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We evaluate the thermodynamic consistency of the anisotropic mobile slip-link model for entangled
flexible polymers. The level of description is that of a single chain, whose interactions with other
chains are coarse-grained to discrete entanglements. The dynamics of the model consist of the motion
of entanglements through space and of the chain through the entanglements, as well as the creation
and destruction of entanglements, which are implemented in a mean-field way. Entanglements are
modeled as discrete slip-links, whose spatial positions are confined by quadratic potentials. The
confinement potentials move with the macroscopic velocity field, hence the entanglements fluctuate
around purely affine motion. We allow for anisotropy of these fluctuations, described by a set of
shape tensors. By casting the model in the GENERIC (general equation for the nonequilibrium
reversible-irreversible coupling) form of nonequilibrium thermodynamics, we show that (i) since
the confinement potentials contribute to the chain free energy, they must also contribute to the
stress tensor, (ii) these stress contributions are of two kinds: one related to the “virtual springs”
connecting the slip-links to the centers of the confinement potentials and the other related to the
shape tensors, and (iii) these two kinds of stress contributions cancel each other if the confinement
potentials become anisotropic in flow according to a lower-convected evolution of the confinement
strength, or equivalently an upper-convected evolution of the shape tensors of the entanglement
spatial fluctuations. In previous publications, we have shown that this cancellation is necessary for
the model to obey the stress-optical rule and the Green-Kubo relation, and simultaneously to agree
with plateau modulus predictions of multi-chain models and simulations.

I. INTRODUCTION

According to current understanding of polymer liq-
uids, above a certain molecular weight, their response to
externally applied stress or strain is dominated by per-
sistent topological constraints, known as entanglements,
which result from the fact that polymer chains cannot
pass through each other [1–4]. This concept has been
the starting point of many attempts to develop predic-
tive, yet tractable rheological models for polymer liquids.
There are several molecular models that take a single-
chain mean-field level of description [5]. Most of them
can be classified either as tube models, in which the col-
lective effect of entanglements is mimicked by a tube that
restricts lateral motion of the chain, or as slip-link mod-
els, in which each entanglement is described as a discrete
object, a slip-link, through which the chain must pass.
These models are typically coarse-grained to the level of
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the primitive path (PP), i.e., the tube axis in tube models
or the shortest path connecting the chain ends through
successive entanglements in slip-link models. This means
that dynamic processes on length scales smaller than the
entanglement spacing are not resolved, and are assumed
to be equilibrated.

In a melt or concentrated solution, each monomer has
interactions with monomers of other chains. However, ac-
cording to entanglement theories, only a small subset of
all interchain interactions are sufficiently long-lived to af-
fect the stress on a relevant time scale: they make up the
persistent topological constraints called entanglements.
This hypothesis is strongly supported by experiments as
well as multi-chain simulations. References are given in
the following subsections, where a few important results
are discussed. Nevertheless, single-chain mean-field en-
tanglement models have struggled with some fundamen-
tal issues. A well-known problem is that, in most of these
models, the entanglement spacing is not consistent simul-
taneously with experiments and with multi-chain simu-
lations (see Sec. I C). This consistency is one of four
criteria for single-chain mean-field entanglement models,
which were considered in a previous publication [5] and
are discussed here in Sec. ID. To our knowledge, the only
model that satisfies all of them is the anisotropic mobile
slip-link model (AMSM) proposed by Schieber et al. [5].



2

FIG. 1. (Color online) Comparison of slip-link model predic-
tions to uniaxial extension data on a polystyrene melt with
Mw = 200 kg/mol and Mw/Mn = 1.04 [20]. Strain rates
ǫ̇ = 0.003, 0.01, and 0.03 s−1 (from right to left) were applied
at T = 130 ◦C. The FSM assumes affine entanglement motion.
The AMSM assumes nonaffine entanglement motion accord-
ing to the generalized Ronca-Allegra dynamics; see Sec. II C.
The detailed AMSM tracks the slip-link positions explicitly,
whereas the coarse-grained AMSM tracks only their mean po-
sitions [5].

Section II reviews the AMSM and its predecessors from
the perspective of these four criteria.

It has been shown in previous publications that the
slip-link models by Schieber and co-workers, even those
that do not satisfy all four criteria, are in excellent agree-
ment with a wide range of experiments [6–17]. However,
some experiments still pose a challenge for entanglement
theories in general. Examples are dielectric relaxation
in bidisperse blends with a low concentration of high-
molecular weight chains [8] and extensional flows [10].
The AMSM does not solve these problems, but it does
provide a connection with multi-chain simulations, which
enables all of its four parameters to be determined ab

initio. The molar mass of a Kuhn step, MK, can be de-
rived from the mean squared end-to-end distance in equi-
librated multi-chain systems of sufficiently high molecu-
lar weight. The parameters n, related to ESFs, and β,
related to the entanglement spacing, can be extracted
from primitive-path analysis of such systems [18]. The
most convenient way to determine the final parameter,
the characteristic time scale τK, ab initio is by matching
the mean squared chain center-of-mass displacement, ob-
tained from molecular dynamics [19]. All of these meth-
ods require only equilibrium simulations, which means
that the anisotropy of ESFs plays no role. Moreover, the
values of these parameters can be mapped onto reduced
sets of parameters in each of the less detailed slip-link
models [13, 19].

Although the focus of this paper is on compliance with
fundamental principles, model predictions are compared

with uniaxial extension data [20] in Fig. 1, from which it
is clear that the AMSM performs no better than our ear-
lier fixed slip-link model (FSM) [10]. The FSM captures
part of the strain-hardening behavior, but this is followed
by a large drop in the extensional viscosity, which is not
observed experimentally. The AMSM predictions do not
have this severe strain-softening feature, but they also
exhibit no significant strain hardening.

Sections I and II provide the context for the main part
of the present work: a rigorous proof of consistency with
nonequilibrium thermodynamics (one of the four criteria)
of the AMSM. This proof, presented in Sec. III, involves
demonstrating that the time evolution of the state vari-
ables can be written in the form of the general equa-
tion for the nonequilibrium reversible-irreversible cou-
pling (GENERIC), which guarantees compliance with
the known laws and theorems of nonequilibrium thermo-
dynamics [21–25]. The GENERIC formalism is arguably
the most successful theoretical framework for nonequi-
librium thermodynamics; the literature contains many
examples of its applicability to classical (including rel-
ativistic) and quantum-mechanical systems. Detailed
comparisons with other nonequilibrium thermodynamics
formalisms have also been made [25–35]. The implica-
tions of our GENERIC check for the AMSM are summa-
rized, and opportunities for future work are indicated in
Sec. IV.

A. Scaling analysis of the entanglement spacing

The most basic characteristic of the entanglement net-
work (or PP network) is the average molecular weight be-
tween adjacent entanglements, which is denoted by Me

for a polymer at equilibrium. A few researchers devel-
oped simple theories that relate Me to chain dimensions
for linear flexible polymers. Independently of each other,
Lin [36] and Kavassalis and Noolandi [37, 38, 39] postu-
lated that the number of entanglement strands inside the
volume spanned by one entanglement strand of average
length is a universal topological parameter, independent
of the chemical structure of the polymer. Lin [36] de-
rived a relation between this parameter andMe, which is
given in Eq. (1) below. Kavassalis and Noolandi’s deriva-
tion is analogous to Lin’s, except that they accounted for
the presence of dangling ends in addition to entangle-
ment strands. In the long-chain limit, their result re-
duces to that of Lin [39]. Polydispersity only modifies
the dangling-end correction [38].

The volume physically occupied by an entanglement
strand of average length is Ve =Me/(ρNA), while a rea-
sonable scaling relation for the volume spanned by such
a strand is Ve,sp ∝ (Me〈R2

ee〉eq/M)3/2. Here M is the
molecular weight of the chain, Ree is its end-to-end dis-
tance, and 〈. . .〉eq denotes the equilibrium average. Dis-
regarding dangling ends, the number of entanglement
strands inside the volume spanned by one entanglement
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strand of average length is then

Ve,sp
Ve

∝ ρNA

√

Me

(〈

R2
ee

〉

eq

M

)
3
2

. (1)

Note that this is a scaling relation, not an equality as
suggested by the works of Lin [36] and Kavassalis and
Noolandi [37, 38, 39], because the relation between Ve,sp
and 〈R2

ee〉eq contains an unknown prefactor. Kavassalis
and Noolandi [39] recognized that this prefactor depends
on the assumed shape of the spanned volume. More im-
portantly, however, it is very sensitive to the character-
istic size of this volume. For example, if we take the
root-mean-square radius of gyration of the entanglement
strand instead of its root-mean-square end-to-end dis-
tance, the prefactor is multiplied by 6−3/2 ≈ 6.8× 10−2.
Thus Eq. (1) cannot be used to quantify the number
of entanglement strands inside the volume spanned by
one entanglement strand. On a side note, attempts at
such quantification are also complicated by the fact that
Me cannot be measured directly. It is usually inferred
from the plateau modulus, which introduces an addi-
tional model-dependent prefactor, as discussed in Sec. I B
and in more detail in Ref. [18].

The important result of the Lin-Kavassalis-Noolandi
analysis is that the right-hand side of Eq. (1) was found to
be constant, within experimental uncertainty, for several
different polymers [36, 39]. If the topological parameter
Ve,sp/Ve is absorbed in the unknown prefactor, Eq. (1)
can be written in the form

Me

ρNA
∝ p3 =

(

M

ρNA 〈R2
ee〉eq

)3

(2)

as presented by Fetters et al. [40], where the packing
length p is defined as the volume of the chain divided
by its mean squared end-to-end distance. The packing
length can also be written in a way that it is proportional
to the “cross-sectional area” of a Kuhn step divided by its
length, hence p may be interpreted as a measure of chain
“fatness” [41]. The relation between Me and the plateau
modulus G0

N , as predicted by entanglement models, is
generally of the form

Me ∝
ρRT

G0
N

. (3)

For a wide variety of nearly monodisperse polymers,
Fetters and co-workers [40–44] tabulated the ratio
〈

R2
ee

〉

eq
/M , obtained from small-angle neutron scatter-

ing data, and G0
N , obtained from rheological measure-

ments. Consistent with the works of Lin [36] and Kavas-
salis and Noolandi [37, 38, 39], the results of Fetters and
co-workers invariably confirmed the validity of Eq. (2),
which is therefore considered a universal scaling relation
for entangled polymers.

