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With the growing number of discovered exoplanets, the Gaia concept finds its second wind. The
Gaia concept defines that the biosphere of an inhabited planet regulates a planetary climate through
feedback loops such that the planet remains habitable. Crunching ’Gaia’ puzzle has been a focus of
intense empirical research. Much less attention has been paid to the mathematical realization of this
concept. In this paper, we consider the stability of a planetary climate system with the dynamic
biosphere by linking a conceptual climate model to a generic population dynamics model with
random parameters. We first show that the dynamics of the corresponding coupled system possesses
multiple timescales and hence falls into the class of slow-fast dynamics. We then investigate the
properties of a general dynamical system to which our model belongs and prove that the feedbacks
from the biosphere dynamics cannot break the system’s stability as long as the biodiversity is
sufficiently high. That may explain why the climate is apparently stable over long time intervals.
Interestingly, our coupled climate-biosphere system can lose its stability if biodiversity decreases;
in this case, the evolution of the biosphere under the effect of random factors can lead to a global
climate change.

I. INTRODUCTION

Understanding of the mechanisms and scenarios of cli-
mate change as well its current and potential effects on
ecosystems and biodiversity have been a focus of keen
attention and intense research over the last few decades
[1–3]. There is a general consensus that climate change
will likely have an adverse impact on the ecological sys-
tems and population communities resulting in species ex-
tinction and a considerable biodiversity loss worldwide.

Whilst the top-down effect of climate on ecosystems is
thus well established, relatively little attention has been
paid to a possibility of an opposite, bottom-up effect that
ecosystems may have on the climate. The mainstream
of research often tends to consider the ecosystems and
population communities as biological actors on the phys-
ical stage [4] often disregarding possible feedback. Mean-
while, in planetary science, there is the concept of Gaia
[5, 6] that postulates the biosphere regulates the plane-
tary climate to mitigate it for its own survival. While
this hypothesis has been introduced long ago, current
research in planetary and earth sciences inspires new ap-
plications of this hypothesis. In particular, it has been
shown that even if a model exoplanet has significant cli-
mate perturbations then the Gaia concept is still valid [7]
(the original Gaia concept is based on a static planetary
climate). Possible influence of environmental fluctuations
on the evolution of life was considered in [8]. Coupling
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between the climate and the biosphere can affect the cli-
mate stability through the existence of climate feedback
loops and climate tipping points [9–11]. This supports
the Gaia concept but also broadens it compared to its
original statement: while showing that the biosphere can
indeed affect the climate, it does not necessarily change
the climate to provide better conditions for the biosphere
functioning. The Gaia concept was further developed in
[12, 13], where the coupling between the climate and bio-
sphere was studied using the maximum entropy produc-
tion principle.

In spite of the long history of the problem and the
large number of papers discussing various aspects of the
Gaia hypothesis, relatively little attention has been paid
to the specific mechanisms through which the biosphere
can make an effect on climate. The few studies that di-
rectly addressed this questions by means of mathematical
modelling used somewhat disputable assumptions or sim-
plistic models. Correspondingly, it remains largely un-
clear to what extent the population dynamics of species
in the biosphere can change the global climate. In this
paper, we contribute to the discussion of the Gaia con-
cept by considering a novel semi-quantitative mathemat-
ical model of coupled climate-biosphere dynamics. The
model explicitly takes into account the well-established
empirical observation that the presence of vegetation
tends to decrease the planetary albedo [14] and hence
can change the global energy balance. We first develop
a rigorous mathematical theory that reveals the prop-
erty of the corresponding class of systems to which our
model belongs. By applying the theory to a few partic-
ular cases, we then show that both biodiversity and the
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total biomass can have a significant, albeit different effect
on the state of the climate.

We mention here that modeling physical processes in
the climate system often leads to difficult mathemati-
cal problems, e.g. involving complicated systems of par-
tial differential equations for biological and chemical pro-
cesses [2]. There exist climate models with different levels
of realism; they can include thousands and even millions
of equations, thousands of parameters to adjust. Usually,
one investigates these models by computer simulations
[15]. However, it is difficult to estimate the reliability
of these computations, since it is connected with a dif-
ficult mathematical problem on the structural stability
of attractors [16, 17]. The theory of linear response of
climate systems to perturbations [18, 19] is based on the
Ruelle theory of linear response for dynamical systems
that holds on the formal hypothesis that the dynamical
system is of the type axiom A one. The last fact implies
structural stability. However, S. Smale’s A-axiom sys-
tems [17] seldom appear in practical applications. The
class of structurally stable systems is very narrow; this
mainly includes systems with hyperbolic or almost hy-
perbolic behavior. One can expect, therefore, that the
attractors of climate systems are not structurally stable:
their topological structure can change under small per-
turbations. Correspondingly, they can exhibit compli-
cated bifurcations under small parameter perturbations.
Since parameter values are often known with only a poor
accuracy, it can make predictions obtained from ‘realis-
tic’ models questionable or even unreliable. The problem
is further exacerbated by the uncertainty arising due to,
often, insufficient resolution of small scale processes, as
neglecting the variability of the unresolved scales can lead
to major errors in the dominant scales [20].

These interesting and important questions are high-
lighted in detail in a recent review [21], see also [22]. An
approach alternative to ‘realistic’ models is given by the
so-called conceptual climate models. The climate sys-
tem is a complex system that consists of a large number
of coupled subsystems. On the large scale, they include
the main agents such as the atmosphere, the oceans, the
biosphere, etc. Conceptual climate models endeavour to
relate the equilibria and the bifurcations of the entire sys-
tem to the interaction between its parts whilst describing
the subsystems’ states by only a small number of dynam-
ical variables. The effect of ‘hidden’ degrees of freedom
(not taken into account explicitly) and the corresponding
fluctuations can to some extent be taken into account by
including into the model random variables and applying
the tools and techniques of random dynamical systems
[23].

There are different types of conceptual climate models.
Many of them are energy balance models; mathemati-
cally, they are defined by an ordinary differential equa-
tion describing the energy conservation in the climate
system. The most popular model is a zero-dimensional
model [24] based on the theory of blackbody radiation
determining global temperature changes due to the dif-

ference in incoming and outgoing solar radiation. This
difference may be caused by a change in control parame-
ters such as the surface albedo, the greenhouse gas emis-
sion, and even the solar constant. The system’s equilibria
and the ideas how to find them by the bifurcation theory
tools is discussed in [25].

