proportional to the product of the spatial width and the
local momentum width or equivalently the square root of
the linear heat. At the beginning of the simulation after
the confinement is suddenly removed, potential energy
is released through DIH into ηT and ηz while sT and sz
do not change much. This results in a sudden increase
in both εx,px and εz,pz that continues even as sT and sz
begin to significantly change.

Next, the longitudinal emittance begins to decrease as
the transverse emittance continues to increase. To un-
derstand this phenomenologically, we first consider how
the linear heat would change under emittance conserving
conditions. As ηz =

εz,pz
sz

, a decrease in sz would result
in an increase in ηz under the assumption of 2D con-
served emittance. Likewise, ηx =

εx,px

sx
, and an increase

in sx would result in a decrease in ηx. In other words if
the 2D emittance were conserved, we’d expect the linear
heat in the longitudinal direction, i.e. 1

2mη
2
z , to increase,

and we’d expect the linear heat in the transverse direc-
tion , i.e. 1

2mη
2
x, to decrease. Notice that a strict def-

inition of temperature is not appropriate for our highly
non-equilibrium situation, but that this definition of lin-
ear heat is still appropriate. As the initial thermalization
leads to these two heats being roughly the same, the dif-
ference in the heat that develops as the longitudinal di-
mension contract and the transverse dimension expands
would lead to the development of a thermal gradient be-
tween the longitudinal and transverse dimensions.

Now in the non-emittance conserving condition, heat
can be transferred between the dimensions. So as the
bunch focusses, we’d expect a heat transfer from the hot-
ter longitudinal to the cooler transverse direction — that
is, the evolution of simulated ηz would be expected to be
smaller than the ηz we’d obtain from the emittance pre-
serving envelope equations; conversely, we’d expect the
simulated ηx to be larger than the theory ηx. This is
precisely what is seen in Fig. 8. This in turn results
in the longitudinal emittance decreasing while the trans-
verse emittance increases, which is precisely what hap-
pens in the bounce-back regime.

However, once the bunch is in the crossover regime,
there is actually an increase in the longitudinal emit-

FIG. 8: Comparison of the evolution of the parameter
η between the envelope equations (dashed lines) and the
N -particle simulations (solid lines). The line and
shaded area around the N -particle simulation lines
represent the mean (solid line) ± the standard deviation
of 90 simulations. The vertical dotted line indicates the
focal point. Notice that the emittance conserving model
over-predicts ηz and under-predicts ηx. This is partially
due to the heat being transferred between the
dimensional modes – a mechanism that is not captured
by the emittance conserving envelope equations.

tance in Fig 6. This phenomenon could be explained
from this perspective by postulating that a second pe-
riod of DIH occurs near the focal point when the bunch
is within the crossover regime. That is, if the particles
crossover, they are forced into a highly non-equilibrium
state that rapidly relaxes releasing heat into the bunch
thus increasing the emittance.

VI. CONCLUSIONS

In this work, we have examined the longitudinal
crossover of electron bunches with uniform ellipsoidal
profiles focused by a linear chirp as is typical of the propa-
gation of a probing electron bunch in an ultrafast electron
diffraction/microscope system. We employed several an-
alytic techniques to model the space charge dynamics of
the bunch, the first of which is an extension of Grech
et. al’s mean-field theory which utilizes ordinary differ-
ential equations for the ellipsoid transverse and longitu-
dinal sizes to describe the bunch evolution. Analysis of
this mean-field model leads to the identification of a lon-
gitudinal critical chirp. This critical chirp separates two
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regimes for particle trajectories in this model: bounce-
back, where the particles reverse their direction at the
bunch waist, and crossover, where the bunch experiences
a singularity with a width of zero. This singularity is only
seen in the zero emittance case and is analogous to the
unphysical caustics seen in gravitation analysis[44, 45];
while such effects are unphysical as zero emittance for
any ensemble is unphysical, this classification is nonethe-
less useful. We showed that time can be scaled by the
initial plasma frequency, and by defining a dimensionless
critical chirp the zero-emittance model behavior depends
only on the initial aspect ratio. The evolution of bunches
with the same initial geometry then differ only by the
time scale determined by the bunch’s plasma frequency.

