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Understanding the global dynamical behaviour of a network of coupled oscillators has been a topic
of immense research in many fields of science and engineering. Various factors govern the result-
ing dynamical behaviour of such networks, including the number of oscillators and their coupling
schemes. Although these factors are seldom significant in large populations, a small change in them
can drastically affect the global behaviour in small populations. In this paper, we perform an exper-
imental investigation on the effect of these factors on the coupled behaviour of a minimal network of
candle-flame oscillators. We observe that strongly coupled oscillators exhibit the global behaviour of
in-phase synchrony and amplitude death, irrespective of the number and the topology of oscillators.
However, when they are weakly coupled, their global behaviour exhibits the intermittent occurrence
of multiple stable states in time. We report the experimental discovery of partial amplitude death
in a network of candle-flame oscillators, in addition to the observation of other dynamical states
including clustering, chimera, and weak chimera. We also show that closed-loop networks tend to
hold global synchronization for longer duration as compared to open-loop networks.

I. INTRODUCTION

Discovered by Huygens in the 16th century, collec-
tive interaction between oscillators has seen a flurry of
both theoretical and experimental studies and till date
is a topic of immense interest between researchers from
around the world [1–3]. Starting from the motions of
coupled pendula [4, 5] and extending towards suppress-
ing coronavirus spread [6], collective interaction saw an
intertwine of various strata of science including physics
and biology. The mind-blowing coordination in swarms
of fishes and birds and other biological beings, and the ex-
hibition of various thought-provoking nonlinear dynam-
ical states in natural systems are a coincidence of this
interplay. Those dynamical states range from synchro-
nization [1], clustering [7, 8], oscillation quenching [9] to
symmetry-breaking phenomena such as chimera [10–13]
and weak chimera [14, 15].

The occurrence of these dynamical states has been
studied in systems with the number of oscillators ranging
from an order of one [5, 16, 17] to thousand [18, 19]. It
is interesting to note that in a swarm, the addition or
removal of a few entities or a change in their topological
positions does not affect the global dynamics of the en-
tire system [20]. However, these observations from large
networks may not be applicable to networks where the
number of oscillators is very few (i.e., minimal oscillator
network).

Coupled behaviour of oscillators in minimalistic net-
works (number of oscillators 2 to 10) has shown sev-
eral interesting dynamical states, which include in-phase
and anti-phase synchrony, clustering, amplitude death,
partial amplitude death, chimeras, and weak chimeras
[15, 21–23]. These networks are very susceptible to the
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addition or removal of an oscillator and also to a change
in the topological arrangement of oscillators in a net-
work. The addition of an oscillator increases the degrees
of freedom of the system, resulting in an increase in the
complexities in the behaviour of the system.

For example, in a system of coupled candle-flame oscil-
lators [24, 25], when the number of oscillators is two, and
the distance between the oscillators is increased, the sys-
tem shows four prominent stable behaviours such as in-
phase synchronization, amplitude death, anti-phase syn-
chronization, and desynchronization [26]. As the num-
ber of oscillators is increased to three and located as
an equilateral triangle, the system shows the presence of
multiple stable states including in-phase synchronization,
amplitude death, partial in-phase, and rotation mode
[27]. When the number of oscillators is increased to four
and placed in a rectangular network, the system shows a
plethora of dynamical states including in-phase synchro-
nization, amplitude death, clustering, chimera, and weak
chimera [23].

On the other hand, the change in the topology of os-
cillators in a network changes the coupling arrangement
of these oscillators. For example, in a line or a ring net-
work, the oscillators are locally coupled to their near-
est neighbours. In contrast, in a star network, only the
central oscillator is coupled to all peripheral oscillators.
Wickramasinghe and Kiss [28] studied the effect of net-
work structure on the selection of self-organized patterns
in coupled chemical oscillators. When six oscillators are
coupled in an extended triangular network, they observed
the presence of a partially synchronized state, where the
strongly coupled oscillators in the core of the triangle
synchronize easily when compared to the weakly coupled
peripheral oscillators. Non-local coupling of 20 oscillators
in a ring showed the possibility of chimera state, while
globally coupled oscillators show the existence of clus-
tering state. They also observed that chaotic oscillators
coupled in a closed-loop topology (e.g., square, triangle,
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or ring) undergo faster synchrony than those coupled in
an open-loop topology (e.g., linear or star).

A theoretical study on Kuromoto oscillators by Ashwin
and Burylko [14] showed the existence of weak chimera
in the coupled behaviour of minimal closed-loop networks
consisting of 4, 6, and 10 oscillators. Later, a study con-
ducted by Hart et al. [16] reported the presence of var-
ious dynamical states including bare minimum chimera,
global synchrony, and clusters in a network of four opto-
electronic oscillators for the variation of global coupling
strength and coupling delay between the oscillators. The
study by Wojewoda et al. [15] on three coupled pendula
uncovered the state of weak chimera in an experimental
system. Recently, Sharma [22] observed the states of par-
tial amplitude death and phase-flip bifurcation in a sys-
tem of three theoretical time-delay coupled relay oscilla-
tors. The study by Clerc et al. [29] observed the existence
of freak chimera states characterized as the coexistence
of incoherent domains in a system of Duffing oscillators
with the nearest neighbour coupling scheme. Although
all aforementioned studies separately provide insights on
the role of coupling structure and number of oscillators
on the dynamical behaviour of a network, none of the
experimental studies so far has comprehensively delin-
eated the explicit dependence of the global behaviour of
the same network on the change in the number of oscilla-
tors, the coupling topology, and the strength of coupling
between the oscillators.

