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The phase behavior and adsorption kinetics of hard-core particles on a honeycomb lattice are
studied by means of random sequential adsorption with surface diffusion. We concentrate on re-
versible adsorption by introducing a desorption process into our previous model and varying the
equilibrium rate constant as a control parameter. We find that an exact prediction of the temporal
evolution of fractional surface coverage and the surface pressure dynamics of reversible adsorption
can be achieved by use of the blocking function of a system with irreversible adsorption of highly
mobile particles. For systems out of equilibrium we observe several features of glassy dynamics,
such as slow relaxation dynamic, memory effect and aging . In particular, the analysis of our system
in the limit of small desorption probability shows simple aging behavior with a power-law decay.
A detailed discussion of Gibbs adsorption isotherm for non-equilibrium adsorption is given, which
exhibits hysteresis between this system and its equilibrium counterpart.

I. Introduction

The phase behavior and dynamics of adsorption in two
dimensional systems are key aspects of many current
research areas such as phase transitions in amphiphilic
monolayers [1], emulsion stability due to particle adsorp-
tion at the interface [2—4], particle self-assembly into clus-
ters [5-8], chemisorption on metal surfaces [9, 10], and
the melting at an interface [11, 12].

Understanding the approach to the equilibrium state
and the kinetics of adsorption are of great interest, par-
ticularly in separation and filtration, where both desorp-
tion and adsorption are present. Models accounting for
desorption have also been used in vibrated granular sys-
tems [13, 14], and in the adsorption of asphaltenes at
toluene/water interfaces [15]. Further examples of the
relevance of desorption occur in response to changes in
experimental conditions, such as changing the pH of a
solution, [16-18], rinsing with solvent or buffers [19, 20],
variations in temperature [21], and the addition of sur-
factants [13].

The Langmuir model [22] has been widely used to
describe the adsorption behavior of reversible systems
[1, 23, 24]. However, the Langmuir model has limita-
tions: it fails to provide satisfactory predictions for sys-
tems composed of interacting particles [25-27] and when
the adsorbate is larger than the adsorption site [27, 28].
These deficiencies of the Langmuir model are addressed
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by the random sequential adsorption (RSA) and lattice
gas models, which describe the adsorption kinetics and
equation of state (EOS) of a monolayer, respectively. It
is worth noting that if the adsorption does not follow the
Langmuir model, the adsorption properties and EOS be-
come sensitive to the underlying lattice geometry such as
square [29, 30], triangle [31, 32], and honeycomb lattice
[33, 34].

In the RSA model, molecules or particles which are
larger than the adsorption sites are sequentially added
at random to an initially empty surface, with the re-
striction that overlaps are forbidden. As the coverage in-
creases, the free area left for further adsorption decreases,
not only because of the sites occupied by previously ad-
sorbed molecules but also because vacancies can be too
small to allow adsorption without overlap. In the ab-
sence of surface diffusion or desorption, the adsorption
process rapidly slows down and coverage only asymptoti-
cally approaches the jamming limit, equivalent to random
maximum packing. In this limit, the jamming coverage
depends on the lattice structure, the size and shape of
the adsorbed particles [33, 35]. However, several physi-
cal processes involve both adsorption and desorption, and
here the system may stabilize in an equilibrium state be-
low the maximum packing. In this situation, the RSA
model with the addition of a desorption process has been
used in the literature to study ion binding in Langmuir
monolayer [16], the dynamics of ligand-substrate binding
[36], the adsorption of fibrinogen molecules [37], and the
decoration of microtubules with dimeric kinesin molecu-
lar motors [36]. All of these processes can be described
via the simple RSA model at their early stage, while at
higher coverage stage detachment and reattachment of
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species plays a major role. It has been observed experi-
mentally that the relaxation time scale of adsorbed par-
ticles, due to their rearrangement on the surface, can be
comparable to the deposition time scale [38]. Diffusional
relaxation on the surface leads to a denser monolayer
with a more ordered configuration where the steric hin-
drance effects of previously-adsorbed particles slows the
process at the later stages [39].