B. Entanglement spacing from the plateau modulus

Since there is no way to measure Me directly, it
would be convenient if one could calculate it from mea-
surable quantities. Starting from the Lin-Kavassalis-
Noolandi postulate, such a calculation is not feasible be-
cause it involves unknown prefactors, related to the vol-
ume spanned by an entanglement strand and the crit-
ical number of other entanglement strands in that vol-
ume. A more promising starting point is the relation be-
tween the entanglement molecular weight and the plateau
modulus, Eq. (3). However, the value of the prefactor
in this relation varies significantly between models. It
equals 1 in some tube models, but 4/5 in others [45–
47]. The slip-link models of Schieber and co-workers pre-
dict expressions for the plateau modulus that are weakly
dependent on the molecular weight. In the long-chain
limit, M/Me → ∞, these expressions are consistent with
Eq. (3) with a prefactor of 1 [6, 48], except when the
spatial positions of the slip-links are allowed to fluctu-
ate by placing them in confinement potentials and these
potentials become anisotropic in flow. If the anisotropy
is described by a lower-convected second-order tensor for
each confinement potential, then the prefactor in Eq. (3)
decreases as the overall confinement strength decreases,
or as the size of the fluctuations, which we call entangle-
ment spatial fluctuations (ESFs), increases [5].

C. Primitive-path analysis

In the early 21st century, algorithms were developed to
extract the PP network from atomistic (or nearly atom-
istic) multi-chain simulations [49–54]. These algorithms
shrink all chains in a simulation box simultaneously, un-
der the constraint that they cannot pass through each
other, while their ends are kept fixed in space. Eventu-
ally, all chains are pulled taut between topological con-
straints, and a system of entangled, piecewise linear space
curves remains. Several research groups have attempted
to map this PP network onto a single-chain model, with
the objective to extract parameter values from first prin-
ciples for rheology predictions. In the majority of studies,
the Doi-Edwards tube model [45, 55–58] was used, and
the parameter Me was determined through a mapping
involving the average PP length at equilibrium. While
the result agreed with the value of Me estimated from
the plateau modulus, the actual mesh size of the multi-
chain PP network was consistently found to be smaller,
roughly by a factor of 2 [51, 53, 59–65].
This difference may be partly explained by the fact

that, when PP analysis is applied to a snapshot of a
multi-chain simulation, many of the instantaneous topo-
logical constraints are too short-lived to affect the stress,
which means that they should not be considered as en-
tanglements [4]. The mesh size of the real PP network
(i.e., the entanglement network) is thus greater than that
of the apparent PP network in a snapshot, and closer to
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the estimate of Me based on the plateau modulus. Ac-
cording to Anogiannakis et al. [4], short-lived topological
constraints originate from contacts between PPs due to
small displacements of the entanglements, which do not
significantly change the PP conformations. Estimates of
Me based on the PP-length distribution are therefore in-
sensitive to the presence of these constraints. However,
the estimates used in mapping equilibrium PP statistics
onto the Doi-Edwards model, which are based on the av-
erage PP length at equilibrium [64], involve a number of
assumptions that influence the results significantly [18].

More recently, dynamic methods emerged as alterna-
tives to the usual static PP analysis. One group extracted
the time evolution of PP conformations from molecular-
dynamics simulations and mapped this onto the “seg-
ment survival probability function” of tube models [66–
70]. Others focused on developing new ways to obtain the
PP network from molecular-dynamics trajectories, based
on time- and ensemble-averaging [71, 72] or a criterion
to select the most persistent topological constraints [4],
or a combination of these two approaches [73]. However,
Uchida et al. [74] showed that the mesh size of PP net-
works is related to the packing length, which is a purely
static property. This is a strong indication that it should
be possible to map multi-chain simulations onto a single-
chain model using only equilibrium PP statistics. Also,
being a static quantity, the PP can be considered as a
thermodynamic object.

Tube models disregard many fluctuations that exist in
multi-chain simulations, such as fluctuations in the num-
ber of entanglements per chain, the number of monomers
per strand, and the end-to-end length of each strand.
The slip-link model of Schieber [75] does include fluc-
tuations in these variables and gives analytic results for
their distributions at equilibrium. Multi-chain simula-
tions have provided quantitative validation of some of
these results: the Poisson distribution of the number of
entanglements per chain [59] and (except for very short
strands) the exponential distribution of the number of
monomers per strand [53]. When ESFs are included
[48], the equilibrium PP-length distribution from multi-
chain systems can be fitted almost perfectly by adjusting
the model parameters n, which determines the size of
ESFs, and β, which determines the entanglement molec-
ular weight [18]. The resulting value of β is lower than
what was found for the slip-link model without ESFs,
by fitting either the average PP length at equilibrium
from multi-chain simulations [76] or the dynamic mod-
ulus from experiments [6, 10]. Thus the entanglement
molecular weight becomes lower with ESFs. Most impor-
tantly, Steenbakkers et al. [18] showed that the short-time
relaxation modulus, predicted by PP analysis using the
AMSM, agreed well with experimental plateau modulus
data for the three chemistries that they tested.

D. Consistency criteria for entanglement models

Simultaneous agreement of the slip-link model with
multi-chain simulations and experimental rheology data
is achieved only if the ESFs become anisotropic in flow,
according to a lower-convected evolution of the entangle-
ment confinement potentials [5, 18]. This anisotropy is
intimately related to more fundamental issues of consis-
tency. Schieber et al. [5] evaluated a number of single-
chain mean-field entanglement models with respect to the
following criteria:

(i) Consistency with multi-chain models and simula-

tions. As explained in Sec. IC, the amount of in-
formation about multi-chain conformational statis-
tics, which is retained on the single-chain level
of description, differs among entanglement mod-
els. They all predict a plateau modulus, which de-
pends on a parameter associated with the entangle-
ment molecular weight, so for each model it can be
checked whether these two quantities agree simul-
taneously with multi-chain results. This was the
criterion used in our previous work [5]. From the
discussion at the end of Sec. I C, it is clear that a
more detailed analysis is possible for slip-link mod-
els. Here, in addition to the correct prediction of
the plateau modulus, we demand that the distri-
butions (not just the averages) of the number of
entanglements per chain, the number of monomers
per strand, and the PP length are consistent with
their counterparts in a multi-chain system at equi-
librium.

(ii) Consistency with nonequilibrium thermodynamics.

Several theoretical frameworks are available to
check whether a model complies with all the laws
and theorems of nonequilibrium thermodynamics.
The most successful one is the GENERIC formal-
ism, which is used here.

(iii) Consistency with the stress-optical rule. It can
be shown analytically that an entanglement strand
with end-to-end vector Q, which contains N Kuhn
steps, has a contribution to the refractive index
tensor proportional to QQ/N [77]. Experimen-
tally, the extra stress tensor of entangled polymers
is found to be proportional to the refractive index
tensor, as long as the stress is low enough for the
distribution of strand conformations to remain ap-
proximately Gaussian [78]. Therefore, under these
conditions, the stress tensor must have the form

τ ∼ 〈∑Z
i=1 QiQi/Ni〉, where Z is the number of

strands in a chain.

(iv) Consistency between the relaxation modulus pre-

dicted by the Green-Kubo relation at equilibrium

and the modulus after infinitesimal deformation.

The equilibrium relaxation modulus G(t) can be
obtained from the stress tensor using the Green-
Kubo relation [79]. If the evolution equations of
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the conformational variables are known, it is also
possible to calculate the stress tensor to linear or-
der in the deformation tensor, and thus obtain the
modulus after infinitesimal deformation. Accord-
ing to linear response theory, these two calculations
should give the same result.

The models from previous literature, which were consid-
ered by Schieber et al. [5], all violate at least one of these
criteria. This includes the fixed slip-link model (FSM)
developed by Schieber and co-workers [6–11], which sat-
isfies criteria (ii)-(iv) but is not in full compliance with
criterion (i) [76]. Therefore, we proposed a mobile slip-
link model (MSM), which appears to be the first molecu-
lar entanglement model to satisfy all four criteria simul-
taneously [5]. Note that the FSM was originally called
the discrete slip-link model (DSM). The latter term is
now used to indicate a hierarchy of models, which in-
cludes the MSM, the FSM, and another, further coarse-
grained model, namely the clustered fixed slip-link model
[12–17]. Each of these models is derived by systematic
coarse-graining from the next, more detailed member of
the hierarchy.
The FSM and the MSM are stochastic models describ-

ing the evolution of the PP conformation. The chain
resides in a chemical potential bath of activity β, which
determines the probability distribution of the number of
entanglements at equilibrium [75]. The three dynamic
processes that these models have in common are as fol-
lows: sliding dynamics (SD) of the chain through the
slip-links, creation and destruction of entanglements at
the ends of the chain due to SD, and creation and de-
struction of entanglements anywhere along the chain due
to sliding dynamics in its environment. The third pro-
cess is called constraint dynamics (CD) and is obtained
by enforcing consistency with SD [6, 10].
The remaining dynamics are related to entanglement

motion, and this is where the two models differ. In the
FSM, the slip-links occupy fixed positions relative to the
macroscopic deformation, i.e., their motion is affine. In
the MSM, the slip-links fluctuate around “anchors” that
move affinely. These fluctuations are what we call the
ESFs, and they are essential to achieve full compliance
with the four criteria. Specifically, the directionality of
ESFs needs to follow an upper-convected time evolution
(equivalent to lower-convected confinement potentials, as
mentioned above). Otherwise at least one criterion is
violated [5]. This time evolution is a generalization of
the anisotropic dynamics of network node fluctuations in
cross-linked network models, first introduced by Ronca
and Allegra [80]. Therefore, we refer to it as the gen-
eralized Ronca-Allegra dynamics. The slip-link model
with generalized Ronca-Allegra dynamics is called the
anisotropic mobile slip-link model (AMSM). An older
model with isotropic ESFs [48, 81] is called the isotropic
mobile slip-link model (IMSM).
Schieber et al. [5] compared a number of single-chain

mean-field entanglement models from the perspective of
the four criteria listed above. However, consistency with

multi-chain simulations was not verified thoroughly. It
was merely checked, for each model, whether ESFs are
included and whether they lower the plateau modulus,
in qualitative agreement with multi-chain simulations of
entangled polymer melts [82]. Multi-strand models [83–
87] and simulations [82] of cross-linked networks predict
a similar effect of network node fluctuations on the elas-
tic modulus. The FSM fails this test because it does
not include ESFs. The IMSM fails as well because its
plateau modulus is not affected by the ESFs [48]. The
AMSM, on the other hand, does predict a plateau modu-
lus that decreases with increasing ESFs. Primitive-path
analysis provides a more comprehensive check of consis-
tency with multi-chain simulations, and the results con-
firm that the AMSM satisfies this criterion, as summa-
rized in Sec. I C and discussed in detail by Steenbakkers
et al. [18]. Schieber and Andreev [13] and Becerra et al.