One question that holds the key to the understand-
ing of long-term climate dynamics is: Why does the cli-
mate stay stable over long time intervals (e.g. hundreds
of thousands of years) before experiencing a transition to
a different state? To address this question in the context
of Gaia hypothesis [10, 11], in this paper we consider a
conceptual climate model where the dynamical variables
can be decomposed as slow and fast modes. Then for
large times fast mode dynamics is captured by the slow
dynamics on a stable slow manifold of a slow-fast sys-
tem. The slow variables determine a long-term climate
evolution under external factors whereas the fast modes
may be associated with rapid factors. We mention here
that the mode decomposition technique can be used for
deterministic as well as stochastic climate models [23].

The paper is organized as follows. In the next section,
we introduce a novel planetary climate model with a bio-
sphere component that arises from coupling between the
conceptual zero-dimensional global energy balance model
of climate dynamics and a generic ecosystem dynamics
model (a multispecific population system living on mul-
tiple food sources). In Section III, we consider a general
class of systems to which our model belongs and discuss
the stability of those systems. We then show in Section
IV that, in the case of our climate-biosphere model, a
planetary climate remains stable with regard to a varia-
tion of the ecosystem model parameters as long as biodi-
versity is sufficiently large but it can lose stability (hence
potentially resulting in regime shifts and a global climate
change) if the number of species is small. A discussion
and conclusions can be found in the last section.

II. THE MODEL

The energy balance system is a baseline climate model.
It is defined by the following equation [25] :

dT

dt
= λ−1

(
−eσT 4 +

µ0I0
4

(1−A)

)
, (1)

where λ is thermal inertia, T is the averaged surface tem-
perature, t is time, and A is the average albedo of the
planet’s surface. On the right hand side, the first term
is the outgoing emission and the second term represents
the incoming star’s radiation. Generally, incoming ra-
diation to the planetary surface from a star is modified
by a parameter, µ0, to allow for variations in the stellar
irradiance per unit area, I0 (the solar constant in case of
the Earth), or for long-term variations of the planetary
orbit [26]. On the other side, the outgoing emission de-
pends on the fourth power of temperature, the effective
emissivity e and a Stefan−Boltzmann constant σ.
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This model can be coupled with the modeled bio-
sphere’s dynamics as follows. The complete averaged
albedo A can depend on the biosphere state. For sim-
plicity, we mostly focus our analysis on a single global
ecosystem in which species are competing for several re-
sources. We consider the following classical model:

dxi
dt

= xi(−µi + φi(v)− γi xi), i = 1, . . . ,m, (2)

dvk
dt

= Dk(Sk−vk)−
M∑
i=1

bki xi φi(v), k = 1, . . . , n, (3)

cf. [27, 28], where x = (x1, x2, ..., xn) are the species
abundances, m � 1, and v = (v1, ..., vn) the resource
concentrations. Here µi are the species mortalities, Dk >
0 are resource turnover rates, and Sk is the supply of the
resource vk, φi is the specific growth rate of species as a
function of the availability of the resource (also known as
the Michaelis−Menten function). The coefficients γi > 0
define self-limitation effects [29]. We assume that each of
the resources vk, k = 1, . . . , n, is consumed by all species
so that the fraction of k-th resource in the i-th species is
positive bik > 0.

We consider general φj which are bounded, non-
negative and Lipshitz continuous

0 ≤ φj(v) ≤ C+, |φj(v)− φj(ṽ)| ≤ Lj |v − ṽ|, (4)

i.e., φk have a minimal smoothness, they are bounded
and non-negative. The last restriction means that species
consume resources.

Moreover, we suppose

φk(v) = 0, for all k, v ∈ ∂Rm
+ (5)

where ∂Rm
+ denotes the boundary of the hyperoctant

Rm
+ = {v : vj ≥ 0, ∀j}. Moreover, we suppose that

∂φk(v)

∂vj
≥ 0, for all k, j, v ∈ ∂Rm

+ . (6)

This assumption means that as the amount of the j-th
resource increases all the functions φl also increase.

Conditions (4) and (5) can be interpreted as a gener-
alization of the well known von Liebig law, where

φk(v) = rk min
{ v1

Kk1 + v1
, ...,

vm
Kkm + vm

}
(7)

(cf. [27]) where rk and Kkj are positive coefficients, and
k = 1, ...,M . The coefficient rk is the maximal level of
the resource consumption rate by the k-th species and
coefficients Kki, i = 1, ...,M define the sharpness of the
consumption curve φk(v).

A simple way to couple climate subsystem (1) and the
modeled biosphere defined by (2) and (3) is to suppose
that the resource supply parameters Sk depends on the

surface temperature T . Moreover, we can suppose the
albedo is a linear function of xi:

A = A(x) = A0 −m−1
m∑
j=1

cjxj . (8)

Finally, we obtain the following climate-biosphere system

dxi
dt

= xi(−µi + φi(v)− γi xi), i = 1, . . . ,m, (9)

dvk
dt

= Dk(Sk(T )− vk)−
m∑
i=1

bki xi φi(v), k = 1, . . . , n,

(10)

dT

dt
= λ−1

−eσT 4 +
µ0I0

4

1−A0 +m−1
m∑
j=1

cjxj

 .

(11)
As an example, let us consider a model planet where

the surface significantly covered by ice [30] and the ice-
albedo feedback is the main regulator of the planetary
climate dynamics [31]. Let the area of some region of the
planet be Sarc, the area occupied by ice be Sice while
the free ice area be Sfree [32], where Sfree = Sarc−Sice.
One can suppose that different species coexist in free ice
domain and the averaged albedo of this domain is a linear
combination of contributions of different species. Then
we obtain

A0 = AiceSiceS
−1
arc, cj ∝ Sfree = Sarc − Sice, (12)

where Aice is the albedo of the ice-covered area. This
relation will be useful below.

Suppose that species populations xi and resources vk
are fast variables, while the temperature T evolves slowly.
Such a situation arises if, for example, γi >> 1 (see [33]).
Then one can show that for large times t xi(t) ≈ Xi(T ),
where Xi(T ) are time averaged equilibrium species pop-
ulations for fixed T (see section IV). Then we obtain the
following equation:

dT

dt
= λ−1

−eσT 4 +
µ0I0

4

1−A0 +m−1
m∑
j=1

cjXj(T )

 .

