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Abstract
We study nanoscale pattern formation on the surface of a solid that is bombarded with two

diametrically opposed, broad ion beams for ion energies low enough that sputtering can be neglected.

We focus on the case in which the angle of ion incidence is just above the threshold angle for pattern

formation. The equation of motion at sufficiently long times is derived using a generalized crater

function formalism. This formalism also yields expressions for the coefficients in the equation of

motion in terms of crater function moments. We find that virtually defect-free ripples with a

sawtooth profile can emerge at sufficiently long times. The ripples also coarsen as time passes, in

contrast to the near-threshold behavior of ripples in the higher energy regime in which sputtering

is significant.
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I. INTRODUCTION

Ion bombardment is a widely employed method of producing nanoscale patterns on solid

surfaces [1]. A variety of patterns, which include surface ripples and arrays of nanodots or

nanoholes, can be fabricated in a single process step without a mask or photoresist [1–11].

Nanoscale surface ripples in particular will form on virtually any solid target material if the

angle of ion incidence θ exceeds a critical value θc.

Experiments have typically been done with noble gas ions that have energies on the order

of 1 keV. In this regime, sputter yields are usually of order unity. For a given target material,

ion species and angle of incidence, the feature size of the nanostructures is found to be an

increasing function of the ion energy [1]. To produce smaller feature sizes, therefore, ions of

lower energy should be employed.

When the energy of the incident ions is on the order of a few tens of electron volts,

sputtering is negligible. Experiments in this low-energy regime are few, but they reveal that

nanostructures do form: ripples and disordered arrays of spikes have been observed [12–15].

In addition to its intrinsic scientific interest, the low-energy regime may become important

in applications since the feature size of the nanostructures can be below 50 nm.

In the low-energy regime, mass redistribution (MR) takes place: momentum transfer

from the incident ions to atoms near the solid surface leads to inelastic displacement of the

atoms [16–18]. Depending on the ion energy and target material, dozens of atoms can be

displaced even though there is essentially no sputtering. MR is important at ion energies

on the order of 1 keV, a regime in which sputter yields are relatively high [19]. It plays an

even more crucial role in the low-energy regime in which sputtering is irrelevant [15].

Ions can also be implanted in the low-energy regime. However, when an ion is incident on

the solid surface, the result can be at most one implanted ion whereas, as noted above, dozens

of atoms can be displaced. In addition, noble gas ions penetrate only a few nanometers

into the solid, are highly mobile, and usually desorb when they reach the solid surface [20].

Implantation of noble gas ions can therefore be neglected [21]. This is confirmed by estimates

of the curvature coefficients in the linearized equation of motion obtained using molecular

dynamics simulations and the crater function formalism [15].

When sputtering and implantation are neglected, the mass of the solid is conserved. This

makes the low-energy limit fundamentally different than the higher energy regime in which
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sputtering is significant. The equation of motion that is typically adopted in the high-energy

regime, the anisotropic Kuramoto-Sivashinsky equation [1, 22, 23], is not valid in the low-

energy regime because it does not conserve mass. In addition, while curvature-dependent

sputtering, MR and ion implantation may all contribute to the surface instability in the

higher energy regime, the instability is entirely due to MR in the low-energy regime.

In this paper, we will study the behavior of a solid surface that is bombarded with two

low-energy noble gas ion beams with the same angle of incidence θ and azimuthal angles

that differ by 180◦. We will focus on θ values just above the threshold value θc for pattern

formation and carry out a systematic expansion in the small parameter ε ≡ (θ − θc)1/2. It

will be shown that the equation of motion (EOM) has the form

ut = auxx +Duyy −Buxxxx + c∂xu
3
x + β∂2xu

2
x (1)

for sufficiently low ion fluxes. Here u(x, y, t) is the height of the surface above the point (x, y)

in the x − y plane at time t and the subscripts x, y, and t on u denote partial derivatives.

In Eq. (1), D and B are positive, c and β are nonnegative, and a changes sign from positive

to negative as θ is increased through θc. Simulations of the EOM (1) show that dual-beam

ion bombardment can lead to the formation of ripples with a high degree of order, a finding

that may provide to be quite useful in applications. The ripples also coarsen, i.e., their

wavelength and amplitude increase with time. In contrast, in the higher energy regime in

which significant sputtering occurs, the ripples that form in the dual-beam problem with θ

just above θc are disordered and do not coarsen [24].

In our derivation of the EOM (1), we will utilize a generalized crater function formalism

(CFF). The crater function is the average result of many ion impacts at a particular surface

point, and so is effectively the Green’s function for the problem. The CFF allows us to

determine the response of a surface to bombardment with a broad ion beam if the crater

function is known [24–26]. This approach takes into account the effect of ion-induced mass

redistribution but does not rely on the simple, approximate model of this phenomenon intro-

duced by Carter and Vishnykov [16]. Our CFF yields explicit expressions for the coefficients

a, D, B, c and β that appear in the EOM (1). These expressions relate the coefficients to

moments of the crater function, and so could be used to estimate the coefficients using input

from atomistic simulations.

In Ref. [24], a generalized CFF was developed for the regime in which the ion energy is
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high enough that sputtering is significant. That generalized CFF was used to derive the

EOM that applies for incidence angles just above the threshold angle for pattern formation

θc. In this paper, we will employ an analogous CFF to derive the EOM that applies for θ

just above θc in the low-energy regime in which sputtering is negligible. Although there are

parallels between high- and low-energy regimes, there are important differences in the CFFs

for the two problems, and the equations of motion are fundamentally different.

As we shall see, the problem in which diametrically opposed beams are simultaneously

incident on the solid surface is much simpler than the problem in which there is a single

incident beam. In an experiment, two ion beams would probably not be used. Instead,

the sample would likely be rotated periodically through 180◦ increments about its normal

while being bombarded with a single obliquely incident beam. If the time between rotations

were made sufficiently small, the effect would be essentially the same as if the sample were

concurrently bombarded with diametrically opposed beams.