In the present study, we perform an experimental in-
vestigation on the coupled behaviour of a minimal net-
work of candle-flame oscillators. We investigate the cou-
pled behaviour of these oscillators by changing the num-
ber of oscillators in a network and locating them in var-
ious topological arrangements. For a given number of
oscillators, we examine two types of topological arrange-
ments, such as closed-loop (triangle, square, and annular)
and open-loop (linear and star) networks. In a closed-
loop network, the oscillators are symmetrically coupled,
whereas in an open-loop network, they are asymmetri-
cally coupled. Subsequently, we characterize the dynam-
ical states observed for each of these topological arrange-
ments for the variation in distance between oscillators.

We observe that when the distance between the os-
cillators is small, the network of oscillators exhibits the
states of in-phase synchronization (d = 0 cm) and am-
plitude death (d = 1 cm) irrespective of the number or
the topological arrangement of oscillators in the network.
When the distance between the oscillators is large (d > 2
cm) and the number of oscillators is greater than two, we
observe that the system behaviour alternately switches
between one stable dynamical state to another stable dy-
namical state in time, for a fixed topological arrangement
of oscillators in a network. With the observation of mul-
tiple stable states, we could sketch the percentage occur-
rence of each state at a given distance and topology. In
our study, we report the occurrence of various dynamical
behaviours such as clustering, rotating clustering, desyn-
chrony, weak chimera, and chimera. We also present the

first observation of partial amplitude death and rotating
clusters in the experimental system of coupled candle-
flame oscillators. Due to the symmetric nature of cou-
pling in closed-loop topologies, the oscillators arranged
in such a topology exhibits increased synchrony and sta-
bility when compared to those in an open-loop topology.

II. EXPERIMENTAL SETUP

Candle-flame oscillators are one among the simplest
and economical oscillators which exhibit various complex
dynamical behaviours including synchronization [25],
amplitude death [26, 27], phase-flip bifurcation [26] and,
clustering, chimeras and weak chimeras [23]. In all these
studies, the candle-flame oscillators used are made by
bundling three or more candles together and lighting
them to form a compound flame, which exhibits limit
cycle oscillations. In the current study, we modify the
candle-flame oscillator by constructing a candle consist-
ing of four wicks. Such an oscillator deems to make the
experiments easier and less cumbersome, by enhancing
the repeatability with an evenly burning oscillator hav-
ing stronger oscillations sustaining for a longer duration.

In experiments, we make a candle-flame oscillator of
length 12 cm and a diameter of 2 cm with four wicks
placed in a square arrangement being 1 cm apart, as
shown in Fig. 1. The candle-flame oscillator created
using a single candle with four wicks exhibits limit cy-
cle oscillations with nearly the same amplitude and fre-
quency as the earlier used candle-flame oscillator made
up of multiple candles [26]. In order to study the ef-
fect of the number of oscillators in a network and the
change in the topology of coupling between the oscilla-
tors, we couple two to four such candle-flame oscillators
and measure their dynamical response for every coupling
configuration. The number of ways in which oscillators
can be arranged in a network topology depends on the
number of oscillators interacting in the system.

Previous studies by Dange et al. [30] and Yang
et al. [31] examined the role of buoyancy-driven vortices
formed around the candle-flame oscillator on the interac-
tion between these oscillators. The interaction between
candle-flame oscillators occurs through the communica-
tion between such periodically shed vortices around the
flame of each oscillator. Such interaction between the
oscillators is prominent between the nearest neighbors
(local coupling between oscillators) as they are in direct
contact, and not between oscillators that are located fur-
ther away. Therefore, we indicate the connected neigh-
bors of an oscillator by its degree [32]. The surface to
surface distance between the nearest pair of oscillators
in a network, referred to as link distances (d), are kept
constant in a network. The link distance is normalized
using the radius (1 cm) of the candle-flame oscillator.