We examined the problem through the statistical for-
mulation of envelope equations by building on Sacherer’s
statistical analysis of the cylindrical KV-envelope equa-
tions that are well known in the accelerator physics com-
munity. We argue that our model is widely applicable to
the evolution of statistics of any ensemble far beyond the
application we examined here. In other work, we recently
presented a statistical perspective on the envelope equa-
tions that we are calling the sample perspective[38]. We
showed that the statistical envelope equations for three
dimensional systems are identical to, up to a constant
we determine in Appendix B 2, the Analytical Gaussian
formalism that is well known in the ultrafast electron
microscopy community; the envelope equations from the
sample perspective are more general and have a more
straightforward derivation than Michalik and Sipe’s in-
tegral approach. Again, we note that this derivation is
not limited to accelerator applications but can be applied
to any statistical analysis.

It should also be noted that the majority of analy-
ses of envelope equations in the accelerator physics com-
munity is in cylindrical coordinates due to the predom-
inance of accelerators with continuous beams or which
have bunches with very large prolate aspect ratios. In
contrast in the UEM field, the bunch near the source and
at the longitudinal focal point is a highly oblate ellipsoid,
or pancake, and a fully 3D description is required. The
advantage of our analysis is that the envelope model cap-
tures such 3D effects, and one of the clear results is that
the zero emittance envelope equation clearly reveals the
critical chirp phenomenon separating the bounce back
and crossover regimes at the bunch focal point described
above.

However, our envelope model assume linear forces
that conserve the statistical measure of emittance. For-
tunately, investigating the evolution of emittance in
N -particle simulations should In specific, we provided
a qualitative description of the emittance growth and
transfer observed in Fig. 6 by elucidating three mech-
anisms: (i) Disorder induced heating, or relaxation from
a highly non-equilibrium state, which converts potential
energy into kinetic energy and naturally leads to a rapid
growth in emittance. This effect occurs at the start of
our simulations and near the focal point. (ii) Transfer

of “heat”, which is equal to kinetic energy fluctuations,
from the hotter direction to the colder direction. (iii) The
fact that the kinetic energy fluctuations increase along a
direction that is compressed and decrease along a direc-
tion that is expanding. This last mechanism allows for
one direction to become hotter than the other colder, e.g.
when the longitudinal direction is being compressed it be-
comes hotter while the transverse direction cools down as
it expands. The system then tries to equilibrate by trans-
ferring heat from the hot direction to the cold direction.
We note that the longitudinal emittance, the longitudi-
nal momentum fluctuations and the longitudinal bunch
size are related by εz,pz = szηz and that the longitudi-
nal non-equilibrium heat is given by η2z/2m. Therefore
dynamics of the heat, or momentum fluctuations, and
the dynamics of the emittance may be different due to
the sz factor as is evident when comparing Figs. 6 and
8. Further model development and characterization of
the randomness inherent in such consistent effects is an
exciting avenue for future insight into particle-particle,
finite-size effects.
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Appendix

Appendix A: A statistical perspective on accelerator
physics

The following section is primarily aimed toward accel-
erator physicists and may not be of interest to students
and experts outside of that discipline. In the accelerator
field, the Courant-Snyder parameters, which are related
to the covariance parameters we use in the main text[50],
are often used to describe bunch motion. In this section,
we do 2 things: 1.) discuss why our problem cannot use
the Courant-Snyder parameters and 2.) show the sta-
tistical kinematics equations in terms of Courant-Snyder
parameters.