Experiments with dual ion beams have been carried out in the past, but the azimuthal

angles of the beams differed by 90◦ rather than 180◦ [27, 28]. In addition, the sample has

been rotated once through a 90◦ azimuthal angle during bombardment with a single obliquely

incident ion beam [28, 29]. The effect of repeated rotations through an azimuthal angle of

180◦ has been studied theoretically for binary target materials, but only in the early time

linear regime [30]. In all of these studies, the ion energies were high enough that sputtering

had an important effect [31].

This paper is organized as follows. After making some introductory remarks in Sec. II,

we introduce the crater function that we will employ in Sec. III. In Sec. IV, we develop our

generalized crater function formalism and derive the EOM for the case in which a single

beam is incident on the sample surface. The EOM for the case in which diametrically

opposed beams are incident on the surface is derived, analyzed and discussed in Sec. V.

Problematic aspects of the single-beam EOM are the subject of Sec. VI. We discuss our

results in Sec. VII and conclude in Sec. VIII.

II. PRELIMINARY CONSIDERATIONS

We will begin by considering the bombardment of a solid elemental material with a

single broad beam of noble gas ions before moving on to the case in which two diametrically
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opposed beams are incident on the surface. The material may be amorphous or crystalline.

If the material is initially crystalline, we assume that a layer at the surface of the solid

is amorphized by the ion bombardment. As stated in the Introduction, we will make the

customary assumption that the effect of ion implantation is negligible [21]. Finally, we will

take the sample temperature to be low enough that the effect of thermally activated surface

diffusion is negligible compared to the effect of ion-induced surface viscous flow [32].

The sample surface will be taken to be nominally flat before the irradiation begins. The

unit vector ẑ will be chosen to be normal to the macroscopic surface and to point away

from the solid. We define the unit vector x̂ to lie in the direction of the projection of the

incident ion beam onto the macroscopic surface. The incident ion flux is J = −J ê, where

ê ≡ −x̂ sin θ + ẑ cos θ and the angle of incidence θ is the angle between the global vertical

and the incident beam.

We assume that the surface remains flat for θ < θc and that parallel-mode ripples de-

velop for θ > θc. A morphological transition of this kind has been observed in single-beam

experiments in the low-energy regime [12, 15].

We will employ a continuum description of the surface dynamics in which the position

of an arbitrary point on the surface is given by r = xx̂ + yŷ + u(x, y, t)ẑ, where u(x, y, t)

is the height of the point above the x− y plane at time t. The surface height u is obtained

by coarse-graining the detailed microscopic surface configuration and is assumed to be a

smoothly varying function of its arguments x, y and t.

III. THE CRATER FUNCTION

The crater function describes the average effect of a single ion impact on the morphology

of the solid surface. The crater function that we will employ was first introduced in Ref. [24].

In this section, we will find it convenient to place the origin O at the point of ion impact.

The value of the crater function f at the point (x, y) is defined to be minus the average

change in the surface height u above the point (x, y) in the x−y plane as a result of a single

ion impact at x = y = 0 [24, 26]. The crater function f depends on x, y and the angle of

incidence θ. It also depends on the shape of the entire surface, or, equivalently, on all of the

spatial derivatives of u(x, y, t) evaluated at x = y = 0. We will write

f = f(x, y, θ;ux, uy, uxx, uxy, uyy, uxxx, uxxy, uxyy, uyyy, uxxxx, . . .). (2)
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The partial derivatives of u that appear on the right-hand side of Eq. (2) are all to be

evaluated at x = y = 0. We assume that f is known a priori from another theory or from

atomistic simulations. Because the mass of the solid is conserved,∫
f(x, y, θ;ux, uy, uxx, uxy, uyy, uxxx, . . .)d

2x = 0, (3)

where d2x ≡ dxdy.

We will take the crater function f to be evaluated at a time long enough after the ion

impact that nearly all ion-induced motion has ceased. It therefore takes into account mass

redistribution and ion-induced surface viscous flow. When a broad beam is incident on the

surface, we will assume that the ion flux is low enough that essentially all ion-induced motion

near a point of impact P has ended before another ion strikes the surface in the vicinity

of P.

IV. SINGLE-BEAM EQUATION OF MOTION

We will begin this section by finding ut at an arbitary point P0 on the solid surface for

all times t ≥ 0. The case in which a single broad beam of noble gas ions is incident on the

solid will be considered. We will now find it convenient to place the origin O at the position

of P0 at time t. The origin will be taken to be stationary, and it so will remain fixed as the

surface point P0 moves either up or down.

The flux of ions through a surface element dA centered on r is J ê·n̂dA, where the surface

normal n̂ is given by

n̂ =
ẑ −∇u√
1 + (∇u)2

(4)

and dA =
√

1 + (∇h)2dxdy. Each arriving ion produces a crater which changes the height

of the surface point P0. It follows that the value of ut at x = y = 0 is given by

ut = −J
∫
dx

∫
dyf(−x,−y, θ;ux, uy, uxx, uxy, uyy, . . .)(cos θ + ux sin θ). (5)

All of the spatial derivatives of u that appear in the integrand on the right-hand side of

Eq. (5) are evaluated at the point (x, y) in the x− y plane.

Equation (5) completely specifies the dynamics of the surface but it is an exceedingly

complicated integro-differential equation. It becomes much simpler when ε ≡ (θ − θc)1/2 is

6



small and positive, however. We seek solutions to Eq. (5) of the form

u(x, y, t) = U(X, Y, T ), (6)

where

X ≡ εx, Y ≡ ε2y and T ≡ ε4t. (7)

X, Y and T are the so-called “slow” variables and x, y and t are the corresponding “fast”

variables. Heuristically speaking, Eqs. (6) and (7) say that for θ close to the critical angle θc,

the height of the surface disturbance varies slowly in space and time. In addition, the spatial

variation in the y direction is more gradual than in the x direction because parallel-mode

ripples develop for θ > θc. An a posteriori justification for adopting the scaling ansatz given

by Eqs. (6) and (7) will be obtained once we have arrived at an EOM that is well-behaved

in the ε → 0 limit for the case in which diametrically opposed beams are incident on the

target’s surface. The scaling given by Eqs. (6) and (7) differs from the scaling that applies

when the ion energy is high enough that sputtering is appreciable [24].