(13)
Note that the equation (13) formally resembles the well-
known ice-albedo feedback modification of the zero-
dimensional energy balance model [25].

When the system (9), (10) and (13) is regarded as a
model of a particular biosphere, the choice of coefficients
ck is determined by the environmental conditions at the
given location and the corresponding species properties.
Since we are aiming at building a global model, we want
the eqs. (9), (10) and (13) to be applicable to any part
of a modeled planet. Thus, we consider the coefficients
unspecified. More precisely, we suppose that coefficients
ck are random numbers described by certain probability
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distributions. We introduce these coefficients randomly
assuming the randomness of the biological evolution.

In the coming section, we will consider a general class
of slow-fast system with random coefficients, which in-
cludes the system (13) as a particular case.

III. A GENERAL CLASS OF SYSTEMS

A. A slow-fast system

In this section, we consider the following class of sys-
tems:

dyi
dt

= κgi(y, x), (14)

dxj
dt

=

p∑
l=1

Ajlxl + κ1Fj(y, x), (15)

where i = 1, . . . , n, j = 1, . . . , p, and

Fj(y, x) =

m∑
k=1

bjkfk(y, x).

In these equations, the unknown vector-valued function
y(t) = (y1(t), ..., yn(t)) consists of slow components, the
unknown function x = (x1, ..., xp) determines fast com-
ponents, κ, κ1 are small positive parameters, gi, fk are
given smooth and uniformly bounded functions, bjk are
bounded coefficients, and the square matrix Ajl defines
a linear operator A with the spectrum σ(A) such that

Re σ(A) < −δ0 < 0.

Then for sufficiently small κ, κ1 > 0 the system of equa-
tions (14) and (15) has a locally attracting smooth and
locally invariant in an open neighborhood Uκ,κ1

of x = 0
manifold M defined by

xj = Φj(y, κ, κ1) = κ1

( m∑
k=1

cjkfk(y, 0)) + X̃j(y, κ, κ1)
)
,

(16)
where

cik = −
m∑
j=1

(A−1)ijbjk.

Here A−1 stands for a matrix inverse to A and suffi-
ciently smooth functions X̃j(y, κ, κ1) define small correc-
tions such that

|X̃j(·, κ, κ1)|C1(Uκ,κ1 ) → 0 (κ, κ1 → 0). (17)

Existence of M follows from the known results (for ex-
ample, [16, 34, 35]).

As a result, we obtain the following system for slow
variables:

dyi
dt

= κgi(y,Φ(y, κ, κ1)), (18)

where Φ(y, κ, κ1) = (Φ1(y, κ, κ1), ...,Φp(y, κ, κ1)).
For consideration of the systems with random param-

eters we need to use arguments from dynamical system
theory and the Hoeffding inequality, one of concentration
inequalities.

Recall the basic concept of structural stability intro-
duced by A. Andronov and S. Pontryagin in 1937 [36].
Consider a smooth vector field F on compact domain Dn
of Rn with a smooth boundary (or on a compact smooth
manifold M of dimension n). Assume that F ∈ C1(Dn)

and consider all ε-small perturbations F̃ such that

|F̃ |C1(Dn) < ε. (19)

Consider systems of differential equations dx/dt =

F (x) and dx/dt = F (x) + F̃ (x) and suppose that they
define global semiflows StF and St

F+F̃
on Dn. The system

dx/dt = F (x) is called structurally stable if there exists
an ε0 such that for all positive ε < ε0 trajectories of semi-
flows StF and St

F+F̃
are orbitally topologically conjugated

(there exists a homeomorphism, which maps trajectories
of the first system into trajectories of the second one).
Roughly speaking, the original system is structurally sta-
ble if any sufficiently small C1 perturbations of that sys-
tem conserve the topological structure of its trajectories,
for example, the equilibrium point stays an equilibrium
(maybe, slightly shifted with respect to the equilibrium
of non-perturbed system), or the perturbed cycle is again
a cycle (maybe slightly deformed and shifted). We will
refer the number ε0(F ) the structural stability constant
of the system dx/dt = F (x).

Note that structurally stable dynamics may be, in a
sense, ”chaotic”. There is a rather wide variation in dif-
ferent definitions of ”chaos”. Chaotic (not periodic and
no rest point) hyperbolic sets occur in some model sys-
tems [16, 36–41].

B. Systems with random parameters

We consider systems (18), which arise, in a natural
way, from systems decomposed in slow and fast variables.
We will use the following notation. We denote by EX
the expectation of a random quantity X, and by V ar X
its variance. Moreover, Pr[A] denotes the probability of
a random event A. In this section, we formulate general
principles on averaging with respect to the parameters
that are applicable to fast-slow climate models.

Consider the following general system of differential
equations:

dyi
dt

= gi(y,Φ(y)), (20)
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where i = 1, . . . n, y(t) = (y1(t), . . . yn(t)) is a unknown
vector-function, and Φ = (Φ1, ...,Φp), Φl(y) are func-
tions, which will be defined below. Let Bn be a com-
pact subdomain of Rn with a smooth boundary ∂Bn.
We suppose that gi(y,Φ) are smooth functions uniformly
bounded as are the first and second derivatives with re-
spect to all variables y,Φ:

|gi|C2(Bn×Rp) < Cg, (21)

where Cg is a positive constant.
We assume, moreover, that the functions Φi(y) are

sums of other functions fij(y) with random parameters
cij :

Φi(y) = m−1
m∑
j=1

fij(y, cij), (22)

For (20) we set the initial data

y(0) = y(0). (23)

Let the following assumptions hold:

Assumption 1 Let cij be independent random quanti-
ties such that Ecij = c̄. Moreover, we suppose that al-
most surely in cij the functions fij and their derivatives
satisfy

sup
y∈Bn

|fij(y, cij)| < Cf , (24)

sup
y∈Bn

|Dk
yfij(y, cij)| < Cf,k, k = 1, 2 (25)

where positive constants Cf , Cf,k are uniform in i, j,m.

