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The present work discusses symmetry-breaking-induced bidirectional escape from a symmetric
metastable potential well by the application of zero-average periodic forces in the presence of dis-
sipation. We characterized the interplay between heteroclinic instabilities leading to chaotic escape
and breaking of a generalized parity symmetry leading to directed ratchet escape to an attractor
either at ∞ or at −∞. Optimal enhancement of directed ratchet escape is found to occur when the
waveform of the zero-average periodic force acting on the damped driven oscillator matches as closely
as possible to an universal waveform, as predicted by the theory of ratchet universality. Specifically,
the optimal approximation to the universal force triggers the almost complete destruction of the
nonescaping basin for driving amplitudes which are systematically lower than those corresponding
to a symmetric periodic force having the same period. We expect that this work could be poten-
tially useful in the control of elementary dynamic processes characterized by multidirectional escape
from a potential well, such as forced chaotic scattering and laser-induced dissociation of molecular
systems, among others.

PACS numbers:

I. INTRODUCTION

Obtaining full control of the escape from a potential
well is a problem of general interest in science, with broad
technological implications in which the required energy to
overcome the potential barrier can be supplied by both
periodic and nonperiodic forces. Depending upon the
force’s features, escape can thus occur via the passage of
the system over the potential barrier which separates the
local potential minimum from one or several neighbour-
ing attracting domains. The energy required to surmount
the potential barrier can be provided by different mech-
anisms, including the cases of noise-assisted and chaotic
escapes. Diverse examples are known in distinct fields of
chemical physics [1,2], electrical transport [3], astronomy
and astrophysics [4-6], hydrodynamics [7-9], and quan-
tum physics [10,11] among many others, in which es-
cape phenomena can often be well described by a low-
dimensional system of differential equations. Thus, a de-
terministic case that has been extensively studied in both
dissipative and Hamiltonian systems is that where noise-
free one-way escape is induced by an escape-inducing pe-
riodic force added to the low-dimensional model system,
so that, before escape, chaotic transients of unpredictable
duration (owing to the fractal character of the basin
boundary) are usually observed for orbits starting from
chaotic generic phase space regions (such as those sur-

rounding separatrices). In this scenario, the effectiveness
of secondary escape-taming periodic forces in suppress-
ing one-way chaotic escape has been theoretically demon-
strated for the case of the main resonance (between the
two forces involved) in the context of dissipative systems
capable of being studied by Melnikov analysis (MA) tech-
niques [12,13], while its experimental effectiveness has
also been demonstrated [14]. Moreover, the suppression
of bidirectional chaotic escape from a symmetric quar-
tic potential by secondary escape-taming forces has been
demonstrated in the context of a damped-driven one-well
Duffing oscillator [15]. In the last decades, the interest
in the escape of chains of interacting oscillators out of
metastable states [16-19] has grown in diverse scientific
areas, although most of these studies have focused on the
Hamiltonian limiting case.
The case of bidirectional escape from a symmetric po-

tential well appears in diverse physical contexts, includ-
ing solid-state turbulence in anisotropic solids [20], os-
cillating straight dislocation segments [21], and the boat
capsize problem [22,23], and provides a natural scenario
to explore the control of ratchet escape (i.e., directed es-
cape from a symmetric potential well by symmetry break-
ing of zero-mean forces). In this regard, the theory of
ratchet universality [24-26] predicts that there exists a
universal force waveform which optimally enhances di-
rected transport by symmetry breaking. For determin-
istic ratchets, the effectiveness of the theory of ratchet
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universality has been demonstrated in diverse physical
contexts in which the driving forces are chosen to be bi-
harmonic, such as in the cases of cold atoms in optical lat-
tices [27,28], topological solitons [29], Bose-Einstein con-
densates exposed to a sawtooth-like optical lattice poten-
tial [30], matter-wave solitons [31], and one-dimensional
granular chains [32]. Also, the interplay between ther-
mal noise and symmetry breaking in the directed ratchet
transport (DRT) of a Brownian particle moving on a pe-
riodic substrate subjected to a homogeneous temporal
biharmonic force [33-35] as well as the cases of a driven
Brownian particle subjected to a vibrating periodic po-
tential [26], a driven Brownian particle in the presence of
non-Gaussian noise [36], and coupled Brownian motors
with stochastic interactions in the crowded environment
[37] have been explained quantitatively in coherence with
the degree-of-symmetry-breaking (DSB) mechanism, as
predicted by the theory of ratchet universality [24,25].
In this present paper, we show that optimum enhance-