The crater function f depends on the fast spatial variables x and y since it varies over

distances on the order of the characteristic size of a collision cascade a0. It is also a function

of the slow spatial variables X and Y because it depends on the spatial derivatives of u.

These derivatives vary only over distances comparable to the ripple wavelength l, and l is

much larger than a0 close to threshold.

Applying Eqs. (6) and (7), Eq. (5) becomes

ε4UT = −J
∫
dx

∫
dyf(−x,−y, θ; εUX , ε

2UY , ε
2UXX , ε

3UXY , . . .)(cos θ + εUX sin θ). (8)

On the left-hand side of Eq. (8), UT = UT (0, 0, T ). All of the spatial derivatives of U that

appear on the right-hand side of Eq. (8) have the arguments X, Y and T .

We now expand the right-hand side of Eq. (8) in powers of ε and retain terms up to

fourth order in ε. This results in an equation too lengthy to reproduce here. Our next step

is to carry out a Taylor series expansion of U(X, Y, T ) about the point X = Y = 0: we set

U(X, Y, T ) =
∞∑
n=0

∞∑
m=0

Sn,m(T )
XnY m

n!m!
, (9)

where

Sn,m(T ) ≡ ∂n+mU

∂Xn∂Y m
(0, 0, T ). (10)
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We also introduce new dummy variables of integration x̃ = −x and ỹ = −y and then drop

the tildes. In this part of the calculation, we again retain terms up to fourth order in ε. So

that we can write down the resulting equation succinctly, we define

f0(x, y, θ) ≡ f(x, y, θ; 0, 0, . . .), (11)

f1(x, y, θ) ≡
∂

∂ux
f(x, y, θ;ux, 0, 0, . . .)

∣∣∣
ux=0

, (12)

f2(x, y, θ) ≡
∂

∂uy
f(x, y, θ; 0, uy, 0, 0, . . .)

∣∣∣
uy=0

, (13)

f3(x, y, θ) ≡
∂

∂uxx
f(x, y, θ; 0, 0, uxx, 0, 0, . . .)

∣∣∣
uxx=0

, (14)

and so on. Similarly, for positive integers i and j, fi,j(x, y, θ) will denote the partial derivative

of f(x, y, θ;ux, uy, uxx, uxy, . . .) with respect to the ith and jth arguments that appear after

the semicolon, evaluated for all the arguments after the semicolon set equal to zero. For

example,

f1,3(x, y, θ) ≡
∂

∂ux

∂

∂uxx
f(x, y, θ;ux, 0, uxx, 0, 0, . . .)

∣∣∣
ux=uxx=0

. (15)

In addition, we define the crater function moments

Mn,m ≡
∫ ∫

xnymf0(x, y, θ)dxdy, (16)

Mn,m
i ≡

∫ ∫
xnymfi(x, y, θ)dxdy, (17)

Mn,m
i,j ≡

∫ ∫
xnymfi,j(x, y, θ)dxdy (18)

and so forth, where n and m are nonnegative integers and i and j are positive integers. It

is important to note that since mass is conserved,

M0,0 = M0,0
i = M0,0

i,j = M0,0
i,j,k = 0 (19)

for all positive integers i, j and k. Equation (19) yields a very significant simplification in

the final result of the calculation, which is

J−1ε4UT = ε2C11S2,0 + ε3C111S3,0 + ε4C1111S4,0 + ε4C22S0,2

+2ε4ρ(S1,0S3,0 + S2
2,0) + 2ε3γ2S1,0S2,0 + 3ε4γ3S

2
1,0S2,0. (20)
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Here

C11 =M1,0
1 cos θ +M1,0 sin θ, (21)

C111 =

(
−1

2
M2,0

1 +M1,0
3

)
cos θ − 1

2
M2,0 sin θ, (22)

C1111 =

(
1

6
M3,0

1 −
1

2
M2,0

3 +M1,0
6

)
cos θ +

1

6
M3,0 sin θ (23)

C22 =M0,1
2 cos θ, (24)

ρ =
1

4
(2M1,0

1,3 −M
2,0
1,1 ) cos θ + (M1,0

3 −M
2,0
1 ) sin θ (25)

γ2 =
1

2
M1,0

1,1 cos θ +M1,0
1 sin θ (26)

and

γ3 =
1

6
M1,0

1,1,1 cos θ +
1

2
M1,0

1,1 sin θ. (27)

Recalling the definition of Sn,m [Eq. (10)], Eq. (20) becomes

J−1UT = ε−2C11UXX + ε−1C111UXXX + C1111UXXXX + C22UY Y +

+ρ∂2XU
2
X + ε−1γ2∂XU

2
X + γ3∂XU

3
X , (28)

where all of the partial derivatives of U are evaluated at X = Y = 0. Equation (28) holds

for X = Y = 0. However, because we placed the origin at an arbitrary surface point, this

partial differential equation is actually valid for all X and Y . Equation (28) is invariant

under the transformation Y → −Y , as it must be.

The EOM (28) becomes

J−1ut = C11uxx + C22uyy + C111uxxx + C1111uxxxx + ρ∂2xu
2
x + γ2∂xu

2
x + γ3∂xu

3
x (29)

when written in terms of the original, unscaled variables. The coefficients on the right-hand

side of Eq. (29) depend on the angle of incidence θ and are related to the crater function

moments by Eqs. (21) - (27). The expressions for C11, C22, C111 and C1111 derived in Ref. [24]

reduce to our results (21) - (24) for the case in which mass is conserved.