The lattice gas model is a statistical mechanical
approach to describe adsorbate configurations which,
among other features, exhibits a phase transition at high
surface coverage. This approach has been used to study
phase transitions of photo-excited Rydberg gases [40],
the self-assembly of isophthalic acid on graphite [41], the
adsorption of selenium on a nickel surface [9], and the
chemisorption of oxygen on palladium [42]. Although
many versions of the lattice gas model have been studied
in the literature, only the single case of a triangular lat-
tice with first neighbor exclusion has an exact solution,
given by Baxter [43]. For all other variants, a number
of lattice gas methods have been developed over years
based on various approximations: the matrix method of
Kramer and Wannier [44-50], the density (or activity)
series expansion method [44, 45, 51-55], the generalized
Bethe method [56-58], Monte Carlo simulations [49, 59—
63], the Rushbrooke and Scoins method [64], and funda-
mental measure theory [65]. Despite all of these efforts,
the lattice gas model has not provided the adsorption ki-
netics of the system, and instead the main focus was the
EOS and the nature of phase transitions.

In order to combine the advantages of the RSA and
lattice gas models we previously developed an alterna-
tive method, the RSAD model, to derive the EOS of
two-dimensional non-desorbing hard-core particles based
on kinetic arguments and the Gibbs adsorption isotherm
on the triangular lattice [66, 67]. One of the advantages
of the RSAD model is its ability to locate the equilib-
rium state, ensuring that adequate thermalization had
occurred and that finite size effects are negligible. In the
RSAD model surface diffusion is introduced in parallel
with adsorption so that vacancies large enough to ad-
sorb further particles are both created and annihilated.
When diffusion is sufficiently large, the size distribution
of vacancies no longer depends on the history of adsorp-
tion (the positions where the adsorbates first arrived on
the substrate) but only on the fractional surface coverage
[68]. Note that in this model the potential energy is ef-
fectively infinite for particle overlap and zero otherwise,
so that the system can therefore be considered as ather-
mal [50, 62, 66]. Our results show that the RSAD model
can be used as an equilibrium model where the EOS, the
phase transition coverage, and the nature of this transi-
tion are all in excellent agreement with the only available
model with an exact solution in the literature [43].

Our past work on the RSAD model focused on irre-
versible adsorption of equilibrium states, but in this pa-
per we substantially extend our previous RSAD approach
by incorporating desorption process and further explore

the dynamics far from equilibrium. An important mo-
tivation is the experimental observation that when the
relaxation time scale is much smaller than the experimen-
tal time-window, a system may evolve out of equilibrium
[2, 16, 69]. In the remainder of this section we review the
theoretical basis for the method and discuss the numer-
ical implementation in Section II. A detailed discussion
of our findings for both equilibrium and non-equilibrium
systems is given in Section III and we summarize the
paper in Section IV.

II. Simulation details

In RSAD approach, for a two-dimensional lattice gas
in equilibrium with a three-dimensional solution of ad-
sorbate molecules, the equality of chemical potential
throughout the system leads to:

dIl = k:TAgdlnC. (1)

Here, II is the surface pressure, T is temperature, k
is Boltzmann constant, A, represents the interfacial area
covered by a single adsorbate molecule, O is the fractional
surface coverage, and C'is the concentration of the (three-
dimensional) solution. Integrating the above equation

gives:
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from which we see that knowledge of the adsorption
isotherm, the relationship between C(0), bulk concen-
tration, and fractional coverage, enables one to calculate
the EOS II(0).

The adsorption isotherm, in turn, can be obtained
through kinetic arguments. At equilibrium the rates of
adsorption and desorption of molecules are equal:

K.C(1-3(0)) = K40, (3)
where, K, and K, are the adsorption and desorption rate
constants, respectively, and 3(0©) is the “blocking func-
tion”, the fraction of the surface area, which is excluded
from further adsorption by already adsorbed molecules.
Solving for C' and inserting the resultant expression into
the integral version of the Gibbs adsorption isotherm
yields:
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Thus, the blocking function is the only information
needed to calculate the EOS, and we have shown pre-
viously [66, 67] that for lattice gases the blocking func-
tion can be precisely extracted from RSAD simulations.



From the definition of the adsorption rate, used above to
define adsorption equilibrium, the blocking function can
be extracted from the numerical simulations through the
derivative of surface coverage with respect to the time:
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where t = nA,/A, n is the number of attempts, A is the
total number of sites, and K; = K,/K,. The blocking
function can be further obtained from the rebuttal rate of
adsorption attempts. In the absence of desorption (K; =
00), with highly mobile particles the system can reach the
full coverage. For the system of non-desorbing particle
in equilibrium, Eq. 5 reduces to:

00
2 =1-p50). (6)

Blocking function in Eq. 6 is obtained from adsorption
or desorption method described later in detail.

