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Many sensory pathways in the brain include sparsely active populations of neurons downstream
from the input stimuli. The biological purpose of this expanded structure is unclear, but may be
beneficial due to the increased expressive power the network. In this work, we show that certain ways
of expanding a neural network can improve its generalization performance even when the expanded
structure is pruned after the learning period. To study this setting, we use a teacher-student
framework where a perceptron teacher network generates labels corrupted with small amounts of
noise. We then train a student network structurally matched to the teacher. In this scenario,
the student can achieve optimal accuracy if given the teachers synaptic weights. We find that
sparse expansion of the input layer of a student perceptron network both increases its capacity
and improves the generalization performance of the network when learning a noisy rule from a
teacher perceptron when the expansion is pruned after learning. We find similar behavior when
the expanded units are stochastic and uncorrelated with the input and analyze this network in the
mean field limit. By solving the mean field equations, we show that the generalization error of the
stochastic expanded student network continues to drop as the size of the network increases. This
improvement in generalization performance occurs despite the increased complexity of the student
network relative to the teacher it is trying to learn. We show that this effect is closely related to the
addition of slack variables in artificial neural networks and suggest possible implications for artificial
and biological neural networks.

I. INTRODUCTION

Learning and memory is thought to occur mainly
through long term modification of synaptic connections
among neurons, a phenomenon well established exper-
imentally. Additionally, neural circuits also undergo
structural changes on a global level. It is observed that
synaptic density in the human cortex increases rapidly
after birth and then drops sharply towards adulthood,
indicating an extensive pruning of the neuronal circuits
[1]. Another form of structural plasticity, also occurring
in the adult brain, is the continuous recycling of synapses
which is seen in both cortex and hippocampus. In the
past, several modeling studies have addressed the com-
putational consequences of these phenomena (see [2, 3]
for adult neurogenesis and [4] for synaptic recycling).

In this work, we explore a novel computational ben-
efit of structural dynamics in neural circuits that learn
new associations or tasks. We show that under certain
classes of learning paradigms, the expansion of a neural
circuit architecture by recruiting additional neurons and
synapses may facilitate the dynamics of learning. Ex-
panding circuit sizes to enable sparse coding has been
shown to have computational benefits in several contexts
of neuroscience and machine learning for sensory process-
ing, learning and memory [5–9]. In these models, circuit
expansion and the resultant sparse coding yield better
representations of the stimuli, enhancing pattern separa-
tion, and improving the capacity for pattern retrieval and
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classification. Importantly, to realize these benefits, the
expanded architecture needs to be stable after learning.
By contrast, in our scenario, the benefit of expansion lies
in its facilitating the dynamics of learning and not its
information bearing potential. In fact, expansion in this
scenario is most beneficial when it is transient, i.e. the
added neurons and synapses are pruned after the learn-
ing period. Hence this hypothesis is consistent with the
observed continuous recycling of synapses during learn-
ing.

Within this work, we consider neural networks that
learn supervised classification problems implemented by
a single layer perceptron. Despite the apparent simplic-
ity of this task, learning the rule by training with la-
beled examples may be hampered by the complexity of
the underlying data. We focus on two cases of unre-
alizable rules, which are characterized by a critical size
of the training set above which no single layer student
is able to correctly classify all of the training examples.
This critical size is called the student’s capacity. We first
consider unrealizable rules occurring when the teacher
network produces training labels corrupted by stochastic
noise and will later consider cases in which the teacher is
more complex than the student network trying to learn
the rule. We show that adding sparse expansions to stu-
dent networks by random mappings of the original input
increases the capacity of the student network and im-
proves the generalization performance of the network as
it is trained on larger training sets.

While the capacity of a network is clearly related to
its dimensionality, it is not obvious and even counterin-
tuitive that increasing the size of a network should im-
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prove its generalization performance. Using mean field
theory and simulations of a wide range of network param-
eters, we show that expansion of the architecture during
learning achieves improved generalization, particularly if
the additional elements of the circuit are removed after
learning. In addition, it is shown that the effect is more
pronounced if the hidden representation during learning
is sparse. We find that the performance is most improved
when the expanded units are random and uncorrelated
with the original input which suggests that having low
overlap in expanded activity between different training
input is crucial to improving performance.

Our analysis offers a new perspective on the important
issue of the relation between model complexity and learn-
ing in neural networks. Artificial neural networks have
achieved state of the art predictive performance on a va-
riety of tasks, especially within the past decade [10, 11].
The primary benefit to training these enormous models
appears to lie in their ability to represent very complex
functions and the link between width, depth, and ex-
pressivity of neural networks is discussed in detail in sev-
eral studies including, [12–15]. These networks are often
over-parameterized in the sense that than the number of
examples the network is trained on is far less than the
number of free parameters in the network [16]. Classical
statistical learning theory suggests that such massively
over-parameterized models should be expected to over-
fit on the training data [17] and make poor predictions
on new inputs not seen by the network before. To resolve
this apparent paradox, it has been suggested that mod-
ern learning algorithms cost functions, and architectures
incorporate strong explicit and implicit regularizations
[18–21]. Our findings suggest there may be advantages
to making neural networks larger than is required for
expressing the underlying task. These advantages are re-
lated to enhancing the ease of the learning convergence,
and that in these cases, optimal performance after learn-
ing is achieved upon removal of the additional nodes and
weights. Indeed, pruning of Deep Neural Networks after
training is a current topic of research in machine learning
[22–25].

We start in section II by showing in simulations that
implementing a sparse expansion of a perceptron network
via random mapping of the input can improve its gener-
alization ability when learning from a noisy teacher. In
section III we analyze these results by studying a simpler
model of a single layer perceptron in which the activity in
the expanded units is random and uncorrelated with the
stimulus. We use the replica method to derive a mean
field theory exact in the thermodynamic limit, and find it
matches well with simulations of large but finite size net-
works. In section III B we explain this phenomena more
intuitively by showing a correspondence between adding
random input neurons and including slack variables in
the optimization problem. We also discuss how hidden
units in our two layer network model can resemble the
stochastic expansion of the input layer in the one layer
model. In section IV A we demonstrate how the benefit

of sparse expansion also applies in more general cases of
learning unrealizable rules by comparing the performance
of a student learning from a more complex teacher net-
work to our theory results. In most of our work we have
focused on convex learning algorithms. In section IV B
we discuss to what extent these effects extend to other
learning algorithms. Finally, we close by discussing some
general implications of our results.

II. SPARSE EXPANSIONS AND LEARNING
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FIG. 1: Teacher and student network schematics. (A)
noisy teacher network (B) student network (C) Student
with sparse hidden layer (D) Student with stochastic
expanded units.

We begin our analysis by considering a teacher per-
ceptron network with N0 input nodes xi, one output
node y0, and N0 synaptic weights w0

i drawn iid from
w0
i ∼ N

(
0, σ2

w

)
and supervised learning tasks in which

a student perceptron will attempt to learn the teacher’s
input-output rule from a training set provided by it. For
each input x drawn iid from xi ∼ N (0, 1), the teacher
network assigns a label y0 ∈ {−1, 1} via the following
rule: y0 = sign(h0) where the teacher field h0 is given by

h0 =
1√
σ2
wN0

N0∑
i=1

w0
i xi + ε (2.1)

and ε ∼ N (0, σ2
out) denotes an output or label noise (Fig.

1 A). We assume a training set consisting of P such input-
output pairs, and we define α0 = P/N0 as the measure-
ment density of training examples relative to the teacher.

The goal of training is to yield network weights that
perform well on new inputs, i.e., to have a small gen-
eralization error Eg, defined as the expected fraction of
mislabeled examples averaged over the full distributions
of inputs x and the noise ε as follows

Eg(w) = 〈Θ (−y0(x)y(x))〉x,ε (2.2)
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where Θ(x) is the Heaviside step function and the student
labels y(x) are given by

y = sign

(
1√
N0

N0∑
i

wixi

)
(2.3)

The generalization error is minimized when the student
weights equals those of the teacher, i.e. w = w0 . This
will yield the same generalization error as the teacher it-
self if it were tested on examples with labels generated
via Eqn. 2.1. We refer to this error as the minimal gen-
eralization error which can be expressed in terms of the
noise as follows

Emin = Eg(w
0) =

1

π

(
π

2
− tan−1

(
1

σout

))
(2.4)

which provides a lower bound on the generalization error
of a student as no network architecture (even more com-
plex than a perceptron) can yield a better performance.