Here, we do not suppose that cij are normally dis-
tributed, we can consider sufficiently general random cij
with different probability density functions (pdfs). Our
assumption is general enough and it allows us to apply
Hoeffding Theorem [42]. The two main cases are par-
ticularly interesting. The first arises when fij are linear
functions of cij . In this case we suppose that the pdf of
cij has a bounded support. For example, we can take a
bounded Pareto distribution for cij , but it is not allowed
to take the standard Pareto density law. This case oc-
curs in the presented paper, where cij are variations of
albedo. Other, the more interesting case can occur, if
for example, fij(y) = yi/(cij + yi) with yi ≥ 0. Then
the support of cij should lie in (c0,+∞), c0 > 0, and
here we can take Pareto distribution. So, it is possible to
make averaging over species parameters for system with
Holling’s functional responses.

Together with system (20) we consider the correspond-
ing averaged system:

dȳi
dt

= ḡi(y), (26)

where

ḡi(y) = gi(y, Φ̄1(y), ..., Φ̄p(y)), (27)

where i = 1, . . . , n, and y(t) = (y1(t), . . . yn(t)) is a un-
known vector-function, and Φ̄i(y) are averages of func-
tions Φi(y) over the random parameters cij :

Φ̄i(y) = m−1
m∑
j=1

fij(y, cij). (28)

We assume that there hold the following conditions:

ḡ(y) · e(y) < 0 ∀y ∈ ∂Bn, (29)

and

g(y,Φ(y)) · e(y) < 0 ∀y ∈ ∂Bn, (30)

where e(y) is a normal vector to the boundary ∂Bn at
the point y directed inward on the domain Bn. For the
system (26) we set the same initial data (23). Condi-
tion (29) implies that the Cauchy problem (23) and (26)
defines a global semiflow on the domain Bn.

C. Main features of the systems with random
parameters

For slow variables systems (18) we prove an averaging
theorem assuming that cik are random independent pa-
rameters (see the Appendix). This theorem asserts the
attractor of the original system is close to the attractor of
averaged one with a probability Prm, which is exponen-
tially close to 1 for large m. So, our main idea is as fol-
lows: the relative climate stability results from the effect
that a large number of independent factors can mutually
cancel each other out. The probability Prm satisfies an
inequality that involves the number ε0, which is a mea-
sure of stability under perturbations. If ε0 > 0 is small,
i.e., the original system is weakly stable and conserves
its dynamics only under very small perturbations, then
estimate (1) makes a sense only for large m > m0(ε0) (in
fact, for bounded m the right hand side of (1) is nega-
tive).

Moreover, the structurally stable system are seldom
found in real applications (if we exclude the cases n = 1
and n = 2, where they are generic). According to basic
result of S. Smale [16, 41], for dimensions n > 2 struc-
turally stable systems are not generic. To overcome this
difficulty, we consider an approach, which allows us to
show that solutions of the original system stay in a small
neighborhood of a local attractor of the corresponding
averaged system.

The stability of many dynamical regimes can be proved
by using Lyapunov functions. Recall that L(y) is a Lya-
punov function of a system dy/dt = g(y) in a domain
V ⊂ Rn if L is at least C1 smooth and L(y(t)) does not
increases along trajectories y(t) of the system:

∇L(y) · g(y) ≤ 0, y ∈ V. (31)
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For example, if y∗ is a stable rest point of the system,
then one can construct a L(y) close to a quadratic form,
which is Lyapunov function in a small neighborhood V
of y∗ and

∇L(y) · g(y) ≤ c|y − y∗|2, y ∈ V (32)

for some c > 0.
The next statement (see the Appendix) can be proven

for the Lyapunov functions. If the averaged system de-
fined by (26) has a Lyapunov function then the original
system (20) has the same Lyapunov function a probabil-
ity PrL, which is exponentially close to 1 as m large.

This theorem can be applied to the energy balance
system (13) as follows. Suppose that the averaged sys-
tem is gradient-like (note that (13) enjoys this property).
Let Ā be an attractor of the original system, which con-
sists of stable equilibria. Suppose that all equilibria of
the averaged system are hyperbolic. Then there exists a
Lyapunov function L(y) such that

Hḡ(y) = ∇L(y) · ḡ(y) ≤ −ε,

for all y ∈ V(Ā) and some ε > 0, where V(Ā) is an
open subset of the attraction basins of Ā. This subset
contains all points y except for small δ-neighborhoods of
equilibria, where δ → as ε → 0. Then with probability
Prδ,ε,m all original system also has the same Lyapunov
function with analogous properties.

IV. BIFURCATIONS OF THE COUPLED
CLIMATE-BIOSPHERE SYSTEM

Let us apply (1) and (2) to a system defined by (13). In
the general case this system is complicated. To simplify
the problem, we suppose that the ci are random inde-
pendent quantities such that Eci = c̄, and, moreover, we
apply the approximation obtained in [28, 43, 44]. We
assume that the turnovers satisfy Dk >> 1. Then

vk = Sk − S̃k, 0 < S̃k < constD−1. (33)

We consider two cases: γi = O(1), when self-limitation
is not small, and γi = 0.

A. Systems with self-limitation

Suppose that all species Xj survive and have positive
abundances. Then

Xj(T ) = Uj(T ) +O(D−1),

Uj(T ) := γ−1
j (φj(S(T ))− µj)+,

where we use notation f+ = max(f, 0). Then eq. (13)
takes the form (we remove the terms the order O(D−1))

dT

dt
= λ−1

(
− eσT 4 +

µ0I0
4

(1−A0 +m−1
m∑
j=1

cjUj(T ))
)
.

(34)

We apply (1) and (2), with p = 1 and

Φ1 = m−1
m∑
j=1

cjUj ,

where cj are random independent parameters. The aver-
aged system takes the form

dT

dt
= λ−1

(
− eσT 4 +

µ0I0
4

(
1−A0 + CB(T )

))
, (35)

where

B(T ) = m−1
m∑
j=1

Uj(T ), C = m−1
m∑
i=1

Eci = c̄.

The function B(T ) is the average biomass per species,
and C is the average perturbation of albedo per species.

Let all φi(S) be uniformly bounded by a constant a,
φi(S) < a for all i = 1, ...,m and S. Then we find that,
with a probability exponentially close to 1, there exists a
Lyapunov function defined by

L(T ) = −eσT
5

5
+
µ0I0

4

(
(1−A0)T + CW

)
,

where

W (T ) =

∫ T

0

B(s)ds.