The adsorption of hard-core molecules with first neigh-
bor exclusion on the honeycomb lattice involves the ad-
sorption of molecules covering two adsorption sites (see
Figure 1). Here, we employ two complementary methods
as described in our previous works [66, 67]: an “adsorp-
tion method”, which begins from an empty lattice, and
a “desorption method”, which begins with a full lattice
and progressively decreases coverage. In the adsorption

FIG. 1: Honeycomb lattice with first neighbor exclusion where
each adsorbate covers 2 sites which is identified by red circles.
The center of the adsorbate is represented by a blue circle, arrows
indicate possible displacements of particles, and the blue crosses
represent the sites where the center of other particles are not
allowed to occupy.

method, molecules or particles are progressively added to
an initially empty d x d lattice surface where a periodic
boundary condition is used to ameliorate finite size ef-
fects. The only restriction is that overlap is not allowed;
an assumption based physically on short-range electro-
static repulsion. For each adsorption attempt, a random
position (z,y) is selected representing the center of mass
of the particle. If the selected site and its neighbors are
empty, adsorption is accepted, otherwise, it is rejected.
Diffusion, the simultaneous movement of particles, is in-
troduced sequentially with a predefined ratio D between

the number of diffusion attempt and the adsorption at-
tempt: For D = 3 each adsorption is followed by 3 diffu-
sion attempts, etc. For each diffusion attempt, a previ-
ously adsorbed particle and a direction for the displace-
ment of the particle are selected randomly; yellow arrows
in Figure 1 illustrate the possible directions. If moving
the center of mass of the particle to the next node along
this direction does not infringe the non-overlap condition,
diffusion is accepted. Otherwise it is rejected. It is worth
noting that in the RSAD model, when diffusion is fast
enough, the surface layer is at internal equilibrium (even
during transient adsorption) and the blocking function
can be considered as a state function.

For the desorption method the lattice is initially full.
In this method, two particles are randomly selected and
removed. Then one adsorption attempt and D diffusion
attempts are performed, until one particle is successfully
deposited, following the same procedure as for the ad-
sorption method. The choice of the sequence (2 desorp-
tion events followed by 1 adsorption) is arbitrary but
answers the need at each time step to decrease coverage
and add at least one particle to calculate the adsorption
rate. Note that “desorption method” is another way to
calculate the adsorption rate in a reverse order.

For both adsorption and desorption methods, the
blocking function is extracted from the rebuttal rate
of adsorption attempts. 500 independent runs are per-
formed, and an ensemble average is used to reduce the
noise arising from the numerical calculation of the deriva-
tive of the coverage. The blocking function is fitted with
a polynomial function before using to generate the ad-
sorption isotherm. The latter is inserted into the Gibbs
adsorption isotherm equation to obtain the EOS.

In the current study, we have additionally incorporated
desorption into the system aiming to validate our hypoth-
esis that the correct evolution of fractional surface cover-
age and its equilibrium value, as well as blocking function
can be faithfully predicted for systems with different val-
ues of Kj, provided we have the knowledge of the system
with K; = co. In this method, at each attempt, we ran-
domly choose a site with a pre-defined value of K;. The
desorption attempts are carried out as follows: if a cho-
sen site lies inside the adsorbed particle (inside the red
circle illustrated in Figure 1), that particle is removed.
Otherwise, we choose randomly one of the three neigh-
boring sites and if that belongs to the center of mass of
an adsorbate, we remove that particle. It is worth noting
that in this case the desorption attempt imposes kinetic
constraint as particle removal can be rejected whereas in
the desorption method two particles are enforced to be
removed. We performed these sets of simulations with
and without surface diffusion. For a system with surface
diffusion, after each attempt, D diffusion attempts are
performed as described before. 1500 independent runs
were performed to extract the success rate of adsorption
attempts and to obtain the blocking function.



ITI. Results

The determination of phase behavior and, in partic-
ular, the nature of phase transitions in two-dimensional
systems is often clouded by finite size effects and by ac-
cess to the appropriate thermodynamic regime, which
can bring uncertainty regarding phase behavior of the
system; mainly the nature of phase transition [11, 67,
70, 71]. Accessing the thermodynamic regime and us-
ing sufficiently large system size to suppress errors due
to finite size effects are initial steps toward studying the
phase behavior of the system [11, 12, 67, 72]. One of the
advantages of using the RSAD method is that we know
how big our system should be to ensure that the results
are both accurate and computationally inexpensive.
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FIG. 2: (a) Effect of surface diffusion and lattice size on success
rate of adsorption. Ads and Des refer to adsorption and des-
orption methods, respectively. (b) The inset magnifies the high-
coverage region to better show the sensitivity of blocking function
to surface diffusion and lattice size. (¢) Comparison between the
blocking function of the honeycomb and the triangular lattice
[66].