[19] showed that the FSM can accurately reproduce the
dynamic modulus of the AMSM by an appropriate rescal-
ing of the parameters. Hence, the FSM represents a faith-
ful coarse-graining of the more fundamental AMSM.
One thing missing from previous work is a rigorous

proof that the AMSM is consistent with nonequilibrium
thermodynamics. Such a proof is provided here for one
of the two versions of the model proposed by Schieber
et al. [5]. This version exists on a more detailed level
of description, which keeps track of the actual slip-link
positions, whereas the other has the actual positions of
the slip-links coarse-grained out and keeps track only of
their mean positions. The proof of thermodynamic con-
sistency is presented in Sec. III for the detailed AMSM.
In Sec. II, we review our previous findings related to the
compliance of the FSM, the IMSM, and the AMSM with
the four criteria [5, 18]. The mobile slip-link models are
considered on the detailed level of description here, but
all findings carry over to the coarse-grained level of de-
scription [5]. The main conclusions are that the AMSM
satisfies all four criteria and that this is a direct result of
the generalized Ronca-Allegra dynamics, used to describe
the flow-induced anisotropy of ESFs. Opportunities for
future work on molecular entanglement models are dis-
cussed in Sec. IV.

II. ENTANGLEMENT MOTION IN SLIP-LINK

MODELS

In all slip-link models considered in this paper, the
equilibrium probability density for the chain conforma-
tion has the form

peq(Ω) =
1

J
δNK,

∑
Z

i=1
Ni

exp

(

(Z − 1)µe − F (Ω)

kBT

)

=
1

JβZ−1
δNK,

∑
Z

i=1
Ni

exp

(

−F (Ω)
kBT

)

. (4)

Here Ω is a set of variables including, for each model, the
number of entanglement strands Z and the numbers of
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Kuhn steps in the strands {Ni}, which are restricted to
integer values. The other variables in Ω, related to the
strand conformations and ESFs, are different for each
model. The exponential term on the first line of Eq. (4)
corresponds to a grand-canonical ensemble with chemical
potential µe, conjugate to the number of entanglements
Z − 1, and chain free energy F (Ω). As in previous work,
we use the entanglement activity

β := exp

(

− µe

kBT

)

(5)

as a model parameter. The Kronecker δ in Eq. (4) ensures
conservation of the total number of Kuhn steps in the
chain, NK. Finally, J is a normalization constant, which
can be calculated analytically [48, 75].
The evolution of the probability density p(Ω) is given

by the differential Chapman-Kolmogorov equation,

Dp(Ω)

Dt
=L(Ω) ∗ p(Ω)

+

∫

[W (Ω|Ω′)p(Ω′)−W (Ω′|Ω)p(Ω)] dΩ′, (6)

where L(Ω) is a linear Fokker-Planck operator describing
the dynamics of entanglement motion. In the AMSM,
this includes the generalized Ronca-Allegra dynamics.
The asterisk represents a general scalar product, which,
depending on the operator, may involve differentiation,
summation over discrete variables, and integration over
continuous variables. The shorthand

D

Dt
≡ ∂

∂t
+ v ·∇ (7)

denotes the substantial derivative. The second term on
the right-hand side of Eq. (6) corresponds to a master
equation, which describes the shuffling of Kuhn steps be-
tween adjacent strands, i.e., SD, as well as the creation
and destruction of entanglements by SD and CD. Here
W (Ω|Ω′) is the transition rate for a jump from confor-
mation Ω′ to conformation Ω, and

∫

dΩ′ is a shorthand
that denotes summation over all possible values of the
discrete variables and integration over all possible values
of the continuous variables.

A. Fixed slip-link model

In the FSM, the chain conformation is expressed in the
set of variables

Ω =
{

Z, {Ni,Qi}Zi=1

}

, (8)

where

Qi = Ri −Ri−1 (9)

is the end-to-end vector of the ith strand. The vec-
tors {Ri} give the spatial positions of the slip-links

(i ∈ {1, 2, . . . , Z−1}) and the chain ends (i ∈ {0, Z}). By
selecting the strand end-to-end vectors as variables, only
the relative positions of the slip-links are tracked, and
the scope of the model is restricted to problems where
center-of-mass diffusion of the chain is unimportant.
The chain free energy F is written as a sum of inde-

pendent strand free energies Fs,

F (Ω) =

Z
∑

i=1

Fs(Ni,Qi). (10)

Thus we restrict ourselves to flexible polymers. More
precisely, we assume that strands with a contour length
smaller than the persistence length of the chain have a
negligible probability. On the other hand, the form of
Fs is not specified here. Finite extensibility can be taken
into account by using an approximation to the inverse
Langevin function. Cohen’s Padé approximant [88] was
chosen in our previous work [10], but more accurate al-
ternatives have been derived in recent years [89–91].
The stress tensor can be derived from the response to

an instantaneous step strain E(t) = E0H(t), where H(t)
is the Heaviside function. Using the principle of virtual
work [92, 93] and integrating over an infinitesimal time
interval around the step, we obtain

τ : E0 = −nc

〈

∫ F (Ω;t=0+)

F (Ω;t=0−)

dF (Ω)

〉

. (11)

Here the angle brackets denote the ensemble average,

〈. . .〉 ≡
∫

. . . p(Ω) dΩ, (12)

and nc is the number density of chains. For a monodis-
perse polymer melt,

nc =
NAρ

M
, (13)

where M is the molecular weight and NA is Avogadro’s
number. For a monodisperse polymer solution, the right-
hand side of Eq. (13) should be multiplied by the polymer
weight fraction (if ρ is the density of the solution) or by
the polymer volume fraction (if ρ is the density of the
polymer). Similarly, for polydisperse systems, the num-
ber density of each component of the molecular weight
distribution is given by an expression like Eq. (13), mul-
tiplied by the appropriate fraction of the component. No
modifications to the mathematical structure of the FSM
are necessary to account for the presence of solvent [12] or
for polydispersity of the polymer, other than a straight-
forward extension to multiple components in the latter
case [7, 11, 17].
In Eq. (11), all dynamics independent of the velocity

gradient tensor κ(t) = E0δ(t) vanish identically. Substi-
tution of the affine slip-link motions

dQi

dt
= κ ·Qi (14)
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TABLE I. Slip-link models and their consistency with the
four criteria from Sec. ID: MC denotes multi-chain mod-
els/simulations, NETD denotes nonequilibrium thermody-
namics, SOR denotes the stress-optical rule, and GKR de-
notes the Green-Kubo relation.

Model Refs.
Criterion

(i) MC (ii) NETD (iii) SOR (iv) GKR

FSM 6–11 × X X X

IMSM 48, 81 × X × X

AMSM 5, 18 X X X X

then leads to the stress tensor

τ = −nc

〈

Z
∑

i=1

Qi
∂Fs

∂Qi

〉

. (15)

Schieber [94] proved that the FSM conforms to the
GENERIC structure of nonequilibrium thermodynamics
[21–25]. The stress tensor, which follows from the re-
strictions imposed by the GENERIC structure, is given
by Eq. (15) with an additional term proportional to the
unit tensor. The prefactor of this term equals nckBT
times the average number of variables contributing to
the momentum of the system. In the FSM with vari-
ables Ω given by Eq. (8), these are the vectors {Qi},
hence the prefactor is nckBT 〈Z〉. If, instead of {Qi}, we
choose the position vectors {Ri} as variables, the prefac-
tor becomes nckBT (〈Z〉+ 1). More insight into the ori-
gin of the isotropic part of the stress tensor is provided
in Sec. III A 1.
Only the conformational part of the stress tensor,

Eq. (15), contributes to shear stresses and normal stress
differences. It can be shown that this part has the form
required by the stress-optical rule [77] by taking

Fs(Ni,Qi)

kBT
=

3Q2
i

2Nia2K
+

3

2
log

(

2πNia
2
K

3

)

, (16)

corresponding to a Gaussian strand. (The second term,
where log denotes the natural logarithm, is needed to
keep the probability density normalized.) The stress-
optical rule is then satisfied for all possible strand con-
formations. With a non-Gaussian free energy, it is satis-
fied only when the strands are not significantly extended,
which is consistent with experimental results [78].
The relaxation modulus G(t) is by definition indepen-

dent of the isotropic part of the stress tensor. Using the
Green-Kubo relation, the initial modulus is found to be
[6]

G(0) = nckBT 〈Z〉eq . (17)

Since G(t) includes longitudinal relaxation modes of the
PP, it is somewhat higher than the experimental plateau
modulus. Taking the time derivative of Eq. (15) and sub-
stituting Eq. (14), the modulus after infinitesimal defor-
mation is found to be equivalent to G(0) from the Green-
Kubo relation. Thus the FSM satisfies criteria (ii)-(iv).

This is indicated by check marks in the corresponding
columns of Table I.
From the equilibrium probability density peq(Ω), ana-

lytic expressions are obtained for the distributions of all
variables at equilibrium [75]. The distributions of the
number of entanglements per chain peq(Z) and the num-
ber of Kuhn steps per strand peq(N) agree very well with
results from multi-chain simulations [53, 59]. Only very
short strands deviate from the slip-link prediction for
peq(N), which can be fixed by including a repulsion be-
tween adjacent entanglements on the chain [53]. Also, the
molecular-weight dependence of the average PP length
at equilibrium is reproduced, but the PP-length distri-
bution is broader than that extracted from multi-chain
simulations [76]. Therefore, although the FSM captures
much of the physics of multi-chain systems, we conclude
that it still violates criterion (i), and put a cross in the
corresponding column of Table I.