An acrylic platform with markings for each of the topo-
logical arrangement is used to mount these oscillators
during experiments. The platform is placed on a ta-
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FIG. 1. (a) Schematic of the candle-flame oscillator. (b) A normal image of the flame luminosity and (c) a filtered CH*
chemiluminescence image of a candle-flame oscillator. (d) Time series of the global heat release rate fluctuations in the flame
(I), presenting self-sustained limit cycle oscillations shown by an isolated candle-flame oscillator. (e) The amplitude spectrum
corresponding to these oscillations shows a dominant frequency of 11.46 ± 0.2 Hz.

ble having a height of 80 cm from the ground to avoid
ground effects on the dynamics of the coupled oscilla-
tors. All experiments are performed in a completely dark
closed room with quiescent ambient conditions. After fix-
ing the link distance and topological arrangement, high-
speed imaging of all the oscillators is performed in each
experiment. The position of the camera is varied for each
topology to obtain distinct flames for each oscillator in
a single frame. The dynamics produced by the candle-
flame oscillators are captured using a high-speed imaging
technology of iPhone7S (frame rate of 240 Hz) fitted with
a CH* chemiluminescence band pass filter (wavelength of
435 nm and 10 nm full width at half maximum) for 60 s.
The filter facilitates the removal of noisy fluctuations as-
sociated with the black body emission of the soot in the
flame (see Fig. 1b) and provides information about the
actual heat release rate fluctuations (indicated in blue
in Fig. 1c) present in the flame [33] of a candle-flame
oscillator.

The instantaneous value of the global heat release rate
fluctuations (I) is obtained by summing up the local
brightness values of the flame in a given frame (as shown
in Fig. 1c) and a time series of such fluctuations is ob-
tained by performing the same operation for the entire
video. The limit cycle oscillations exhibited in the heat
release rate by an isolated oscillator are presented in Fig.
1(d) and the amplitude spectrum of these oscillations are
shown in Fig. 1(e). We observe the natural frequency of
an isolated oscillator as 11.5 ± 0.2 Hz. The frequency
resolution in the amplitude spectrum of the signal is ap-
proximately 0.017 Hz, calculated as the ratio of sampling
frequency to the total number of samples (Frequency res-
olution = Fs/Ns = 240/14400 = 0.017). At least 20
experiments are performed for each topological arrange-
ment and the percentage occurrence of each dynamical
state is calculated taking into account all these experi-
mental trials. Further analysis of the data obtained was
performed using various tools from time series analysis
and synchronization theory [1].

The coupled dynamics exhibited by candle-flame oscil-
lators is characterized using the instantaneous phase dif-
ference between a pair of oscillators, calculated by imple-

menting an analytic signal approach based on the Hilbert
transform [1]. The analytic signal, ζ(t), formed by gen-
erating a complex signal whose real part is the original
signal, x(t), and the imaginary part is its Hilbert trans-
form, xH(t). Thus, the analytic signal is represented as,

ζ(t) = x(t) + ixH(t) = A(t)eiφ(t),

where,

xH(t) =
1

π
P.V.

∫ ∞
−∞

x(t)/(t− τ)dτ,

P.V. is the Cauchy principal value of the integral. Thus,
we obtain the instantaneous amplitude A(t) and instan-
taneous phase φ(t) of the oscillator. The phase difference
between two oscillators is calculated as the difference be-
tween their instantaneous phases as follows,

φ1,2(t) = φ1(t)− φ2(t).

A constant value of phase difference between oscilla-
tor pairs, φ1,2(t) ∼ constant, highlights the presence of
synchronization and identical frequencies. On the other
hand, desynchronized oscillators exhibit a phase-drifting
behaviour, i.e., monotonous growth or decay, in time and
oscillate at different frequencies.

III. RESULTS AND DISCUSSION

The coupled interaction between candle-flame oscil-
lators in a network engenders a plethora of dynamical
states [23, 25–27]. We will begin our discussion on the
dynamics observed in a pair of coupled candle-flame os-
cillators and then move on to present the various dynami-
cal states observed when the number of oscillators in the
network is increased to three and four. As we observe
multiple stable dynamical states at higher distances, we
firstly describe the synchronization properties (in terms
of phase and frequency locking) of each dynamical state
observed for a given number of oscillators in the network.
Subsequently, we present the percentage occurrence of
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each of these dynamical states at a given distance and
topology. Finally, we investigate the various dynamical
behaviour observed in an annular topology consisting of
five to seven candle-flame oscillators.

A. Coupled dynamical behaviour exhibited by two
candle-flame oscillators

In the case of two oscillators, the only possible combi-
nation involves the mutual interaction between both the
oscillators, assigning a degree of 1 for both the oscilla-
tors. In such a network, we observe the existence of four
dynamical states as the distance between them is varied
(Fig. 2). These states include in-phase synchronization
(for d ≤ 0.5), amplitude death (for 0.75 < d < 1.25),
anti-phase synchronization (for 1.5 < d ≤ 3.5), and
desynchronization (for d > 3.5). In the case of in-phase
synchronization, all oscillators reach their correspond-
ing maximum and minimum amplitudes simultaneously;
thus, exhibiting a phase-shift of nearly 0 deg between
their oscillations (shown for d = 0 in Fig. 2a). A uni-
form and nearly identical motion of all oscillators in the
network is observed during in-phase synchronization.