ment of ratchet escape is achieved when maximal effec-
tive (i.e., critical) symmetry breaking occurs, i.e., when
the waveform of the zero-average periodic force acting
on the system matches as closely as possible to the ex-
act universal waveform [24-25]. For the sake of clarity,
we consider a simple paradigmatic model to discuss the
bidirectional ratchet escape scenario: A damped-driven
one-well Duffing oscillator described by the equation

..
x+ x− 4x3 = −δ

.
x+ γF (t) , (1)

where all the variables and parameters are dimensionless
[20] (δ, γ > 0), while F (t) is a zero-average T -periodic
external force. When the external force presents the shift
symmetry, i.e., F (t + T/2) = −F (t), as in the case of a
harmonic force for example, the damped-driven oscillator
presents the generalized parity symmetry

S : x → −x, t → t+ T/2, (2)

i.e., if
[

x(t),
.
x(t)

]

is a solution of Eq. (1), then so is
[

−x(t+ T/2),− .
x(t+ T/2)

]

. This means that nonsym-
metric stationary solutions always occur in pairs, includ-
ing those escaping to the attractors at ±∞. Here, we de-
liberately choose an external force breaking such a gener-
alized parity symmetry to investigate the directed ratchet
escape (DRE) scenario:

F (t) = Fellip(t) ≡ sn (Ωt;m) cn (Ωt;m) , (3)

where cn (·;m) and sn (·;m) are Jacobian elliptic func-
tions [37] of parameter m, Ω ≡ 2K(m)/T , with K(m)
being the complete elliptic integral of the first kind [38].
Fixing T , the waveform of Fellip(t) ≡ Fellip(t;T,m)
changes as the shape parameter m varies from 0 to 1
(see Fig. 1). Physically, the motivation for this choice
is that Fellip(t;T,m = 0) = sin (2πt/T ) /2, and that
Fellip(t;T,m = 1) vanishes, i.e., in these two limits DRE
is not possible, while it is expected for 0 < m < 1. Thus,

one may expect that the strength of DRE to exhibit a
maximum at a certain critical value m = mc as the shape
parameter m is varied, the remaining parameters being
held constant. The DSB mechanism implies that such
a value mc corresponds to a particular force waveform
which optimally enhances the ratchet effect. Further-
more, ratchet universality requires that such an optimal
waveform should be closely related to that deduced for
the case of a biharmonic force, in the sense of its Fourier
series. Indeed, by using the Fourier series

Fellip(t) =

∞
∑

n=1

nπ2 sech
[

nπK(1−m)
K(m)

]

sin (2nπt/T )

mK2(m)
, (4)

one could expect the critical value mc to be near m =
0.984 since the optimal values for the biharmonic ap-
proximation of the elliptic function are recovered at
m = 0.984 (see Ref. [24] for additional details).

The rest of the paper is organized as follows. In the
next section we obtain analytical estimates of the re-
gions of the parameter space where chaotic escape events
prompted by heteroclinic bifurcations can occur by us-
ing MA. The analysis of the interplay between such het-
eroclinic instabilities leading to chaotic escape and the
breaking of the generalized parity symmetry leading to
DRE to an attractor either at ∞ or at −∞ is provided
in Sec. III. Finally, Sec. IV is devoted to a discussion of
the major findings and of some open problems.

II. CHAOTIC ESCAPE THRESHOLD

We assume that the complete system (1) satisfies the
MA requirements, i.e., the dissipation and excitation
terms are small-amplitude perturbations (0 < δ, γ ≪ 1)
of the underlying conservative Duffing oscillator

..
x+ x−

4x3 = 0 (see [39,40] for general background). It should be
emphasized that the criterion for a homoclinic (or hetero-
clinic) tangency −accurately predicted by MA in diverse
systems [7,15,41]− is coincident with the change from
a smooth to an irregular, fractal-looking, basin bound-
ary [42]. It is worth noting that these results connect
MA predictions with those concerning the erosion of the
basin boundary in phase space.