The effect of surface diffusion and the system size are
shown in Figure 2(a-b). Initially, when the system is
dilute, all of the curves regardless of their methods, the
magnitude of surface diffusion, or the system size coincide
at the low surface coverage as presented in Figure 2(a).
At high surface coverage, probability of success of adsorb-
ing a new particle reduces drastically due to the caging
effect. However, as the ordering of particles enhances,
this caging effect diminishes to maximize the available
surface for accepting the incoming particles. The system
reaches the equilibrium state when curves obtained from
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two methods (adsorption and desorption) overlap for the
entire range of fractional surface coverage, which justifies
the access to the thermodynamic regime. So, the results
obtained from adsorption and desorption methods are
expected to bracket the correct equilibrium EOS.

To assess the role of lattice geometry, we further com-
pared the blocking function of hard-core particles with
first neighbor exclusion on a honeycomb lattice with the
ones on a triangular lattice [66] in Figure 2(c). Owing to
extra lattice spacing between adjacent sites in the hon-
eycomb lattice, lower blocking function is obtained over
adsorption of particles compared to the triangular lattice.

EOS and phase transition of hard core molecules with
the first neighbor exclusion on a honeycomb lattice were
studied with various statistical mechanical approaches
[34, 47, 73-75]. Runnels et al. [47] used an Exact Fi-
nite Matrix method, based on a sequence of exact solu-
tions for lattices of infinite length and increasing finite
width. The results were that, far from the transition
zone, convergence occurs rapidly; while in the transition
region, thermodynamic properties such as density and
pressure are only functions of lattice width, which can
be extrapolated to infinite width, giving the second or-
der transition at critical density and surface pressure of
0.845 + 0.02 and 2.24 + 0.1, respectively. Debierre et al.
[73] used phenomenological renormalization method to
obtain second order transition at fractional surface cov-
erage and surface pressure of 0.83 £0.01 and 2.20 +0.02,
respectively. Baxter [74] found the critical component of
hard core particle on honeycomb lattice by using corner
transfer matrix and obtained second order transition at
surface coverage of 0.844. Poland [75], used high den-
sity and Pade approximation to obtain the second order
phase transition at a surface coverage of 0.822, and sur-
face pressure of 2.164 and 2.178 for low and high density
series, respectively.

Although all of these methods share similarities re-
garding the second order nature of the phase transition,
however, there is no consensus on the critical value of a
surface coverage at the transition. Our results have been
compared with the analytical calculation of Runnels et
al. [47] for d = 100 and D = 10 in Figure 3(a-b). As illus-
trated in Figure 3(a), at low surface coverage there is no
difference between the reported equations of state. How-
ever, in vicinity of the phase transition a slight difference
is observed (see Figure 3(b)). Runnels’ EOS follows the
adsorption method at a lower and the desorption method
at a higher limit of surface coverage of transition region.
Eventually, all of the EOS coincide as they approach the
maximum packing coverage.

Comparing the EOS of honeycomb lattice with the tri-
angular lattice [66] in Figure 3(c) shows that initially
both equations of state overlap at a low surface cover-
age. As the surface coverage increases, triangular lattice
shows higher surface pressure in vicinity of phase transi-
tion. Close to the maximum packing, finding the vacant
site becomes the only determinant factor, consequently
all of the equation of states obey the Langmuir model and
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FIG. 3: (a) Comparison between our honeycomb EOS where

d = 100 and D = 10 with Runnels et al. (Exact Finite Matrix
method) [47] for hard core molecules on a honeycomb lattice. (b)
The inset shows a magnified view of the EOS in the phase tran-
sition region. (c) Comparison between EOS of honeycomb and
triangular lattice. A, for honeycomb and triangular lattice are

2 and 3, respectively. (d) Analysis of phase transition region of
honeycomb lattice based on derivative of surface pressure of des-
orption method with respect to the surface coverage (d = 100 and
D = 10).

both lattice geometries display the same surface pressure.