As the distance between the oscillators is increased
to d = 1, we observe the state of amplitude death,
which on the other hand, is characterized by simulta-
neous quenching of oscillations in both the oscillators.
Here all the oscillators theoretically reach a homogenous
steady state, but in experiments, show minimal noisy
fluctuations around the mean value of zero (Fig. 2b). In-
creasing the distance between the oscillators even further
to d = 3, we observe that the system regains the state
of oscillations. However, the oscillators exhibit a state of
anti-phase synchronization, where the oscillators reaches
their respective maximum and minimum values alterna-
tively, exhibiting a phase shift of 180 deg (Fig. 2c). At
higher distance, we observe the state of desynchroniza-
tion, where the dynamics exhibited by the oscillators are
independent of each other and exhibit a phase-drifting
behaviour (Fig. 2d). The existence of these states is
asymptotically stable in time. These results are con-
sistent with the findings in two candle-flames oscillators
each consisting of a bundle of four candles by Manoj et al.
[26].

B. Coupled behaviour of networks having three or
four candle-flame oscillators

When the number of oscillators in a network is greater
than two, the number of possible ways of constructing
networks also increase. When the link distances between
the candle-flame oscillators are of d = 0 and 1, we ob-
serve dynamical states of in-phase synchronization and
amplitude death, respectively. We observe that the vari-
ation in the number of oscillators or a change in the net-
work topology for a fixed number of oscillators, for d =

FIG. 2. Time series of the global heat release rate fluctua-
tions (I1 and I2) corresponding to (a) in-phase synchroniza-
tion (d = 0), (b) amplitude death (d = 1), (c) anti-phase
synchronization (d = 3) and (b) desynchronization (d = 4)
obtained from a coupled pair of oscillators.

0 and d = 1, does not disturb the existence of the afore-
mentioned dynamical states. However, this is not the
case at higher distances (d > 2), where, we observe an
increase in the complexity of coupled dynamics exhibited
by the network of candle-flame oscillators.

We witness the emergence of several symmetry-
breaking states (as shown in Figs. 3 to 5) where the
network dynamics tend to exhibit multiple stable states
of coupled oscillations for a specified distance and topol-
ogy of oscillators (Fig. 6). Note that each dynamical
state is observed for a minimum of 100 oscillatory cycles
and, therefore, we do not consider them as transient dy-
namics. The coupled dynamics of oscillators gradually
shifts from one dynamical state into another with time.
This transition happens either via a transient change in
the frequency of a few oscillators or a momentary quench-
ing of a few oscillators, observed for approximately 3 to 5
s (a maximum of 50 cycles), to adjust their dynamics to
achieve the subsequent dynamical state. Furthermore,
we do not specify the distances corresponding to each
dynamical state discussed in Figs. 3 to 5, as multiple dy-
namical states are observed for a given distance and vice
versa (multiple distances for which we observe a given dy-
namical state). An overall description of the occurrence
of these states is summarized in Fig. 6.

To characterize the coupled dynamics exhibited by a
network of three and four candle-flame oscillators, we
plot the temporal variation of the instantaneous phase
difference between the pair of oscillators. The absolute
value of the relative phase (wrapped between -180 deg to
180 deg) is obtained after applying the Hilbert transfor-
mation on the signal, as explained in Sec. II. The syn-
chronization characteristics of oscillator pairs in a net-
work decide the global behaviour of the network. A bar
chart depicting the dominant frequency of each oscillator
at a given state is also used for characterization of the
state.
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1. Characterization of dynamical states observed in a three
oscillator network

When the number of oscillators in the system is in-
creased to three as presented in (Fig. 3a), two topologi-
cal arrangements are possible in the system. The straight
(linear) topology of the network (Fig. 3a-i) where the
central oscillator, having a degree of 2, is in the direct
influence of peripheral oscillators, each having a degree
of 1. In an equilateral triangular network (Fig. 3a-ii),
each oscillator interacts with every other oscillator with
equal strength and, therefore, the degree of each oscilla-
tor remains 2.

When the number of oscillators in the network is three,
we observe four possible states of coupled dynamics as
the topology and the distance between the oscillators in
a network are varied (Fig. 3b-e). In Fig. 3(b), we plot
the dynamical features of the state of clustering of oscil-
lators, where three oscillators exhibit an equal frequency
and maintain a constant phase difference between each
other. During clustering, the phase difference between
the oscillator pairs {1, 2}, {2, 3}, and {3, 1} are nearly
84 deg, 152 deg, and 68 deg, respectively (Fig. 3b-I),
and all oscillators exhibit a dominant frequency of 11.03
Hz (Fig. 3b-II). We further notice that the occurrence
of the clustering state in a network topology depends on
the degree of each oscillator. This type of clustering is
witnessed in a triangular (closed-loop) network, where
we do not observe the phase shift between the oscillators
at 0 or 180 deg (usually observed in the literature [7]).
The unstable nature of maintaining 0 or 180 deg due to
the closed-loop arrangement with three oscillators is a
possible reason behind such a state of clustering.