Non-degenerate local minima of this function are steady
states (local attractors) of the averaged system, and local
extrema are saddle points or repellers of that system. If
c̄ is small enough, we have only a single local attractor
T = T̄e. Our theorems (see the Appendix) imply that the
original system then also has (with a probability close to
1) a single local attractor T = Te(m) and |Te(m)− T̄e| →
0 as m→∞.

The situation dramatically changes if the condition
φi < a is violated, say, one species dominates or if
m is small. Then it is impossible to guarantee that
|Te(m)−T̄e| → 0. This means that biodiversity decreases
can produce global climate changes.

To find possible bifurcations, we consider the simplest
case when we are dealing with a single resource v1 =
v and the growth function are identical for all species,
φi(v) = v(Ki + v)−1. We assume that S(T ) = S0 +
S1∆(T ), where the coefficient S1 defines an influence of
temperature on the resource supply and

∆(T ) = exp(−(T − T0)2/2σ2
T ).

This means that there exist an optimal temperature T0

for species growth and a characteristic spread of this tem-
perature σT . Then we obtain eq. (35) with

B(T ) = m−1
m∑
i=1

S0 + S1∆(T )

γi(Ki + S0 + S1∆(T ))
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and the equation for temperature steady state takes then
the form

F (T ) = G(T ), (36)

where

F (T ) = eσT 4, G(T ) = µ0
I0
4

(1−A0 + CB(T )).

Note that for C > 0 a biomass B growth diminishes the
averaged planetary albedo producing a hotter climate.

FIG. 1. This plot shows possible bifurcations in climate-
biosphere system. The equilibrium temperature values are
given by intersections of curves y = F (T ) and y = G(T ). For
the biosphere, we have m = 20 species, where the parameter
values are Ki = 0.1, S0 = 0.1, µ = 0, S1 = 0.2, T0 = 280K and
σT = 1. The albedo coefficients ci are distributed randomly
according to normal density Norm(Ec, σc), where Ec = 0.2,
σc = 0.03. We use the parameters similar to the Earth’s cli-
mate system, we have σ = 5.67 · 10−8 J · s−1m−2K−4, A0 =
0.62, µ0 = 1, e = 0.65 and I0/4 = 340 W · m−2. The self-
limitation parameters γi = γ, where γ = 2. We have a sin-
gle intersection for Ec = 0.2 and the three intersections for
Ec = 0.15.

Depending on C we have either a single root of (36) or
three roots (see Fig. 1); in the latter case, two roots are
local attractors and the third root is a saddle point. With
the growth in C, the lower stable root eventually merges
with the unstable one and disappear in a pitchfork bifur-
cation. We mention here that a similar bifurcation occurs
in the ice-albedo feedback problem, see above. A similar
bifurcation resulting from the bistability of the system is
also found in [45]. In that paper, another energy balance
model is considered, in particular, A0 depends on tem-
perature T and the cause of bistability is connected with
that dependence. Bistability can lead a transition from a
Hothouse Earth to Snowball Earth and vice versa. In our
case the averaged biomass B(T ) dependence on surface
temperature T is important, to obtain bifurcations, we
should have a B(T ) sufficiently sharply increasing in T .

It is interesting to investigate how small should be the
number of species to cause these bifurcation effects. Such
sensitivity analysis can be done as follows. Let Ccrit be

a critical value of C in eq. (35) such that the bifurcation
still exists for C > Ccrit but it is absent for C < Ccrit.
Let us estimate the probability Pbif that random quan-
tity X = m−1

∑m
j=1 cj is more than Ccrit. The proba-

bility Pbif depends on m. For large m the pdf of that
quantity is close a normal density, X ∈ Norm(c̄,m−1σ2

c ,
where c̄ and σ2

c are the expected value and the variance
of ci, respectively. By these arguments we conclude that,
if the value Pbif is not negligible, then the following con-
dition should be satisfied:

m < mc =
σ2
c

(c̄− Ccrit)2
.

For m < mc fluctuations in random species parameters
can essentially influence system dynamics (Fig.2).

FIG. 2. This plot shows robustness of climate-biosphere sys-
tem with respect to a change of species number. The choice
of parameters is the same as in the previous plot, Ec = 0.2
and γ = 0.03. The tree curves with maxima show depen-
dences y = G(T ) for different species numbers, m = 20, 25
and m = 30 while the linear like curve is y = F (T ). The
temperature Teq that defines a stable climate state is given
by the second intersection of curves F (T ) and G(T ). This
intersection weakly depends on m that is consistent with the-
oretical results. Note that Teq depends on the biodiversity m
in a non-monotone manner while the biomass growth pushes
the curve y = G(T ) upward leading to a hotter climate that
is consistent with experimental data from [46].

It is interesting to understand how global warming af-
fects the described bifurcation effect. Consider the cold
planetary region and relation (12). We observe that a
decrease of the area occupied by ice increases the coeffi-
cient c̄ and decreases A0.Thus it reinforces the bifurcation
effect and can lead to climate bifurcation.

B. Systems without self-limitation

System (2)-(3) of species competing for resources with-
out self-limitation terms γixi exhibits very interesting
properties. In pioneering work [27] it was shown, by
numerical simulations, that three competing species can
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coexist in a chaotic regime. An analytical proof of chaos
existence is obtained in [47] for special Lotka-Volterra
(LV) systems, which can be derived from our system (2)-
(3) under assumption Dk >> 1. Those LV systems have
a special structure, namely, they can be interpreted as a
system with n resources. Under some assumptions they
can support coexistence of m >> n species. Given an
n, by adjusting the LV system parameters one can sim-
ulate any prescribed structurally stable dynamics, which
can be chaotic or periodic. For example, to simulate the
Lorenz dynamics, we take n = 3 and m = 12 species.

When we couple system (2)-(3) with temperature dy-
namics, we obtain (9)-(10). That system exhibits new
effects. To show it, let us fix the temperature T first.
Under assumption Dk >> 1, we use (33) and then by
substituting these formulas into eqs. (9) and by the Tay-
lor expansion of φi(v) at S, we have the following weakly
perturbed LV system:

dxi
dt

= xi(−ri + φi(S) +
m∑
j=1

Kijxj) +O
(
D−2

)
, (37)

where D = minDl and

Kij =

n∑
l=1

AilBlj ,

Ail =
∂φi(S)

∂Sl
, Blj = bljD

−1
l φj(S).