Straightforward application of MA to Eqs. (1) and (4)
yields the Melnikov function corresponding to the elliptic
force:
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M±

ellip (t0) = −D ±
√
2γ

∞
∑

n=1

an(m)bn(T ) sin

(

2nπt0
T

)

,

(5)

D ≡
√
2δ

6
, (6)

an(m) ≡ nπ2

mK2 (m)
sech

[

nπK (1−m)

K (m)

]

, (7)

bn (T ) ≡
nπ2

T
csch

[√
2nπ2

T

]

, (8)

where the positive (negative) sign refers to the top
(bottom) heteroclinic orbit of the underlying conserva-
tive Duffing oscillator:

x0 (t) = ±1

2
tanh

(√
2t/2

)

,
.
x0 (t) = ±

√
2

4
sech2

(√
2t/2

)

.

(9)
If M±

ellip (t0) has a simple zero, i.e., there exists a value

t0 such that M±

ellip (t0) = 0, ∂M±

ellip (t0) /∂t0 6= 0, then a
heteroclinic bifurcation occurs, signifying the possibility

of bidirectional chaotic escape. From Eq. (5) one sees
that a heteroclinic bifurcation is guaranteed if

δ

γ
< Uellip(m,T ), (10)

where the chaotic threshold function is

Uellip(m,T ) ≡ 6
∞
∑

n=1

an(m)bn(T ). (11)

It is worth noting that condition (10) is the same for
DRE to an attractor either at +∞ or at −∞. In other
words, the chaotic threshold condition [Eq. (10)] does
not provide information relating to the effective scape
direction for a given set of parameters and initial condi-
tions. Clearly, this is due to condition (10) is the same for
the two heteroclinic orbits of the underlying conservative
Duffing oscillator. From Eq. (11) one readily obtains
Uellip(m,T → 0) = Uellip(m → 1, T ) = 0, i.e., in such
limits chaotic escape is not expected (see Fig. 2).
Let us consider the chaotic threshold as a function of

m, holding T constant. Plots of Uellip(m,T = const)
show that each curve presents a single maximum mmax =
mmax (T ) such that mmax(T ) increases as T is increased
whenever T is larger than a certain value T ∗, while
Uellip(m,T = const) is a monotonically decreasing func-
tion of m whenever T < T ∗ (see Fig. 2, upper and bot-
tom). Therefore, if one considers fixing the parameters
(δ, γ, T > T ∗) for the system to lie at a periodic state
(i.e., inside the well), then as m is increased a window
of chaotic escape will appear provided the initial peri-
odic state is sufficiently near the chaotic regime. We now
study the chaotic threshold as a function of T , holding m

constant. Plots of Uellip(m = const, T ) show that each
curve asymptotically tends to a constant value which de-
pends on m:

Uellip(m = const, T → ∞) ∼ 6√
2

∞
∑

n=1

an(m) 6 π (12)

(see Fig. 2, medium). This means that chaotic escape
is facilitated (i.e., one needs smaller values of the ampli-
tude) when the driving period is relatively large, holding
δ and m constant [cf. Eq. (10)].

III. SYMMETRY-BREAKING-INDUCED

ESCAPE

We explore in this section the effectiveness of the force
Fellip(t) [Eq. (3)] at controlling the strength of DRE
in Eq. (1). It is worth recalling that the existence of
an universal waveform for optimal enhancement of DRT
is a direct consequence of the DSB mechanism: It is
possible to consider a quantitative measure of the DSB
on which the strength of directed transport by symme-
try breaking must depend. This mechanism has led to
the unveiling of a criticality scenario for DRT. Indeed,
it has been shown that optimal enhancement of DRT is
achieved when maximal effective (i.e., critical) symmetry
breaking occurs, which is in turn a consequence of two
reshaping-induced competing effects: the increase of the
DSB and the decrease of the (normalized) maximal trans-

mitted impulse over a half-period (I [f ] ≡
∣

∣

∣

∫

T/2 f(t)dt
∣

∣

∣
;

see Refs. [24,25] for additional details), thus implying the
existence of a particular force waveform which optimally
enhances DRT. The definition of the DSB of the symme-
tries of a T -periodic zero-mean ac force f(t) is included
here for the sake of completeness:

Ds [f ] ≡
〈

−f (t+ T/2)

f(t)