The phase transition zone of honeycomb lattice is ex-
amined in more detail by taking the derivative of the
surface pressure with respect to surface coverage, as dis-
played in Figure 3(d). A second order phase transition is
obtained which is in agreement with others [34, 47, 73—
75], where the critical exponents obtained by Debierre
et al. [73] and others [34, 47] suggest that this sys-
tem belongs to the 2-d Ising universality class. The on-
set of deviation from liquid regime starts at © = 0.704
and system solidifies at © = 0.818 and surface pressure
of 2.169 4+ 0.002, where the adsorption and desorption
methods set the upper and lower limit, respectively. Our
results are in a good agreement with Poland [75]. Al-
though, honeycomb and triangular lattice both display
a second order phase transition, however, the triangular
lattice deviates at the lower surface coverage © = 0.652
from liquid regime and undergoes solidification at the
higher surface coverage ©® = 0.827, exhibiting a wider
window of phase transition [66].

Systems with desorbing particles reach the equilibrium
state below the maximum packing, as evidenced in many
experimental studies [15]. We explored the role of desorp-
tion for a system in equilibrium (high surface diffusion),
revealing that for different values of K ., same blocking
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FIG. 4: (a) Blocking function for different K; rga where d = 100
and D = 0. Filled dots show the equilibrium values of surface
coverage. (b) Time evolution of fractional surface coverage for
different K; .4 where d = 100 and D = 10 in the presence of
surface diffusion. White dashes lines are obtained from the pre-
diction of RSAD model.

function is obtained as the one predicted by the Eq. 6
(Kieq = o0 in Figure 4(a)) until the steady state value
is achieved. The solid circles in Figure 4(a) denotes the
steady state surface coverage for specified values of Kj ¢q.
Additionally, by plugging the blocking function obtained
from Eq. 6 back into Eq. 5, we were able to obtain the
time evolution of surface coverage for a given value of
K cq. These intriguing result are in an excellent agree-
ment with the simulation results (see the white dashed
lines in Figure 4(b)). Note that our simulations are per-
formed on a homogeneous surface. However, surface het-
erogeneity can arise for example due to the variation in
adsorption energy, nonuniform arrangement of the sur-
face and etc. which could lead to the various structural
ordering on the substrate [76, 77].

In the absence of surface diffusion and for K; rgsa = oo
(corresponding to a system with no desorption), system
will reach the jamming state at the fractional surface
coverage of 0.758 as illustrated in Figure 4(a). Jamming
limit in RSA is strongly dependent on the initial con-
figuration [13]. In the absence of surface diffusion, dy-
namics of adsorption, which can be described with RSA
model pushes the system toward a locked or metastable
configuration. Ordering is necessary to unlock this con-
figuration, which is a slow process and can be mediated
by detachment and reattachment of the particles [36].
Figure 4(a) shows that at the given fractional surface
coverage, larger surface is available at equilibrium state
compared to the RSA configuration [78].

For the RSA with desorption, adsorption process is
dominant at the early stage and increasing the equilib-
rium rate constant results in the faster crowding of the
surface. For small values of K;rga and when the sur-
face is dilute, blocking function exactly overlaps on the
equilibrium blocking function curve (see red curve in Fig-
ure 4(a)) [78-80]. However, for intermediate values of
K rsa (e.g. green curve in Fig. 4(a)), system rapidly gets
crowded while following the RSA curve and then slowly
relaxes toward the equilibrium with the higher surface



coverage [14, 16] where insertion probability monotoni-
cally decreases by the increase of coverage [80].

For the system where the surface coverage surpasses
the jamming coverage (see for example the blue curve
for K;rsa = 18 in Figure 4(a)), the initial dominant
adsorption process follow the RSA model and densifies
the system in a very irregular fashion, making the de-
position of a new particle very hard. At the late stage
of the process the desorption plays a significant role and
the success rate of adsorption shows an interesting trend
in which after the initial abrupt decline, it increases very
slowly with the increase of surface coverage, indicating a
higher success rate of adsorption at a higher surface cov-
erage. Note that the blocking function eventually reaches
the steady state value identical to the equilibrium one. In
the presence of desorption, the equilibrium rate constant
(K)) determines the equilibrium coverage while surface
diffusion speeds up the process of reaching the equilib-
rium coverage without affecting the final value of cover-
age [14].