14

1. Trace space and longitudinal normalized rms
emittance

In order to explain why we think Courant-Snyder pa-
rameters are not appropriate for this problem and to in-
troduce our notation, we first discuss the paraxial as-
sumption. The paraxial assumption is necessary for the
use of trace space, and this assumption actually has two
imbedded assumptions that we describe now. Consider
N particles indexed by j. The velocity of the jth particle,

~vj = vx,j x̂+ vy,j ŷ + vz,j ẑ, (A1)

is assumed to be primarily in the z direction, i.e. vz,j >>

vx,j , vy,j . As a result, βj =

√
~vj ·~vj
c ≈ vz,j

c . A second
assumption is then made — all particles are assumed to
have the same β, i.e. βj = β for all j. As a result, the
velocity of the jth particle can be approximated as

~vj ≈ cβ
(
vx,j
cβ

x̂+
vy,j
cβ

ŷ + ẑ

)
. (A2)

Moreover, the coordinate system that accelerator
physicists use when doing analyses has some subtle inno-
vations; namely, the coordinate system can be thought
of as moving with the center of mass of the ensemble of
particles so that the z-direction is always along the direc-
tion with the largest velocity even when the trajectory of
the particles is bent. In more strict mathematical lan-
guage, the expected path of the bunch is parameterized
by a curvilinear parameter, s by convention, and the co-
ordinate system is a tangent space associated with the
center of mass’s location.

As vz is always along s, we have ds
dt = vz ≈ cβ. Notice

vx,j =
dxj

dt =
dxj

ds
ds
dt = cβx′j where ′ indicates the deriva-

tive with respect to s. Likewise, vy,j = cβy′j . Subbing
this into Eq. (A3) we get

~vj ≈ cβ
(
x′j x̂+ y′j ŷ + ẑ

)
(A3)

and accelerator physicists call the coordinates (x, x′) and
(y, y′) 2D trace spaces analogous (and related to) the
standard (x, px) and (y,py) 2D phase spaces.

In the trace treatment, βj and hence the Lorentz fac-
tor γj are assumed to be approximately the same for all
particles j — that is, accelerator physicists treat these
parameters as statistical scalars. Defining γ = γj , this
allows us to pull both β and γ out of the statistics. As
px,j = mcγjβjx

′
j ≈ mcγβx′j , it follows sx,px ≈ mcγβsx,x′

and spx,px ≈ m2c2γ2β2sx,x′ , at least to first order, which
is typically a very good approximation in the standard
situation examined by accelerator physicists. As a con-
sequence, ε2x,px = 1

m2c2 (s2xs
2
px − s

2
x,px) = γ2β2ε2x,x′ where

ε2x,x′ = s2xs
2
x′ − s2x,x′ (A4)

represents the statistical area occupied by the distribu-
tion in (x,x′) trace space and is known as the rms emit-
tance. Analogous expressions can be found in y.

However, the z-statistics need to be treated with care
as the standard approximation leads to an unphysical 0
normalized rms emittance in the longitudinal rms emit-
tance, which we denote by εz. Treating pz,j = pz results
in spz,pz = 0 and sz,pz = 0. Therefore, the longitudi-

nal normalized rms emittance, εz,pz = 1
mc

√
s2zs

2
pz − s2z,pz ,

defined in Reiser’s central textbook “The Theory and De-
sign of Charged Particle Beams”[23], is likewise 0 to first
order. This is unphysical, so first order is not sufficient
to describe the longitudinal normalized rms emittance.

Instead, accelerator physicists treat the longitudinal
emittance to second order. Treating pz,j = pz + δj where
δj is the small deviation from pz for the jth particle with
δ̄ = 0 and uncorrelated with momentum, i.e. spz,δ = 0,
we get

sz,z = s2z (A5a)

sz,pz = sz,δ (A5b)

spz,pz = s2δ (A5c)

Further assuming sz,δ = 0, the longitudinal normalized
rms emittance becomes εz,pz = 1

mcszsδ. Normalizing
the longitudinal normalized rms emittance by the same
factor that the transverse normalized rms emitttances are
normalized by to give the transverse rms emittances, i.e.
γβ, we get the longitudinal rms emittance