B. Isotropic mobile slip-link model

Since polymer chains are fluctuating objects, ESFs al-
most certainly occur in reality. They have indeed been
observed in multi-chain simulations [4], hence including
them on a single-chain level of description seems a rea-
sonable approach to fixing the violation of criterion (i).
In the slip-spring simulation of Likhtman [95] and in the
IMSM [48], ESFs are modeled by placing each slip-link
in an isotropic confinement potential. This is symbolized
by virtual springs, connecting each slip-link to a fixed
anchor as in Fig. 2. The centers of the confinement po-
tentials, or anchors of the virtual springs, are assumed to
move affinely.
In the IMSM, the conformation of the chain is de-

scribed by the variables

Ω =
{

Z, {Ni,Qi}Zi=1, {Xi}Z−1
i=1

}

, (18)

where

Xi = Ri − ri (19)

is the vector pointing from the ith anchor to the ith slip-
link. Figure 2 illustrates how the vectorial quantities are
defined.
The confinement potentials are assumed to be

quadratic and isotropic. The chain free energy is then

F (Ω) =

Z
∑

i=1

Fs(Ni,Qi) +
3kBT

2na2K

Z−1
∑

i=1

X2
i . (20)

The parameter n determines the size of ESFs: the higher
n is, the softer are the confinement potentials and the
larger are the ESFs. Because ESFs contribute to the
chain free energy, thermodynamics demands that they
also contribute to the stress tensor. This can be shown
by means of a virtual-work argument as in Sec. II A. The
strands and the virtual springs no longer deform affinely,



8

FIG. 2. (Color online) Sketch of a strand on the detailed
MSM level of description. The chain (thick black line) passes
through slip-links (orange circles) connected to affinely mov-
ing anchors (blue crosses) by virtual springs (thin black lines).
The black solid arrows are the position vectors of the slip-
links and anchors that make up two adjacent entanglements.
The orange dash-dotted arrow is the strand end-to-end vec-
tor. The green dashed arrows are the virtual-spring end-to-
end vectors. The blue dotted arrow is the anchor connector
vector.

but the nonaffine contributions to their dynamics vanish
identically when integrating over an infinitesimal time
interval. Consequently, Eq. (11) yields

τ = −nc

〈

Z
∑

i=1

Qi
∂Fs

∂Qi
+

3kBT

na2K

Z−1
∑

i=1

XiXi

〉

. (21)

Again, the GENERIC result has an additional isotropic
term, whose prefactor equals nckBT times the average
number of variables contributing to the momentum of
the system. In the IMSM, these variables are the vectors
{Qi,Xi}, hence the prefactor is nckBT (2〈Z〉 − 1).
Likhtman [95] decided to omit the part due to ESFs

from the stress tensor expression, which is then consis-
tent with the stress-optical rule [77]. However, recent
work on associating polymers suggests that this leads to
a violation of the second law of thermodynamics [96].
An inconsistency in the slip-spring simulation between
Green-Kubo predictions and the modulus after infinitesi-
mal deformation was resolved by Ramı́rez et al. [97], but
they did not change the definition of the stress tensor,
and therefore the thermodynamic issue remains.
In the IMSM, the stress due to the confinement po-

tentials, the second term in Eq. (21), is not omitted. As
a result, the model is thermodynamically consistent but
violates the stress-optical rule. It is not fully consistent
with multi-chain simulations either, since it predicts the
same initial relaxation modulus as the FSM, given by
Eq. (17) [48], whereas multi-chain simulations show that
the plateau modulus decreases with increasing ESFs [82].

The IMSM does yield a modulus after infinitesimal defor-
mation that is consistent with the Green-Kubo relation,
hence it satisfies two of the four criteria: one fewer than
the FSM. These findings are summarized in Table I.

On the bright side, we found that the equilibrium
distribution of the mean-path length, predicted by the
IMSM, is practically identical to that obtained from PP
analysis of multi-chain systems [18]. The mean path
is defined as the shortest path between the chain ends,
passing through the mean positions of the slip-links, i.e.,
those positions that minimize the chain free energy for
given anchor positions and given numbers of Kuhn steps
in the strands [81]. An important result is that the pa-
rameters n and β, obtained by fitting the mean-path
length distribution to the multi-chain PP length distri-
bution, are independent of molecular weight, as expected
[18]. Thus the discrepancy in PP statistics between the
FSM and multi-chain simulations [76] is overcome by the
presence of ESFs in the IMSM. Moreover, it can be shown
analytically that the mean strand end-to-end vectors are
correlated with their neighbors [5, 18, 81], which suggests
that the IMSM explains the exponentially decaying cor-
relations between PP segments, observed in multi-chain
simulations by Tzoumanekas and Theodorou [53]. We
are not aware of similar agreement elsewhere in the lit-
erature.

C. Anisotropic mobile slip-link model

The generalized Ronca-Allegra dynamics are the miss-
ing ingredient, necessary to satisfy all four consistency
criteria simultaneously. In the AMSM, these dynamics
are taken into account by a set of shape tensors {ni},
which describe the strength and the directionality of
ESFs. We choose the variables

Ω =
{

Z, {Ni,Qi}Zi=1, {Xi,ni}Z−1
i=1

}

. (22)

The chain free energy is then

F (Ω) =

Z
∑

i=1

Fs(Ni,Qi) +
3kBT

2a2K

Z−1
∑

i=1

Xi · n−1
i ·Xi, (23)

again assuming that the confinement potentials are
quadratic. At equilibrium, the shape tensors are isotropic
(ni,eq = nδ) and hence all equilibrium statistics are the
same as in the IMSM. Each newly created entanglement
also has an isotropic shape tensor. As a result, when flow
stops, the isotropy of ESFs is restored by creation and
destruction dynamics.

The stress tensor is again found by applying a step
strain and using the principle of virtual work. From
Eq. (11),
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τ : E0 = −nc

〈

Z
∑

i=1

Qi
∂Fs

∂Qi
+

3kBT

2a2K

Z−1
∑

i=1

Xi ·
(

∫

n
−1

i
(t=0+)

n
−1

i
(t=0−)

dn−1
i +E

†
0 · n−1

i + n−1
i ·E0

)

·Xi

〉

. (24)

This shows that a lower-convected evolution of the con-
finement potentials,

dn−1
i

dt
= −κ† · n−1

i − n−1
i · κ, (25)

or, equivalently, an upper-convected evolution of the
shape tensors,

dni

dt
= κ · ni + ni · κ†, (26)

leads to the stress tensor

τ = −nc

〈

Z
∑

i=1

Qi
∂Fs

∂Qi

〉

. (27)

This is identical to Eq. (15) for the FSM, and it agrees
with the stress-optical rule. Again, the GENERIC result
for the stress tensor includes an isotropic term, related to
the number of variables that contribute to the momentum
of the system. This term is derived in Sec. III A 1.
The cancellation of ESF terms in the stress tensor

also affects the relaxation modulus, which can be cal-
culated by the Green-Kubo relation. At times that are
long relative to the relaxation of ESFs, but are on the
order of the shortest time scales accessible in rheologi-
cal measurements, the relaxation modulus should corre-
spond to the experimental plateau modulus. On this in-
termediate time scale, the relaxation modulus decreases
with increasing ESFs [5], which is consistent with multi-
chain simulation results [82]. The modulus after infinites-
imal deformation remains consistent with G(0) from the
Green-Kubo relation [5]. More generally, recent work by
Indei [98] suggests that G(t) for a system under small
deformation is consistent with the Green-Kubo relation.
Since the AMSM has the same equilibrium statistics as
the IMSM, the agreement between the equilibrium dis-
tribution of the mean-path length and that of the multi-
chain PP length is preserved [18]. In summary, all four
criteria are satisfied, as indicated in Table I.
The upper-convected evolution of the shape tensors,

Eq. (26), is what we call the generalized Ronca-Allegra
dynamics, after the network node dynamics introduced
by Ronca and Allegra [80] in their model for cross-linked
networks. They hypothesized that spatial fluctuations of
the cross-links would become anisotropic in flow due to
excluded-volume interactions. These interactions were
also called “entanglements.” Although the word is the
same, the meaning is very different from the topological
constraints introduced previously [1–3], which polymer
scientists refer to when they talk about entanglements to-
day. Starting from the phantom network model, in which
the only interactions are entropic forces exerted by the

network strands on the cross-links, Ronca and Allegra
[80] added the hypothetical excluded-volume effects by
placing the cross-links in confinement potentials, which
are described by a single anisotropic tensor because all
cross-links are permanent and present from the outset.
Assuming that the anisotropy is not subject to any re-
laxation process, the principal directions of this tensor
coincide with the principal strain directions. Therefore,
Ronca and Allegra and later authors [99–102] aligned the
coordinate system with the principal strain directions,
and then they made each principal component of the con-
finement potential a function of the corresponding prin-
cipal strain.

This approach still works for cross-linked networks
with trapped entanglements (topological constraints,
not excluded-volume interactions) whose ESFs become
anisotropic in flow. A trapped entanglement involves at
least two chains that lead to a cross-link in either di-
rection; they are called active network chains in the lit-
erature. Consequently, the entanglement is not subject
to creation and destruction dynamics, and the principal
directions of its confinement potential coincide with the
principal strain directions. On the other hand, if an en-
tanglement is made up of at most one active network
chain, while the other chains have one free end (dangling
chains) or two free ends (solvent chains), then the entan-
glement is subject to creation and destruction dynamics
and the principal directions of its confinement potential
are generally different from those of the other confine-
ment potentials, as well as from the principal strain direc-
tions. As a result, for an entangled melt or a cross-linked
network containing entangled dangling chains or solvent
chains, there is not one coordinate system in which all
confinement potentials are described by diagonal tensors,
unless the flow has no shear components. The general-
ized Ronca-Allegra dynamics are applicable to systems
containing arbitrary combinations of cross-links, trapped
entanglements, and temporary entanglements, subjected
to any kind of flow.

To end this section, we mention a few works in which
direct observations of node fluctuations in multi-strand
cross-linked network simulations were compared with the
Ronca-Allegra dynamics. Allegra et al. [103] studied
spatial fluctuations in coarse-grained bead-spring simu-
lations of regular hexafunctional polyethylene networks.
Applying uniaxial deformation, they looked at correla-
tions between the fluctuations of pairs of network nodes,
and they found that these were close to the predictions of
the Ronca-Allegra model. Similar results were reported
in earlier studies [104, 105], comparing simulations of
three-strand micronetworks with a model developed by
Flory [106], which is also based on the Ronca-Allegra
dynamics.
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III. THERMODYNAMIC CONSISTENCY OF

THE DETAILED AMSM

To perform the GENERIC check of thermodynamic
consistency for the AMSM with variables Ω as in
Eq. (22), we need to formulate the nonaffine dynamics of
the strand and virtual-spring end-to-end vectors. These
can be derived from the equations of motion of the slip-
links and anchors. Therefore, we start with the variable
set

Ω+ =
{

Z, {Ni}Zi=1, {Ri}Zi=0, {ri,ni}Z−1
i=1

}

. (28)

On this slightly more detailed level of description, the
chain free energy is

F (Ω+) =
Z
∑

i=1

Fs(Ni,Ri −Ri−1)

+
3kBT

2a2K

Z−1
∑

i=1

(Ri − ri) · n−1
i · (Ri − ri) , (29)

equivalent to Eq. (23).
The anchors are assumed to move affinely,

dri
dt

= κ · ri dt, (30)

and the motion of a chain end or entanglement is given
by the Langevin equation

dRi =

(

κ ·Ri −
1

ζ

∂F (Ω+)

∂Ri

)

dt+

√

2kBT

ζ
dWi, (31)

where dWi is a vector of three independent Wiener pro-
cesses [107] and ζ is a friction coefficient. The term in-
volving κ is necessary to recover purely affine motion in
the elastic limit, ζ → ∞.
As usual, a partial derivative with respect to a certain

variable implies that all other variables are kept fixed.