Finding the optimal set of weights may be difficult even
if the number of examples is large. Due to label noise
from the teacher, training examples will no longer be lin-
early separable i.e., perfectly classified by a perceptron,
beyond some critical value of P , rendering the training
task as “unrealizable” by a perceptron. Furthermore,
unlike the realizable regime, in the unrealizable regime,
finding the minimum of the training error is a nonconvex
problem and can be hampered by local minima. Here
we assume that the training is restricted to minimizing
the training error by applying convex algorithms. Such
training algorithms are limited to sizes smaller than the
capacity. The capacity depends on the level of output
noise in the labels, and is shown as a function of σout in
Fig. 5.

For a teacher of fixed width N0 and a fixed training
set of size P , we can increase the capacity of the student
network by making the student network larger than the
teacher. There are several ways to expand the student
network and each have a different effect on the general-
ization performance.We first increase the network size by
implementing a random transformation of input stimuli
to a hidden layer of size N+ as depicted in C of Fig. 1.
The input of the full network is now N = N0 +N+. The
labels in the student network are given by yµ = sign(hµ)
where,

hµ =
1√
N

 N0∑
i=1

wix
µ
i +

N+∑
j=1

w̃jz
µ
j

 (2.5)

where zµ represents the activity in a hidden layer of neu-
rons generated by a random connectivity matrix J ,

zµj =
A√

f(1− f)

(
Θ

(
N0∑
i=1

Jjix
µ
i − T

)
− f

)
(2.6)

where A is a positive scalar and T is a firing threshold
chosen to produce hidden layer neuronal activity with
a given sparsity f . The synapses Jji are chosen iid ac-
cording to Jji ∼ N (0, 1) and are uncorrelated with the
teacher network,

In simulations, we measure the performance of this net-
work by estimating the generalization error on new exam-
ples generated from the same distribution as the training
set (xµ, yµ0 ). Because J is fixed, the training problem is
still that of linear classification with an expanded input
layer of size N = N0 + N+ = βN0 and correspondingly
an expanded trained weight vector (w, w̃) . We train the
output weights using max-margin classification (i.e., Lin-
ear SVM [26, 27]) which finds an error free solution that
maximizes the minimal distance of the input examples
from the separating plane, called margin, κ , which in
our case is defined through the linear inequality

yµ0 h
µ ≥ κ||w + w̃||,∀µ (2.7)

provided that such a solution exists. Max-margin clas-
sification is equivalent to solving the following quadratic
programming problem with linear constraints,

(w∗, w̃∗) = arg min
w,w̃

N0∑
i=1

w2
i +

N+∑
j=1

w̃2
j (2.8)

s.t. yµhµ ≥ 1 ∀µ (2.9)

The optimization problem in Eqns. 2.8, 2.9 is convex and
admits a unique solution (w∗, w̃∗). We choose the max-
margin solution as in general it is known to yield a robust
solution to the classification problem with good general-
ization performance [28, 29].

As expected, the addition of this hidden layer increases
the capacity of the student, namely the maximal value
of P for which the training data are linearly separable
[30]. For instance, for the parameters of Figs. 2 (a) and 2
(b), the capacity increases from a maximum value of α0,
equaling ∼ 6 for no expansion (β = 1) to αc ∼ 35 and
∼ 75 for β = 5 and 10, respectively. In limit N0 → ∞,
it appears that this increased capacity does not depend
on the sparsity of the hidden layer, or depends on it very
weakly. By enabling the network to train successfully
on a large training set adding the random layer substan-
tially improves the generalization performance of the net-
work, particularly, if the hidden layer activity zµ is very
sparse, i.e., f � 1. As seen in Fig. 3, the generaliza-
tion error decreases monotonically with increasing the
number of examples, up to the capacity. Furthermore,
the generalization performance of the network improves
upon removal of the additional neurons N+ after learn-
ing. By contrast, for a hidden layer with dense activity,
the generalization error decreases initially with increas-
ing α0 but then saturates at an intermediate value of α0

and increases for larger values. For dense activity the
performance slightly deteriorates if the extra neurons are
removed after learning, shown in Fig. 4.

The role of sparseness will be discussed more thor-
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oughly in section III C.
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FIG. 2: The generalization error Eg from simulations of
a two layer network after pruning the expanded units.
(a) compares Eg as a function of α0 for a student
network the same size as the teacher and for student
networks with expansion factors β = 5 with dense
(f = 0.5) and sparse (f = 0.02) activity. (b) does the
same for β = 10. The oracle line represents the lowest
possible generalization error due to the presence of label
noise. The parameters A = 0.2, σout = 0.25, and
N0 = 100 and 200 trials are used in both figures.

The network represented in Eqns. 2.5 and 2.6 is diffi-
cult to study analytically because of correlations in the
activities of the hidden layer induced by J [31]. We there-
fore consider in the following section a simplified expan-
sion scheme which we call, a stochastic architecture, and
is shown in Fig. 1 D. In contrast to the deterministic
scheme of Fig. 1 C, the activity patterns of the ad-
ditional neurons in this architecture are not generated
through connections from the input layer. Instead they
are randomly generated for each training pattern, µ, in-
dependent of xµ. The advantage of this scheme is that
the random activities of the hidden neurons are statisti-
cally independent of each other and additionally for dif-
ferent training patterns, rendering the model amenable to
study using the tools of statistical mechanics. Although
this scheme is artificial from a biological perspective, we
will show that when the deterministic layer is very sparse
the system’s behavior is similar to the stochastic model.
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FIG. 3: Comparison of the generalization error in
simulations of a sparsely expanded two layer network
before and after pruning the expanded units. (a) shows
simulations for a student network with expansion factor
β = 5 and (b) shows simulations for a student network
with β = 10. We see for both values of β the student
network with the best overall performance is the
network with sparse expansion with expanded weights
are pruned after learning. The parameters f = 0.02,
A = 0.2, σout = 0.25, and N0 = 100 and 200 trials are
used in both figures.

III. THEORY OF PERCEPTRON LEARNING
WITH EXPANDED STOCHASTIC UNITS

In this section, we develop intuition for the effect of
sparse expansion on the generalization performance of a
perceptron by considering a simpler single layer student
network which can be solved analytically in the mean
field limit. This network (shown in B of Fig. 1) is trained
using data with µ = 1, ..., P binary labels yµ, generated
by the noisy teacher network in Eqn. 2.1. For conve-
nience, we keep the same normalization for the student
and teacher weight vectors which corresponds to setting
σ2
w = β in 2.1. The activity of the student network takes

the form:

h =
1√
N

 N0∑
i=1

wixi +

N+∑
j=1

w̃j x̃j

 (3.1)

where x̃µj are random units added to the input layer and
are drawn iid from a gaussian distribution with zero mean
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FIG. 4: Comparison of the generalization error from
simulations of a densely expanded two layer network
before and after pruning the expanded units. (a) shows
simulations for a student network with expansion factor
β = 5 and (b) shows simulations for a student network
with β = 10. We see that the densely expanded network
performs best when the expanded weights are
unpruned. However, the performance of the sparsely
expanded network with pruned weights in 3 is superior
to the densely expanded network regardless of whether
the weights are pruned or kept. The parameters
f = 0.5, A = 0.2, σout = 0.25, and N0 = 100 and 200
trials were used for all figures.

and variance σ2
in. The label y given to input x by the stu-

dent is y(x) = sign(h). The student weights are trained
to yield the max margin solution in Eqn. 2.9.

A. Mean field theory

We now analyze the performance of the expanded stu-
dent network in 3.1. We will denote the measurement
density of the training set relative to the width of this
student as α = α0/β. The mean field theory below is
exact in the thermodynamic limit, where P,N →∞ and
α ∼ O(1) .

