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As a method for controlling active materials, researchers have suggested designing patterns of
activity on a substrate, which should guide the motion of topological defects. To investigate this
concept, we model the behavior of a single defect of topological charge +1/2, moving in an activity
gradient. This modeling uses three methods: (1) approximate analytic solution of hydrodynamic
equations, (2) macroscopic, symmetry-based theory of the defect as an effective oriented particle,
and (3) numerical simulation. All three methods show that an activity gradient aligns the defect
orientation, and hence should be useful to control defect motion.

I. INTRODUCTION

Topological defects are common in many areas of
physics, from crystal structure to cosmology [1, 2], and
from bacterial growth to cell assembly [3, 4]. In con-
ventional liquid crystals, topological defects are often
used to identify phases, and the motion of topological
defects is an important feature of coarsening dynamics.
In active liquid crystals, topological defects are contin-
ually forming in pairs, moving, and annihilating each
other [5–12]. Theoretical research on two-dimensional
(2D) active nematic liquid crystals has suggested that
topological defects should be regarded as effective ori-
ented particles [13]. In a previous article, we suggested
that the defect orientation should be described by a ten-
sor, with a tensor rank that depends on the topological
charge of the defect [14]. Further work has applied the
concept of defects as effective oriented particles to defect
motion induced by temperature, applied fields, fluid flow,
boundary conditions, interactions with other defects, and
activity [15, 16].

Recently, one important research theme has been
learning how to control active materials, in order to guide
the flow of defects along pre-selected paths. Two arti-
cles have proposed to achieve this control by designing
patterns of activity on a substrate. In that way, the
activity gradient aligns the orientations of the defects
with topological charge of +1/2, through a mechanism
analogous to an electric field aligning electric dipole mo-
ments [17, 18]. Hence, the patterns of activity create
paths for the motion of defects.

In this article, we further investigate the concept of
topological defects moving in a system with nonuniform
activity. Rather than studying a system of many ±1/2
defects, as in Refs. [17, 18], we concentrate on a single
defect of topological charge +1/2 moving in an activity
gradient, and analyze the dynamics using three comple-
mentary approaches. First, we use an approximate an-
alytic method to solve the hydrodynamic equations for
the liquid-crystal director and the flow field around a
defect. Second, we construct a macroscopic symmetry-
based theory for the defect as an oriented particle, and
use it to determine the interaction with an activity gra-
dient. Third, we perform finite-element simulations of

the defect motion, and determine how the orientation
evolves in response to the activity gradient. In particu-
lar, we investigate the motion of a pair of +1/2 defects
within a circular active region, surrounded by a steep
activity gradient to a non-active region. We show that
all three approaches give consistent descriptions of defect
alignment, and support the concept of controlling active
materials with patterns of activity.

II. HYDRODYNAMIC THEORY

As a first step, we consider the hydrodynamic equa-
tions around a +1/2 defect. We follow the method of our
previous article [16], but now add a gradient of the activ-
ity. For this calculation, the nematic order is described by
the director field n̂(r, t) = (cos θ(r, t), sin θ(r, t)). With
the approximation of equal Frank elastic constants, the
Frank free energy is

F =

∫
d2r

[
1

2
K(∂inj)(∂inj)

]
=

∫
d2r

[
1

2
K|∇θ|2

]
.

(1)
The dynamic evolution of the director n̂ is coupled with
the fluid flow velocity field v(r, t). There are two modes
that dissipate energy: the strain rate tensor Aij =
1
2 (∂ivj + ∂jvi) and the director rotation with respect to
the background fluid vorticity Ni = ṅi − ωεjinj , where
εji is the 2D Levi-Civita symbol and ω = 1

2εkm∂kvm. In
terms of these modes, a minimal model for the dissipation
function is

D =

∫
d2r

[
1

2
α4AijAij +

1

2
γ1NiNi − 2ζ(r)ninjAij

]
.