RSA with desorption shares qualitative similarities
with many phenomenological properties of supper-cooled
liquid and glasses. For instance, as the K; rsa — 00, the
system gets trapped in a metastable state and will not
be able to relax toward the equilibrium. At high yet fi-
nite values of equilibrium rate constant, the early stage of
this process suggests a mechanism similar to a quenched
disorder which leads to the formation of supercooled lig-
uid with frustrated structure. This analogy with supper-
cooled liquid appearing at the early state, could be sig-
naling the occurrence of aging phenomena at the late
stage of the process. The aging phenomena is due to the
strong memory effect originating from the high correla-
tion with the initial configuration of the system where
the relaxation evolves very slowly [85]. In order to quan-
tify this out-of-equilibrium system and further validate
our hypothesis regarding the aging process, we calculate
two-time density-density correlation function [69, 82]:

Angular brackets indicate an ensemble average, and t,,
is waiting time of sampling. Out of equilibrium, C(¢, t,,)
depend on both t and t,,.

The aging properties of RSA with desorption for
Kirsa = 100 is shown in Figure 5. The insertion prob-
ability of this system falls below the K; rsa = 18 in Fig-
ure 4(a) but follows the same trend. Figure 5(b) shows
the disorder configuration of the system corresponding to
a state that the insertion probability stops decaying. As
the coverage slowly increases and the desorption process
picks up, the degree of freedom in the system enhances
and the decorrelation occurs due to the unlocking of the
frustrated structure. As the the degree of ordering in the
system enhances which is evidenced by the formation of
clusters (see black clusters in Figure 5(c-d)), the C(¢,t,,)

curves show an interesting trends where it follows the
unique curve (see the black dotted lines in Figure 5(a))
which can be fitted with the following equation:

Clt.tu) = (1= )exp(-a(t - 1) +4 (55 9

where ¢, a and t, are fitting parameters. The constant
g increases by increasing the Kj; rsa and tg is approxi-
mately equal to t,. Figure 5(a) shows that correlation
function follows two times sectors. Initially all of the
correlation curves decay to a non-zero plateau value and
follow the stationary exponential term in Eq. 8.

The exponential term in Eq. 8 is related to localized
motion of particles within the cage which facilitates fast
filling of the vacant sites and it obeys time-translation
invariance independent of ¢,, [83, 84]. Then correlation
curves decay from this plateau value to zero and follow
the power law term (with exponent —1) in Eq. 8. The sec-
ond decay depends on the waiting time and is called sim-
ple aging because it follows the power law. As the waiting
time increases, the decorrelation takes longer, suggesting
that cages are stiffer [85]. The second term implies the
structural relaxation and appearance of cluster coarsen-
ing in the system where clusters merge by increase of
t., [83]. By passage of time, the clusters’ coarsening re-
sult in the increase of insertion probability. Note that
the equilibrium state (Figure 5(d)) is less blocked than
the disorder configuration (Figure 5(b)). Eq. 8 suggests
the weak-ergodicity breaking scenario where for t > ¢,
correlation function decay as follow [84, 86]:

lim C(t,t,) =0, 9)

lim C(tty) = (1 —q)exp(—a(t —ty)) +4q, (10)

Ty —00

L 1 O ) = (1)
q is Edwards-Anderson order parameter which can be
defined from Eq. 11 [85]. In our system for K; psa = 100,
we find ¢ = 0.8257.

We further address the influence of system’s initial
state on its dynamical response to a sudden change of
K. The followings outline the series of simulations that
were performed to obtain different initial states and once
the system reached the target coverage (0 = 0.758) the
simulations were stopped:

A) Starting from an empty lattice, the RSA with Kj» =
oo were performed to achieve a glassy state with much
higher blocking function compared to the equilibrium.

B) Starting from an empty lattice, the RSA were per-
formed with a chosen value of K;5 = 14 that would re-
sult in steady state coverage above the target coverage of
© = 0.758 to achieve a system with a blocking function
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different temporal surface coverages of (b) © = 0.7532, (c) © = 0.9459, (d) © = 0.979. The color bar identifies the number of contacting
neighbors.
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FIG. 6: Dynamical response of the system to abrupt change of K3 to (a) K;3 = 18 and (b) K;3 = 7 from different initial states A, B,
C, and D. (c) The insertion probability of adsorption for different initial states A, B, C, and D over abrupt change of K2 to K;3 = 18
and K3 = 7 corresponding to panels (a) and (b). (d) Dynamical response of the system with initial jammed configuration to the sudden
change of K (from oo to 11.62) for different values of surface diffusion.