To perform an ensemble average of the system’s prop-
erties over different realizations of training sets, we use

the replica trick in a manner similar to [32–37]. Full de-
tails of the replica calculation and the form of the saddle
equations are given in Appendix A. We start by consid-
ering the version space for n replicated students indexed
by a:

〈V n〉 =

∫ ∏
a

dwadw̃aδ

 N0∑
i=1

(wai )2 +

N+∑
j=1

(w̃aj )2 −N


×

P∏
µ=1

∑
σ=±1

〈Θ ([σhµa − κ]) Θ(σhµ0 )〉 (3.2)

where we have normalized the weights so that ‖wa‖2 +
‖w̃a‖2 = N in all replicas, and Θ is the Heavyside step
function. The quantities hµa are the student’s fields in-
duced by the µ -th input and weight vector (wa, w̃a) of
the a-th replica; hµ0 are the teacher fields induced by the
µ-th input including noise. The angular brackets de-
note averaging with respect to the gaussian input vec-
tors, xµ(with variance 1), student input noise vector,x̃µ
(with variance σ2

in) , teacher label noise, εµ (with vari-
ance σ2

out). Since the distribution of inputs is isotropic,
one does not need to average over the teacher distribu-
tion. Evaluating Eqn. 3.2, we derive a mean field theory
in terms of the order parameters ma, r̃a, qab and q̃ab de-
fined as

ma =
1

N

N0∑
i=1

w0
iw

a
i (3.3)

r̃a =
1

N

N+∑
i=1

(w̃ai )2 (3.4)

qab =
1

N

N0∑
i=1

wai w
b
i (3.5)

q̃ab =
σ2
in

N

N0∑
i=1

w̃ai w̃
b
i (3.6)

The order parameters can be understood intuitively as
follows: ma corresponds to the overlap between the stu-
dent weights wa and the teacher perceptron weights. r̃a
corresponds the norm of expanded weights w̃a ; qab mea-
sures the overlap between student weight wa in replica
and wb in replica b. Similary q̃ab measures the overlap of
expansion weights w̃a and w̃b (scaled with the expansion-
input variance σ2

in).

We apply the replica symmetric (RS) ansatz for the
order parameters ma, r̃a, qab, and q̃ab, which is exact be-
cause the version space of weight vectors is connected.
This allows us write the order parameter matrices in
terms of the four scalar order parameters m, r̃, q, and
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q̃ as follows

ma = m, (3.7)

r̃a = r̃, (3.8)

qab = (1− q − r̃)δab + q, (3.9)

q̃ab =
(
σ2
inr̃ − q̃

)
δab + q̃ (3.10)

In the mean field limit, we can decompose 〈V n〉 into the
sum of an entropic term and energetic term which are
both functions of m, r̃, q, and q̃

〈V n〉 = exp [nN(G0(q, q̃, r̃,m) + αG1(q, q̃, r̃,m))]
(3.11)

Within the replica framework, the max-margin solution
is the unique solution which maximizes the margin and
corresponds to the equivalence of w in all student repli-
cas such that the overlaps q → 1 − r̃ and q̃ → σ2

inr̃.
Taking the limit n → 0, the averaged free energy takes
the following functional form

〈log V 〉 = N(G0(r̃,m) + αG1(r̃,m)) (3.12)

We obtain three closed saddle point equations for κ, m,
and r̃ by minimizing the free energy in Eqn. 3.12 with
respect to m and r̃ and requiring that V → 0. The ca-
pacity of the network is determined by solving the mean
field equations in the limit κ→ 0.

The performance of the system depends on the expan-
sion parameter β, and the input and output noise vari-
ances σ2

in and σ2
out. We will focus primarily on the case

σin = 1, where the mean field equations simplify consid-
erably, and solve them for r̃ as a function of m and β.
We find that in this case the capacity of the network as
defined in terms of α0 obeys the simple scaling relation

αc(β, σout) = βαc(1, σout) (3.13)

where αc(1, σout) is the capacity of the unexpanded
network shown in Fig. 5. We derive an expression for
Eg in terms of the mean field order parameters in Ap-
pendix D.

With the removal of the expanded weights Eg takes
the form:

Eg =
1

π

(
π

2
− tan−1

(
R√

1 + σ2
out −R2

))
(3.14)

where R is defined as the cosine of the angle between
student and teacher weights which can be expressed in
terms of the order parameter m and r̃ as

R =
m√
1− r̃ (3.15)

where the factor of
√

1− r̃ in Eqn. 3.15 is the frac-
tion of the student weight norm in the subspace of the
teacher. For student networks that are the same size
as the teacher, r̃ = 0 and R = m. The generalization
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FIG. 5: The network capacity for random inputs as a
function inverse variance of the label noise obtained
from the solution of the mean field equations for
σin = 1.

error for a student network that retains its expanded
units after learning, with stochastic noise included in
each test example, is given by replacing R with m in
Eqn. 3.14. This is because the overlap m is equivalent
to cosine of the angle between teacher and student in
the full network given the

√
N normalization of both the

teacher and expanded student. Thus, we see that for
improved generalization performance, it is necessary to
prune the augmented units after learning as was shown
numerically for the deterministic network, Fig. 3. In the
stochastic expansion, the intuition for removing these
weights is straightforward as retaining them implies in-
jecting stochastic activities in test example, uncorrelated
with the task’s input, which will obviously reduce per-
formance. The situation is different in the deterministic
network in which correlations between the expanded and
original components of the network the network are in-
duced by the random map J , hence through learning w̃
acquire some information about the task. Indeed, as we
have shown above, for dense expansion, retaining these
weights slightly increases the performance. However, for
sparse expansion, the correlation between the expanded
activations and the task input is small (see below) hence
pruning improves the performance similar to the stochas-
tic case. Finally, we note that in the case of zero out-
put noise, Eg is just the angle between the student and
teacher normalized by π and the minimal error is given
by Eqn. 3.14 with R = 1, in agreement with Eqn. 2.4.

In Fig. 6, we plot the theoretical results for Eg as a
function of α0 for different values of β for two values of
σout . For both high and low σout , the generalization er-
ror decreases monotonically as a function of α0 for fixed
β and as a function of β for fixed α0 . In ?? and ?? of
Fig. 6 we show the minimal Eg as a function of β defined
as the generalization error reached for each β after mini-
mizing over α0. An interesting question is whether for a
given size of training set, there is a finite optimal expan-
sion ratio. We find two qualitatively different behaviors
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dependent on the value of σout. For low values of σout,
for a each fixed value of α0, the student network with the
lowest generalization error is the smallest network which
can fit all of the training examples. For higher values
of σout, we find that making the network larger always
improves the generalization performance for any value
of α0, with the best performance occuring in the limit
β →∞. The crossover between these two regimes occurs
roughly around σout ∼ 0.5. We conclude that adding
noisy units during learning gives the network the capac-
ity to fit the label noise and train on more examples in
a way that does not interfere with the relevant weight
information. This allows networks with larger expansion
ratios to achieve better generalization as they are trained
on more examples.
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FIG. 6: The replica theory results for the
generalization error. Eg is shown as a function of α0 for
several values of the expansion factor β for label noise
with standard deviation σout = 0.25 in (a) and standard
deviation σout = 1 in (b) . Eg is shown as a function of
β for σout = 0.25 in (a) and σout = 1 in (b). σin = 1 for
all figures.

So far, we have considered the simple case of σin = 1.
We now discuss briefly the effect of varying σin. In Fig. 7,
we demonstrate how varying the level of input noise can
improve generalization error by comparing theory and
simulations for different choices of σin. We find that cal-
culations of Eg from simulations match very well with
the value obtained from solution of the mean field equa-
tions shown in Fig. 7. For low label noise, the general-
ization performance is most substantially improved when
the variance of activity in the added units is much lower
than the variance of patterns being learned, i.e. σin < 1.
In the deterministic network, this corresponds to choos-
ing a small value for A. For fixed value of label noise
σout, we find that there us an optimal variance σin of the
augmented units which minimizes Eg for fixed measure-
ment density α0 and expansion factor β. This value can
be determined from the replica equations shown in Fig. 7

(b) and discussed in Appendix F. We will return to this
issue in the Section C.
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FIG. 7: The replica theory results compared with
simulations for the generalization error Eg. (a) shows
Eg for σout = 0.1, β = 5 and several values of σin. The
error bars are computed from the mean and standard
deviation of 400 trials with N0 = 100. (b) shows Eg v.
σin with α0 = 3, β = 5, and σout = 1, β = 5 and the
line represents the replica predictions for the value of
σin that minimize the generalization error.

B. Comparison between stochastic expansion and
deterministic sparse expansion

For networks expanded with sparse hidden layers, the
parameter A is closely related to σin. We directly com-
pare the generalization performance of the student net-
work with a sparse hidden layer (Eqn. 2.5) with the stu-
dent network with stochastic units added to the input
(Eqn. 3.1) by setting σin = A so that the statistics of the
expansion units match in the two networks. For simplic-
ity we consider the case σin = A = 1. Fig. 8 (a) shows
the generalization error for each network with β = 5 and
Fig. 8 (b) shows the the generalization error as a func-
tion of the network expansion factor β. The stochasti-
cally expanded network achieves superior generalization
performances for larger values of α0 and has a higher ca-
pacity. However, as can be seen, the performance of the
deterministic networks approach that of the stochastic
network upon increasing sparsity of the hidden layer ac-
tivity. This is expected as the correlation in the sparse
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FIG. 8: Comparison of student networks with
stochastic and sparse expansions. (a) compares
simulations of the two layer student network with the
theory results for the one layer network for β = 5 for
σout = 0.25, N0 = 100, and 200 trials. In general, we see
that student networks with stochastic added units
attain superior performance when compared to a
deterministic networks of the same size. (b) compares
Eg(β) for the case of stochastic augmented input units
and deterministic hidden units with dense and sparse
activity with σout = 0.5, and N0 = 80 . The parameters
σin = A = 1 and 200 trials are used for both figures.

activities are weak and hence approach the uncorrelated
stochastic limit.