Equation (29) can be written in the form

ut = −Ω(∂xjx + ∂yjy), (30)

where Ω is the atomic volume and the surface atomic current j = jxx̂ + jyŷ + jzẑ is

everywhere tangent to the solid surface. The components jx and jy of the surface current
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are given by

jx = −Ω−1J(C11ux + C111uxx + C1111uxxx + 2ρuxuxx + γ2u
2
x + γ3u

3
x) (31)

and

jy = −Ω−1JC22uy, (32)

respectively. Equation (30) shows explicitly that the mass of the solid is a conserved quantity.

In the Carter-Vishnyakov (CV) model of mass redistribution, the magnitude of the surface

current j depends only on the local angle of incidence, or, equivalently, on θ, ux and uy [16].

It may therefore seem surprising that in general jx depends on uxx. Molecular dynamics

simulations of ion impacts on a sinusoidally rippled surface show that the mass current is

larger at the base of a trough than at the top of a crest, however [20]. These simulations

therefore strongly suggest that jx does indeed depend on uxx. It is this dependence that

leads to the presence of the linearly dispersive term C111uxxx and of the so-called conserved

Kuramoto-Sivashinsky (CKS) nonlinearity ρ∂2xu2x in the EOM (29).

V. SURFACE DYNAMICS WITH DIAMETRICALLY OPPOSED BEAMS

A. Derivation of the equation of motion

We now turn our attention to the problem in which there are two diametrically opposed

beams, each with ion flux J/2. (Recall that the beams have the same polar angle but their

azimuthal angles differ by 180◦.) If only the beam that is incident from the left were present,

the EOM would be Eq. (28) with J replaced by J/2:

UT =
J

2
(ε−2C11UXX + ε−1C111UXXX + C1111UXXXX + C22UY Y

+ρ∂2XU
2
X + ε−1γ2∂XU

2
X + γ3∂XU

3
X). (33)

Conversely, if only the beam that is incident from the right were present, the EOM would

be Eq. (33) with X replaced by −X:

UT =
J

2
(ε−2C11UXX − ε−1C111UXXX + C1111UXXXX + C22UY Y

+ρ∂2XU
2
X − ε−1γ2∂XU2

X + γ3∂XU
3
X). (34)
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To get UT when both beams are turned on, we take the sum of the right-hand sides of

Eqs. (33) and (34) to yield

UT = J(ε−2C11UXX + C1111UXXXX + C22UY Y + ρ∂2XU
2
X + γ3∂XU

3
X). (35)

Note that in addition to being invariant under the transformation Y → −Y , the dual-beam

EOM (35) is invariant under X → −X, as it must be. Equation (35) holds for θ just above

the critical angle θc, i.e., for small ε = (θ − θc)1/2.

Experiments carried out with a single incident ion beam show that parallel-mode ripples

form for θ greater than the critical angle θc and that the surface remains flat for θ < θc: see

Refs. [12] and [15]. We assume that this is remains true in the problem with diametrically

opposed beams. For solutions to Eq. (35) to be in agreement with this assumption, C11 must

be positive for θ < θc, zero for θ = θc, and negative for θ > θc. Carrying out a Taylor’s series

expansion of C11 = C11(θ) about the point θ = θc yields C11 = −A11(θ− θc) +O((θ− θc)2),

where the constant A11 is nonnegative. We neglect the correction term of order (θ − θc)2

and so obtain C11
∼= −A11ε

2. We will assume that A11 is nonzero.

If C22 were negative for θ = θc, it would also be negative for θ slightly less than θc. Since

C11 is positive for θ slightly less than θc, perpendicular-mode ripples would develop for θ

just below θc. Because this is not observed in single-beam experiments, we assume that C22

is nonnegative for θ = θc. We exclude the anomalous special case in which C22(θc) is zero

so that C22(θc) is positive.

Equation (35) may now be written

J−1UT = −A11UXX + C1111UXXXX + C22UY Y + ρ∂2XU
2
X + γ3∂XU

3
X . (36)

Notice that ε does not appear in Eq. (36). Thus, the scaling we posited in Eqs. (6) and (7)

leads to a well-behaved EOM in the small ε limit. Moreover, all of the terms are of the same

order in ε.

The EOM (35) becomes

J−1ut = C11uxx + C22uyy + C1111uxxxx + ρ∂2xu
2
x + γ3∂xu

3
x (37)

when written in terms of the unscaled variables. If C1111 were positive or zero, arbitrarily

short wavelengths would be linearly unstable and the continuum description would break

down. We therefore assume that C1111 < 0. In addition, γ3 cannot be negative since if it
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were, the slope of the surface would grow without bound. To simplify the notation, we set

a = JC11, D = JC22, B = −JC1111, c = Jγ3 and β = Jρ, where D > 0, B > 0 and c ≥ 0

are constants. Equation (37) is then identical to Eq. (1). By replacing u by −u if necessary,

we can also arrange for β to be nonnegative.

The term c∂xu
3
x in Eq. (1) is familiar from the theory of the mounding instability that can

occur during molecular beam epitaxy. There the term results from the Ehrlich-Schwoebel

(ES) effect and can lead to the formation of a faceted surface [33]. In our problem, the

slope dependence of the surface current produced by MR leads to the presence of this term.

The term β∂2xu
2
x, on the other hand, is the CKS nonlinearity. Although this term was first

encountered in molecular beam epitaxy [33, 34], it is believed to play a role in ion-induced

pattern formation even when a surface layer of the target material is amorphized by the ion

bombardment [35–37]. The CKS nonlinearity tends to produce coarsening of the surface

patterns, i.e., the characteristic lateral and vertical length scales increase with time. It also

breaks the u → −u symmetry that would be present if β were zero. Since there is vacuum

above the surface and solid below, there is no reason that such a symmetry should exist.