According to Eqs. (9), (19), (22), and (28), partial deriva-
tives of the free energies with respect to the positions or
end-to-end vectors are then related by

∂F (Ω+)

∂Ri
=
∂F (Ω)

∂Qi
− ∂F (Ω)

∂Qi+1
+
∂F (Ω)

∂Xi
. (32)

The equations of motion for the strands and virtual
springs are derived from Eqs. (9), (19), (30), (31), and
(32). The results are

dQi =



κ ·Qi −
Z
∑

j=1

Aij

ζ

∂F (Ω)

∂Qj
−

Z−1
∑

j=1

Bij

ζ

∂F (Ω)

∂Xj



 dt

+

√

2kBT

ζ

Z
∑

j=0

Bij dWj (33)

and

dXi =



κ ·Xi −
Z
∑

j=1

Bji

ζ

∂F (Ω)

∂Qj
− 1

ζ

∂F (Ω)

∂Xi



 dt

+

√

2kBT

ζ
dWi, (34)

with

Aij = −δi−1,j + 2δij − δi+1,j (35)

and

Bij = −δi−1,j + δij . (36)

Using Itô calculus [107], the stochastic differential equa-
tions (26), (33), and (34) are rewritten as a Fokker-
Planck equation for the probability density. For the cor-
responding Fokker-Planck part of Eq. (6), we then obtain

L(Ω) ∗ p(Ω)
kBT

=−
Z
∑

i=1

∂

∂Qi
·



κ ·Qi
p(Ω)

kBT
−

Z
∑

j=1

Aij

ζ

(

p(Ω)

kBT

∂F (Ω)

∂Qj
+
∂p(Ω)

∂Qj

)

−
Z−1
∑

j=1

Bij

ζ

(

p(Ω)

kBT

∂F (Ω)

∂Xj
+
∂p(Ω)

∂Xj

)





−
Z−1
∑

i=1

∂

∂Xi
·



κ ·Xi
p(Ω)

kBT
−

Z
∑

j=1

Bji

ζ

(

p(Ω)

kBT

∂F (Ω)

∂Qj
+
∂p(Ω)

∂Qj

)

− 1

ζ

(

p(Ω)

kBT

∂F (Ω)

∂Xi
+
∂p(Ω)

∂Xi

)





−
Z−1
∑

i=1

∂

∂ni
:

[

(

κ · ni + ni · κ†
) p(Ω)

kBT

]

. (37)

For an explicit formulation of the master-equation part
of Eq. (6), we refer to the literature [6, 10].

A. GENERIC formulation

According to the two-generator formalism of nonequi-
librium thermodynamics [21–25], the time evolution of a
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closed system is given by

dx

dt
= L ∗ δE

δx
+M ∗ δS

δx
, (38)

where x is a column containing the state variables, cho-
sen to describe the system. This expression is known as
the general equation for the nonequilibrium reversible-
irreversible coupling, or GENERIC. The reversible part
of the dynamics is generated by the operator L, called
the Poisson matrix, acting on the functional derivative
of the total energy E of the system with respect to x.
The dissipative part of the dynamics is generated by the
operator M , called the friction matrix, acting on the
functional derivative of the total entropy S of the system
with respect to x. This two-generator formalism imposes
a number of restrictions on the operatorsL andM . Each
must satisfy a degeneracy condition:

L ∗ δS
δx

= 0, (39)

which means that the entropy is not affected by the re-
versible dynamics, and

M ∗ δE
δx

= 0, (40)

which means that the energy is not affected by the dis-
sipative dynamics. Moreover, L must be antisymmetric
and must satisfy the Jacobi identity, while M must be
symmetric and positive-semidefinite [22–25].
For the AMSM, we choose the state variables

x =











ρ(r, t)

u(r, t)

ǫ(r, t)

p(Ωa; r, t)











, (41)

i.e., the mass density ρ, the momentum density u, the
internal energy density ǫ, and the conformational proba-
bility density p(Ωa), which all depend on the position r
and time t. The set of variables Ωa, used to describe the
chain conformation, is a slight modification of Ω from
Eq. (22). Each shape tensor is decomposed into three
symmetric dyads,

ni =
3
∑

α=1

aα
i a

α
i

a2K
. (42)

The division by a2K on the right-hand side is merely for
convenience of notation later on. Equation (26) implies
the dynamics

daα
i

dt
= κ · aα

i , (43)

and the condition that the shape tensors are isotropic at
equilibrium is satisfied by

aα
i,eq =

√
naKδα, (44)

where δα is the unit vector in the direction of coordinate
α. By choosing the vectors {aα

i } as variables instead of
the tensors {ni}, so that

Ωa =
{

Z, {Ni,Qi}Zi=1, {Xi, {aα
i }3α=1}Z−1

i=1

}

, (45)

we can use a result from previous work to show that
the Poisson operator satisfies the Jacobi identity. This
is explained after Eq. (62). Alternatively, in the vari-
able space Ω, compliance with the Jacobi identity can be
proven rigorously using the guidelines given by Öttinger
[25] for handling tensors and their derivatives. In terms
of the variables Ωa, the free energy becomes

F (Ωa) =

Z
∑

i=1

Fs(Ni,Qi)

+
3kBT

2

Z−1
∑

i=1

Xi ·
(

3
∑

α=1

aα
i a

α
i

)−1

·Xi, (46)

and the Fokker-Planck part of Eq. (6) becomes

L(Ωa) ∗ p(Ωa) = . . .−
Z−1
∑

i=1

3
∑

α=1

∂

∂aα
i

· [κ · aα
i p(Ωa)] , (47)

where the ellipsis represents the terms on the right-hand
side of Eq. (37), multiplied by kBT , which are related to
the dynamics of the vectors {Qi,Xi}. After formulating
the GENERIC for this model, we can change variables
from Ωa back to Ω.
The position and time dependencies of the state vari-

ables are henceforth omitted from our notation. Since
the free energy of the chain, given in Eq. (46), is purely
entropic, the total energy is

E[ρ,u, ǫ] =

∫ (

u2

2ρ
+ ǫ

)

dr (48)

as in classical hydrodynamics [23]. The total entropy is

S[ρ, ǫ, p(Ωa)] =

∫

s(ρ, ǫ) dr + Sc[ρ, p(Ωa)], (49)

where s(ρ, ǫ) is the entropy density related to dynam-
ics that are fast compared to the dynamics of the chain
conformation, and

Sc[ρ, p(Ωa)] = −kB
∫∫

nc(ρ)p(Ωa) log

(

p(Ωa)

peq(Ωa)

)

dΩadr

(50)
is the conformational entropy. Although peq(Ωa), given
by Eq. (4), is proportional to a Kronecker δ, there is no
problem of division by zero here. Conservation of the
number of Kuhn steps in the chain implies that p(Ωa)
must remain proportional to that Kronecker δ and there-
fore it cancels out.
Functional derivatives with respect to the mass density

and the probability density need to be handled with care.
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The usual definition of the functional derivative [108, 109]
allows all variations of the argument of the functional,
irrespective of any constraints. In the present case, there
are two constraints: the integral of the mass density over
the volume of the system must remain equal to the total
mass of the system,

∫

ρ(r) dr = m, (51)

and the probability density must remain normalized,

∫

p(Ωa) dΩa = 1. (52)

We compensate for violations of Eq. (51) by making the
substitution

ρ→ mρ
∫

ρ dr
(53)

before taking functional derivatives with respect to ρ, and
for violations of Eq. (52) by making the substitution

p(Ωa) →
p(Ωa)

∫

p(Ωa) dΩa
(54)

before taking functional derivatives with respect to
p(Ωa). Equations (51) and (52) are used only afterwards

to simplify the resulting expressions. Öttinger and Beris
[110] introduced this method in their work on a thermo-
dynamically consistent version of the Doi-Edwards tube
model without the independent alignment assumption
[93]. However, they used it only to preserve normal-
ization of their probability density f for the PP orien-
tation when calculating δS/δf , not to prevent violations
of the conservation of mass when calculating δE/δρ or
δS/δρ. An alternative approach, presented in Appendix

C.3 of Öttinger [25], leads to a slightly different result for
the constrained functional derivative. However, that ap-
proach involves the choice of an additional constraint to
fix an otherwise arbitrary constant. In the Supplemental
Material [111], we propose a different choice for this ad-

ditional constraint, which makes the method of Öttinger
[25] equivalent to that of Öttinger and Beris [110].
Under the constraint of mass conservation, the func-

tional derivative of the total energy with respect to the
state variables (for short, the energy gradient) becomes

δE

δx
=











− 1
2v

2 + 1
2m

∫

ρv2 dr

v

1

0











, (55)

where v = u/ρ is the velocity. With the definitions of
the temperature

T :=

(

∂s(ρ, ǫ)

∂ǫ

)−1

(56)

and the chemical potential

µ := −T ∂s(ρ, ǫ)
∂ρ

(57)

[23], the resulting entropy gradient is

δS

δx
=











− µ
T + 1

m

∫

ρµ
T dr + δSc

δρ

0

1
T
δSc

δp(Ωa)











. (58)

The terms involving integrals over space in Eqs. (55) and
(58) come from the mass-conservation constraint. The
functional derivatives of the conformational entropy are

δSc

δρ
=− kB

dnc

dρ

[∫

p(Ωa) log

(

p(Ωa)

peq(Ωa)

)

dΩa

− 1

m

∫∫

ρp(Ωa) log

(

p(Ωa)

peq(Ωa)

)

dΩadr

]

, (59)

where the last term is again due to the mass-conservation
constraint, and

δSc

δp(Ωa)
=− kBnc(ρ)

[

log

(

p(Ωa)

peq(Ωa)

)

−
∫

p(Ωa) log

(

p(Ωa)

peq(Ωa)

)

dΩa

]

, (60)

where the last term is due to the normalization constraint
for p(Ωa).
Equations (55), (58), (59), and (60) differ from expres-

sions found in the literature for similar models. In the
GENERIC formulation of the Hookean dumbbell model
by Öttinger and Grmela [23], functional derivatives with
respect to the mass density and the probability density
were evaluated without compensating for any constraint
violations. The energy and entropy gradients for the
thermodynamically consistent tube model, given in Ap-
pendix A of Öttinger [112], are missing all terms related
to mass conservation because that constraint was not en-
forced, but they are otherwise equivalent to our Eqs. (55),

(58), (59), and (60). Öttinger [25] reported these two
models without changing the functional derivatives used
in the original publications. This means that the nor-
malization constraint was applied to the tube model in
his Sec. 4.3.2, but not to the Hookean dumbbell model in
his Sec. 4.3.1, while the mass-conservation constraint was
not applied to either model, although it was discussed in
his Appendix C.3.
Schieber [94] likewise considered only the normal-

ization constraint, but not the mass-conservation con-
straint, in the GENERIC formulation of the FSM. Here
Schieber’s work is corrected and extended to the AMSM,
from which the FSM is obtained as a special case without
ESFs, and the Hookean dumbbell model is obtained when
entanglements are altogether absent. The energy and en-
tropy gradients are primarily used to derive the stress
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tensor, as explained in Sec. III A 1. Curiously, the result
is the same whether constrained or unconstrained func-
tional derivatives, or even mixtures of them, are used. A
formal proof of this is given in Appendix A.
In Appendix B, we present the stress tensor derivation

using a probability density that is normalized not to 1,
but to the chain number density nc(ρ). This is consistent

with Öttinger and Grmela’s choice of state variables for
the Hookean dumbbell model [23]. The choice of normal-
ization does not affect the result obtained for the stress
tensor. However, we identify an error in the derivation of
Öttinger and Grmela, which leads to a different prefactor
of the isotropic part of the stress tensor. In Schieber’s

work [94], it was not clear how the probability density
was normalized. This ambiguity is also resolved in Ap-
pendix B.