In Fig. 3(b), we show the dynamical behaviour of the
state of weak chimera [14] observed in a three-oscillator
network. The state is characterized by the presence of
a pair of frequency synchronized oscillators, which are
desynchronized with the third oscillator due to a differ-
ence in the frequency. During weak chimera (Fig. 3b),
the oscillator pair {1, 2} are anti-phase synchronized and
their synchronization frequency is 11.99 Hz, whereas the
oscillator 3 is desynchronized with the pair {1, 2} as it ex-
hibits a frequency of 10.39 Hz. We also observe the pres-
ence of complete desynchrony in the system of three oscil-
lators, which can be observed from the presence of three
different frequencies and the phase-drifting behaviour of
the relative phase between each pair of oscillators (Fig.
3d-I). The oscillators 1, 2, and 3 exhibit three different
frequencies which are 11.84 Hz, 10.64 Hz, and 11.99 Hz,
respectively (Fig. 3d-II).

A novel type of clustering dynamics observed in a net-
work of three mutually coupled oscillators is called ro-
tating clusters, where we observe the temporal switch-
ing from one type of cluster to another type of cluster.
To elaborate, the system exhibiting a particular form of
clustering transitions into another form of clustering in
time. Both the forms of clustering observed in a rotating
clustered state need not have identical frequencies (Fig.

FIG. 3. (a) Schematic representation of the (i) straight and
(ii) triangle topologies in a network of three coupled candle-
flame oscillators. (I) Temporal variation of the relative phase
(∆Φ) between a pair of oscillators and (II) the dominant
frequencies (f) of all oscillators for the dynamical states of
(b) clustering, (c) weak chimera, (d) desynchronization, and
(e) rotating clusters observed in a network of three coupled
candle-flame oscillators.

4e-II). Here, we observe two types of clustering: in the
first type, oscillators 2 and 3 are in-phase synchronized
and they are anti-phase synchronized with the oscillator
1. This state of clustering is marked in Fig. 3(e) as
Cluster1, having a frequency of 11.28 Hz as marked in
violet in Fig. 3(e-II). On the other hand, in the second
type of clustering, oscillators 1 and 2 are in-phase syn-
chronized, and they are anti-phase synchronized with the
oscillator 3. This type of clustering is marked in blue as
Cluster2 having a frequency of 11.08 Hz in Fig. 3(e).
Such a phenomenon is predominantly observed in the
straight configuration, where the oscillator in the centre
has a degree of two and that on the edges have a degree
of one.

2. Characterization of dynamical states observed in a four
oscillator network

For the case where the number of oscillators is in-
creased to 4, the number of networks possible also in-
creases. Three such networks are investigated in this
study, namely star (Fig. 4a-i), straight (Fig. 4a-ii), and
square (Fig. 4a-iii), where the degree of each oscillator is
also indicated.

In the case of a network of four oscillators, we primarily
observe two types of clustered states. In the first type of
the clustered state (Fig. 4b), we observe a pair of clusters
having two oscillators each. The oscillator pairs {1, 3}
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FIG. 4. (a) Schematic representation of the (i) square, (ii)
straight and (iii) star topologies in a network of three coupled
candle-flame oscillators. (I) The temporal variation in the
relative phase (∆Φ) between a pair of candle-flame oscillators
and (II) the dominant frequency (f) of each oscillator for the
states of (b), (c) clustering, (d) chimera, and (e) weak chimera
observed in a network of four coupled candle-flame oscillators.

and {2, 4} are in-phase synchronized and between these
clusters, we observe anti-phase synchronization. All four
oscillators in the clustering state show a dominant fre-
quency of 12.31 Hz. Conversely, in the other type of the
clustered state (Fig. 4c), one cluster consisting of three
oscillators (1, 2, 4), which is anti-phase synchronized with
another cluster with a single oscillator (3). Here, every
oscillator in the network exhibits a frequency of 12.09 Hz.

Due to the presence of desynchrony in the system
of candle-flame oscillators, we observe the occurrence
of symmetry-breaking phenomena such as chimera (Fig.
4d) and weak chimera (Fig. 4e). During the state of
chimera, we notice the coexistence of a synchronized pair
and a desynchronized pair of oscillators in a network of
four oscillators [16]. In the state of chimera, the oscillator
pair {2, 3} are synchronized and oscillate at a frequency
of 11.51 Hz (Fig. 4d-I). The other oscillators 1 and 4 hav-
ing frequencies of 11.03 Hz and 10.87 Hz, respectively,
are desynchronized with each other and also with the
synchronized pair of oscillators (Fig. 4d-II). During the
occurrence of weak chimera (Fig. 4e), oscillators {1, 2,
and 3} are frequency synchronized having equal frequen-
cies of 11.69 Hz, while oscillator 4 is desynchronized with
all three oscillators and has a frequency of 11.09 Hz.