C. Correspondence with slack regularization

While it is clear that expanding a network increases its
capacity, it is not obvious that the expansion we have im-
plemented should lead to improved generalization. While
widening a network increases its capacity to fit more
training data, it may also increase its Rademacher com-
plexity improving its ability to learn random input out-
put data [21]. However, it turns out that the improved
generalization performance in the networks we have stud-
ied can be related to an equivalence between our ex-
panded network trained in the realizable regime and an

unexpanded network trained in the unrealizable regime
using slack regularization [38, 39], which we now explain.

We consider the relation between our expansion
schemes for learning and that of slack SVM which is
defined as,

min
w,ξ

N0∑
i=1

w2
i + C

P∑
µ=1

ξµ2 s.t. yµ0

(
N0∑
i=1

wix
µ
i

)
≥ 1− ξµ

(3.16)
While the SVM learning works only in the realizable

regime, slack SVM is a convex optimization that allows
non zero classification errors (when ξµ > 1) and regu-
larizes them through the slack parameter C that applies
L2 regularization of the slack variables ξµ . Although it
does not minimize the training error, and its cost func-
tion does not have a well defined interpretation in terms
of the classification tasks, it is a popular learning algo-
rithm due to its simplicity and its empirically nice gen-
eralization properties .

To see the relation between slack parameters and the
SVM with the stochastic expansion, we first note that
the minimal w̃ of Eqn. 2.8 will necessarily be in the span
of the P input stochastic vectors, X̃µ = x̃µyµ0 , since any
projection on the null space will increase the norm of w̃
without contributing to the satisfaction of the inequali-
ties. Defining new variable ξµ as

ξµ = X̃µT w̃ (3.17)

we can write the optimal w̃ as

w̃ = (X̃T )+ξ (3.18)

where X̃is the matrix of input stochastic vectors and +
denotes the pseudo-inverse operation. Substituting Eqn.
3.18 into Eqn. 2.8 yields

min
w,ξ

N0∑
i=1

w2
i+

P∑
µ=1

P∑
ν=1

ξµCµνξ
ν s.t. yµ0

(
N0∑
i=1

wix
µ
i

)
≥ 1−ξµ

(3.19)

where C = ˜(X
T
X̃)+ or equivalently,

Cµν = x̃µx̃νT (3.20)

which is just the sample covariance matrix of the ex-
panded inputs in the training set. We recognize the sec-
ond term in Eqn. 3.19 as the square of the Mahalanobis
distance between the vector ξµ and a set of observations
with zero mean and covariance matrix Cµν . Thus, SVM
with expanded networks is equivalent to slack SVM of
the original network with a slack SVM that incorporates
a Mahalanobis distance regularization of the slack vari-
ables with a covariance regularizer matrix C injected by
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the expanded activities.
Furthermore, we can establish exact correspondence

between the stochastic expansion and the slack SVM,
Eqn. 3.19 in the limit large β (and fixed α0) by noting
that in this limit, x̃µx̃νT ∼ δµν , hence, the slack term
becomes

P∑
µ=1

P∑
ν=1

ξµ〈C−1
µν 〉ξν →

1

σ2
in

P∑
µ=1

(ξµ)2 (3.21)

which is a generic slack regularization term, with slack
tradeoff parameter σ−2

in . This implies that the addition
of stochastic units becomes equivalent to the addition
of slack terms in the limit β → ∞. The equivalence
breaks down for N+ < P when the matrix Cµν becomes
uninvertible.

The above equivalence hold also for deterministic ex-
pansion, where now Cµν = zµzνT , see Eqn. 2.6. In the
case of a sparse expansion, Cµν has small off-diagonal
elements and diagonal elements equaling A which plays
the role of the slack regularizer.

IV. EXTENSIONS

So far, we have focused on a perceptron learning a
noisy perceptron rule using convex learning algorithms.
In the following section, we investigate whether random
expansion of the network during learning is beneficial
when the teacher is a given by nonlinear classification
rule, and also in training with gradient based methods.

A. Learning a nonlinear classification rule

We model a perceptron learning a complex but deter-
ministic rule by considering a student perceptron learning
from a quadratic teacher. The target rule is then given
by

y(x) = sign

a 1√
N0

N0∑
i=1

w0
i xi + (1− a)

1

N0

∑
i,j=1

w0
ijxixj


(4.1)

with weights drawn iid as w0
i , w

0
ij ∼ N (0, 1). Here a is a

scalar coefficient between zero and one and denotes the
relative weight of the linear component of the teacher.
Clearly, a perceptron student cannot emulate perfectly
such a rule. For a perceptron with N0 weights, the opti-
mal weights are w = w0 with a non-zero minimal general-
ization error, Emin which decreases with a . In addition,
there is a critical capacity, αc above which the training
examples are unrealizable, where αc increases with a .

We now discuss the effect of adding the stochastic ran-
dom layer as in Fig. 1D of size N+ with N0 +N+ = βN0.
Clearly the capacity for learning with zero training error
increases with β. We now ask whether this expansion is
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FIG. 9: Comparison of Eg as a function of α0 for a
student learning a quadratic teacher v. the same
student learning a linear teacher with label noise. Error
bars in (a) are obtained from simulations of a stochastic
expanded student with σin = 1 learning a quadratic
teacher for 200 trials and the solid lines correspond to
the replica theory result for student learning from a
noisy teacher. In (b) we compare simulations of a two
layer student network with f = 0.02 and A = 1 learning
from a quadratic teacher with simulations of the same
student network learning from a noisy teacher for 400
trials. The parameters a = 0.5, σout = 1, and N0 = 100
are used in both figures.

also beneficial for generalization and whether prunning
the network after learning improves performance. We
have simulated training in this network using as before,
the max-margin algorithm. Results shown in Fig. 9, con-
firm that the expanded stochastic network performs bet-
ter than the unexpanded one. Furthermore, the results
are in excellent agreement with the behavior in the case
of the noisy perceptron target rule, with noise variance
given by

σout =
1− a
a

. (4.2)

We show simulation results for the two layer network
with dense and sparse deterministic expansions in Fig.
10. As in the case of a noisy teacher, the optimal gener-
alization performance occurs after the extra neurons and
synapses are removed from the network for a sparse ex-
pansion. This effect persists for values of β as large as
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FIG. 10: Simulation results for a two layer expanded
student learning a quadratic teacher. (a) compares Eg
as a function of α0 before and after pruning for a sparse
hidden layer with f = 0.02 and (b) compares the
performance before and after pruning for a dense hidden
layer with f = 0.5. The parameters a = 0.5, σout = 1,
β = 10, N0 = 100 and 400 trials are used in both figures

β = 40 for N0 = 60. In the case of the two layer net-
work, it is not entirely obvious that removing the extra
synapses would improve performance, as this structure
may be used to learn something about the quadratic part
of the teacher. It is possible that there may be param-
eter regimes in which it is beneficial to keep the extra
weights unpruned that we have been unable to reach due
to computational limitations on β and N0. Despite these
potential shortcomings, our findings for both student ar-
chitectures demonstrate that the benefits of expanding
a network can also occur in the setting where the rule
being learned is more complicated than the model.