(2)
Here, the first term represents the dissipation from con-
ventional fluid flow, and the second term represents dis-
sipation from rotation of the nematic order with respect
to the fluid. The third term is an extra contribution
arising from activity ζ(r), which we allow to be nonuni-
form. This term is really a “rate of energy input” (with
a negative sign) rather than an “energy dissipation,” but
it still enters into the theoretical formalism of a dissipa-
tion function. The sign ζ > 0 corresponds to extensile
activity, and ζ < 0 to contractile activity.
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We assume that the material is incompressible, which
implies that ∂ivi = 0. Because of this constraint, the
velocity field can be written in terms of a stream function
ψ(r, t) as vi = εij∂jψ.

From the free energy and the dissipation function, we
derive the equations of motion for θ and ψ. For the di-
rector orientation θ, the elastic force is −δF/δθ(r, t), and
the drag force is −δD/δ[∂tθ(r, t)]. Hence, the equation
for overdamped motion is that the forces sum to zero,

− δF

δθ(r, t)
− δD

δ[∂tθ(r, t)]
= 0. (3)

For the generalized velocity ψ, the elastic force is
−δF/δψ(r, t) = 0, and the combined drag and active
force is −δD/δψ(r, t). Hence, the equation for over-
damped motion is that this combined drag and active
force equals zero,

− δD

δψ(r, t)
= 0. (4)

The detailed expressions for these equations are worked
out in Ref. [16].

We now apply these general equations to the specific
case of nonuniform activity of the form ζ(r) = ζ ′y, so
that the activity gradient is ∇ζ = ζ ′ŷ. We assume that
the activity gradient is small, so that we can use pertur-
bation theory in ζ ′, following the approach of Ref. [19].
For this perturbation theory, we write the steady-state
solution as

θ(r) = θ0(r) + ζ ′θ1(r) +O(ζ ′2) (5a)

ψ(r) = ψ0(r) + ζ ′ψ1(r) +O(ζ ′2). (5b)

At zero-th order in ζ ′, the stream function ψ0(r) is
constant, which implies that the flow velocity is zero.
The differential equation for θ0 then becomes Laplace’s
equation ∇2θ = 0. A solution corresponding to a +1/2
defect at the origin is θ0(r) = 1

2 tan−1(y/x) + Θ0. From
Ref. [14], the defect orientation is the orientation in which
the director points outward from the defect. It is given
by the vector p = (cos Ψ, sin Ψ), with Ψ = 2Θ0.

We now go to first order in perturbation theory in ζ ′.
We insert the zero-th order expressions for θ0 and ψ0 into
the partial differential equations, and solve for the first-
order corrections θ1 and ψ1. We calculate these solutions
in polar coordinates with boundary conditions such that
the first-order correction does not change the far-field
behavior, hence θ1(rmax, φ) = 0, ψ1(rmax, φ) = 0, and
∂rψ1(rmax, φ) = 0. We put θ0 and θ1 into the series of
Eq. (5a), and put that series into the director field n.
We then determine the perturbed orientation in which
the director points outward from the defect,

Ψ = 2Θ0 +
ζ ′r3max cos(2Θ0)

6K

g(4 + 2g −
√

4 + 2g)

(3 + 2g)(2 + g +
√

4 + 2g)
,

(6)
where g = γ1/α4. Hence, we can see that the activity
gradient ζ ′ generates a correction term, which shifts the
defect orientation.

To interpret the correction term, suppose that ζ ′ > 0.
If cos(2Θ0) > 0, so that the unperturbed p has a positive
x component, then the correction term is positive. It ro-
tates the defect orientation counter-clockwise toward the
positive y axis. If cos(2Θ0) < 0, so that the unperturbed
p has a negative x component, then the correction term
is negative, and it rotates the defect orientation clockwise
toward the positive y axis. In both cases, the correction
is toward the positive y axis, so toward the ∇ζ direction.
Likewise, if ζ ′ < 0, the correction is toward the negative
y axis, which is then toward the ∇ζ direction. Thus, in
general, the activity gradient tends to reorient the +1/2
defect orientation toward the activity gradient direction.
This effect is analogous to an electric field acting on an
electric dipole moment, which tends to reorient the dipole
toward the electric field direction.