Apart from the aforementioned either oscillatory or
completely quenched (amplitude death) states of coupled
dynamics, we also witness the first observation of a dy-
namical state called partial amplitude death (PAD) in

FIG. 5. (a), (b) The time series of the global heat release
rate fluctuations (I) observed during two different variants of
partial amplitude death states observed in the network of four
coupled candle-flame oscillators.

a mutually coupled network of four candle-flame oscilla-
tors. Partial amplitude death is characterized by the co-
existence of nearly quenched states and oscillatory (limit
cycle) states in a system of coupled oscillators [22, 34].
We observe two variants of PAD states in our system. In
the first type of PAD (Fig. 5a) observed in the straight
configuration of four oscillators (Fig. 4a-ii), the outer os-
cillators (1 and 4) are in the quenched state and the inner
two oscillators (2 and 3) are in the oscillatory state. To
elaborate, we observe that the oscillators on either edge
having a degree of 1 are quenched, while the other two os-
cillators in the middle having a degree of 2 are in a state
of desynchronized oscillation. In another form of PAD
(Fig. 5b) observed in the star configuration of four oscil-
lators (Fig. 4a-iii), the central oscillator 1 exhibits limit
cycle oscillations and the other oscillators (2, 3, and 4)
that surround the central oscillator are in the quenched
state. Here, the three oscillators on the periphery having
a degree of 1 are quenched and that at the centre having
a degree of 3 remains in an oscillatory state. We believe
that a system with the coexistence of oscillators having
a degree of 1 and a higher degree is pertinent for the ex-
hibition of PAD. The oscillator having degree 1 in such
systems would be quenched, while the oscillators having
a higher degree would remain oscillatory at a particular
strength of the coupling between oscillators.

3. Ensemble view and comparison of dynamical states
observed for various topologies with three and four oscillators

Having discussed all the dynamical states observed in
a network of coupled candle-flame oscillators individually
in Figs. 2 to 5, we now move our attention to categorizing
the occurrence of these states in networks of 3 and 4
oscillators when the link distances between the oscillators
are varied. Similar to the behaviour of a pair of candle-
flame oscillators at d = 0 and d = 1, the existence of in-
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phase synchronization and amplitude death, respectively
(Fig. 6a), are observed in all oscillators irrespective of
their number and the network topology (not presented
here for brevity). Thus, the presence of stronger coupling
between the oscillators at small link distances (d = 0, 1)
and the existence of high stability of the dynamical states
might be a plausible reason for the occurrence of these
invariant states in a network of candle-flame oscillators.
However, this observation is not true for the case where
the link distances between oscillators are larger than 2
(i.e., d > 2).

As mentioned previously, when the number of oscil-
lators in a network is greater than 2 and the distance
between oscillators is larger (d > 2), we observe the al-
ternate occurrence of multiple stable states in its global
dynamics. As a result, to account for all these states, we
plot the percentage occurrence of each dynamical state
observed at each topological arrangement (Fig. 6 b,c).
Here, the percentage indicates the average time for which
a given coupled behaviour of oscillators is observed in a
system for an experimental duration of 60 s over 20 tri-
als. To elaborate, in the case of a straight configuration
with four oscillators placed at d = 3 (Fig. 6b), we ob-
serve the occurrence of three dynamical states: cluster-
ing, chimera, and weak chimera. The percentage of oc-
currence of these states for the configuration is 42%, 27%,
and 31%, respectively. Such description can be extended
to other network topologies. The maximum standard de-
viation of the percentage occurrence of each dynamical
state is approximately 13%.

From Fig. 6, we observe that for a closed-loop
network (e.g., square network containing equal degree
for all oscillators), one stable dynamical state of coupled
oscillators dominates over the other states. For example,
for a square network of 4 oscillators with d = 3 (Fig.
6b), we see the singular dominance of clustering in its
global behaviour. Similarly, for the same network at d =
4 (Fig. 6c), chimera state dominates with 57% than the
states of clustering (28%) and in-phase synchronization
(15%). However, such behaviour of oscillators is not
as prominent in the case of a closed-loop triangular
network. Furthermore, we observe that the number of
stable states observed for a given number of oscillators
is lesser for a closed-loop network as compared to
open-loop networks. For example, in the case of three
oscillators having a link distance of d = 4, we observe
that the straight configuration displays four dynamical
states, whereas the triangular configuration exhibits
only two (Fig. 6c). We can also note that the global
synchronization between all oscillators (state of in-
phase synchronization) is observed only for closed-loop
networks. We further note that the PAD states are
observed only for open-loop topologies (straight and
star configuration) with four oscillators. Similarly, we
observe the existence of rotating clusters only in the
open-loop topology (straight configuration) with three
oscillators.

As we increase the link distance without changing the
topology of the oscillators, we observe the increased ex-
istence of desynchrony in the system (as oscillators have
different frequencies). To elaborate, for a given topologi-
cal arrangement (say, the triangular network with 3 oscil-
lators), as we increase the link distance from d = 3 (Fig.
6b) to 4 (Fig. 6c), we observe an increase in the existence
of states of weak chimera and a decrease in the occurrence
of synchronized states such as in-phase synchronization
and clustering. Moreover, as the number of oscillators
(N) is increased from 3 to 4, we observe the emergence
of states such as PAD and chimera along with the dis-
appearance of states such as rotating clusters. We can
extend this argument and conjecture that as the num-
ber of oscillators is increased further (N > 4), one can
expect the vanishing of highly synchronous states such
as in-phase synchronization and clustering in the global
behaviour of an open-loop network. Further, it is also no-
table that the stability (the oscillatory cycles for which a
state is exhibited) of the symmetry-breaking states (i.e.,
weak chimera and chimera) increases [35], with an in-
crease in the number of oscillators, N > 4. In a network
of four oscillators, we observe the occurrence of chimera
state in every topology except for the square topology at
a distance of d = 3 (Fig. 6), where the highly stable na-
ture of the clustering state restricts the oscillators from
oscillating at different frequencies. The state of chimera
in open-loop networks is observed to alternate between
states of clustering and in-phase synchronization, called
alternating chimera [23].