B. Analysis of the equation of motion

Because the surface of the solid is nominally flat initially, Eq. (1) can be linearized at

early times. The amplitude of a sinusoidal ripple with wave vector k = kxx̂ + kyŷ increases

exponentially in time with the rate

σ(k) = −ak2x −Dk2y −Bk4x. (38)

[The ripple amplitude decays exponentially if σ(k) is negative.] It follows that for a < 0,

ripples with wave number
√
|a|/(2B) and with their wave vector along the x direction emerge

shortly after the irradiation begins. Conversely, the surface becomes flatter if a > 0.

Consider the case a < 0, so that a flat initial surface is unstable and pattern formation

occurs. If u is independent of y, Eq. (1) reduces to a partial differential equation (PDE) in

one dimension (1D). For β = 0, we set φ ≡ ux. Differentiating the 1D PDE with respect to

x yields

φt = aφxx −Bφxxxx + c∂2xφ
3, (39)

which is the 1D Cahn-Hilliard (CH) equation [38]. This leads us to the conclusion that for
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long times the solution to the 1D PDE with β = 0 tends to a state in which most of the

surface has a slope nearly equal to one of the two selected values ±(|a|/c)1/2. The slope

changes rapidly in interfacial regions between adjacent intervals with nearly constant slope.

As some regions of nearly constant slope contract and then disappear and others expand,

the pattern coarsens. For c = 0, on the other hand, the 1D PDE is the CKS equation, which

has been studied as a model of amorphous thin film growth [39] and the step meandering

instability on a crystal surface [40]. A family of periodic steady-state solutions to the CKS

equation exists [39]; these consist of concave, nearly parabolic segments that meet at “kinks.”

These kinks are not discontinuities in ux, but are instead relatively narrow regions where

uxx is negative. For generic nominally flat initial conditions, a nearly periodic pattern with

the linearly selected wave number emerges at early times, but at longer times coarsening

occurs: kinks merge and the average size of the parabolic segments grows in time [40].

Before proceeding further, we will recast the full two-dimensional EOM (1) that applies

when u is not independent of y in dimensionless form to reduce the number of parameters

to a minimum. We introduce the dimensionless quantities

x̃ ≡
(
|a|
B

)1/2

x, ỹ ≡ |a|
(DB)1/2

y, t̃ ≡ |a|
2

B
t and ũ =

√
β2 +Bc

B
u. (40)

We will also drop the tildes for the remainder of this subsection. Equation (1) becomes

ut = −uxx − uxxxx + uyy + (cos2 ψ)∂xu
3
x + (sinψ)∂2xu

2
x, (41)

where the angle ψ ∈ [0, π/2] is defined by the relation tanψ = β/
√
Bc. For ψ = 0, we

differentiate Eq. (41) with respect to x and so obtain

φt = −φxx − φxxxx + φyy + ∂2xφ
3. (42)

Equation (42) is an anisotropic generalization of the 1D CH equation to two dimensions (2D).

On the other hand, for ψ = π/2 (or, equivalently, for c = 0), Eq. (41) is an anisotropic gener-

alization of the 1D CKS equation to 2D. Equation (41) depends on the single dimensionless

parameter ψ that measures the relative strength of the quadratic and cubic nonlinearities.

Let us consider the behavior of solutions to Eq. (41) with ψ = 0 on the domain in which

0 ≤ x ≤ L and 0 ≤ y ≤ L and apply periodic boundary conditions. We introduce the

effective free energy

F ≡
∫ L

0

∫ L

0

[
1

2
u2xx + v(ux, uy)

]
dxdy, (43)
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where

v(ux, uy) ≡
1

4
(u2x − 1)2 +

1

2
u2y (44)

will be referred to as the effective potential. Equation (41) can be written

ut = −δF
δu
, (45)

where δF/δu denotes the variational derivative of F with respect to the surface height u.

Equation (45) implies that dF/dt ≤ 0, i.e., the effective free energy can never increase. The

dynamics therefore tends to minimize the value of F . The effective potential v has minima

at (ux, uy) = (±1, 0). Therefore, the surface will tend toward a state in which most of the

surface has a gradient ∇u nearly equal to ±x̂, i.e., the surface will facet. A flat facet with

one of the two selected gradients ±x̂ has a free energy equal to zero. Adjacent facets are

separated by “edges” which have a positive free energy per unit length. ∇u changes rapidly

but not discontinuously as an edge is traversed.

Figure 1 (a)-(c) shows the results of a simulation of Eq. (41) with ψ = 0 and a low

amplitude spatial white noise initial condition. (For details of the method of numerical

integration we employed, see Ref. [41].) At early times, the ripple wavelength is close to

the linearly selected wavelength and there is no selected slope. The ripple pattern becomes

progressively more faceted as time passes. The dislocations present in the ripple pattern

climb (i.e., move roughly parallel to the y axis) until they meet dislocations of opposite

sign and annihilate one another. In this way, the average width of the facets grows and the

total length of the edges decreases, leading to a reduction in the effective free energy of the

surface. As expected, the slope distribution has two pronounced peaks at (ux, uy) = (±1, 0)

at long times, as shown in Fig. 2 (a) for t = 5, 000. All of the dislocations have disappeared

at this point and the time evolution has become very slow. However, although dislocations

are no longer present, the wavelength of the pattern varies as we move along the x direction

— see Fig. 2 (d). The order is not perfect as a consequence.

Even though Eq. (41) cannot be written in the variational form (45) for 0 < sinψ ≤ 1, the

behavior we find for sinψ = 0.2, 0.5, 0.7 and 0.9 is qualitatively similar to what we observed

for sinψ = 0. Figure 1 (d)-(f) shows the time evolution of the surface for sinψ = 0.9,

for example. As for sinψ = 0, the pattern coarsens with time and all of the dislocations

eventually mutually annihilate. There are also sharp peaks in the slope distribution, but

14



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1: Top row: Simulation of Eq. (41) with sinψ = 0 at (a) t = 50, (b) t = 1000, and (c)

t = 5000. Middle row: Simulation with sinψ = 0.9 at (d) t = 50, (e) t = 1000, and (f)

t = 5000. Bottom row: Simulation with sinψ = 1 at (a) t = 50, (b) t = 1000, and (c)

t = 5000. The domain size was 200× 200 in all three simulations.

the selected slope is larger than for sinψ = 0. This is illustrated by Fig. 2 (b) for the case

sinψ = 0.9.