higher than the equilibrium state. value. The opposite behavior is observed for the system
C) For a steady state system with high coverage, the with D ini.tial state l?y the appearance of a peak in the
value of Kj; = 18 were dropped to a low value Kjo =  coverage-time plot (Figure 6(a-b)). However, the appear-

0.5, engendering a system with a blocking function much ~ ance of this peak depends on the value of Kj3. For B (C)
smaller than the equilibrium state. state over sudden change of Kj3 to K3 = 18, where the

steady state coverage is higher than the initial state, sur-
face coverage will smoothly (abruptly) increases to reach
the steady state value. The opposite trend is observed
for sudden change of Kj5 to K;3 = 7. Figure 6(a) shows
that the time evolution of surface coverage, regardless of

Once the systems reached the target coverage from ¢} history, overlap after some relaxation time.
different paths described above, the value of Ko were

D) For a fully packed system, the value of K;; = oo
were dropped to K;; = 0 leading to a system with a
blocking function much smaller than the equilibrium sys-
tem.

changed tO. a new value Kj3 = 18 (Figm.re 6(a)) and To gain better insight on dynamical response of the
K3 = 7 (Figure 6(b)) _tO st.udy the dynamical response system to different initial state, we further analyze the
of the system to this stimuli. insertion probability. Figure 6(c) displays an interesting

For the glassy state A (see Figure 6(a-b)), a valley ap-  result that there is a specific path (identified by black
pears in the coverage temporal evolution curve, where the dashed lines in Figure 6(c)) related to each value of K.
depth of the valley depends on the value K;3. For larger If the initial state is above (below) of this path, the ad-
K3, the depth will be shallower. However, this valley will sorption (desorption) process is initially dominant until
disappear for a critical small value of K;3 and the cover- it crosses this path and then there is a tug-of-war com-
age will decrease monotonically to reach the steady state petition between adsorption and desorption along this



path until the system reaches the steady state value. If
the crossing occurs on the right (left) of the equilibrium
line (black line in Figure 6(c)), the surface coverage de-
creases (increases) to reach the steady state. This path
is encoded in the memory of the system and the system
retains a strong memory of its K history where the slope
of this path is nearly equal to the inverse of K.

Dynamical response of an initially jammed system to
the sudden change of K (from oo to 11.62) and for dif-
ferent values of surface diffusion has been investigated as
shown in Figure 6(d). The judicious choice of K; = 11.6
serves to drive the system towards the steady state cov-
erage equal to the jamming coverage (the initial state of
the simulation). This abrupt change results in the initial
increase of desorption rate and consequently enhances
the insertion probability of adsorption. For fast enough
surface diffusion, system immediately reaches the steady
state configuration. However, in the absence of surface
diffusion or at low values, a minima appears in the time
evolution plot of surface coverage which roots in the re-
laxation of caging effect.
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FIG. 7: (a) Success rate of adsorption for the equilibrium sys-
tem K ., = 18 and non-equilibrium system Kj n.q = 18 where
d = 100. (b) Surface pressure versus surface coverage, (¢) Time
evolution of surface pressure for systems with various Kj ..
White dashes lines are obtained from the prediction of RSAD
model.

In hard-core system, internal energy is only a function
of temperature and not a density [87]. Given hard-core
interactions are athermal, all of the phase transitions are
entropy driven, where ordered phase has a higher en-
tropy than the disordered one [34, 87]. Consequently, we
expect that the hysteresis between equilibrium system
and its non-equilibrium counterpart comes from change

in configurational entropy [88]. Therefore, the blocking
function and surface coverage would be the only required
information to calculate the surface pressure. To cor-
roborate our statement, we compared the surface pres-
sure obtained from the blocking function for two systems
with equal equilibrium rate constant of K; = 18 but dif-
ferent surface diffusion D = 0.01 and D = 10, which are
named Kj,.q = 18 and K; ., = 18, respectively (Fig-
ures 7(a), 7(b)). The blocking functions are the same for
both systems at the steady state and also at low surface
coverages (see Figure 7(a)). As such, we expect that at
these two limits that the surface coverages overlap, the
insertion of both equilibrium and non-equilibrium block-
ing functions (Figure. 7(a)) into Eq. 4 yields to the same
surface pressure. Figure 7(b) shows that the values of
surface pressure at the equilibrium are exactly identical
for both Kjneq = 18 and Kj ., = 18, which underscores
the validity of our hypothesis. For systems in equilib-
rium, surface pressure is only a function of surface cover-
age as evidenced by the overlap of surface pressure curves
for Kj.q = 18 and Kj .y = oo. So, the knowledge of
blocking function of a non-desorbing system at equilib-
rium (K ¢ = 00) would be sufficient to accurately obtain
the surface pressure of the equilibrium systems with var-
ious Kj 4. Figure 7(b) further displays that the surface
pressure curve of non-equilibrium system is always higher
than the equilibrium one as the system becoming grad-
ually packed, which can explain the hysteresis observed
in some experiments [2]. We also compare the time evo-
lution of equilibrium surface pressure for systems with
defined K., and the results obtained from Kj ., = oo.
This is accomplished by inserting the blocking function
obtained from Eq. 6 into the Egs. 4, 5 and integrating
to obtain temporal evolution of surface pressures (iden-
tified by white dashed lines in Figure 7(c)) which shows
an excellent agreement with the simulation results.