εz =
1

γmβc
szsδ. (A6)

The above equation is not directly used by accelerator
physicists; instead they measure the longitudinal emit-
tance in terms of the energy spread and the duration of
the pulse. Note, though, that such an expression is ob-
tainable from Eq. (A6). Notice that the duration of the
pulse, ∆t, is proportional to ∆t ∝ sz

βc . Further, notice

that the total kinetic energy of the pulse is given by

E2 = c2
N∑
j=1

(~pj · ~pj +m2c2)

≈ c2
N∑
j=1

(p2z,j +m2c2)

= Ns2pzc
2 +Np2zc

2 +Nm2c4

≈ Ns2δ + E2
CoM . (A7)

where E2
CoM ≈ Np2zc2 +Nm2c4 is the energy associated

with the center of mass motion that can be shown to be
approximately true unless pz

mc ≈ 1. Further approximat-

ing (∆E)2 = s2E ≈ 1
N (E2 − Ecom) we obtain sδ = ∆E.

As a result we have

εz ∝ ∆t∆E (A8)

under these approximations giving a statistical motiva-
tion for the standard accelerator physics approximation.
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The problem with analyzing longitudinal focussing
within the standard framework is that sz,pz = sz,δ needs
to be non-zero in order for the bunch to focus — a cen-
tral premise of the main text. There are a couple of
problems with generalizing the approximations made by
the accelerator community when such a covariance is
present. First, sz,δ becomes important in the determi-
nation of the kinetic energy therefore invalidating the
relation εz ∝ ∆t∆E as ∆E becomes an overestimate of
sδ. Even if this problem can be handled, the treatment
of the second order effect in the z-direction needs to be
properly propagated throughout the derivation. This in-
cludes the definition of the rms emittance as the approx-
imation for the z-velocity of the jth particle becomes

vz,j ≈ v̄z + 1
γm

sz,pz
sz

2
z and the definition of the trace

variable will thus depend on z and trace space cannot be
used.

We do not see a solution to this problem and therefore
have considered non-relativistic phase-space where the
mathematics is much simpler and generally applicable.
As the Courant-Snyder parameters are defined in trace
space, they cannot be used to describe our problem.

2. The statistical kinematics reformulated in
Courant-Snyder parameters

If the longitudinal dynamics can be ignored, we can
reformulate the statistical kinematic equations in terms
of trace space parameters. This is known in the accel-
erator field as Wangler’s theorem is essentially derived
from these considerations[51]; however, we have not seen
these considerations derived in terms of Courant-Snyder
parameters. We do the Courant-Snyder derivation in this
section.

We first point out that the relation between the second
order statistics of the trace parameters and the Courant-
Snyder parameters is well known[50]:

β̂ =
s2x
εx,x′

(A9a)

α̂ = −sx,x
′

εx,x′
(A9b)

γ̂ =
sx′,x′

εx,x′
. (A9c)

From this and Eq. (A4), we have the relation

1 = β̂γ̂ − α̂2. (A9d)

The rms emittance parameter is often used instead of one
of the 3 Courant-Snyder parameters. The contstraint in
Eq. (A9d) might make it appear as if there are only two
degrees of freedom, but we point out that the Courant-
Snyder parameters are dependent on the rms emittance.
Therefore, Eqs. (A9a) - (A9c) actually have four de-
grees of freedom, and the constraint brings the degrees
of freedom back to 3. Despite only having three degrees

of freedom, we will write the following equations in all 4

parameters, β̂, α̂, γ̂, and εx,x′ , as is standard to keep the
notation from becoming unwieldy.