Suppose that

−ri + φi(S) =

n∑
l=1

Ailµl (38)

for some coefficients µl. Only under that assumption the
coexistence of many species is possible, see [47]. Then
dynamics of system (37) is determined by some hidden
Volterra variables qi. Species abundances xi can be ex-
pressed via qi as follows:

xi(t) = xi(0) exp
(
−
∑

Ailql(t)
)
, (39)

while the dynamics of q is governed by

dqi
dt

= Gk(q, A,B,m, µ), k = 1, ..., n (40)

where

Gk(q) = −µk +

m∑
i=1

Bkixi(0) exp
(
−

n∑
l=1

Ailql(t)
)
.

One can show [47] that Gk(q) can approximate any pre-
scribed functions in a compact domain that implies exis-
tence of complicated dynamics that implies existence of
chaotic and periodic large time behaviour of q.

Suppose now that S depends on the temperature T ,
and for each T condition (38) is satisfied. From the bio-
logical point of view, it is possible only if climate evolves
slowly and the parameters of organisms in the population
have enough time to adapt so that condition is (38) satis-
fied. Importance of such genetic adaptation with respect
to climate changes is shown in [48]. So, if the climate
evolves fast, systems without self-limitations should ex-
hibit mass extinctions.

Let us take into account that now the biomass can
explicitly depend on time (since the large time behaviour
of biomass B may be chaotic or periodic). Then eq. (35)
changes and reads

dT

dt
= λ−1

(
− eσT 4 +

µ0I0
4

(
1−A0 + CB(q(t, T (·))

))
,

(41)
where the biomass per species B(t, T (·)) =
m−1

∑m
i=1 xi(t, T (·)) becomes a complicated functional

depending on all values of T (t
′
), 0 ≤ t

′ ≤ t. This equa-
tion, eqs. (40) for q and relations (39) give us a system
describing a the coupled climate-ecosystem dynamics.
Such nonlinear equations with a retarded nonlinearity
can exhibit a complicated behavior. One can simplify
ecological equations (40) by averaging with respect to
random species parameters. To simplicity, let us the case
of a single resource S with φi(S) = aiS/(Ki + S), where
ai, Ki are random parameters subject to the density
ρ(a,K) with the support S = {a > 0,K > δ > 0} and
supposing that xi(0) are also random with the average
x̄(0). Then, using our Theorem I from Appendix, we
have the averaged system for q:

dq

dt
= −µ+mḠ(q),

where

Ḡ(q) =
x̄(0)

D

∫
S

aSρ(a,K)

K + S
exp

(
− aSq

(K + S)2

)
dadK.

To simplify the analysis further, let us consider a nat-
ural situation, where dynamics of species is much faster
than the temperature dynamics. Then one can make av-
eraging over time t in eqs. for xi(t) in the term B(t, T )
that produces the averaging term 〈B(t, T )〉, where the
moving average of f is

〈f(·)〉 = τ−1

∫ t

t−τ
f(s)ds, (42)

where τ >> 1 is an large averaging interval.
We obtain then eq. (35) with 〈B(τ, T (·))〉 instead of

B(T ). However, a stochastic (chaotic) dynamics of the
averaged biomass B(t) can lead to random transitions
between different stable states via an intermediate state
(similarly to [45], where the noise is induced by the solar
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irradiance).

V. DISCUSSION AND CONCLUSIONS

Understanding the planetary climate dynamics and
identification of factors and processes that can affect its
stability are important problems, in particular, because
of their prominent effect on the biosphere functioning.
The climate-biosphere system is an extremely complex
system and the corresponding mathematical model, even
a relatively simple ‘conceptual’ one, is usually too com-
plicated for a comprehensive analytical study. A possibil-
ity of nontrivial model reduction lays in the observation
that different processes often go with very different rates,
i.e. take place on very different timescales. In particular,
many complex systems, including climate models, have
slow and fast components. According to classical results
[49], large time dynamics of such systems are captured
by a dynamics of slow modes on a slow invariant mani-
fold. It is well known that even low dimensional systems
exhibit complex bifurcations that may account for the
complexity of the climate dynamics [50–52]. Moreover,
such models exhibit multistationarity, i.e., existence of
many stationary states that, according to [53], provides
the climate stability under variations of astronomical fac-
tors.

There is growing evidence that the biosphere can have
a variety of feedback loops to climate and comprehensive
understanding is only possible based on the analysis of
the coupled climate-biosphere system. The importance
of such coupling is the essential content of the Gaia con-
cept [5, 6]. Several specific feedback mechanisms have
been investigated. For instance, in the Earth system,
the perturbation of the carbon cycle [54], water-vapor
[55] cycle or the disturbance in the oxygen production
[56] are examples of such feedback, but there are many
more. In this paper, we focus on the feedback induced by
the effect that the biosphere (in particular, vegetation,
e.g. see [14]) can have on the planetary albedo, hence
potentially changing the global energy balance. We ad-
dressed this issue theoretically by considering a novel con-
ceptual model of climate-biosphere dynamics arising from
the coupling between a global energy balance model and
a generic multi-specific model of population dynamics.
While the zero-dimensional energy balance models have
been mostly used to investigate the bistability between
hothouse and snowball climates (see [21] for a review),
here we focus on bifurcations within a warm climate in-
duced by an interaction between climate and biosphere.

In our approach, we assumed that parameters of fast
subsystems are random and mutually independent. Un-
der such assumptions, we prove a general theorem on
connection between attractors of averaged and original
systems. If the attractor Ā of the averaged system has
a low fractal dimension then, with a probability close to
1, the attractor of the original system is close to Ā. We
mention here that importance of this result goes beyond

 

Biosphere 
(multispecies population dynamics) 

Global climate 
(quantified by the mean temperature) 

Adverse effects of climate 
change resulting in species 

extinction and biodiversity loss 

High biodiversity: neutral feedback 
preserving climate stability 

Low biodiversity: potentially 
destabilizing feedback leading 

to the regime shift  

2 

1 

3 

FIG. 3. Schematic summary of the feedbacks in our model
coupled climate-biosphere system, see Eqs. (9–11). Arrow 1
shows the potentially destructive effect of the global climate
change on the population dynamics and ecosystems function-
ing. Arrow 2 shows the neutral feedback that the population
dynamics have on the global climate in case of high biodiver-
sity, i.e. a large number of coexisting species). Arrow 3 shows
the potentially destabilizing feedback of the population dy-
namics on the global climate in case of low biodiversity.

the climate dynamics; arguably, it may have a variety of
applications in many different fields such as global net-
work systems with unknown parameters, foodwebs, gene
networks, etc.