IV. Conclusion

In this paper we studied the phase behavior and ad-
sorption kinetics of hard-core molecules with first neigh-
bor exclusions on a honeycomb lattice, by incorporating
a desorption process through a varying equilibrium rate
constant in the RSAD model. Our analyses confirm ear-
lier statistical mechanics results concerning the second-
order nature of the phase transition [34, 47, 73-75]. We
show that the system is in a disordered liquid regime be-
low surface coverage of 0.704 and undergoes second-order
transition at surface coverage of 0.818, which is in a good
agreement with the work of Poland [75] who used high
density and Pade approximation methods to obtain the
EOS.

Comparing the results of hard-core particle on a hon-
eycomb lattice with a triangular lattice [66] shows that
the blocking function is sensitive to the lattice geome-
try. However, once the surface coverage and the blocking
function are obtained from RSAD model, all other ther-



modynamic properties can be calculated from the same
scheme explained in Section II irrespective of the lattice
geometry. Higher surface pressure is obtained at interme-
diate surface coverage for the triangular lattice, while at
low surface coverages and close to the maximum packing
both lattice structures display the same surface pressure.
Both lattice geometries show a second order phase tran-
sition, however, the triangular lattice undergoes a wider
range of phase transition meaning that it deviates from
the liquid regime at a lower surface coverage and solidifies
at a higher surface coverage.

For the systems with desorption processes present, all
of the results related to the temporal evolution of the
blocking function, surface coverage, and surface pressure
for various K; can be derived from the blocking function
of a system with K;., = co. Taken together, RSAD
model without desorption is able to accurately recover
deposition dynamics results for systems with desorption.

In the absence of surface diffusion, the blocking func-
tion generated by RSA model including desorption shows
three distinct regimes. Initially when the surface is di-
lute, the blocking function is identical to that in thermal
equilibrium. At intermediate coverage, the blocking func-
tion initially follows the RSA model and then decreases
monotonically to reach the equilibrium blocking coverage
at the steady state. However, when the surface coverage
surpasses the jamming coverage, the insertion probabil-
ity of a new particle shows an interesting trend in which
after the initial abrupt decline, it increases very slowly
with the increase of surface coverage. At equilibrium and
for a given value of the rate constant, the blocking func-
tion and surface coverage eventually recover the values
for non-desorbing systems at equilibrium. Aging analy-
sis of the last regime with small desorption probability
through the two-time density-density correlation func-
tion shows two time sectors, where it initially follows the
stationary regime and then decays as a power law. As
the waiting time increases the decorrelation takes longer,
which is an indication of a stiffer cage. As time passes,
the structural relaxation and clustering of particles fa-

vor more densification which leads to a lower blocking
function.

Analyses of the dynamical response of the system to
an abrupt change of the rate constants K; at different
initial states reveals that there is a specific path toward
equilibrium for each value of K;, where the slope of this
path is almost equal to 1/K;. This result also explains
the appearance of a peak and a valley after a sudden
change of K; to a secondary value. For a system without
surface diffusion, the system retains a strong memory of
its history while the presence of surface diffusion results
in the rapid decorrelation of memory effects.

Hard-core systems are entropy driven, and as such the
blocking function and surface coverage would be the only
information required to calculate the surface pressure.
We show that the equilibrium surface pressure is insensi-
tive to the values of surface diffusion and systems in that
low and high values of surface diffusion result in identical
surface pressure. Out of equilibrium and as the surface
coverage is gradually increased, the system shows higher
surface pressure than the equilibrium one, which could
explain the hysteresis reported in some experimental ob-
servations.
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