〉

T

≡ 1

T

∫ T

0

−f (t+ T/2)

f(t)
dt,

D+ [f ] ≡
〈

f(−t)

f(t)

〉

T

≡ 1

T

∫ T

0

f (−t)

f(t)
dt,

D− [f ] ≡ −D+[f ], (13)

where increasing deviation ofDs,+,− [f ] from 1 (unbroken
shift and reversal symmetries, respectively) indicates an
increase in the DSB (see [24,25] for additional details).
In the case of the elliptic force Fellip(t), such reshaping-
induced competing effects are clearly operating when m
varies between 0 and 1, while the optimal enhancement of
the ratchet effect is expected to occur at the critical value
mc ≃ 0.984, as already explained in Sec. I. Indeed, we
found that the impulse transmitted by the elliptic force
per unit of period over a half-period

I ≡ 1

T

∫ T/2

0

Fellip(t)dt =
[

2K(m)
(

1 +
√
1−m

)]−1

(14)
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is a monotonously decreasing function of the shape pa-
rameter, while the quantifier of the DSB associated with
its shift symmetry is a monotonously increasing function
of the shape parameter [cf. Eq. (13)]:

Ds [Fellip] =
2E(m)√

1−mK(m)
, (15)

where E(m) is the complete elliptic integral of the second
kind [38] (see Fig. 3).
For the bidirectional escape model (1), the initial con-

ditions will determine, for a fixed set of its parame-
ters, whether the system escapes to an attractor at ±∞,
or settles into a bounded oscillation. Similarly to the
case of noise-free one-way escape [7], there can exist a
rapid and dramatic erosion of the safe basin (union of
the basins of the bounded attractors) due to encroach-
ment by the basins of the attractors at ±∞ (escaping
basins). The basins of attraction were computed using a
fourth-order Runge-Kutta algorithm with time steps in
the range ∆t = 0.005 − 0.01. To numerically gen-
erate the basins of attraction, we considered a grid of
(uniformly distributed) 401 × 401 starting points in the
region of phase space x (t = 0) ∈ [−0.5, 0.5],

.
x (t = 0) ∈

[−0.3535, 0.3535], and selected those initial conditions in-
side the region bounded by the separatrix formed by the
two heteroclinic orbits [Eq. (9)]. From this selected set
of initial conditions, each integration is continued until
either x (−x) exceeds 5, at which point the system is
deemed to have escaped to the attractor at ∞ (−∞),
or the maximum allowable number of cycles, here 20, is
reached. To provide a quantitative measure of the DRE
strength, we calculated the escape probabilities P± as-
sociated with escape to the attractors at ±∞, respec-
tively, and the total escape probability PT = P+ + P−

versus the shape parameter m. The escape probability is
P± ≡ N±/Nsep where N± is the (corresponding) number
of starting points from which the system is deemed to
have escaped and Nsep = 106 673 is the number of start-
ing points inside the separatrix according to the afore-
mentioned criterion.
In the case of a shift-symmetric (harmonic) force

(m = 0), we assume that the system presents a slight
erosion of the nonescaping basin for a fixed set of pa-
rameters (δ, γ, T ) satisfying the chaotic threshold condi-
tion [cf. Eq. (10)]. Notice that the escape probabilities
P+ (m = 0) and P− (m = 0) are expected to be different
because of the temporal shift between the corresponding
solutions escaping to ∞ and −∞ [cf. Eq. (2)]. Figure
4 shows an illustrative example comparing the cases cor-
responding to six values of the shape parameter m = 0,
0.8443, 0.8665 ≈ mmax(T = 2π/0.5268), 0.984 ≈ mc,
0.9895, 0.998 (cf. Figs. 4(a) to 4(f), respectively) for
the parameters δ = 0.2, γ = 0.28, T = 2π/0.5268. Our
numerical experiments typically shown that the escape
probability P+ can present one or two maxima as the
shape parameter m is increased from 0, the remaining
parameters being held constant (see Fig. 5(a)). The
lower local maximum, mchaos

max , which can exist or not de-

pending upon the particular value of T (cf. Sec. II), is
systematically associated with the corresponding maxi-
mum mmax = mmax(T ) of the chaotic threshold function
[Eq. (11)]. Indeed, the waveforms associated with the
values m = 0.8443 ≈ mchaos