For sinψ = 1, ripples with their average wave vector oriented in the x direction emerge and

coarsen in time, just as for sinψ < 1: see Figure 1 (g)-(i) [42]. Once again, no dislocations

are present in the pattern at sufficiently long times. However, the ripples that develop for
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(a) (b) (c)

(d) (e) (f)

FIG. 2: Panels (a) - (c) show the slope distributions for the surfaces shown in Fig. 1 (c),

(f), and (i). Panels (d) - (f) show cuts through the surfaces shown in Fig. 1 (c), (f), and (i)

taken at y = 0.

sinψ = 1 are not faceted, as Fig. 2 (c) illustrates. This is because the ES term is responsible

for the formation of facets and it is not present in the EOM for sinψ = 1.

Whatever the value of sinψ, there are no dislocations present in the ripple pattern at

sufficiently long times. However, as the cuts through the surface shown in Fig. 2 (d) - (f)

show, the wavelength varies with x and the surface is not perfectly ordered. This is to be

expected, because the band of linearly unstable wavelengths is not narrow.

As we have seen, the mean wavelength of the ripples Λ and the interface width increase

as time passes. A natural question to ask is whether these quantities exhibit power-law

scaling. We adopted the root-mean-square deviation of the surface height from its mean

value w as a measure of the interface width. In our simulations, we found that w grows

exponentially at early times, as one would expect (not shown). The value of w then quickly

saturates or enters a regime of very slow growth — our numerical results do not permit us

to determine which of these behaviors actually occurs. We also find that Λ is comparable

to the linearly selected wavelength at early times. At later times, it grows but then appears

to saturate. In both cases, we do not observe scaling behavior between the early-time and

long-time behavior. The fluctuations are also large, which would necessitate averaging over
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many simulations to obtain results with an acceptable degree of accuracy.

We can gain some insight into this situation in the following way. The anisotropic CH

equation obtained for ψ = 0 [Eq. (42)] is smoothing in the y direction. Its behavior is

therefore somewhat similar to that of the 1D Cahn-Hilliard equation. The coarsening of

the 1D CH equation is very slow (it is logarithmic [43]) and is therefore not easily studied

numerically. We believe that the same type of very slow coarsening occurs in our 2D EOM

(41) for ψ < π/2.

C. The existence of selected slopes for diametrically opposed beams

As we have seen, if θ is just above the critical angle θc and c > 0, the surface evolves a

state in which there are large regions with slope very nearly equal to one of the two selected

values. The goal of this subsection is to provide some physical insight into how there can be

nonzero selected slopes when diametrically opposed beams are incident on the solid surface.

To make this discussion as transparent as possible, we will take the surface height u to be

independent of y.

Consider the surface current j when a single ion beam is incident on the solid. For the

sake of simplicity, we assume that j depends only on the local angle of incidence θloc, as in the

CV model. In general, j(θloc) must be an odd function of θloc and must vanish for θloc equal

to 0 and π/2. In addition, j(θloc) must be positive for 0 < θloc < π/2 since the current points

in the projected beam direction. In the case of the CV model, j(θloc) = µJ cos θloc sin θloc,

where µ is a positive constant of proportionality. This current satisfies all of the requirements

we have listed, but is unlikely to be exactly correct for any beam-target combination.

Let α ≡ tan−1 ux be the angle that the surface is tilted away from the horizontal. The

total current when two diametrically opposed beams are incident on the surface is jtot =

[j(θ − α)− j(θ + α)]/2. For the CV model,

jtot = −1

2
µJ cos(2θ) sin(2α) = −µJ cos(2θ)

ux
1 + u2x

. (46)

Note that the surface current is downhill for θ less than the critical angle θc = π/4 but is

uphill for θ > θc. This shows very clearly that a flat initial surface is stable for θ < θc and

is unstable for θ > θc.

The total current is zero on a surface that has a selected slope. Equation (46) shows that
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there are no nonzero selected slopes in the case of the CV model except for θ = θc = π/4.

For that angle, the total current vanishes for all slopes ux and so there are no selected slopes

in that case either. The CV model, however, is anomalous because j(θloc) is an even function

about the critical angle θloc = π/4.

As an example that shows that there can be nonzero selected slopes for θ > θc in the

dual-beam problem, consider a different model of the surface current. In the CV model,

every incident ion displaces an average mass proportional to sin θloc. Some ions, however,

are elastically reflected from the solid surface and so displace no mass. Reflection of ions is

particularly important at high angles of incidence. To make an easily analyzed model that

takes the effect of ion reflection in account in a crude way, we will take the average displaced

mass per ion to be proportional to sin θloc cos θloc. In this case, j(θloc) = νJ cos2 θloc sin θloc,

where ν is a positive constant of proportionality. The critical angle θc is the angle where

j(θloc) attains its maximum value, sin−1(1/
√

3) ∼= 35.26◦. j(θloc) is not an even function

about this angle. The total current for diametrically opposed beams is

jtot = −1

4
νJ [cos θ sin θ + cos(3θ) sin(3α)]. (47)

For θ ≤ θc, this is zero only for α = 0. For θ > θc, however, jtot also vanishes for the nonzero

tilt angles α given by sin2 α = sec(3θ)(1− 3 sin2 θ).