We have also done the same hydrodynamic calcula-
tion for a −1/2 defect at the origin. Again, we use per-
turbation theory in the activity gradient ζ ′. At zero-
th order in ζ ′, the director field is given by θ0(r) =
− 1

2 tan−1(y/x) + Θ0, and the stream function ψ0(r) is
constant. We calculate the first-order corrections to both
of these functions. Even with these corrections, the ori-
entations in which the director points outward from the
defect are Ψ = 2Θ0/3 (mod 2π/3); i.e. the first-order
corrections to these orientations are zero. Hence, the ac-
tivity gradient does not rotate the orientation of a −1/2
defect, at this order in perturbation theory.

III. MACROSCOPIC THEORY

As an alternative approach, we consider the same prob-
lem of defect alignment from the perspective of a macro-
scopic, symmetry-based theory.

In Ref. [16], we argued that defect motion can be de-
scribed in terms of the macroscopic degrees of freedom for
the defect, without considering the director or the flow
velocity field around the defect. In this perspective, the
defect is an oriented particle, with a position R(t) and
some further variable to represent the orientation. For a
defect of topological charge +1/2, the orientation is rep-
resented by a unit vector p(t) = (cos Ψ(t), sin Ψ(t)). We
can then construct the free energy and the dissipation
function in terms of those macroscopic variables, using
the most general forms allowed by symmetry.

In a conventional, non-active liquid crystal, the dissi-
pation function should be a quadratic form in the defect
velocity Ṙ and the rotational velocity ṗ. Hence, the most
general form for the dissipation function is [16]

Dpassive =
1

2
D1|Ṙ|2 +

1

2
D2(p · Ṙ)2 +

1

2
D3|ṗ|2 +D4ṗ · Ṙ.

(7)
Here, the D1 term gives the energy dissipated by defect
translation, and the D2 term shows how that dissipation
depends on the defect orientation with respect to the ve-
locity. The D3 term gives the energy dissipated by defect
rotation, and the D4 term shows a dissipative coupling
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between translation and rotation. The quadratic form is
positive-definite if D2

4 < D1D3.
In an active liquid crystal, the dissipation function is

not required to be quadratic in Ṙ and ṗ. Rather, it
may have active terms, which are linear in Ṙ or ṗ, and
hence break time-reversal symmetry. For an active liquid
crystal with uniform activity, there is one active term,

Duniform
active = d5ζp · Ṙ. (8)

(In Ref. [16], we wrote the coefficient as D5 = d5ζ, but
here we explicitly show the dependence on the activity
parameter ζ.) In the uniform system, there is no active
term involving ṗ, because we cannot construct a scalar
that is linear in ṗ. The combination R · ṗ is forbidden by
translational invariance, the combination Ṙ · ṗ is a non-
active, quadratic term, and the combination p · ṗ = 0
because p is a unit vector.

Now consider an active liquid crystal with nonuniform
activity. In that case, it is possible to construct an active
term involving ṗ,

Dnonuniform
active = d6(∇ζ) · ṗ. (9)

In this perspective, the activity gradient ∇ζ is important
because it creates an extra vector that can couple to ṗ.
The total dissipation function is then Dtotal = Dpassive +
Duniform

active +Dnonuniform
active .

In a recent article [20], we argued that a dissipation
function can generate an effective potential, which in-
duces steady-state alignment. Here, let us apply that
general argument to Dnonuniform

active . This term can be
rewritten using the defect orientation angle Ψ as

Dnonuniform
active = d6[−(∂xζ) sin Ψ + (∂yζ) cos Ψ]Ψ̇. (10)

It generates a force acting on Ψ,

fnonuniformactive = −∂D
nonuniform
active

∂Ψ̇
(11)

= −d6[−(∂xζ) sin Ψ + (∂yζ) cos Ψ].

That force generates an effective potential acting on Ψ
in the steady state,

Unonuniform
active = −

∫
fnonuniformactive dΨ

= d6[(∂xζ) cos Ψ + (∂yζ) sin Ψ]

= d6(∇ζ) · p. (12)

This effective potential has the same mathematical form
as an electric field interacting with an electric dipole mo-
ment. It tends to align the defect orientation vector p
along the activity gradient ∇ζ.

This macroscopic, symmetry-based theory has both
disadvantages and advantages compared with the hy-
drodynamic theory of the previous section. One dis-
advantage is that the macroscopic theory does not tell
us whether the coefficient d6 is positive or negative, i.e.

whether the alignment of p is parallel or antiparallel to
∇ζ. Based on the hydrodynamic theory, we can assume
that the favored alignment of p is parallel to ∇ζ, so that
d6 < 0.