max and 0.8665 ≈ mmax(T =
2π/0.5268) are hardly distinguishable, which is a conse-
quence of the dependence ofK(m) onm [38], and thereby
the respective escaping and nonescaping basins are quite
similar (compare Figs. 4(b) and 4(c)). The fact that
the escape probability P− does not presents a local max-
imum at mchaos

max (cf. Fig. 5(b)) means that such a lo-
cal maximum of P+ is a result of the conjoint effects of
heteroclinic instabilities and DRE. The absolute maxi-
mum of P+ is systematically associated with the criti-
cal value mc (cf. Sec. I), as is shown in Figs. 5(a)
and 5(d). Similarly to the relative maximum mchaos

max , one
finds that the absolute maximum is not associated with
a sharp peak of the escape probability, but rather it is
nearly a plateau over a certain short range of the shape
parameters which is very close to the value m = 0.984.
Again, note that the waveforms associated with the val-
ues 0.984 ≈ mc and 0.9895 ≈ mratchet

max (absolute maxi-
mum) are hardly distinguishable for the same aforemen-
tioned reason, the respective escaping and nonescaping
basins being therefore quite similar (compare Figs. 4(d)
and 4(e)). Figures 6(a) and 6(b) show that the frac-
tallike fingers protruding into the nonescaping basin are
similar for these two m values. While the condition for
the onset of heteroclinic instabilities [cf. Eqs. (10) and
(11) with δ = 0.2, γ = 0.28, T = 2π/0.5268], and hence
for the appearance of fractal basin boundaries, is sat-
isfied over a wide range of shape parameters contain-
ing the window m ∈

[

0,mratchet
max

]

, one finds that the
large-scale destruction of the nonescaping basin solely
occurs around mratchet

max . Remarkably, the escape prob-
ability P− presents sharp local maxima at values of m
near the edges of the aforementioned plateau (see Fig.
5(e)), while it presents an overall decreasing behavior as
a function of the shape parameter from m = 0 because
of the ratchet effect (see Fig. 5(b)). Also, all the escape
probabilities P+, P−, PT present a decreasing behavior
as m → 1 (see Fig. 5) because the impulse transmit-
ted by the elliptic force per unit of period over a half-
period [Eq. (14)] is a monotonously decreasing function
of the shape parameter and Fellip(t;T,m = 1) vanishes.
It is worth mentioning that we found similar results for
other sets of parameters, i.e., the enhancement of the
dramatic erosion and stratification of the nonescaping
basin is a genuine feature of the DRE scenario associ-
ated with the universal force waveform (compare Figs.
4(a) and 4(d)). Furthermore, we found that the optimal
ratcheting force Fellip(t;T,m = mratchet

max ) triggers the al-
most complete destruction of the nonescaping basin for
driving amplitudes which are systematically lower than
those corresponding to the shift-symmetric (harmonic)
force Fellip(t;T,m = 0) (compare Figs. 4(e), 7(b), and
7(c)).
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IV. CONCLUSIONS

In summary, we have investigated the effectiveness of
zero-average periodic forces at yielding directed ratchet
escape from a symmetric potential well by considering an
asymmetric external periodic force. Optimal enhance-
ment of directed ratchet escape is predicted to occur
when the waveform of the zero-average periodic force act-
ing on a damped driven oscillator matches as closely as
possible to a biharmonic universal waveform, as predicted
by the theory of ratchet universality. Our numerical ex-
periments confirmed those findings, as well as revealed
the interplay between heteroclinic instabilities leading to
chaotic escape and breaking of a generalized parity sym-
metry leading to directed ratchet escape to an attractor
either at ∞ or at −∞. Specifically, the optimal approx-
imation to the biharmonic universal force triggers the
almost complete destruction of the nonescaping basin for
driving amplitudes which are systematically lower than
those corresponding to a symmetric periodic force having
the same period.
We should emphasize that the directed-ratchet-escape

scenario we have discussed is general enough to be ap-

plied to many other dissipative nonautonomous systems.
Specifically, such a scenario can be readily tested experi-
mentally (for instance, in driven quantum Josephson cir-
cuits [43]), and can find application for improving the
control of elementary dynamic processes characterized
by multidirectional escape from a potential well, such
as forced chaotic scattering [44], transport phenomena in
dissipative lattices as well as diverse atomic and molec-
ular processes [45]. Additionally, a natural extension of
this work would be to investigate the directed ratchet
escape of a chain of coupled driven oscillators over the
barriers of a metastable symmetric potential both in the
presence and in the absence of dissipation (Hamiltonian
limiting case). We would like to investigate this issue in
the near future.
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A. Figure captions