The EOM for the CV model with dual beams is ut = −Ω∂xjtot, where jtot is given by

Eq. (46). Thus, to sixth order in ε,

ε4UT = −2ΩµJε4(UXX − ε2∂XU3
X). (48)

To order ε4, therefore, there is no term proportional to ∂XU3
X . Comparing this with Eq. (36),

we see that for the CV model, γ3 = 0 and hence c = 0. As a consequence, for the anomalous

special case in which the slope dependence of the surface current is given correctly by the

CV model, the 1D EOM is the CKS equation and there are no nonzero selected slopes.

VI. THE SCALING ANSATZ IS INVALID FOR A SINGLE INCIDENT BEAM

Consider the EOM (28) for a single incident beam with ion flux J . Since C11 = −A11ε
2,

J−1UT =−A11UXX + ε−1C111UXXX + C1111UXXXX + C22UY Y +

+µ∂2XU
2
X + ε−1γ2∂XU

2
X + γ3∂XU

3
X , (49)
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Equation (49) does not have a well defined ε → 0 limit unless C111 = γ2 = 0. This means

that the scaling ansatz given by Eqs. (6) and (7) is not appropriate for the case of a single

incident beam unless both C111 and γ2 happen to be zero at the critical angle. This, of

course, is highly unlikely.

To get a sense of the source of the difficulties that arise when there is a single obliquely

incident beam, let us suppose that the EOM were in fact given by Eq. (28), or, equivalently,

Eq. (29). For simplicity, we will restrict our attention to the 1D case in which uy = 0.

The most serious problem stems from the presence of the term proportional to ∂xu2x, and

so let us suppose that its coefficient γ2 is nonzero. To simplify the notation, earlier we set

a = JC11, B = −JC1111, c = Jγ3 and β = Jρ. In addition, we define α ≡ JC111 and

b ≡ Jγ2. Equation (29) becomes

ut = ∂x(aux + bu2x + cu3x)−Buxxxx + αuxxx + β∂2xu
2
x (50)

Recall that a is positive for θ < θc, is zero for θ = θc, and is positive for θ > θc. For simplicity,

we will take the remaining coefficients in Eq. (29) to be constants that are independent of θ.

For the problem to be well defined, c must be nonnegative and B must be positive, and so

we assume that this is the case, as we did previously for the dual-beam problem. We have

assumed that γ2 6= 0 and hence b is nonzero. In fact, we may take b to be positive without

loss of generality because if it is not, we replace u by −u in Eq. (50).

We will consider the special case in which α = β = 0 to begin. To gain insight into the

behavior of the surface, we study the resulting equation

ut = ∂x(aux + bu2x + cu3x)−Buxxxx (51)

on a large but finite interval 0 ≤ x ≤ L and apply periodic boundary conditions. We also

introduce the effective free energy

F ≡
∫ L

0

[
1

2
Bu2xx + f(ux)

]
dx, (52)

where

f(ux) ≡ 1

2
au2x +

1

3
bu3x +

1

4
cu4x (53)

will be referred to as the effective potential. Equation (51) can be written

ut = −δF
δu
. (54)
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Equation (54) implies that dF/dt ≤ 0, i.e., the effective free energy can never increase. The

dynamics therefore tends to minimize the value of F .

Differentiating Eq. (51) with respect to x and again setting φ = ux, we obtain

φt = ∂2x(aφ+ bφ2 + cφ3 −Bφxx). (55)

The initial state of interest is a nominally flat surface, and so we take φ(x, 0) to be low

amplitude spatial white noise. Equation (55) with this initial condition is the CH equation

for an off-critical quench [38]. The behavior of the solutions to this problem are well known

and so we will simply summarize their properties here. For a > ac = 2b2/(9c), the state φ = 0

is stable. Thus, for incidence angles θ sufficiently far below θc, the surface smooths. In the

co-existence region 0 < a < ac, on the other hand, there is a local minimum in the potential

f(φ) at φ = 0. The global minimum in the potential is at φ = φ∗ ≡ −(b+
√
b2 − 4ac)/2c < 0.

The state φ = 0 is therefore metastable. Noise in the inital condition or shot noise in the

ion beam will lead to nucleation and growth of regions with nonzero slopes φ1 and φ2

which satisfy φ∗ < φ1 < 0 and φ2 > 0. The surface slope varies smoothly in interfacial

regions between adjacent intervals in which the slope is very nearly constant. The width of

these interfacial regions depends on B. The precise values of the slopes φ1 and φ2 can be

determined using the requirement that the line joining the points (φ1, f(φ1)) and (φ2, f(φ2))

must be tangent to the curve f = f(φ) at these two points. Finally, for a ≤ 0, the state

φ = 0 is unstable and spinodal decomposition occurs. At long times, regions in which the

slope is nearly equal to (−b ±
√
b2 − 4ac)/2c develop. Once again, adjacent intervals with

differing, nearly constant slopes are separated by interfacial regions in which the slope varies

smoothly.

The upshot of this discussion is that whether 0 < a < ac or a < 0, at long times there will

be regions in which the slope is nearly equal to a nonzero value that is not small. We began

our derivation of the single-beam EOM, however, by assuming that Eqs. (6) and (7) apply.

These equations imply that ux is proportional to ε = (θ − θc)1/2 � 1 for θ just above the

critical angle θc, i.e., for a that is small and negative. In constant, our analysis of Eq. (51)

shows that for θ close to θc, there will be regions in which the surface slope is of order 1

at long times. Thus, the small slope approximation inherent in the scaling ansatz given by

Eqs. (6) and (7) is not valid if b is nonzero.

If there are diametrically opposed beams, b is zero and Eq. (55) becomes the CH equation
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for a critical quench. The flat surface is stable for a > 0, or, equivalently, for θ < θc. For θ

just above θc (i.e., for small, negative a), spinodal decomposition occurs. Regions in which

the surface slope is very nearly equal to ±
√
|a|/c develop at long times. Since a ∝ ε2, these

slopes are of order ε. This is consistent with the scaling ansatz.