C. Coupled behaviour of annular networks with
more than four candle-flame oscillators

Having discussed the various dynamical behaviour ex-
hibited by networks of candle-flame oscillators consisting
of two to four oscillators placed in different topologies, we
next move on to investigating the global dynamics of an
annular (regular) network in detail (see Fig. 7). In this
case, the effect of an increase in the number of oscillators
from 5 to 7 at a fixed link distance of d = 3 is investigated.
In the network, as the oscillators are locally coupled to
their nearest neighbours, all oscillators possess a degree
of 2. From Fig. 6, we understood that closed-loop topolo-
gies tend to exhibit increased synchrony and stability as
compared to open-loop topologies. In annular networks
of oscillators, we primarily observe the states of clustering
(CL), weak chimera (WC), and chimera (CH). For net-
works having more than four oscillators, the dynamical
state consisting of two or more frequency synchronized
groups (each group having oscillators with identical fre-
quencies) with one or more oscillators having different
frequencies in a group is categorized as weak chimera.
Conversely, the state of chimera is manifested as the co-
existence of a single group consisting of two or more syn-
chronized oscillators with two or more desynchronized
oscillators [4, 36]. Note that chimera state is a subset of
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FIG. 6. Percentage occurrence of different dynamical states in a network of coupled candle-flame oscillators for a given number
of oscillators (specified in braces) arranged in different configurations when the distance between the oscillators is (a) d = 0, 1
(b) d = 3 and (c) d = 4. Colour indicates the percentage of occurrence of a particular state in a given network topology.

weak chimera [37].

For link distances of d = 0 and 1, we observe the state
of in-phase synchronization and amplitude death, respec-
tively, irrespective of the number of oscillators present in
the annular networks. This is similar to the observation
of these dynamical states in other network topologies.
When the link distance between the oscillators is d =
3, the neighbouring oscillators have a tendency to ex-
hibit anti-phase synchrony. According to Dange et al.
[30], anti-phase synchrony is observed between the oscil-
lators at d = 3 due to the alternate shedding of vortices
from neighboring oscillators. If the number of oscillators
in a network is even, there exists a global synchrony, in
the form of clustering, where neighbouring oscillators are
locked at 180 degrees of phase shift and alternate oscilla-
tors are locked at 0 degrees of phase shift. Hence, global
synchrony is maintained in an annular network at this
value of d only if the number of oscillators is even and
not when it is odd. During the state of clustering, the
network separates into two clusters consisting of equal
number of oscillators. For example, in a square network
of four oscillators, the state of clustering is observed with
the formation of two clusters, each having two oscilla-
tors (Fig. 4a). Similarly, for an annular network of six
oscillators (see Fig. 7b), we observe the formation of
two clusters, each consisting of three oscillators. In both
the cases discussed above, the formation of two clusters
occurs such that adjacent oscillators belong to different
clusters.

In contrast, in annular networks having odd number of
oscillators with N > 3, we do not observe the existence
of clustering states; however, we observe the occurrence
of only chimera and weak chimera states. These states

occur in various forms, which we refer to as variants of
the given dynamical state. As the number of oscillators
in an annular topology is increased, we observe an in-
crease in the number of variants of weak chimera and
chimera states exhibited by these oscillators (Fig. 7).
Here, the number of oscillators in each frequency syn-
chronized group or the number of frequency synchronized
groups is different in each variant of the weak chimera
state. For example, we observe the existence of two vari-
ants of weak chimera in a network with five oscillators
(Fig. 7a-II-i and Fig. 7a-II-ii) and four variants in the
network with seven oscillators (Fig. 7c-II-i to Fig. 7c-II-
iv). Similarly, we observe single variant of chimera state
(Fig. 7a-II-iii) in a network with five oscillators and two
variants (Fig. 7c-II-v and Fig. 7c-II-vi) in a network with
seven oscillators. Thus, in an annular network of seven
oscillators, we observe that the chimera states have a
greater number of desynchronized oscillators (Fig. 7c-II-
vi), as opposed to the annular network with five oscil-
lators which predominantly has synchronized oscillators
(Fig. 7a-II-iii). We also observe an increase in the per-
centage occurrence of chimera states as the number of
oscillators is increased from five to seven (compare Fig.
7a-III and 7c-III) which, in turn, points towards the in-
crease in the stability of these symmetry-breaking states
in larger oscillator networks.