Referring back the Gaia concept, why, however, was
the climate system stable over long periods of time in the
past? Our study provides a possible answer to this ques-
tion. Climate stability can be explained by the fact that
many independent factors are canceled out. Our find-
ings are summarized in Fig. 3. Thus, our model confirms
the Gaia concept in the sense that the stability of the
climate system is ensured by high biodiversity. But our
analysis also suggests a possibility of the positive feed-
back of the biosphere on the climate change. Consider a
scenario of a slow change in the energy balance resulting,
for instance, in a gradual increase of the mean temper-
ature. It has been shown in many studies that such an
increase would eventually results in species extinctions
and biodiversity loss (see Arrow 1 in Fig. 3). Our results
predict that the exact nature of the feedback loop will de-
pend on the extent of the biodivesity loss. As long as the
number of extinctions is not too large, the biodiversity
loss will not have any notable feedback on the climate
dynamics (Arrow 2 in Fig. 3). However, should the bio-
diversity loss becomes considerable, i.e. the number of
surviving species becomes small, the failing biota would
increasingly likely have a positive feedback on the cli-
mate change resulting in its destabilization (bifurcation)
followed by the transtion to another steady state (cf. Ar-
row 3 in Fig. 3). The global climate change resulting
from this bifurcation is likely to have a stronger negative
effect on the biosphere, hence accelerating extinctions.

This model may be used to reconstruct and project
climate change on the ice planets of the Solar System
[57, 58] and some exoplanets [59, 60]. Another possi-
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ble application of our approach is paleoclimate modeling.
For example, in the Cryogenian period, the planet was
transformed into so-called snowball Earth, where early
life survived under the environmental stress [61], became
stable and even diverse [62]. Our model may help to
evaluate how biodiversity could contribute to global ice
melting in this period.
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APPENDIX

In this Appendix, constants c and Ci can depend on
system parameters but are uniform in m for large m.
Note that we sometimes denote different constants by
the same index if it does not lead to confusion. Our
proving plan can be outlined as follows. To simplify our
statement, we first prove three auxiliary lemmas, and
then we state short demonstrations of theorems. The
lemmas show the following. Let us choose a point y(k)

in a bounded domain of the phase space. Consider the

probability that the difference between the original and
averaged system at this point is more than a fixed posi-
tive number. Our lemmas imply that this probability is
exponentially small in the parameter m. On the hand
any bounded domain can be covered by balls centered at
such points and the number of those balls is polynomial
in m. Therefore using sufficient smoothness of averaged
and original systems we obtain that difference between
those systems is small with a probability close to 1.

Auxiliary probabilistic estimates. Let us fix some
points y(k) ∈ Bn, where k = 1, 2, ...,M and M is an pos-
itive integer, which will be adjusted later. Let us define
the events Aε,i(k) by

Aout,ε,i(k) = {|ḡi(y(k))− gi(y(k),Φ(y(k)))| > ε/4}, (43)

Aε,i(k) = Not Aout,ε,i(k), (44)

where Not B denotes the negation of B and ḡi(y) are
defined by relation (27).

The next auxiliary lemma is elementary but useful.

Lemma 1 One has

Pr
[ M∏
k=1

n∏
i=1

Aε,i(k)
]
≥ 1−

M∑
k=1

n∑
i=1

Pr
[
Aout,ε,i(k)

]
.

Proof. That lemma can be proved by de Morgan’s rule.

Furthermore, we use Chernoff bounds to estimate
Pr
[
Aout,ε,i(k))

]
. Let Cḡ,Φ be a Lipshitz constant of ḡ

with respect to the variables Φ1, ...,Φp, i.e., for all y ∈ Bn
and i = 1, ..., n

|ḡi(y,Φ(1))− ḡi(y,Φ(2))| ≤ Cḡ,Φ|Φ(1) − Φ(2)|, (45)

where |Φ| = maxl |Φl|. This constant Cḡ,Φ exists due to
assumption (21) to g. Moreover, an analogous estimate
holds for derivatives with respect to y:

|∇y ḡi(y,Φ(1)))−∇y ḡi(y,Φ(2))| ≤ C̃ḡ,Φ|Φ(1)−Φ(2)|. (46)

Lemma 2 One has

Pr
[
Aout,ε,i(k)

]
< 2 exp

(
−mε2/32C2

ḡ,ΦC
2
f

)
, ∀ i = 1, .., n, k = 1, ...,M.

Proof. Our the first step is to estimate differences
Φi(y

(k)) − EΦi(y
(k)). To this end, let us fix indices i

and k and introduce Xj by

Xj = fji(y
(k), cij). (47)

Then

Φi(y
(k)) = m−1

m∑
j=1

Xj . (48)

Assumption 1 on cij implies that Xj are independent
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random variables. Moreover, by (24) ) we have

|Xj | ≤ Cf . (49)

Let us recall the Hoeffding inequality. Let Xj ,
j = 1, ...,m be independent random variables strictly
bounded in intervals [aj , bj ], i.e., almost surely Xi ∈
[ai, bi]. Let X̄ = m−1

∑m
j=1Xj be the average of those

quantities. Then (see [42])

Pr[|X̄ − EX̄| ≥ δ) ≤ 2 exp
(
− 2mδ2∑m

j=1(ai − bi)2

)
.

Therefore, according to Hoeffding’s inequality for each
δ > 0 we obtain

Pr[|Φl(y(k))− EΦl(y
(k))| > δ] < 2 exp(−2mδ2/C2

f ),
(50)

where l = 1, ..., p.

The second step of the proof is as follows. Consider
the events

Bδ,l,k = {|Φl(y(k))− EΦl(y
(k))| < δ}.

Let Bδ,k =
∏p
l=1 Bδ,l,k be the product of those events.

Let us take δ = ε/4C2
ḡ,Φ. Then, if the event Bδ,k takes

place, we have (because g is a Lipshitz map with the

Lipshitz constant Cḡ,Φ) and by definition of ḡ) that

|ḡ(y(k))− g(y(k),Φ(y(k)))| < ε/4,

i.e., the event Aε,i(k) takes place. Consequently,

Pr[Bδ,k] ≤ Pr[Aε,i(k)]

that gives

≥ Pr[Aout,ε,i(k)] ≤ Pr[Not Bδ,k].