So far, we have considered the special case of Eq. (50) in which α = β = 0. A second

special case of Eq. (50) in which b is nonzero has already been studied [44]. In this case,

c = 0 but β is nonzero and α is arbitrary. It was shown analytically that for small, negative

a (i.e., for ε→ 0), slopes of order unity develop on the surface as time passes, and this was

confirmed by simulations. Thus, in this case as well, the surface slope does not remain small

and the scaling ansatz given by Eqs. (6) and (7) is invalid.

The discussion given in this section strongly suggests that if a single ion beam with

θ ≥ θc is incident on the sample, the surface slope is not small everywhere at long times. If

this is indeed the case, the surface current j would be needed for arbitrary local angles of

incidence θloc before a full theory could be constructed. In the CV model [16], it is assumed

that j points in the projected ion beam direction and that its magnitude is proportional to

sin θloc cos θloc for arbitrary θloc. However, this cannot be exactly correct because the CV

model gives θc = 45◦ and this disagrees with experiment [12, 15]. In addition, as already

noted, molecular dynamics simulations show that j depends on the surface curvature, but

it does not in the CV model [20]. Further progress on the single beam problem in the

low energy regime may become possible once the dependence of j on θloc and the surface

curvature has been studied in detail using atomistic simulations.

VII. DISCUSSION

As we have seen, the case in which diametrically opposed beams are simultaneously

incident on the solid surface is much simpler than the single beam case because in the former

case, the EOM must be invariant under the transformation x→ −x. We obtained the EOM

for diametrically opposed beams (1) by expanding Eq. (5) to order ε4. If we instead expanded

to order ε6, we would recover Eq. (1), but with correction terms of order ε2 appended to its

right-hand side. Examples of terms of this kind are uxxyy, ∂2xu2y, ∂2yu2x and ∂x(uxu
2
y). Close

to threshold, ε is small and the correction terms can safely be neglected. However, as θ

is increased, the correction terms gain in importance and the dynamical behavior of the
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surface would change. If θ is increased still further, the sign of the coefficient D in Eq. (1)

could change at a second critical angle θc,2. In this case, there would be an instability if the

y direction for θ > θc,2 and it would be necessary to include a term proportional to uyyyy in

the EOM [45].

We assumed that when a broad beam is incident on the surface, the ion flux is low

enough that essentially all ion-induced motion near a point of ion impact P has ceased

before another ion strikes the surface in the immediate vicinity of P. A hydrodynamic

theory that applies when the ion energy is low enough that sputtering is negligible has been

developed by Muñoz-García and co-workers [46]. This theory applies in the high flux regime

in which a whole layer at the surface of the target is mobilized by the ion impacts and

behaves like a highly viscous fluid.

Equations that are related to our EOM (1) have been encountered in other physical

contexts. When GaAs is maintained at a temperature in excess of its recrystallization

temperature and is bombarded with a normally-incident Ar+ beam, highly ordered ripples

form [14, 47, 48]. Ou et al. [47] have modeled time evolution of the GaAs surface using a

variant of Eq. (1) in which the anisotropic terms −Buxxxx and β∂2xu2x are replaced by their

isotropic counterparts −B∇2∇2u and β∇2(∇u)2. The term Duyy in the EOM (1) suppresses

variations of the surface height in the transverse direction, and so the differences in the time

evolution produced by Eq. (1) and the equation studied by Ou et al. are expected to be

modest.

Equations of motion that describe the instability of a growing crystal surface and that

include the ES and CKS nonlinearities have been studied by Golubović and co-workers [33].

Our EOM (1) is a special case of the EOM they used to model the growth of a (110) surface

[49–52], although they did not analyze the case D > 0 in which there is no instability in the

traverse direction [53].

VIII. CONCLUSIONS

In this paper, we studied the behavior of a solid surface that is bombarded with two

diametrically opposed, obliquely-incident ion beams in the regime in which the ion energy is

low enough that sputtering is negligible. For angles of incidence θ just above the threshold

angle for ripple formation θc, we carried out a systematic expansion in powers of the small
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parameter ε ≡ (θ−θc)1/2 and retained all terms up to fourth order in ε. We found that close

to threshold and at sufficiently long times, the surface is governed by an anisotropic Cahn-

Hilliard equation with an additional nonlinear term that breaks the up-down symmetry,

Eq. (1).

Numerical integrations of Eq. (1) show that dual-beam ion bombardment in the low-

energy regime leads to the formation of faceted parallel-mode ripples with a very low density

of dislocations. These ripples are much more highly ordered that the ripples that usually

result from ion bombardment of a solid surface. However, because the ripple wavelength

varies in the longitudinal direction, the order is not perfect. This suggests that although the

ripples have the sawtooth form that is needed for a blazed diffraction grating, they are not

sufficiently regular for the grating to have a high efficiency.

We used a generalized crater function formalism to derive the EOM (1). The dependence

of the crater function on spatial derivatives of the surface height of arbitrarily high order

was taken into account. In addition, terms of all orders in the surface height u were retained

in our derivation. (Close to the threshold for pattern formation, however, only terms of

third order in u appear in the EOM to lowest nontrivial order in ε.) A by-product of our

derivation of the EOM is expressions that relate the coefficients in the EOM to moments of

the crater function. These expressions could be used to obtain estimates of the coefficients

in the EOM from input produced by atomistic simulations. These estimates would include

only the short-time or “prompt” effects of an ion impact that occur within picoseconds after

the arrival of the ion, however. The contributions to these coefficients from slow processes

like ion-induced viscous flow would have to be inferred from experiment or be computed by

other means, as in past work [54].

Close to threshold, the surface slope remains small when diametrically opposed beams

are incident on a surface that is initially flat. In contrast, our work strongly suggests that

when a surface is bombarded with a single obliquely-incident ion beam in the low-energy,

no-sputtering regime, the surface slope does not remain small as the ripple amplitude grows.

We therefore anticipate that developing a rigorous theory for the single beam problem will

be considerably more difficult than it was for the dual-beam problem.
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