Moreover, the choice of 3 parameters is no accident.
The number of parameters for the kth order statistical
kinematics can be counted using combinatorics, i.e the
degrees of freedom are given by

(
k+1
1

)
= k + 1, which is

3 for second order statistical kinematics. If these three
parameters are given, the evolution of these parameters
are exactly known if the details of the force are exactly
known as implied by Sacherer[35]. Namely taking the
derivative of Eqs.(A9a) - (A9d) we obtain

dβ̂

ds
= −2α̂− β̂

εx,x′

dεx,x′

ds
(A10a)

dα̂

ds
= −γ̂ − sx,x′′

εx,x′
− α̂

εx,x′

dεx,x′

ds
(A10b)

dγ̂

ds
= 2

sx′,x′′

εx,x′
− γ̂

εx,x′

dεx,x′

ds
(A10c)

0 =
dβ̂

ds
γ̂ + β̂

dγ̂

ds
− 2α̂

dα̂

ds

= 2β̂
sx′,x′′

εx,x′
+ 2α̂

sx,x′′

εx,x′
− 2

εx,x′

dεx,x′

ds
(A10d)

where

x′′ =
d

ds
x′

≈ d

ds

(
1

γβmc
px

)
= −γ

′

γ
x′ − β′

β
x′ +

1

γβmc

1
ds
dt

d

dt
px

= −γ
2β′

β
x′ +

1

γβ2mc2
Fx (A11)

and Fx is the x-component of the force measured in the
lab frame. Solving Eq. (A10d) for the rms emittance, we
get

dεx,x′

ds
= β̂sx′,x′′ + α̂sx,x′′ (A12)

We note that Eq. (A12) has been in the accelerator liter-
ature for some time[51]. We emphasize that only three of

the derivatives are needed to describe the system, but dγ̂
ds

is given above to show the derivation of the derivative of
the rms emittance. Subbing Eq. (A11) into the formula
for covariance we get

sx,x′′ = −γ
2β′

β
sx,x′ +

1

γβ2mc2
sx,Fx

=
γ2β′α̂εx,x′

β
+

1

γβ2mc2
sx,Fx

(A13a)

sx′,x′′ = −γ
2β′

β
s2x′ +

1

γβ2mc2
sx′,Fx

= −γ
2β′γ̂εx,x′

β
+

1

γβ2mc2
sx′,Fx

(A13b)
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Plugging these expression into Eqs. (A10a), (A10b, and
(A12), we get

dβ̂

ds
= −2α̂− β̂

εx,x′

dεx,x′

ds
(A14a)

dα̂

ds
= γ̂ +

γ2β′

β
α̂− 1

γβ2mc2
sx,Fx

εx,x′
− α̂

εx,x′

dεx,x′

ds
(A14b)

dεx,x′

ds
= β̂

(
−γ

2β′γ̂εx,x′

β
+

1

γβ2mc2
sx′,Fx

)
+ α̂

(
γ2β′α̂εx,x′

β
+

1

γβ2mc2
sx,Fx

)
=

(
−γ2 β

′

β
εx,x′ +

1

γβ2mc2

(
α̂sx,Fx

+ β̂sx′,Fx

))
.

(A14c)

In the cases when the functional form of the x-force can
be exactly provided for all time, the statistical kinematics
predict the evolution of the Courant-Snyder parameters
as long as the paraxial assumption is valid. Alterna-
tively, models employ assumed forces can be developed
under certain conditions similar to the fluid and envelope
models presented in Reiser’s book[23]. Such prediction
can even be done for normalized rms and rms emittance,
which we are preparing for publication.

Notice that if Fx = 0 but the beam is acceler-

ated so β′ > 0, then Eq. (A14c) gives
dεx,x′

ds < 0.
This phenomenon is well known and is called adiabatic
damping[23]. In general, though, forces can be incor-
porated into these equations via the term dependent on

α̂sx,Fx + β̂sx′,Fx which we will call A below for the sake
of brevity. Typically, Fx is parameterized as some func-
tion of x. For instance, if the x-force is linear in x, i.e.
Fx = kx where k is not a function of x or x′ (but can be
a function of t), then this term becomes

A = α̂sx,kx + β̂sx′,kx

= kα̂sx,x + kβ̂sx′,x

= k(α̂β̂ − β̂α̂)εx,x′

= 0 (A15)

which is a another well known result[23]. Alternatively,
when the x-force has non-linear components, the A term
contributes to the rms emittance change. These two facts
provided the motivation for Wangler to express the emit-
tance growth of a non-uniform bunch in relation to the
difference between the energy of the initial non-uniform
and the final uniform-like state[51].