By comparison, one advantage of the macroscopic the-
ory is that it can easily be applied to defects of different
symmetries. For example, consider a defect of topological
charge −1/2. Because this defect has three-fold symme-
try, its orientation can be described by a third-rank, com-
pletely symmetric tensor Tijk, as discussed in Ref. [14].
The macroscopic theory shows us immediately that there
is no linear coupling between the orientation tensor Tijk
and the activity gradient ∇ζ, in agreement with the hy-
drodynamic calculation. Rather, there may be a higher-
order coupling of the form (∂iζ)(∂jζ)(∂kζ)Tijk, or a cou-
pling with a third derivative of the form (∂i∂j∂kζ)Tijk.
Hence, even without any calculations, we can see that
a −1/2 defect is not as strongly aligned by an activity
gradient as a +1/2 defect, but it may have these weaker,
higher-order aligning interactions.

IV. SIMULATIONS

So far, we have used two types of analytic theory to
show that the orientation of a +1/2 defect is aligned by
an activity gradient. As a numerical test of these analytic
arguments, we now perform simulations of the dynamic
evolution of the position and orientation of a +1/2 defect
in an activity gradient.

For the simulations, we follow the method of Ref. [16].
In this method, we allow both the magnitude and
the direction of nematic order to vary, so that de-
fects will be able to form and move freely. Hence,
we represent nematic order by the tensor Qij(r, t) =
S(r, t)[2ni(r, t)nj(r, t) − δij ], with magnitude S and di-
rector n̂. The magnitude S goes to zero at the defect
core. With the approximation of equal Frank constants,
the Landau-de Gennes free energy for this model is

F =

∫
d2r

[
− 1

4
aQijQij +

1

16
b(QijQij)

2

+
1

16
L(∂kQij)(∂kQij)

]
. (13)

This free energy favors a bulk order parameter S =
(a/b)1/2 away from any defect, and it favors a defect core
radius rcore = (L/a)1/2. The elastic constant L in this
tensor representation is related to the Frank constant K
in the director representation by K = LS2.

In this tensor representation, the two modes that dissi-
pate energy are the strain rate tensor Aij = 1

2 (∂ivj+∂jvi)
and the rotation of nematic order with respect to the
background fluid vorticity Bij = Q̇ij−ω(εljQil + εliQlj),
where εji is the 2D Levi-Civita symbol and ω =
1
2εkm∂kvm. In terms of these modes, a minimal model
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for the dissipation function is [16]

D =

∫
d2r

[
1

2
α4AijAij +

1

16
Γ1BijBij − Z(r)QijAij

]
.

(14)
Here, the first term represents the dissipation from con-
ventional fluid flow, the second term represents rotation
of nematic order with respect to the fluid, and the third
term arises from the activity Z(r), which may be nonuni-
form. The rotational viscosity and activity coefficients in
the tensor representation are related to the corresponding
coefficients in the director representation by γ1 = Γ1S

2

and ζ = ZS. This minimal model omits further terms
that show the anisotropy of drag, depending on the di-
rection of velocity gradients with respect to the nematic
director, as discussed in Ref. [16].

Based on the free energy and dissipation function, the
partial differential equation for overdamped dynamics of
the nematic order tensor becomes

0 = − δF

δQij
− δD

δQ̇ij

. (15)

Similarly, the equation for inertial dynamics of the flow
velocity field becomes

ρ(∂t + vj∂j)vi = −δD
δvi

+ ∂ip, (16)

where ρ is the mass density and p(r, t) is the pressure.
Finally, the constraint of incompressibility is ∂ivi = 0.

We solve these equations numerically with the finite-
element method, using the software package COMSOL,
inside a circular domain of radius rmax. For the ini-
tial condition, we impose a +1/2 defect at the center,
with its initial orientation in the +x direction. At later
times, we find the location of the defect by searching
for the minimum of the scalar order parameter S(r, t) =
[ 12QijQij ]

1/2. After finding the defect, we determine the
defect orientation vector p = (∇ ·Q)/|∇ ·Q|, and hence
the angle Ψ = tan−1(py/px).