FIG. 1. Elliptic force Fellip(t) [cf. Eq. (3)] vs t for
three values of the shape parameter: m = 0, 0.984, 0.9999
(solid curves of respectively decreasing thickness). The
quantities plotted are dimensionless.
FIG. 2. Top: Contour plot of the chaotic thresh-

old function associated with the elliptic force Uellip ≡
Uellip(m,T ) [cf. Eq. (11)] vs shape parameter m and
driving period T . Middle: chaotic threshold function
Uellip ≡ Uellip(m,T ) [cf. Eq. (11)] vs driving period T
for m = 0.8 (dashed line), m = 0.99 (dotted line), and
m = 1 − 10−8 (solid line). Bottom: chaotic threshold
function Uellip ≡ Uellip(m,T ) [cf. Eq. (11)] vs shape
parameter m for T = 4 (dashed line), T = 10 (dotted
line), and T = 20 (solid line). The quantities plotted are
dimensionless.
FIG. 3. Quantifier of the DSB associated with the

shift symmetry Ds [cf. Eq. (15); solid line] and impulse
transmitted by the elliptic force per unit of period over a
half-period [cf. Eq. (14); dashed line] vs shape parameter
m. The quantities plotted are dimensionless.
FIG. 4. Escaping and nonescaping basins of the one-

well Duffing oscillator subjected to the elliptic force
Fellip(t;T,m) [cf. Eqs. (1) and (3)] for δ = 0.2, γ =
0.28, T = 2π/0.5268, and six values of the shape pa-
rameter: m = 0 (a), m = 0.8443 ≈ mnum

max (b), m =
0.8665 ≈ mmax(T = 2π/0.5268) (c), m = 0.984 ≈ mc

(d), m = 0.9895 ≈ mratchet
max (e), m = 0.998 (f). The

color cyan (pale gray) represents the escaping basin to-
wards the attractor at −∞, the color blue (black) rep-
resents the escaping basin towards the attractor at ∞,
while the blank regions represent the nonescaping basin.
The quantities plotted are dimensionless.
FIG. 5. Escape probabilities P+ (a), P− (b), and PT

(c) (see the text) vs shape parameterm. Versions (d), (e),
and (f) show enlargements of the versions (a), (b), and
(c) over the range 0.98 < m < 1, respectively. System
parameters: δ = 0.2, γ = 0.28, T = 2π/0.5268. The
quantities plotted are dimensionless.
FIG. 6. Detail of the escaping and nonescaping basins

of the one-well Duffing oscillator subjected to the elliptic
force Fellip(t;T,m) [cf. Eqs. (1) and (3)] corresponding
to the window −0.03 6 x 6 0.03, −0.12 6

.
x 6 −0.06

for m = 0.984 ≈ mc (a) and m = 0.9895 (b) [cf.



7

Figs. 4(d) and 4(e), respectively]. The color cyan (pale
gray) represents the escaping basin towards the attrac-
tor at −∞, the color blue (black) represents the escap-
ing basin towards the attractor at ∞, while the blank
regions represent the nonescaping basin. System param-
eters: δ = 0.2, γ = 0.28, T = 2π/0.5268. The quantities
plotted are dimensionless.
FIG. 7. Escaping and nonescaping basins of the one-

well Duffing oscillator subjected to the shift-symmetric

(harmonic) force Fellip(t;T,m = 0) [cf. Eqs. (1) and
(3)] for δ = 0.2, T = 2π/0.5268, and three values of
the driving amplitude: γ = 0.285 (a), γ = 0.2853 (b),
γ = 0.28537 (c). The color cyan (pale gray) represents
the escaping basin towards the attractor at−∞, the color
blue (black) represents the escaping basin towards the
attractor at ∞, while the blank regions represent the
nonescaping basin. The quantities plotted are dimen-
sionless.
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