Finally, we suggest that our results should hold in gen-
eral for a nonlinear SVM teachers with field h0 taking the
following form

h0 = w0 · Φ(x) + ε (4.3)

where Φ(x) is a transformation from RN0 → RM0 defined
by Φ(x) = (Φ1(x), . . . ,ΦM0

(x)). Given a training set
(xµ, yµ0 ), we can consider a student with labels given by

y = sign(w ·Ψ(x)) (4.4)

where Ψ(x) is a transformation from RN → RM defined

by Ψ(x) = (Ψ1(x), . . . ,ΨM (x)). The max margin solu-
tion for the student weight vector is then

w =

P∑
µ=1

αµy
µ
0 Ψ(xµ + x̃µ) (4.5)

where the coefficients αµ are given by solving the opti-
mization problem 2.8 with constraints given by 2.9. The
student labels are now given by

y = sign

(
P∑
µ=1

αµy
µ
0K(xµ + x, x+ x̃)

)
(4.6)

where the kernel K is defined as

K(x, y) = Ψ(x) ·Ψ(y) (4.7)

If the student perceptron uses the same transformation
Φ(x) as the teacher, expanding the dimensionality of the
input x produces the same improvement in generaliza-
tion performance as shown in section III. This is because
the training data is linearly separable without noise. We
demonstrate this with simulations with Φ(x) chosen as
the eigenfunction of a quadratic kernel with a stochastic
expansion of the input shown in Fig.11. When the trans-
formation Ψ(x) is less complex than the transformation
Φ(x) of the teacher, we expect that expanding the input
of the student results in improved generalization qualita-
tively similar to our results for a linear student learning
a quadratic teacher discussed in the beginning of the sec-
tion. We also expect these results to hold for networks
with sparse expansions.

B. Logistic regression

We now consider alternative optimization methods and
loss functions which allow a neural network to be trained
beyond capacity. One example is logistic regression, with
a cost function given by

L(w) =

P∑
µ=1

log (1 + exp(−uµ)) (4.8)

uµ =
1√
N

N∑
i=1

yµwix
µ
i (4.9)

In the following, we consider full batch gradient descent
so that the update to the weights at each training epoch
is given by

∆wi =− η ∂L(w)

∂wi

In [40] it was shown that the normalized weight vec-
tor obtained by a minimizing the logistic regression loss
function via gradient descent should converge to the max
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FIG. 11: Simulation results for a quadratic kernel
student with stochastic expanded input layer learning a
quadratic kernel teacher with label noise. The
parameters σout = 1, N0 = 20 and 200 trials are used in
both figures.

margin solution after a sufficiently long training time if
the training data is linearly separable. However, this
correspondence depends on learning parameters such as
η and the number of iterations. Note that in general, for
convergence to the max margin solution one needs to run
the logistic regression gradient based training for longer
times than required for finding a solution with zero train-
ing error. For unrealizeable rules, e.g., the noisy teacher
in Eqn. 2.1 and the quadratic teacher Eqn. 4.1, logistic
regression and max-margin classification are not equiva-
lent for large P because the training set provided by the
teacher is not linearly separable.

In previous sections we have shown that stochastic and
sparse expansions of perceptron networks increase the ca-
pacity of a network by making the training set linearly
separable in a higher dimensional space. Thus, it is nat-
ural to ask under what conditions training an expanded
network via logistic regression will result in a weight vec-
tor that converges to the new max margin solution in the
higher dimensional space and if this solution can yield a
superior generalization performance compared to a gra-
dient based training of the unexpanded student network.

We have simulated the logistic regression learning for
the problem of learning a noisy perceptron teacher, for
some values of η and number of training epochs. We
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FIG. 12: Simulation results for logistic regression
showing R v. α0 for various learning rates for N = 100,
and σout = 0.5.

first consider the case β = 1, i.e. a student the same
size as the teacher. For α0 below capacity, the margin
increases monotonically with training epochs and con-
verges asymptotically to the maximum margin, as shown
in Fig. 13 (b) (α0 = 3), with convergence time depend-
ing on η. In Fig. 13 (a) we show for the same α0 the
value of the overlap between student and teacher, as a
function of ηt. Interestingly, while R does seem to con-
verge asymptotically to the maximum margin value, it
is not monotonic and in fact reaches a maximum value
larger than the infinite time asymptote early in the train-
ing. Thus, the max margin solution is not necessarily the
one with the best generalization performance. Above ca-
pacity, logistic regression permits solutions with nonzero
training error, and we find that it results with good gen-
eralization performance. The value of R as a function of
α0 is shown in Fig. 12. As seen, for small α0 the overlap
(achieved after a large number of epochs) is close to the
max margin solution with precise values dependent on η
and the stopping criterion. When α0 increases above ca-
pacity, R increases monotonically and seems to approach
R = 1 for large α0 (corresponding to the optimal solution
w = w0), although the amount of increase depends on η.
Note that in this regime both R and κ converge fast to
their asymptotic values as shown in Fig. 13.

For an expanded student network i.e. β > 1, we find
that R converges to the max margin value after long
training time for α0 below capacity as shown in Fig. 14
and continues to increase with α0 as it increases above
capacity. However, for fixed values of η that are not
too large, the largest value of R for any α0 is obtained
for the unexpanded network, i.e., β = 1 as shown in
Fig. 14. This implies that in this range of parameters,
expanding the network does not improve generalization
performance.
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FIG. 13: Simulation results for logistic regression with
β = 1 and σout = 0.5 where t is defined as the number
of training epochs. (a) shows R as a function of ηt
where for α0 = 3 (below capacity) and α0 = 8 (above
capacity) for N = 100.(b) shows the margin κ as a
function of ηt for α0 = 3 and α0 = 8.
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FIG. 14: Simulation results for logistic regression for
several values of β with N0 = 100 and σout = 0.5
showing R v. α0 for β = 1, 3, 5 with fixed learning rate
η = 0.01. The max margin line in the plot corresponds
to the max margin solution for β = 5 and the circles
mark the capacity for each value of β.

V. DISCUSSION

In this work, we have shown how expanding the ar-
chitecture of neural networks can provide computational
benefits beyond better expressivity and improve the gen-
eralization performance of the network after the ex-

panded weights and neurons are pruned after training.
We obtain equations for the order parameters charac-
terizing generalization in randomly expanded perceptron
networks (called stochastic expansion) in the mean limit
and show explicitly that expansion allows for more accu-
rate learning of noisy or complex teacher networks. This
is achieved by increasing network capacity during train-
ing, allowing the learning to benefit from more examples.
We show a qualitatively similar improved performance
when expanding by adding fixed random weights (deter-
ministic expansion) connecting the input to sparsely ac-
tive hidden units. An additional insight into our results is
provided by showing that the expansion is effectively sim-
ilar to the addition of slack variables to the max-margin
learning.

In our analysis, we considered training sets drawn iid
from a Gaussian distribution with no spatial structure.
It would be interesting to see how our results could be ex-
tended to learning structured data. In particular, [41] de-
veloped a theory for the linear classification of manifolds
with arbitrary geometry by using special anchor points
on the manifolds to define novel geometrical measures
of radius and dimension which can be directly linked to
the classification capacity for manifolds of various geome-
tries. It would be interesting to see if sparse expansions
similar to those we have studied could be useful in classi-
fying noisy manifolds and if there is any correspondence
to SVMs containing anisotropic slack regularization en-
coded in the structure of the covariance matrix as in Eqn.
3.20.

It would also be interesting to determine how and if
our observations apply to learning in deep networks with
multiple layers. Neural network pruning techniques have
been widely discussed in the deep learning community
and it has been shown that neural network pruning tech-
niques can reduce parameter counts of trained network
by over 90% without compromising accuracy [22, 42].
Training a pruned model from scratch is worse than re-
training a pruned model, which suggests that the extra
capacity of the network allows it to find more optimal
solutions. In [43], the authors find that dense, randomly-
initialized, feed-forward networks contain subnetworks
that can reach test accuracy comparable to the original
network in a similar number of training iterations when
trained in isolation. It would be interesting to see if the
extra weights in the larger networks can be translated
into a regularization condition on the subnetwork.

Most of our work focused on max margin learning. We
have explored the effect of expansion on gradient based
learning with logistic regression cost function. We find
that for appropriate choice of learning rate and learning
time, generalization is similar to the max margin perfor-
mance below the network capacity, consistent with [40].
We also found that in the explored parameter range, op-
timal generalization performance is achieved by the un-
expanded network, as gradient based learning can extract
useful information even beyond the capacity learning.
However, understanding the generalization performance
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in gradient based learning requires a more thorough un-
derstanding of the role of learning rate and training time
is quite difficult given the lack of theory for the training
dynamics for logistic regression. It would be interesting
to see if there is a way to scale η such that expanding
the network can provide similar benefits for logistic re-
gression beyond capacity as for max margin learning. We
leave this to future work.