We use parameters a = b = 200, L = 4, α4 = 1,
Γ1 = 8, and ρ = 1 (in arbitrary units). With these
parameters, the bulk order parameter is S = 1, and the
defect core radius is rcore ≈ 0.2. We impose a nonuniform
activity pattern Z(x, y) = Z ′y, with a gradient in the
+y direction. We vary the activity gradient Z ′ and the
system size rmax, as discussed below.

For a first set of simulations, we apply Dirichlet bound-
ary conditions at rmax, so that the nematic order at the
boundary is fixed in its initial configuration. As we move
forward in time, the defect position shifts and its orienta-
tion rotates. However, the system is highly constrained
because of the boundary condition. Because of this con-
straint, the system reaches a steady state, with a limited
translation and rotation of the defect.

Figure 1(a) shows the numerical results for the steady-
state defect orientation angle Ψ as a function of Z ′, with
fixed rmax = 2. We can see that Ψ is linearly proportional
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FIG. 1. (a) Steady-state defect orientation Ψ as a function of
activity gradient Z′, at rmax = 2, compared with a linear fit.
(b) Steady-state defect orientation Ψ as a function of system
size rmax, at fixed Z′ = 1, compared with a cubic fit.
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FIG. 2. Examples of defect trajectories, as a defect moves
outward from the origin and exits the system with free bound-
ary conditions. The arrows indicate the defect position and
orientation at times t = 0, 2.0, 2.5, 3.0, 3.5, 4.0, . . . .

to Z ′. Similarly, Fig. 1(b) shows corresponding results for
Ψ as a function of rmax for fixed Z ′ = 1. Here, we see
that Ψ is proportional to r3max, because the larger system
size allows the defect more freedom to rotate. Both of
these results are consistent with the scaling predicted in
Eq. (6).

For another set of simulations, we apply free boundary
conditions, so that the defect is not constrained by the
boundaries. With these boundary conditions, the defect
will eventually move out of the system, but we can mon-
itor its position and orientation until it leaves. Figure 2
shows examples of the defect trajectories, with arrows
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FIG. 3. Time evolution of the defect orientation angle Ψ, in
a system with free boundary conditions, for several positive
and negative values of the activity gradient Z′.

indicating the defect positions and orientations at the
specified times. The defect begins at the origin, with its
orientation vector in the +x direction. The orientation
rotates toward alignment with the activity gradient in
the +y direction. This rotation occurs quickly for large
Z ′, and more slowly for small Z ′, so that the rotation
may not be complete before the defect exits the system.

Similarly, Fig. 3 shows the time evolution of the defect
orientation angle Ψ in the system with free boundary
conditions, with several positive and negative values of
the activity gradient Z ′. These results show that Ψ is
driven toward +π/2 when Z ′ > 0, and it is driven toward
−π/2 when Z ′ < 0. In both cases, the defect orientation
vector p = (cos Ψ, sin Ψ) is driven to be parallel to the
activity gradient ∇Z = Z ′ŷ.

For a final example, we consider a more complex pat-
tern of activity. In this example, we are inspired by a re-
cent experiment [21], which investigated circulating mo-
tion of two +1/2 defects in a circular disk with uniform
activity. For a related nonuniform simulation, we con-
struct a system with a circular region of nonzero activity
in the center, surrounded by a larger region of zero ac-
tivity. We expect that the activity gradient between the
two regions will confine defects, so that they will circulate
around this effective confined region.

The simulation geometry is shown in Fig. 4. The pink
circle in the center is the active region, while the grey
region around the circle is not active. The activity profile
is

Z(x, y) = −Z0

π
tan−1

[
C
(
x2 + y2 − r20

)]
+

1

2
, (17)

where Z0 = −100 or +30 is the value of activity within
the circular region, r0 = 0.5 is the radius of the region,
and C = 50 is a coefficient to determine the steepness of
the activity gradient (so that the wall width is C−1/2 ≈
0.14). If Z0 < 0, the gradient points outward, as shown
by the red (larger) arrows in Fig. 4(a-d). Likewise, if
Z0 > 0, the gradient points inward, shown by the red