The probability Pr[Not Bδ,k] is estimated by (50) that
completes the proof of the lemma.

Let us define now the events Aout,ε,i,j(k) and Aε,i,j(k)
by

Aout,ε,i,j(k) = {|gij(y(k))− gij(y(k))| > ε/4n}, (51)

where

ḡij(y) =
∂ḡi(y)

∂yj
, gij(y) =

∂gi(y,Φ(y))

∂yj
,

and

Aε,i,j(k) = Not Aout,ε,i(k). (52)

There holds the following Lemma:

Lemma 3 One has

Pr
[
Aout,ε,i,j(k)

]
≤ 2 exp(−mC0ε

2), ∀i, j = 1, .., n, k = 1, ...,M, (53)

where a constant C0 is uniform in m.

The proof of (3) repeats the same arguments used in
the proof of (2) so we do not present it.

Demonstrations of Theorem 1 and Theorem 2

Theorem 1 Suppose condition (29) holds and that aver-
aged system defined by (26) generates a global dissipative
semiflow on the domain Bn. Moreover, let us assume
that averaged system (26) is structurally stable with a
structural stability constant ε0(ḡ) and that system has an
attractor Ā. Then with probability PrĀ the original sys-
tem (20) also defines a global dissipative semiflow on Bn,
which has an attractor A topologically equivalent to Ā.
The probability PrĀ satisfies the inequality

PrĀ > 1− C1n exp
(
− C2mε

2
0 − n ln ε0

)
,

where C1, C2 are positive constants uniform in m.

Proof. We use Lemmas 1, 2 and 3 and the following
construction. The domain Bn has the dimension n there-

fore we can cover it by N(rε) ∼ (rε)−n balls Ωε,k of the

radius ε centered at some points y(k) ∈ Bn. Here r is a
positive constant uniform in ε. We denote the union of
all those balls by Uε, it is an open neighborhood of Bn.

Let us consider the perturbation g̃(y) = g(y,Φ(y)) −
ḡ(y) and estimate the C1 norm of g̃ on Uε. Suppose that
all events Aε,i(k) and Aε,i,j(k) defined by (44) and (52),
respectively, take place. Then

|g̃(y(k))|+ |∇y g̃(y(k))| < ε/2, k = 1, ..., N(ε). (54)

Then, due to conditions (21) on g, and definition of ḡ we
have

|g̃|C2(Bn) < C1,

where a positive constant C1 is independent of m. There-
fore, for each y ∈ Bn one can find such point y(k) that
there hold the estimates

|g̃i(y(k))− g̃i(y)| < rε,∣∣∣∣∂g̃i(y(k))

∂yj
− ∂g̃i(y)

∂yj

∣∣∣∣ < rε.
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Those last inequalities and (54) imply

|g̃(y)|+ |∇y g̃(y)| < ε/2 + C2rε, y ∈ Uε, (55)

where C2 is a positive constant. We set r = 1/2C2. Due
to conditions (29) and (30) the vector fields g and ḡ are
directed towards interior of Bn that allows us to apply
now the definition of structural stability [41]. Then for
positive ε ≤ ε0(ḡ) the attractor of the original system is
topologically equivalent to the attractor of the averaged
system. Note that ε0 does not depend on m and it is
defined by the averaged system only.

Furthermore, we compute the probability that all the
events defined by (54) take place by Lemmas 1, 2 and 3.
This finishes the proof.

Theorem 2 Suppose condition (29) holds and that the
averaged system defined by (26) has a Lyapunov function
such that

∇L(y) · ḡ(y) ≤ −ε, y ∈ V (56)

where V is an open subdomain of Rn with a compact clo-
sure, and moreover,

|L|C2(V) < CL

for a positive constant CL. Then with the probability
PrL,ε the original system (20) has the same Lyapunov
function such that

∇L(y) · g(y) ≤ −ε/2, y ∈ V. (57)

The probability PrL,ε satisfies the inequality

PrL,ε > 1− C̄1 exp
(
− C̄2mε

2 − ln ε
)
,

where C̄1, C̄2 are positive constants uniform in m.

Let us note that, similarly to the previous theorem, if
ε > 0 is small, the estimate from that Theorem makes a
sense only for sufficiently large m > m0(ε).

Proof. We apply the same idea used in the previous
proof. The domain V can be covered by N(rε) ∼ (rε)−n

balls Ωε,k of the radius ε centered at some points y(k) ∈
Bn. Here r is a positive constant uniform in ε. Let us
introduce the functions

H̄(y) = ∇yL(y) · ḡ(y), H(y) = ∇yL(y) · g(y,Φ(y)).

Consider the events

Hout,ε(k) = {|H(y(k))− H̄(y(k))| > ε/4}, (58)

Hε(k) = Not Hout,ε(k) = {|H(y(k))− H̄(y(k))| ≤ ε/4}.
(59)

Suppose that all events defined by (59) take place. Then

|H(y(k))− H̄(y(k))| < ε/4, ∀ k = 1, ..., N(ε). (60)
Now we use the estimate

|H(y(k))−H(y)| < LipH |y(k) − y|, (61)

where LipH is a Lipshitz constant of H. Let us estimate
that constant. By definition of H one has

∂H

∂yk
= m−1

n∑
i=1

m∑
j=1

cij
∂(Lfj)

∂yk
.

Due to Assumption 1 one has∣∣∣∣∣∣
n∑
i=1

m∑
j=1

cij
∂(Lfj)

∂yk

∣∣∣∣∣∣ < mnc1R0, (62)

where

c1 = max
i,j,y∈V

(|fij(y)||∇L(y)|+ |∇fj(y)||L(y)|). (63)

The same estimate holds for the Lipshitz constant of H̄.
Therefore, (60) and (61) give

sup
y∈V
|H(y)− H̄(y)| < ε/4 + rC3ε, (64)

where C3 > 0 is a constant uniform in m. Let us set
r = 1/4C3. Then condition (56) of (2) and (64) show that
(57) is satisfied. Furthermore, to complete the proof, we
compute the probability that all the events defined by
(54) take place by estimates analogous to obtained in
Lemmas 1, 2 and 3.
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