We also note that generalization can also improve when
adding unquenched noise to the student labels during
training with logistic loss as this prevents the classifier
from overfitting (results not shown; [44, 45]). This dif-
fers from our construction for two reasons. The first is
that our student by construction learns the weights in
the extended part of the network. The second is that
our dimensionality expansion changes the properties of

the training set in that a nonlinearly separable training
set in the original space may become linearly separable
in the higher dimensional expanded space.
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Appendix A: Mean field equations

We outline the derivation of the mean field equations used to compute the order parameters defined in Eqns. 3.3,3.4,
3.5, and 3.6 which are used to compute the generalization error given in Eqn. 3.14. We define the student field for
each replica of the student network as:

hµa =
1√
N

N∑
i=1

WiX
µ =

1√
N

 N0∑
i=1

wai x
µ
i +

N+∑
j=1

w̃aj x̃
µ
j

 , (A1)

and the teacher field as

hµ0 =
1√
N

N∑
i=1

W 0
i ·Xi

µ + εµ =
1√
N

N0∑
i=1

w0
i x
µ
i + εµ. (A2)

We can now write the average over the version space in Eqn. 3.11 in terms of these new variables

V n =

〈∫ N0∏
i=1

N+∏
j=1

∏
a

dwai dw̃
a
j δ

 N0∑
i=1

(wai )2 +

N+∑
j=1

(w̃aj )2 −N

 P∏
µ

∫
dhµa

∫
dĥµa

∫
dhµ0

∫
dĥµ0

[∑
σ

Θµ,a (yhµa − κ) Θ(yhµ0 )

]
I

〉
(A3)

where I is given by

I = exp

[
−i
∑
aµ

hµaĥµa − i
∑
µ

hµ0 ĥ
µ
0 + i

∑
aµ

ĥµa
1√
N

N∑
i=1

(W a
i X

µ
i ) + i

∑
µ

ĥµ0

(
1√
N

N∑
i=1

W 0
i ·Xµ

i + εµ

)]
(A4)

and the constraints in Eqns. A1 and A2 are implemented by the Lagrange multipliers hµa and ĥµ0 . Averaging over
the input xµ, x̃, and the noise εµ, I becomes

I =

∫ P∏
µ=1

N0∏
i=1

dxµi√
2π
e−

(xµ)2

2

N+∏
j=1

dx̃µj√
2πσ2

in

e
− (x̃µ)2

2σ2
in

dεµ√
2πσ2

out

e
− (εµ)2

2σ2
out

× exp

−i∑
µα

hµaĥµa − i
∑
µ

hµ0 ĥ
µ
0 + i

∑
µa

N0∑
i=1

1√
N

(ĥµawai + ĥµ0w
0
i )x

µ
i + i

∑
µa

N+∑
j=1

1√
N

(ĥµaw̃aj x̃j
µ) + i

∑
µ

ĥµ0 ε
µ


= exp

−∑
µ

(
i
∑
a

hµaĥµa + ihµ0 ĥ
µ
0 +

∑
a

ĥµaĥµ0

N0∑
i=1

wai · w0
i

N
+

(1 + σ2
out)

2
ĥµ2

0 +
1

2

∑
ab

ĥµaĥµb

 N0∑
i=1

wai w
b
i

N
+ σ2

in

N+∑
j=1

w̃aj w̃
b
j

N

)
(A5)

We define the order parameters ma, qab and q̃ab as

ma =
1

N

N0∑
i=1

w0
iw

a
i (A6)

qab =
1

N

N0∑
i=1

wai w
b
i (A7)

q̃ab =
σ2
in

N

N+∑
j=1

w̃aj w̃j
b (A8)

For further convenience, we write the sum of qab and q̃ab as

Qab = qab + q̃ab. (A9)
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In terms of the order parameters, I becomes

I = exp

[
−
∑
µ

(
i
∑
α

hµaĥµa + ihµ0ĥµ0 +
∑
a

ĥµaĥµ0ma +
(1 + σ2

out)

2
(ĥµ0)2 +

1

2

∑
ab

ĥµaĥµbQab

)]
(A10)

We can now do the integrals over ĥ and ĥ0 which gives us

P∏
µ

∫
dhµa

∫
dĥµa

∫
dhµ0

∫
dĥµ0I =

P∏
µ

∫
dhµa

∫
Dh̄µ0 det(Qab − m̄2)−

P
2 X (A11)

where we have defined X as

X = exp

[
−1

2

∑
µ

∑
ab

(h̄µ0m̄− hµa)(Qab − m̄2)−1(h̄µ0m̄− hµb)
]

(A12)

and m̄ and h̄ as

m̄ =
m√

1 + σ2
out

(A13)

h̄0 =
h0√

1 + σ2
out

(A14)

We now define the additional parameter r̃a as

r̃a =
1

N

N+∑
i=1

(w̃ai )2 (A15)

Since the solution space is connected, we can make the following replica symmetric ansatz for ma, qab, q̃ab, and r̃a

ma = m (A16)

r̃a = r̃ (A17)

qab = (1− r̃ − q)δab + q (A18)

q̃ab =
(
σ2
inr̃ − q̃

)
δab + q̃ (A19)

Qab = (rQ −Q)δab +Q (A20)

where Q = q + q̃ and rQ = 1− (1− σ2
in)r̃. The inverse of the matrix in Eqn. A12 is given by

(Qab − m̄2)−1 =
1

rQ −Q
δab −

Q− m̄2

(rQ −Q)2
(A21)

we now define X ′ as:

X ′ =

P∏
µ

∫
dhµa

∫
dhµ0 exp

[
− P

2
log det(Qab − m̄2)

]
XP (A22)

Plugging in the replica symmetric ansatz in Eqns. A16, A17, A18, A19, this becomes

X ′ =

P∏
µ

∫
dhµa

∫
dhµ0 exp

[
− 1

2(rQ −Q)

∑
µa

(hµa)2 +
1

2

Q− m̄2

(rQ −Q)2

∑
µ

(∑
a

hµa

)2

+
1

(rQ −Q)

∑
µ

h̄µ0m̄
∑
a

hµa −
n
∑
µ(h̄µ0m̄)2

2(rQ −Q)
− P

2
log det(Qab − m̄2)

]
(A23)

We decouple terms with different replica indices in Eqn. A23 via a Hubbard-Stratonovich transformation by intro-
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ducing the auxiliary variable t. Then X ′ becomes

X ′ = 2

∫ ∞
0

Dh̄0

∫
Dt

[∫ ∞
κ

dh√
2π

exp
(
− 1

2

h2

rQ −Q
+

√
Q− m̄2

rQ −Q
ht+

1

rQ −Q
hh̄0m̄−

m̄2h̄2
0

2(rQ −Q)

)]n
(A24)

where Dx = dx√
2π
e−

x2

2 .

Once we evaluate all of the integrals in the expression for 〈V n〉 we can write it in the following form

〈V n〉 = exp(nN(G0(q, q̃, r̃,m) + αG1(q, q̃, r̃,m))) (A25)

where G0(q, q̃,m) is an entropic contribution coming from from the integral over the weights and G1(q, q̃, r̃,m) is an
energetic contribution whose form is dictated by the learning rule.
We can start by computing the energetic contribution. We define A(t, h̄0) and Z(t, h̄0) as

A(t, h̄0) =
1

2(rQ −Q)

(√
Q− m̄2t+ h̄0m̄

)2

− m̄2h̄2
0

2(rQ −Q)
(A26)

Z(t, h̄0) =

∫ ∞
κ

dh√
2π

exp

(
− 1

2(rQ −Q)

[
h−

(√
Q− m̄2t+ h̄0m̄

)]2)
(A27)

and rewrite X ′ as

X ′ = 2

∫ ∞
0

Dh̄0

∫
Dt
[

exp(nA(t, h̄0))Zn(t, h̄0)
]

(A28)

We define A as the average over t, h̄0 of A(t, h̄0), i.e.