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Snapshots of the dynamic evolution of the circular
motion of +1/2 defects. Figure (a) to (d) shows the process
with negative activity, and Figure (e) to (f) shows the process
with positive activity. The pink (central) circle is the area
with activity, and the red (larger) arrows show the direction of
activity gradient. The blue (smaller) arrows show the location
and orientation of defects.
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(larger) arrows in Fig. 4(e-h).
The boundary condition on the square outer edge

of the grey region is tangential, with θBC(x, y) =
tan−1(y/x) + π/2. This boundary condition requires a
total topological charge of +1 inside the system, presum-
ably in the form of two defects of topological charge +1/2
each. Furthermore, this boundary condition favors an
inward alignment of the +1/2 defect orientation vectors,
shown by the blue (smaller) arrows on the defects.

We set an initial state with a pair of +1/2 defects in the
active region, one pointing upward and the other down-
ward. Inside the active region, the initial director field
is

θ(x, y) =
1

2

[
tan−1

(
y − y1
x− x1

)
+ tan−1

(
y − y2
x− x2

)]
+
π

4
,

(18)
where (x1, y1) and (x2, y2) are the locations of these two
+1/2 defects. Outside the active region, the initial direc-
tor field just matches the boundary condition.

When the simulation begins, the defects repel each
other and move apart, and they rotate toward the ori-
entation favored by the boundary conditions. After that,
the behavior depends on the sign of the activity Z0. If
Z0 < 0, as in Fig. 4(a-d), the defects move until they
reach the edge of the active region. At that point, they
are confined by the activity gradient, and cannot leave
the active region. As a result, they circulate around the
active region, in the direction parallel to their p vectors
(as expected for negative, contractile activity). They re-
main in this state of circular motion indefinitely. By
contrast, if Z0 > 0, as in Fig. 4(e-h), the defects move
directly through the edge of the active region. Once they
are in the inactive region, they are no longer driven by
activity, and hence they stop moving.

We have also done simulations (not shown here) with
the radial boundary condition θBC(x, y) = tan−1(y/x),
which favors an outward alignment of the +1/2 defect
orientation vectors. In that case, the dependence on the
sign of Z0 is reversed: If Z0 > 0, the defects circulate in-
definitely around the active region, in the direction oppo-
site to their p vectors (as expected for positive, extensile
activity). If Z0 < 0, the defects move directly through
the edge of the active region, and stop moving in the
inactive region.

These simulation results can be understood based on
the hydrodynamic theory and the macroscopic theory

presented earlier in this paper. In Fig. 4(a-d), the bound-
ary conditions favor an inward defect orientation, while
the activity gradient favors an outward defect orienta-
tion. Hence, the defects are oriented inward by the
boundaries, but then they have an unfavorable interac-
tion with the activity gradient around the edge of the
pink (central) circle. The edge of the circle is effectively
a wall on the defects, which confines them within the cir-
cular region. For that reason, they move in a circle inside
that region. In Fig. 4(e-h), the boundary conditions and
the activity gradient both favor an inward defect orienta-
tion. Hence, the defects rotate to an inward orientation,
and they can easily move through the activity gradient.
The edge of the pink (central) circle is not a wall for
them, and they go directly into the inactive region. If the
boundary condition is reversed from tangential to radial,
then the dependence on the sign of Z0 is also reversed.

In early stages of the simulations, the dynamics is
mainly controlled by the elastic interaction of defects,
which causes the defects move apart from each other. In
later stages, the dynamics is mainly controlled by the
activity, which causes the defects to move along their
orientation vectors, and by the activity gradient, which
realigns the defect orientation vectors. The elastic inter-
action may play a secondary role in the later stages.

In summary, this paper has presented three approaches
to model the interaction of topological defects with
nonuniform activity: hydrodynamic theory based on the
director and velocity fields, macroscopic theory based on
symmetry, and simulations based on the nematic order
tensor and velocity fields. All of these approaches show
that an activity gradient aligns the orientation vector of
a +1/2 defect, in a similar way to an electric field align-
ing an electric dipole moment. In particular, the simu-
lations provide one example of how an activity gradient
can be designed to guide the motion of topological de-
fects. These results agree with the previous work of other
groups using different methods [17, 18], and support the
concept that nonuniform activity patterns can be used to
control active materials.
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