Appendix B: Relation between AG model and
envelope equations

1. Equivalence of notation

We denote the parameters used in the AG model by su-
perscript AG. Further, we identify that the AG model’s
parameters are related to the covariance parameters we
use in this manuscript by

σAGi = s2i (B1a)

γAGi = si,pi (B1b)

ηAGi = s2pi −
s2i,pi
s2i

(B1c)

Subbing these parameters into our ODE we obtain

dσAGi
dt

=
2

m
γAGi (B2a)

dγAGi
dt

=
1

m

(
γAGi

2

σAGi
+ ηAGi

)
+ si,Fi

(B2b)

dηAGi
dt

= −2γAGi ηAGi
mσAGi

+
2

σAGi

(
σAGi spi,Fi

− γAGi si,Fi

)
(B2c)

This system of equations differs from Michalik and
Sipe’s published system of ODE’s in two ways: 1.) in
Eq. (B2b) we have si,Fi

instead of Michalik and Sipe’s
1

4πε0
Ne2

6
√
πσi

Li

(
sz
sT

)
where Li

(
sz
sT

)
is an integral we ex-

amine in detail in the next section and 2.) we in-

clude 2
σAG
i

(
σAGi spi,Fi

− γAGi σi,Fi

)
= 1

s2i

dm2c2ε2i,pi
dt where

ε2i,pi = 1
m2c2 (s2i p

2
i − s2i,pi) = σAGi ηAGi in Eq. (B2c) which

Michalik and Sipe treat as 0. As noted by our nota-
tion, the latter additional term represents the effect of the
change of emittance on the bunch evolution. We believe
that that Michalik and Sipe’s assumption of self-similar
evolution leads to this term vanishing and hence emit-
tance being conserved. This assumption is not strictly
true as we have recently shown that the Gaussian distri-
bution does not evolve self-similarly under the Coulomb
force[22]; nonetheless, self-similarity may be a reasonable
assumption in order to approximate spatial statistics.

However, we can obtain the published AG model un-
der the assumption that the force can be written as

Fi = ki where k = 1
4πε0

Ne2

6
√
πsAG

i
3/2Li

(
sz
sT

)
. This re-

sults in spi,Fi = kiγ
AG
i and si,Fi = kis

AG
i reducing

the emittance change term to zero, i.e. 1
s2i

dm2c2ε2i,pi
dt =

2
σAG
i

(
σAGi kiγ

AG
i − γAGi kiσ

AG
i

)
= 0. Moreover, Eq.
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(B2b) becomes

dγAGi
dt

=
1

m

(
γAGi

2

σAGi
+ ηAGi

)
+ kiσ

AG
i

=
1

m

(
γAGi

2

σAGi
+ ηAGi

)
+

1

4πε0

Ne2

6
√
πsAGi

1/2
Li

(
sz
sT

)
.

(B3)

This is the published form of the AG model[31]

2. AG model and the uniform assumption

In the main text we argue that conservation of emit-
tance leads to an assumed linear force on the ensemble
particles. Here, we show that the evolution of the AG
model is equivalent to the envelope equations assuming
a uniform distribution up to a constant. Specifically, we
show that the force portion of Eq. (B2b) obtained by
Michalik and Sipe by integration techniques is the same
up to a constant to the analogous term obtained by using
the mean-field force within a uniform ellipsoid. Knowing
that si,kii = kis

2
i we infer slopes of the force for Michalik

and Sipe to

kMS
i =

1

4πε0

Ne2

6
√
πs3i

Li

(
sz
sT

)
(B4)

where

Lz(a) =
3a2

a2 − 1
(aL(a)− 1) (B5a)