A =

∫ ∞
0

Dh̄0

∫
DtA(t, h̄0) =

Q− m̄2

2(rQ −Q)
(A29)

In the limit n→ 0, X ′ becomes

X ′ = exp

(
An+ 2n

∫ ∞
0

Dh̄0

∫
Dt logZ(t, h̄0)

)
(A30)

We can do the following shift of variables

x =
(√

Q− m̄2t+ h̄0m̄
)
/
√
Q (A31)

y =
(
−m̄t+

√
Q− m̄2h̄0

)
/
√
Q (A32)

which allows us to write t and h̄0 as

t =
(√

Q− m̄2x− ym̄
)
/
√
Q (A33)

h̄0 =
(
xm̄+

√
Q− m̄2y

)
/
√
Q (A34)

and Z(t, h̄0) as

Z(x) =

∫ ∞
κ

dh√
2π

exp

(
− (h−√Qx)2

2(rQ −Q)

)
=
√
rQ −QH

(
κ−√Qx√
rQ −Q

)
(A35)

Under this transformation, the Gaussian integrals become∫ ∞
0

Dh̄0

∫
Dt =

∫
Dx

∫ ∞
−xm̄/

√
Q−m̄2

Dy =

∫
DxH

(
−xm̄/

√
Q− m̄2

)
(A36)
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where we define

H(x) =

∫ ∞
x

Dy (A37)

This gives us

2

∫ ∞
0

Dh0

∫
Dt logZ(t, h0) =2

∫
DxH

(
−xm̄/

√
Q− m̄2

)
logZ(x) (A38)

=2

∫
DxH

(
−xm̄/

√
Q− m̄2

)
logH

(
κ−√Qx√
rQ −Q

)
+

1

2
log(rQ −Q)

So X ′ becomes

X ′ = exp

(
2

∫
DxH

(
−xm̄/

√
Q− m̄2

)
logH

(
κ−√Qx√
rQ −Q

)
+

1

2
log(rQ −Q) +A

)n
(A39)

Using the relation

A− 1

2n
logdet(Qab − m̄2) +

1

2
log(rQ −Q) = 0 (A40)

the replicated volume of the version space become

〈V n〉 =

∫ n∏
a=1

dN0wadN1w̃aδ

 N0∑
i=1

(wai )2 +

N+∑
j=1

(w̃aj )2 −N

∫ dm

∫
dqab

∫
dq̃abδ(Nm−

N0∑
i=1

wai w
0
i )

∏
ab

δ

(
Nqab −

N0∑
i=1

wai w
b
i

)
δ

Nq̃ab − σ2
in

N+∑
j=1

w̃aj w̃
b
j

 exp
(

2n

∫
DxH

(
− xm̄√

Q− m̄2

)
logH

(
κ−√Qx√
rQ −Q

))P
(A41)

We can compute the entropic term G0(q, q̃,m, r̃) by considering the integrals over configurations of weights allowed
by the delta functions. Then exp(nN(G0(q, q̃, r̃,m)) is given by

exp(nN(G0(q, q̃, r̃,m)) =

∫ n∏
a=1

∫
dwadw̃aδ

(
Nm−

N0∑
i=1

wai w
0
i

)
(A42)

×
∏
ab

δ

(
Nqab −

N0∑
i=1

wai w
b
i

)
δ

Nq̃ab − σ2
in

N+∑
j=1

w̃aj w̃
b
j


Introducing the Lagrange multipliers m̂, q̂ab, and ˆ̃qab, Eqn. A43 can be written as

exp(nN(G0(q, q̃, r̃,m)) =

∫ n∏
a=1

dwadw̃a
∫

dm̂√
2π

∫
dq̂ab√

4π

∫
dˆ̃qab√

4π
exp

( i
2

∑
ab

q̂ab

(
Nqab −

N0∑
i=1

wai w
b
i

)

+
i

2

∑
ab

ˆ̃qab

Nq̃ab − σ2
in

N+∑
j=1

w̃aj w̃
b
j

+ i
∑
a

m̂a

(
Nma −

N0∑
i=1

wai w
0
i

))

=

∫
dm̂√

2π

∫
dq̂ab√

4π

∫
dˆ̃qab√

4π
exp

(
iN

2

∑
ab

q̂abqab +
iN

2

∑
ab

ˆ̃qabq̃ab + iN
∑
a

m̂ama

)

×
∫ n∏

a=1

dwadw̃a exp
(
−iH(wa, w̃a, w0)

)
(A43)
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where we have defined a “Hamiltonian” H(wa, w̃a, w0) as

H(wa, w̃a, w0) =
1

2

∑
ab

(q̂ab

N0∑
i=1

wai w
b
i + σ2

in
ˆ̃qab

N+∑
j=1

w̃aj w̃
b
j) +

∑
a

N0∑
i=1

wai w
0
i m̂a (A44)

Doing a Wick rotation im̂a → m̂a, iq̂ab → q̂ab, iˆ̃qab → ˆ̃qab and integrating over the weights w and w̃, we have

exp(nN(G0(q, q̃, r̃,m) =

∫
dm̂√

2π

∫
dq̂ab√

4π

∫
dˆ̃qab√

4π
exp

(
N

2

∑
ab

q̂abqab +
N

2

∑
ab

ˆ̃qabq̃ab +N
∑
a

m̂am

)

×
∫ n∏

a=1

dwadw̃a exp

−1

2

∑
ab

(q̂ab

N0∑
i=1

wai w
b
i + σ2

in
ˆ̃qab

N+∑
j=1

w̃aj w̃
b
j)−

∑
α

N0∑
i=1

wai w
0
i m̂a)


=

∫
dm̂√

2π

∫
dq̂ab√

4π

∫
dˆ̃qab√

4π
exp

(
N

2

∑
ab

q̂abqab +
N

2

∑
ab

ˆ̃qabq̃ab +N
∑
a

m̂am

)

× exp

(
N

2

∑
ab

m̂aq̂
−1
ab m̂b −

Nβ−1

2
log det q̂ − N(1− β−1)

2
log det ˆ̃qσ2

in

)
(A45)

We can evaluate the integral on the saddle point by solving for m̂a, q̂ab ,and ˆ̃qab using the three saddle point equations

0 =
N

2
mγ +

N

2

∑
b

(q̂−1
cb )m̂b (A46)

0 = −N
2

∑
ab

m̂a(q̂ac)
−1(q̂bd)

−1m̂b −
Nβ−1

2
(q̂cd)

−1 +
N

2
qcd (A47)

0 = −N(1− β−1)

2
(ˆ̃qcd)

−1 +
N

2
q̃cd (A48)

We make the following replica symmetric ansatz for q̂αβ and ˆ̃qαβ

q̂ab = (q̂0 − q̂1)δab + q̂1 (A49)

ˆ̃qab = (ˆ̃q0 − ˆ̃q1)δab + ˆ̃q1 (A50)

Inserting these expressions into Eqns. A46, A47, and A48 gives us the following scalar equations

1

q̂0 − q̂1
= β(1− r̃ − q) (A51)

m̂ = − m

β(1− r̃ − q) (A52)

q̂1 = − q −m2

β(1− r̃ − q)2
(A53)

1

ˆ̃q0 − ˆ̃q1

=
β

β − 1
(σ2
inr̃ − q̃) (A54)

ˆ̃q1 = −β − 1

β

q̃

(σ2
inr̃ − q̃)2

(A55)

Solving for m̂, q̂0, q̂1, ˆ̃q0, and ˆ̃q1 we find

G(q, q̃, r̃,m) =
1

2

(
1 +

q −m2

β(1− r̃ − q) +
β − 1

β

q̃

σ2
inr̃ − q̃

+
1

β
log (β(1− r̃ − q)) +

β − 1

β
log

(
β

β − 1
(σ2
inr̃ − q̃)

))
(A56)

In summary, we have

〈V n〉 = expnN(G0(q, q̃, r̃,m) + αG1(q, q̃, r̃,m)) (A57)
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where m is given by the saddle point value

G0(q, q̃, r̃,m) =
1

2

(
1 +

1

β

(
q −m2

(1− r̃ − q) + log β (1− r̃ − q)
)

+
β − 1

β

(
q̃

σ2
inr̃ − q̃

+ log
β
(
σ2
inr̃ − q̃

)
β − 1

))
(A58)

G1(q, q̃, r̃,m) = 2

∫
DxH

(
− xm̄√

Q− m̄2

)
logH

(
κ−√Qx√
rQ −Q

)
(A59)

Appendix B: Max-margin limit in mean field theory

In the max margin limit the uniqueness of the solutions for w and w̃ imply

q → 1− r̃, q̃ → σ2
inr̃, Q→ rQ (B1)

In general, q and q̃ approach their max margin values at different rates. To account for this we define the scaling
factors λ and λ̃ as

λ =
rQ −Q

1− r̃ − q (B2)

λ̃ =
rQ −Q
σ2
inr̃ − q̃

(B3)

where λ−1 + λ̃−1 = 1. This allows us to rewrite G0(q, q̃, r̃,m) so that all of the singular terms scale as (rQ −Q)−1 as
follows

G0(q, q̃, r̃,m) =
1

2

(
1 +

λ

β

q −m2

rQ −Q
+
λ̃(β − 1)

β

q̃

rQ −Q
+

1

β
log
(
βλ−1 (rQ −Q)

)
+
β − 1

β
log

(
βλ̃−1

β − 1
(rQ −Q)

))
(B4)

Taking the max margin limit followed by the limit n→ 0, we find that the free energy is given by

〈log V 〉 =
N

2(rQ −Q)