1. Reversible dynamics

The Poisson matrix for the AMSM is a straightforward
generalization of that for the FSM [Eqs. (14) and (15) of
Ref. [94]], which in turn is closely related to the Pois-
son matrix for the Hookean dumbbell model [Eq. (58) of
Ref. [23]]. We find

L = −











0 ∇ρ 0 0

ρ∇ (∇u+ u∇)
†

ǫ∇+∇ · (Pδ +Π) −L24

0 ∇ǫ+ (Pδ +Π) ·∇ 0 0

0 −L42 0 0











(61)

with P the hydrostatic pressure and Π the stress tensor. According to Eq. (47),

−L42 = ∇p(Ωa)− p(Ωa)∇+

[

Z
∑

i=1

∂

∂Qi
p(Ωa)Qi +

Z−1
∑

i=1

(

∂

∂Xi
p(Ωa)Xi +

3
∑

α=1

∂

∂aα
i

p(Ωa)a
α
i

)]

·∇ (62)

produces the reversible part of the evolution of p(Ωa), which consists of the affine components of the deformation
of the strands, the virtual springs, and the vectors {aα

i }. The remaining element L24 is then determined by the
antisymmetry and the Jacobian structure of L. Proving the latter is usually a tedious exercise, but here the change
of variables from Ω to Ωa comes in handy. Equation (62) has almost the same form as the expressions for L42 in the
Hookean dumbbell model [Eq. (58) of Ref. [23]] and the FSM [Eq. (14) of Ref. [94]]. In both those expressions, the
second term on the right-hand side of Eq. (62) is absent because the probability density was normalized to the chain
number density, while it is normalized to 1 here (see Appendix B). The only other differences are in the numbers of
vectorial variables: 1 for the Hookean dumbbell model, Z for the FSM, and 5Z − 4 for the AMSM. Therefore, we can
take L24 from Schieber [94] and add the ESFs,

−L24 = p(Ω′
a)∇ −∇p(Ω′

a)−∇ ·





Z′

∑

i=1

p(Ω′
a)Q

′

i

∂

∂Q′

i

+

Z′−1
∑

i=1

p(Ω′
a)

(

X′

i

∂

∂X′

i

+

3
∑

α=1

a′α
i

∂

∂a′α
i

)



 , (63)

and the Jacobi identity remains fulfilled. The primes indicate that, after multiplication by L24, the result is summed
over all possible values of the discrete variables and integrated over all possible values of the continuous variables in
Ω′

a.
The stress tensor Π is completely determined by the degeneracy condition for the Poisson matrix, Eq. (39), and

is therefore purely entropic. In general, if the chain free energy has both an entropic and an energetic part, the
latter appears in the friction matrix M to satisfy its degeneracy condition, Eq. (40). This yields a purely energetic
contribution to the stress tensor, in addition to Π (see Ref. [23], p. 6644). In the present model, the chain free energy
is entropic and therefore Π is the total stress tensor. Since only the second element of L ∗ δS/δx is nontrivially zero,
Π is given by

0 =∇

(

µρ− ǫ− P

kBT

)

+
∇ǫ− µ∇ρ

kBT
−∇ ·

(

Π

kBT

)

+ nc(ρ)∇

∫

p(Ωa) log

(

p(Ωa)

peq(Ωa)

)

dΩa

+

∫

p(Ωa)∇

[

nc(ρ) log

(

p(Ωa)

peq(Ωa)

)]

dΩa −∇

[

nc(ρ)

∫

p(Ωa) log

(

p(Ωa)

peq(Ωa)

)

dΩa

]

−∇ ·
∫

nc(ρ)

[

Z
∑

i=1

p(Ωa)Qi
∂

∂Qi
log

(

p(Ωa)

peq(Ωa)

)

+

Z−1
∑

i=1

p(Ωa)

(

Xi
∂

∂Xi
+

3
∑

α=1

aα
i

∂

∂aα
i

)

log

(

p(Ωa)

peq(Ωa)

)

]

dΩa.

(64)
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The first two terms on the right-hand side cancel one
another by the fundamental thermodynamic relation

dǫ = Tds+ µdρ (65)

and the Gibbs-Duhem relation

ǫ = Ts− P + µρ. (66)

The last four terms on the right-hand side of Eq. (64) cor-
respond to the terms on the right-hand side of Eq. (A7),
which involve the unconstrained functional derivatives of
the conformational entropy with respect to the mass den-
sity and the probability density. As shown in Appendix
A, the same result is obtained whether constrained or
unconstrained functional derivatives are used. The sum
of the first three of these terms, divided by nc(ρ), can be
written as
∫

p(Ωa)∇ log

(

p(Ωa)

peq(Ωa)

)

dΩa =

〈

∇

(

F (Ωa)

kBT

)〉

,

(67)
which simplifies to

∫

p(Ωa)∇ log

(

p(Ωa)

peq(Ωa)

)

dΩa = 0 (68)

if we assume the chain free energy to be proportional to
the temperature, as proposed by Öttinger and Grmela
[23] (p. 6641). All remaining terms in Eq. (64) are then
of the form ∇ ∗ (. . .), and consequently the stress ten-
sor Π(r), which is derived below, only depends on the
local temperature T (r) and the local probability density
p(Ωa; r). A more general expression for the stress tensor
could be obtained by abandoning this assumption and
taking the right-hand side of Eq. (67) into account in the
derivation below. This approach would lead to a nonlo-
cal stress tensor because 〈∇ ∗ (. . .)〉 6= ∇ ∗ 〈. . .〉, due to
the position dependence of the probability density. How-
ever, purely entropic chain free energies (like the ones
considered in the present work) usually are proportional
to the temperature, so that Eq. (68) holds. According to

Öttinger and Grmela [23] (p. 6641), energetic potentials
should be incorporated in the energy E[x] instead of the
entropy S[x]. To fulfill the degeneracy requirement for
the friction matrix M , Eq. (40), no assumption needs to
be made concerning the form of the energetic potentials
[23] (p. 6643).
With Eq. (68), we find for the stress tensor

Π

kBT
=− nc(ρ)

∫

{

Z
∑

i=1

Qi

(

∂p(Ωa)

∂Qi
+
p(Ωa)

kBT

∂F (Ωa)

∂Qi

)

+
Z−1
∑

i=1

[

Xi

(

∂p(Ωa)

∂Xi
+
p(Ωa)

kBT

∂F (Ωa)

∂Xi

)

+
3
∑

α=1

aα
i

(

∂p(Ωa)

∂aα
i

+
p(Ωa)

kBT

∂F (Ωa)

∂aα
i

)

]}

dΩa.

(69)

The terms involving derivatives of p(Ωa) simplify after
integration by parts, using

lim
Qi→Qmax

p(Ωa) = 0, (70)

lim
Xi→∞

p(Ωa) = 0, (71)

lim
aα

i
→∞

p(Ωa) = 0, (72)

with Qmax = ∞ for infinitely extensible strands and
Qmax = NKaK for finitely extensible strands. Further-
more, it can be shown that

3
∑

α=1

aα
i

∂F (Ωa)

∂aα
i

= −3kBT

(

3
∑

α=1

aα
i a

α
i

)−1

·XiXi

= −Xi
∂F (Ωa)

∂Xi
(73)

and thus the stress tensor becomes

Π = kBTnc(ρ) (5〈Z〉 − 4)δ − nc(ρ)

〈

Z
∑

i=1

Qi
∂Fs

∂Qi

〉

.

(74)
Apart from the first term on the right-hand side, this
result is equivalent to Eq. (27), which was derived using
the principle of virtual work. Isotropic contributions to
the stress tensor do not affect the compliance with the
stress-optical rule, nor the consistency between small de-
formations and the Green-Kubo relation [5]. Since the
relaxation modulus is related to deviatoric stresses, and
the equilibrium PP-length distribution is not determined
by the stress tensor at all [18], both remain consistent
with results from multi-chain models and simulations.
Thus all four criteria, discussed in Sec. ID, remain satis-
fied.
A few interesting observations can be made regarding

the derivation of the stress tensor:

• It was shown in Sec. II B that the anisotropic part
of the IMSM stress tensor has a contribution from
the virtual springs. For the AMSM, if the ESFs do
not follow the generalized Ronca-Allegra dynamics,
there is also a contribution from the confinement
potentials. These two types of “virtual” stresses,
which cause violation of the stress-optical rule and
inconsistency with the multi-chain relaxation mod-
ulus, originate from the terms involving derivatives
of the chain free energy on the last two lines of
Eq. (69). With the generalized Ronca-Allegra dy-
namics, these terms cancel each other, as shown in
Eq. (73). No cancellation occurs between contri-
butions to the isotropic part of the stress tensor,
which originate from the terms involving deriva-
tives of the probability density in Eq. (69). Since
these isotropic terms do not lead to any violations,
the Ronca-Allegra dynamics are necessary and suf-
ficient for simultaneous compliance with all four cri-
teria.
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• The stress tensor can also be derived using the
principle of virtual work. This yields only the
anisotropic part of the stress tensor. Similar to
the GENERIC derivation, contributions from the
virtual springs and the confinement potentials can-
cel each other when the anisotropy of ESFs is de-
scribed by the generalized Ronca-Allegra dynamics,
as shown by Schieber et al. [5] and in our Sec. II C.

• Left-multiplying the energy gradient, given in
Eq. (55), by the Poisson matrix L, given in
Eq. (61), yields the reversible dynamics of the state
variables x. Because the stress tensor appears on
the second and third lines of L, it has reversible
contributions to the evolution equations for the mo-
mentum density and the internal energy density.
These contributions are of the form −∇ · Π and
−κ : Π, respectively [23, 94]. This means that, in
general, the virtual springs and the anisotropic con-
finement potentials influence the momentum and
energy of the system. For an incompressible ma-
terial, κ : δ = 0 and only the anisotropic part of
the stress tensor contributes to the energy balance.
Hence, with Ronca-Allegra dynamics, ESFs do not
affect the energy of an incompressible system.