LT (a) =
3

2

(
L(a) +

a2L(a)− a
1− a2

)
(B5b)

L(a) =

{
arcsin

√
1−a2√

1−a2 , 0 ≤ a ≤ 1
ln(a+

√
1−a2)√

a2−1 , 1 ≤ a
(B5c)

On the other hand, the slopes of the force for a uniform
ellipsoid with sx = sy can be written as

kunifx =
1

4πε0

3Ne2

10
√

5s3x
β

(
1,
sz
sx

)
(B6a)

kunifz =
1

4πε0

3Ne2

10
√

5s3x
β

(
sx
sz
,
sx
sz

)
(B6b)

(B6c)

where

β(a, b) =

∫ ∞
0

1

(1 + u)3/2
√
a2 + u

√
b2 + u

du (B7)

A derivation of this is presented in our recent work[38].
The comparison between these two models comes down
to how Eq. (B5) and Eq. (B7) compare. Specifically,
letting a = sz

sx
as it is in Eq. (B5), we need to evaluate

β(1, a) and β( 1
a ,

1
a ) and then compare the two slopes.

We start the evaluation of the transverse relevant in-
tegral:

β(1, a) =

∫ ∞
0

1

(1 + u)2
√
a2 + u

du

=
cos−1(a)− a

√
1− a2

(1− a2)3/2

=


sin−1(

√
1−a2)−a

√
1−a2

(1−a2)3/2 , 0 ≤ a ≤ 1
i ln(a+

√
a2−1)−a

√
1−a2

(1−a2)3/2 , a ≥ 1

=


sin−1(

√
1−a2)√

1−a2(1−a2) −
a

1−a2 , 0 ≤ a ≤ 1

ln(a+
√
a2−1)√

a2−1(1−a2) −
a

1−a2 , a ≥ 1

=
L(a)− a
1− a2

= L(a) +
a2L(a)− a

1− a2

=
2

3
LT (a) (B8)

Thus, our uniform integrals in the transverse direction
differs by a factor of 2

3 from the AG model’s Gaussian
integrals in the transverse direction.

Next we evaluate the longitudinally relevant integral:

β

(
1

a
,

1

a

)
=

∫ ∞
0

1

(1 + u)3/2( 1
a2 + u)

=
2

1
a2 − 1

−
2sec−1

(
1
a

)
( 1
a2 − 1)3/2

=
2a2

(1− a2)

(
1− acos

−1(a)√
1− a2

)

=


2a2

(a2−1)

(
a sin

−1(
√
1−a2)√

1−a2 − 1
)
, 0 ≤ a ≤ 1

2a2

(a2−1)

(
a
i ln(a+

√
a2−1)√

1−a2 − 1

)
, a ≥ 1

=


2a2

(a2−1)

(
a sin

−1(
√
1−a2)√

1−a2 − 1
)
, 0 ≤ a ≤ 1

2a2

(a2−1)

(
a
ln(a+

√
a2−1)√

a2−1 − 1

)
, a ≥ 1

=
2

3
Lz (a) (B9)

Again we see that the same factor is present between the
integrals in the longitudinal direction, which is reassur-
ing.

Putting this factor of 2
3 into the comparison of the

slopes, we see that the slopes are related by

kMS
i

kunifi

=
5
√

5

6
√
π
≈ 1.05 (B10)

So we see that these two models differ in their forces
only by roughly 5%. This small difference in the linear
force should result in either model adequately capturing
the dynamics of either uniform or Gaussian evolution if
the changes in emittance, that should be more prevalent
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in the Gaussian model, are ignored. Furthermore, even
this difference may be absorbed by the assumed number
of particles when fitting parameters. That is, in both
modes N needs to be set. As the only term that depends
on N is the force, setting the N in the uniform envelope

equations 5% larger than the N in the AG model will
result in the same exact solution. So in essence the AG
model is identical to the uniform envelope equation but
with a slightly adjusted number of particles.
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