(
λ(1− r̃ −m2) + λ(λ− 1)−1(β − 1)σ2

inr̃

β
− 2α

∫
DxH

(
− xm̄√

rQ − m̄2

)
[κ−√rQx]2+

)
(B5)

The saddle point equation for m is

λm̄√
rQ − m̄2

=
αβ√
2π

(∫ ∞
− κ√

rQ−m̄2

Dx
x

1 + σ2
out

(
κ√

rQ − m̄2
+ x

)2)
(B6)

The saddle point equation for r̃ is

λ((λ− 1)−1(β − 1)σ2
in − 1)

β
= 2α

∫
DxH

(
− xm̄√

rQ − m̄2

)
x(κ−√rQx)+

(σ2
in − 1)
√
rQ

(B7)

+
αm̄(σ2

in − 1)√
2πrQ

∫ ∞
− κ√

rQ−m̄2

Dx
√
rQ − m̄2x

(
κ√

rQ − m̄2
+ x

)2

(B8)

We can use Eqn. (B6) to further simplify this as

λ((λ− 1)−1(β − 1)σ2
in − 1)

β
= 2α

∫
DxH

(
− xm̄√

rQ − m̄2

)
x(κ−√rQx)+

(σ2
in − 1)
√
rQ

+
(σ2
in − 1)(σ2

out + 1)λm̄2

βrQ
(B9)

For λ, we have the saddlepoint equation

1−m2 = r̃

(
1− (β − 1)σ2

in

(λ− 1)2

)
(B10)
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which has the relevant solution

λ = 1 +

√
(β − 1)σ2

inr̃

1− r̃ −m2
(B11)

R, the cosine of the angle between student and teacher, can be written in terms of m and r̃ as

R =
m√
1− r̃ (B12)

For σin = 1, i.e. the variance of the augmented units matches the variance of the original input, Eqns. B5, B6, B7,
and B4 simplify considerably and are given

1

N
〈lnV 〉 =

1

2(1− q)

(
1−m2 − 2α

∫
DxH

(
− xm̄√

1− m̄2

)
[κ− x]2+

)
(B13)

m̄ =
α
√

1− m̄2

√
2π

(∫ ∞
− κ√

1−m̄2

Dx
x

1 + σ2
out

(
κ√

1− m̄2
+ x

)2
)

(B14)

r̃ =
β − 1

β
(1−m2) (B15)

λ = β (B16)

rQ = 1 (B17)

We can now write R directly in terms of m and β as

R =
m√

1− β−1
β (1−m2)

(B18)

Appendix C: Network at capacity

We determine the capacity of the network for fixed β by setting the margin κ = 0 in the mean field equations.
After performing all of the integrals, we have the following three equations

λ(1− r̃ −m2) + λ(λ− 1)−1(β − 1)(σ2
inr̃)

β
=
α

π

(
arccot

(
m̄√

rQ − m̄2

)
− m̄

√
rQ − m̄2

rQ

)
(C1)

λm̄√
rQ − m̄2

=
αβ

π

1

1 + σ2
out

(C2)

λ((λ− 1)−1(β − 1)σ2
in − 1)

β
=
α(σ2

in − 1)√
2π
√
rQ

(
1− m̄
√
rQ

)
+

(σ2
in − 1)(σ2

out + 1)λm̄2

βrQ
(C3)

We can express α as α = α0/β and solve these equations numerically for α0 to determine αc
For σin = 1, the equations for network capacity become

1−m2 =
α

π

(
arccot

(
m̄√

1− m̄2

)
− m̄

√
1− m̄2

)
(C4)

m̄√
1− m̄2

=
α

π

1

1 + σ2
out

(C5)

Note that these equations depend on α but not on β. This implies that for σin = 1, αc is only a function of σout .
The capacity of a network of size β then obeys the simple scaling relation.

αc(β, σout) = βαc(1, σout) (C6)
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Appendix D: Calculation of the generalization error

To evaluate the generalization error in terms of the mean field order parameters, we start from the following
expression for the error

E(w, x, ε) = Θ

(
−
(

1√
N

N0∑
i=1

wixi

)(
1√
N

N0∑
i=1

w0
i · xi + ε

))
(D1)

Averaging over the input x, and noise ε, we get

Eg(w) =

∫ N0∏
i=1

dxi√
2π
e−

x2
i
2

∫
dε√

2πσ2
out

e
−ε2

2σ2
out Θ

(
−
(

1√
N

N0∑
i=1

wixi

)(
1√
N

N0∑
i=1

w0
i · xi + ε

))
(D2)

=

∫ N0∏
i=1

dxi√
2π
e−

x2
i
2

∫
dε√

2πσ2
out

e
−ε2

2σ2
out

∫
dh√
2π

∫
dh0

√
2π

∫
dĥ√
2π

∫
dĥ0

√
2π

Θ
(
−hh0

)
(D3)

× exp

(
−iĥh− iĥ0h0 +

i√
N

N0∑
i=1

(ĥwixi + ĥ0w0
i xi) + iĥ0ε

)
(D4)

=

∫
dh√
2π

∫
dh0

√
2π

∫
dĥ√
2π

∫
dĥ0

√
2π

Θ
(
−hh0

)
(D5)

× exp

(
−iĥh− iĥ0h0 − 1

2N
(ĥ2

N0∑
i=0

w2
i + 2ĥĥ0

N0∑
i=1

w0
iwi + (ĥ0)2

N0∑
i=0

w2
i )−

σ2
out

2
(ĥ0)2

)
(D6)

We set the normalization of the student and teacher to be

||w|| = ||w0|| =
√
N (D7)

and define the order parameter R as the cosine of the angle between teacher and student as

R = 1
N

∑N0

i=1 wiw
0
i (D8)

After performing the integral over ĥ0, we can define a rescaled R and h0 as

R̄ =
R√

1 + σ2
out

(D9)

h̄0 =
h0√

1 + σ2
out

(D10)

We can then perform the integral over ĥ to get the following integral over h and h̄0

Eg(R) =

∫
dh√
2π

dh0

√
2π

dĥ√
2π

Θ
(
−hh̄0

)
e−

1
2 (1−R̄2)ĥ2−iĥ(h+h̄0R̄)− 1

2 (h̄0)2

(D11)

=

∫
dhdh̄0 1

2π
√

1− R̄2
Θ
(
−hh̄0

)
e
− 1

2(1−R̄2)
(h2−2hh̄0R̄+(h̄0)2)

(D12)

This evaluates to

Eg(R) =
1

π

(
π

2
− tan−1

(
R√

1 + σ2
out −R2

))
(D13)

In our expanded network, m and R are related as

m =
1

N
R‖w0‖‖w‖ (D14)
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This gives us

R =
m√
1− r̃ (D15)

In terms of m and r̃ this can be written as

Eg(m, r̃) =
1

π

(
π

2
− tan−1

(
m√

(1− r̃)(1 + σ2
out)−m2

))
(D16)

Appendix E: Large β limit

We can find a closed expression for the generalization error in the limit β →∞ with σin ≤ 1. In this limit we have
m� 1, α0 � β and 1� κ. Analysis of the saddle point equations gives us the following relations

σ2
in =

α0

β
κ2 (E1)

σ2
in − β−1λ = 0 (E2)

λm̄ =
2α0√

2π
κ (E3)

βσ2
inm̄ =

2α0√
2π
σin

√
β

α0
(E4)

λ = σin

√
β

1− r̃ −m2
(E5)

which lead to the following expressions for m and r̃

m =

√
2α0 (1 + σ2

out)

βπσ2
in

(E6)

1− r̃ =
1

βσ2
in

(
1 + 2π−1α0

(
1 + σ2

out

))
(E7)

Plugging these into Eqn. D15 gives us

R2 ≈
2α0

π
1

(1+σ2
out)

1 + 2α0

π
1

(1+σ2
out)

≈ 1− π(1 + σ2
out)

2α0
(E8)

The expression for R2 in Eqn. (E8) can be plugged into Eqn. (D13) to find an expression for the generalization
error for β →∞ which is shown in Fig. (??). Note that this expression does not depend on σin as long as σin ≤ 1

Appendix F: Optimal input noise

We find the optimal σin to minimize the generalization error by maximizing R. Differentiating R with respect to
σin gives us

dR

dσin
=

dm

dσin

1√
1− r̃ +

1

2

dr̃

dσin

m

(1− r̃) 3
2

(F1)
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which gives us the condition

dm

dσin
= −1

2

m

(1− r̃)
dr̃

dσin
(F2)