• The isotropic part of the stress tensor is propor-
tional to the number of vectorial variables whose
equation of motion has an affine component. These
variables appear in the L42 element of the Pois-
son matrix, Eq. (62), and due to the antisymme-
try condition and the Jacobi identity, also in the
L24 element, Eq. (63). Thus they contribute to
the reversible part of the momentum balance. It
is straightforward to show that this is true for dif-

ferent versions of the model. For the FSM, which
does not have the Z − 1 virtual springs and the
3Z− 3 vectors {ai} describing the confinement po-
tentials, the isotropic part of the stress tensor is
kBTnc〈Z〉δ instead of kBTnc (5〈Z〉 − 4) δ. If the
dangling ends are coarse-grained out, the isotropic
stress due to the strands changes from kBTnc〈Z〉δ
to kBTnc〈(Z − 2)H(Z − 2)〉δ, while the contribu-
tions from the virtual springs and the confinement
potentials stay the same. Here H(x) =

∑∞
y=1 δxy is

a discrete version of the Heaviside function H(x).
If information about the absolute spatial position
of the chain is included, as in the variable space Ω+

given in Eq. (29), the isotropic stress increases by
kBTncδ.

• Whether the functional derivatives of the total en-
ergy E and the total entropy S are constrained or
unconstrained has no effect on the resulting stress
tensor. This is proven in Appendix A.

2. Irreversible dynamics

The second term on the right-hand side of the
GENERIC, Eq. (38), yields the irreversible dynamics of
the system. The friction matrixM can be constructed by
first entering those elements that produce what is known
of the irreversible dynamics, and then using the require-
ments that M must be symmetric and positive semidefi-
nite, and must fulfill the degeneracy condition, Eq. (40),
to find the other elements. This was demonstrated for
the Hookean dumbbell model by Öttinger and Grmela
[23] and for the FSM by Schieber [94]. We follow the
same procedure for the AMSM. The friction matrix then
has the form

M =











0 0 0 0

0 − (∇ηsT∇)
† − δ∇ · ηsT∇ ∇ · ηsT γ̇ 0

0 −ηsT γ̇ ·∇ 1
2ηsT γ̇ : γ̇ −∇ · λT 2 ·∇ 0

0 0 0 M44











, (75)

where ηs is the viscosity of the solvent (if present) or related to the short-time-scale dynamics of the melt, γ̇ = κ+κ†

equals twice the symmetric part of the velocity gradient tensor, and λ is the thermal conductivity tensor. The 2 × 2
block in the middle of M is the same as in classical hydrodynamics [23, 113].
The probability density for the chain conformation evolves according to the differential Chapman-Kolmogorov

equation, Eq. (6), which is the sum of a linear Fokker-Planck equation and a master equation. The element in the
lower right corner of M is therefore written as

M44 = MFP
44 +MME

44 . (76)

The Fokker-Planck part is given by Eq. (37), with the last term modified as in Eq. (47) if the confinement potentials
are described by vectors {aα

i } instead of tensors {ni}. The irreversible dynamics in the Fokker-Planck equation are
due to the diffusive motion of the slip-links, and are generated by

MFP
44 = − 1

kBζ





Z
∑

i=1

∂

∂Qi
· p(Ωa)





Z
∑

j=1

Aij
∂

∂Qj
+

Z−1
∑

j=1

Bij
∂

∂Xj



+

Z−1
∑

i=1

∂

∂Xi
· p(Ωa)





Z
∑

j=1

Bji
∂

∂Qj
+

∂

∂Xi







 . (77)
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Ignoring the virtual springs, this is similar to MFP
44 in an older version of the FSM [94]. However, different physics

are implied: whereas Schieber [94] used diffusive motion of the slip-links to mimic constraint dynamics, we use it to
describe ESFs.
The current version of the FSM employs a rigorous formulation of entanglement creation and destruction events as

discrete jump processes [6, 10]. This means that constraint dynamics are contained in the master-equation part of
Eq. (6). Detailed balance is satisfied by using transition rates of the form

W (Ωa|Ω′
a) = ∆(Ωa,Ω

′
a)

√

peq(Ωa)

peq(Ω′
a)
, (78)

where the function ∆ is nonnegative and symmetric in its arguments [114]. The transition rate consists of additive
contributions from sliding dynamics of Kuhn steps, entanglement creation and destruction by sliding dynamics, and
entanglement creation and destruction by constraint dynamics. Schieber [94] showed that

MME
44 =

1

kB

∫

∆(Ωa,Ω
′
a)

√

peq(Ωa)peq(Ω′′
a)





p(Ω′′
a)peq(Ωa)− p(Ωa)peq(Ω

′′
a)

log
(

p(Ω′′

a
)peq(Ωa)

p(Ωa)peq(Ω′′

a
)

)



 [δ(Ωa − Ω′
a)− δ(Ω′′

a − Ω′
a)] dΩ

′′
a (79)

produces the master equation and is consistent with the
GENERIC structure. Here the shorthand

δ(Ωa − Ω′
a) ≡δZ,Z′

Z
∏

i=1

δNi,N ′

i
δ(Qi −Q′

i)

Z−1
∏

j=1

δ(Xj −X ′
j)

×
3
∏

α=1

δ(aα
j − aα′

j ) (80)

is used. Although the second factor in the integrand
of Eq. (79) has a singularity at Ωa = Ω′′

a, its limit as
Ωa → Ω′′

a exists:

lim
Ωa→Ω′′

a

p(Ω′′
a)peq(Ωa)− p(Ωa)peq(Ω

′′
a)

log
(

p(Ω′′

a
)peq(Ωa)

p(Ωa)peq(Ω′′

a
)

) = p(Ωa)peq(Ωa).

(81)
Equation (79) was inspired by the friction matrix in

the original GENERIC formulation of Boltzmann’s ki-
netic equation by Öttinger [115]. This friction matrix
was obtained empirically, i.e., it was chosen such that it
would generate the known dynamics, while satisfying the
GENERIC conditions of degeneracy [Eq. (40)], symme-
try, and positive semidefiniteness of M . Later, by ther-
modynamically consistent coarse-graining from an atom-
istic level of description, Öttinger [116] derived a differ-
ent friction matrix for the Boltzmann equation, which
is not symmetric. A similar approach could be followed
here. On the other hand, recent work by Öttinger [117]
on thermodynamically consistent model reduction sug-
gests a fundamental basis for the friction matrix given
in Eq. (79). In model reduction, one eliminates de-
grees of freedom by projecting the dynamics of the sys-
tem onto a reduced set of variables, which are functions
of the original, larger set of variables. This is differ-
ent from coarse-graining, which typically eliminates fast
variables by time- or ensemble-averaging. For the one-
dimensional linear Fokker-Planck equation describing the

Kramers barrier crossing problem, Öttinger [117] showed
that model reduction leads to a master equation, which
is generated by a friction matrix analogous to Eq. (79).
Finally, we note that irreversible dynamics due to jump

processes are described more naturally by dissipation po-
tentials than by friction matrices. These two alternative
formulations of GENERIC irreversible dynamics have
been discussed and compared in detail by Grmela and
Öttinger [22], Hütter and Svendsen [34], and Öttinger
[118].
With the Poisson matrix L, the friction matrix M ,

and the energy and entropy gradients known, Eq. (38)
gives the evolution equations for the state variables. The
first three are the well-known balance equations for mass,
momentum, and internal energy [23]. The fourth is the
differential Chapman-Kolmogorov equation for the prob-
ability density, which for the AMSM is given by Eq. (6),
Eq. (37) or (47), and expressions for the transition rates
of all the jump processes [6, 10].

IV. SUMMARY AND OUTLOOK

Our work shows that, when entanglement spatial fluc-
tuations (ESFs) are incorporated in the slip-link model,
simultaneous compliance with four fundamental consis-
tency criteria [5] is achieved only if the time evolution
of the directionality of ESFs is upper-convected. This
time evolution is analogous to the dynamics of node
fluctuations in the cross-linked network model of Ronca
and Allegra [80], but it is applicable to polymer sys-
tems containing cross-links, entanglements, or both, un-
der arbitrary flow conditions. An anisotropic mobile slip-
link model (AMSM), based on these generalized Ronca-
Allegra dynamics, was proposed, and its compliance with
three of the four criteria was demonstrated previously
[5, 18]. The present work provides a rigorous proof that
the AMSM also satisfies the remaining criterion: con-
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sistency with nonequilibrium thermodynamics. To the
best of our knowledge, no other single-chain mean-field
entanglement model has achieved this.
The detailed agreement with multi-chain simulations

(another one of the four criteria) allows all the param-
eters of the AMSM to be determined ab initio [18, 19].
The AMSM can be coarse-grained to less detailed levels
of description by averaging over fluctuations. The pa-
rameters of each model are mapped onto a reduced set
of modified parameters for the next less detailed model,
thus preserving the possibility of ab initio rheology pre-
dictions at each level [13, 19]. The least detailed mem-
ber of the DSM family of models, namely the clustered
fixed slip-link model (CFSM), is obtained not by aver-
aging over fluctuations, but by exploiting universality in
the rheology of flexible polymers with the same average
number of entanglements per chain [12, 13]. The CFSM
has two parameters, and it has recently been shown that
they can both be estimated from the crossover between
the storage and loss moduli [119].
Other opportunities exist in coarse-graining of these

slip-link models by taking the continuous limit of (func-
tions of) their discrete variables, to create a range of
tube models at different levels of description. Recent
work on this type of coarse-graining of the isotropic mo-
bile slip-link model (IMSM) [81] can be taken as a start-
ing point. An interesting connection between the AMSM
and Öttinger’s thermodynamically consistent tube model
with anisotropic tube cross sections [112, 120], which was
pointed out by Schieber et al. [5], might be useful to di-
rect future efforts in coarse-graining of the AMSM to a
tube-like level of description.
Even if further coarse-graining is not possible, current

implementations of the slip-link model are sufficiently in-
expensive to allow the prediction of flows in complex ge-
ometries [121, 122]. Since these coarse-grained versions
are closely integrated with the more detailed AMSM, and
their parameters can be determined from those obtained
for the AMSM [13, 19], there now exists a strong connec-
tion between atomistic models and flow predictions, with
each step on firm thermodynamic footing.
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APPENDIX A: CANCELLATION OF

CONSTRAINTS IN THE STRESS TENSOR

DERIVATION

The degeneracy condition for the Poisson matrix,
Eq. (39), yields an expression from which the entropic
stress tensor Π can be derived. In Eq. (64), this expres-
sion is given explicitly for the anisotropic mobile slip-link

model. In a more general form, it reads

∇ ·
(

Π

T

)