IV. CONCLUSION

To summarize, in this paper, we investigate the depen-
dency of parameters such as the number of oscillators,
coupling topology, and the strength of interaction on the
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FIG. 7. (a)-(c) The effect of an increase in the number of oscillators on the global dynamics of an annular network consisting of
five, six, and seven oscillators, respectively. (I) Schematic of annular network topology for different oscillators, (II) bar charts of
dominant frequencies of oscillations corresponding to different dynamical states, namely clustering (CL), weak chimera (WC),
and chimera (CH), and (III) percentage occurrence of these dynamical states in a given experiment for these annular networks.
The numbers indicated in (a) is a reference number for each oscillator. Roman numerals in (II) indicate the different variants
of the states of CL, WC and CH.

global behaviour of a minimal network of limit cycle os-
cillators. Towards this purpose, we perform an exper-
imental investigation on candle-flame oscillators, where
the number of oscillators in a network is increased from
2 to 4, the oscillators are coupled in closed-loop (triangle
and square) or open-loop (straight and star) networks
and the strength of coupling between the oscillators is
decreased by increasing the distance between them.

When the oscillators are very close to each other, the
coupling strength between them is very high. As a result,
global dynamical behaviours exhibited by these oscilla-
tors, i.e., the state of in-phase synchronization (d = 0)
and amplitude death (d = 1), are highly stable (sustained
for longer duration). We also observe that the occurrence
of these dynamical states is independent of other param-
eters, such as the number of oscillators and the network
topologies considered in the study. Such a behaviour
is commonly observed in coupled numerical and other
experimental oscillators with coupling strengths at high
values [9]. However, as the distance between the oscilla-
tors is increased (d > 2), we observe a dependency of the
global behaviour of the network on these parameters, due
to a decrease in the coupling strength between the oscil-
lators. Such topological dependency of oscillators can be

clearly depicted through the degree of each oscillator in
a network.

We observe the presence of multiple stable dynamical
states that are alternately exhibited in time at a given
distance between the oscillators. Therefore, we plot the
percentage occurrence of these dynamical states for each
network topology. These states include in-phase synchro-
nization, amplitude death, clustering, rotating clusters,
chimera, weak chimera, partial amplitude death, and
desynchronization. We observe that closed loop networks
tend to exhibit increased synchrony between the oscilla-
tors when compared to open loop networks. This is con-
sistent with the finding from other dynamical systems
such as coupled chemical oscillators [28]. We further un-
covered the presence of complex states such as partial
amplitude death and rotating clusters in coupled candle-
flame oscillators in open-loop networks alone. These
thought-provoking states are seldom observed in systems
reported in literature, due to the presence of symmetric
or closed-loop coupling configurations.

In annular networks with a fixed link distance between
the oscillators, as the number of oscillators in the network
is increased, we observe that the dynamics exhibited by
networks consisting of even number of oscillators is differ-
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ent from those with an odd number. In an annular net-
work consisting of an even number of oscillators placed
at d = 3, the state of clustering is exhibited with the
formation of two clusters, with adjacent oscillators being
allotted in different clusters. Conversely, we observe only
weak chimera and chimera states in networks with odd
number of oscillators, and the stability of chimera states
increases as the number of oscillators in the network is
increased.

Thus, the present experimental study highlights that
coupled behaviour of limit cycle oscillators in minimal
networks depends on the number of oscillators, the cou-
pling strength between the oscillators, and the coupling
structure/topology of these oscillators. Further investi-
gation through mathematical models or numerical sim-
ulations of the system is needed to deepen the physical
understanding on the dependence of the network topol-
ogy on the coupled interaction of candle flame oscilla-
tors. Various models have been employed in the past
to study the interaction between candle-flame oscillators
and to identify possible physical mechanisms behind the
dynamical states exhibited by them. A theoretical model
proposed by Kitahata et al. [25] based radiation being the
prime means of interaction between the oscillators and a
phenomenological model based on the infrared temper-
ature distribution proposed by Chen et al. [38]. Stud-
ies have also implemented the general numerical model
based on time-delay coupled Stuart Landau oscillators to
supplement the dynamics observed in candle-flame oscil-
lators [23, 26]. The usage of any of these proposed models
to theoretically identify the effect of topologies requires
further investigation.

We believe that these results on topological depen-
dence can be possibly extended to other systems having
higher number of oscillators such as power grids [39],
neuronal networks [40], vortex interactions in turbulence
[41], seizure dynamics [42] and multiple flames in annular
combustors [43]. Stability of national power grids and
electrical grids is highly dependent on the synchrony
in various critical infrastructure [39]. Healthy brains
have sparse connectivity, whereas epileptic brain has
rich connectivity with a modular structure which plays
a role in the functional organization of the brain cells
[40, 42]. Furthermore, the interaction of vortices in a
turbulent flow governs its global dynamics [41]. The
interaction between multiple oscillatory flames in an
annular combustor may give rise to variants of clustering
and chimera states depending on the inter-flame distance
and the number of flames in the ring [43].
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