=− ρ∇
δSc

δρ
−
∫

p(Ω)∇
δSc

δp(Ω)
dΩ

+∇

∫

p(Ω)
δSc

δp(Ω)
dΩ+LFP

24 ∗ δSc

δp(Ω)
,

(A1)

where −LFP
24 represents the last term in Eq. (63). The

cancellation of the first two terms on the right-hand side
of Eq. (64), due to Eqs. (65) and (66), has already been
accounted for in Eq. (A1).
The functional derivative with respect to the mass den-

sity has the form

δSc

δρ
=
δuSc

δuρ
− 1

m

∫

ρ
δuSc

δuρ
dr, (A2)

as derived in the Supplemental Material [111]. Here the
symbol δu indicates that no constraint is imposed on vari-
ations when calculating the functional derivative. The
last term in Eq. (A2) compensates for violations of the
mass-conservation constraint, Eq. (51). Since this term
is an integral over the volume of the system, it vanishes
when operated on by the gradient in the first term on the
right-hand side of Eq. (A1), hence

∇
δSc

δρ
= ∇

δuSc

δuρ
. (A3)

Similarly, in the functional derivative with respect to the
probability density,

δSc

δp(Ω)
=

δuSc

δup(Ω)
−
∫

p(Ω)
δuSc

δup(Ω)
dΩ, (A4)

the last term compensates for violations of the normaliza-
tion constraint, Eq. (52). Since this term is an integral
over all possible conformations, it vanishes when oper-
ated on by LFP

24 , which takes derivatives with respect to
the conformational variables. Thus the last term on the
right-hand side of Eq. (A1) becomes

LFP
24 ∗ δSc

δp(Ω)
= LFP

24 ∗ δuSc

δup(Ω)
. (A5)

When Eq. (A4) is substituted into the second term and
the third term on the right-hand side of Eq. (A1), there
are two possible cancellations: either the two contribu-
tions from the normalization constraint cancel each other
out, or the entire third term vanishes because

∫

p(Ω)
δSc

δp(Ω)
dΩ = 0, (A6)

while the second term remains. Either way, the final
result is

∇ ·
(

Π

T

)

=− ρ∇
δuSc

δuρ
−
∫

p(Ω)∇
δuSc

δup(Ω)
dΩ

+∇

∫

p(Ω)
δuSc

δup(Ω)
dΩ+LFP

24 ∗ δuSc

δup(Ω)
.

(A7)
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This is just Eq. (A1) with all constrained functional
derivatives replaced by unconstrained ones. Since the
contributions from the two constraints (conservation of
mass and normalization of the probability density) van-
ish independently, the correct stress tensor is obtained
whether we account for both constraints, ignore one or
the other, or ignore both of them. This explains why
our results are consistent with those found in previous
works, even though some did not account for any con-
straints and others accounted only for normalization of
the probability density. One small difference is due to
an error in a previous publication, which we correct in
Appendix B.

APPENDIX B: REVIEW OF STRESS TENSOR

DERIVATIONS IN PREVIOUS WORKS

For comparison with the work of Öttinger and Grmela
[23], we also derive the stress tensor using the state vari-
ables

x =











ρ(r)

u(r)

ǫ(r)

ψ(Ω; r)











, (B1)

where ψ(Ω; r) is the probability density for the chain con-
formation, normalized to the number density of chains,

∫

ψ(Ω; r) dΩ = nc(ρ(r)) =
NAρ(r)

M
. (B2)

Combined with the conservation of mass, Eq. (51), this
gives

∫∫

ψ(Ω; r) dΩdr = Nc =
NAm

M
. (B3)

In Eqs. (B2) and (B3), the second equality is valid only
for monodisperse melts. Modification of these expres-
sions for polydisperse and/or diluted systems is straight-
forward, as explained in the main text after Eq. (13).
The derivation below shows that the same stress ten-

sor is obtained whether we use p(Ω) or ψ(Ω) as a state
variable, which is not surprising. A more interesting re-
sult is that the stress tensor reported by Öttinger and
Grmela [23] contains a small error, whose source is iden-
tified here. Furthermore, we resolve an ambiguity in the
work of Schieber [94] as to which state variables were
used. As before, the notation is simplified by omitting
all dependencies on the position r.
Expressed in terms of the state variables in Eq. (B1),

the probability density used elsewhere in this paper is

p(ρ, ψ(Ω)) =
ψ(Ω)

nc(ρ)
. (B4)

Therefore, using Eq. (13) and the continuity equation,

∂ρ

∂t
= −∇ · (ρv) , (B5)

the differential Chapman-Kolmogorov equation for the
chain conformation, Eq. (6), becomes

∂ψ(Ω)

∂t
=−∇ · (ψ(Ω)v) + L(Ω) ∗ ψ(Ω)

+

∫

[W (Ω|Ω′)ψ(Ω′)−W (Ω′|Ω)ψ(Ω)] dΩ′.

(B6)

For the AMSM, the Fokker-Planck operator L(Ω) is given
by Eq. (37) with p(Ω) replaced by ψ(Ω). The reversible
dynamics, which include the convective term on the left-
hand side of Eq. (B6) and the Fokker-Planck terms re-
lated to affine motions, are generated by the Poisson ma-
trix element

L42 = −∇ψ(Ω) +LFP
42 , (B7)

where LFP
42 is given by Eq. (62) with p(Ω) replaced by

ψ(Ω). This requires

L24 = −ψ(Ω′)∇+LFP
24 (B8)

to preserve the antisymmetry and the Jacobian structure
of L [23]. Here LFP

24 is given by Eq. (63) with p(Ω) re-
placed by ψ(Ω).
The total energy and its gradient are the same as in

Eqs. (48) and (55). The conformational part of the total
entropy, Eq. (49), is now

Sc[ρ, ψ(Ω)] = −kB
∫∫

ψ(Ω) log

(

ψ(Ω)

nc(ρ)peq(Ω)

)

dΩdr

(B9)
with peq(Ω) as in Eq. (4). The unconstrained functional
derivative of the conformational entropy with respect to
the mass density is

δuSc

δuρ
= kB

dnc

dρ
=
kBNA

M
. (B10)

Again, the second equality is valid only for monodisperse
melts, but generalization is straightforward. Substitution
of Eq. (B10) into Eq. (A2) yields

δSc

δρ
= 0. (B11)

The constrained functional derivative with respect to
ψ(Ω) has the form

δSc

δψ(Ω)
=

δuSc

δuψ(Ω)
− 1

Nc

∫∫

ψ(Ω)
δuSc

δuψ(Ω)
dΩdr, (B12)

as can be derived using either of the two methods
discussed in the Supplemental Material [111]. From
Eq. (B9), we obtain

δuSc

δuψ(Ω)
= −kB log

(

ψ(Ω)

nc(ρ)peq(Ω)

)

− kB, (B13)
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and hence

δSc

δψ(Ω)
=− kB log

(

ψ(Ω)

nc(ρ)peq(Ω)

)

+
kB
Nc

∫∫

ψ(Ω) log

(

ψ(Ω)

nc(ρ)peq(Ω)

)

dΩdr.

(B14)

Now that the Poisson matrix and the entropy gradient
have been specified, the degeneracy condition, Eq. (39),
can be used to obtain the stress tensor Π. We find

∇ ·
(

Π

T

)

=−
∫

ψ(Ω)∇
δSc

δψ(Ω)
dΩ +LFP

24 ∗ δSc

δψ(Ω)

= kB

∫

ψ(Ω)∇ log

(

ψ(Ω)

nc(ρ)peq(Ω)

)

dΩ

+LFP
24 ∗ δuSc

δuψ(Ω)
. (B15)

The first term on the right-hand side can be written as

kB

∫

ψ(Ω)

[

∇ψ(Ω)

ψ(Ω)
− ∇nc(ρ)

nc(ρ)
+∇

(

F (Ω)

kBT

)]

dΩ

= kB

∫

ψ(Ω)∇

(

F (Ω)

kBT

)

dΩ, (B16)

where the first two terms cancel one another due to the
normalization of ψ(Ω), Eq. (B2). Assuming that the
chain free energy is proportional to the temperature, the
stress tensor is then defined by

∇ ·
(

Π

T

)

= LFP
24 ∗ δuSc

δuψ(Ω)
. (B17)

The remaining derivation is analogous to the one in Sec.
III A 1 and leads to Eq. (74) for the stress tensor.

For an unentangled polymer, Z = 1 and Ω = {Q},
where Q is the chain end-to-end vector. Eq. (74) then
becomes

Π = kBTnc(ρ)δ − nc(ρ)

〈

Q
∂F (Q)

∂Q

〉

. (B18)

This is similar to Eq. (55) of Öttinger and Grmela [23],
only their isotropic term is larger than ours by a factor of
2. Comparing the conformational part of the entropy in
their Eq. (49) to our Eq. (B9), it becomes clear that they
missed the factor nc(ρ) in the denominator of the loga-
rithm. If we were to ignore that factor, the second term
in Eq. (B16) would disappear and thus the first term in
Eq. (B16) would not be canceled out. Consequently, we
would obtain 2kBTnc(ρ)δ as the isotropic contribution

to the stress, just like Öttinger and Grmela [23].
In the GENERIC formulation of the FSM by Schieber

[94], the probability density, called p(Ω), is not consis-
tently normalized in the same way. In his Sec. 2, Schieber
presents the differential Chapman-Kolmogorov equation
and the expression for peq(Ω). These are consistent with
our Eqs. (6) and (4), respectively. This means that p(Ω)
is normalized to 1. However, in Schieber’s Sec. 3, the
expressions for the conformational entropy, its gradient,
and the Poisson matrix elements L42 and L24 imply that
p(Ω) is normalized to the chain number density, like ψ(Ω)

in this appendix and in the work of Öttinger and Grmela
[23]. This also clarifies the meaning of the −S appear-
ing in Schieber’s Eq. (13) for the entropy gradient, which
should be replaced by the second term on the right-hand
side of our Eq. (B14).
In the version of the FSM used by Schieber [94], the

dangling ends are coarse-grained out. Therefore they do
not carry any stress and Eq. (74) becomes

Π =kBTnc(ρ)〈(Z − 2)H(Z − 2)〉δ

− nc(ρ)

〈

Z−1
∑

i=2

Qi
∂Fs

∂Qi

〉

. (B19)

The Heaviside function H accounts for the fact that un-
entangled and once-entangled chains do not carry any
stress in this model. Besides two minor differences with
Schieber’s Eq. (17), namely a sign error originating from
his Eq. (16) and a misprint of the summation sign out-
side of the angle brackets, which denote the ensemble
average, there is also a difference in the magnitude of the
isotropic contribution to the stress tensor. In Schieber’s
Eq. (17), this term is proportional to 〈Z〉 − 1 because he
omitted the factor nc(ρ) in the denominator of the loga-
rithmic term in the conformational entropy. This is the
same error that was made by Öttinger and Grmela [23],
as explained above.
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[24] H. C. Öttinger, Phys. Rev. E 57, 1416 (1998).
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