aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Extraction of unknown signals in arbitrary noise
Glenn lerley and Alex Kostinski

Phys. Rev. E 103, 022130 — Published 18 February 2021
DOI: 10.1103/PhysRevE.103.022130


https://dx.doi.org/10.1103/PhysRevE.103.022130

Extraction of Unknown Signals in Arbitrary Noise

Glenn Ierley*

Department of Mathematical Sciences, Michigan Technological
University 1400 Townsend Drive, Houghton, Michigan 39921, USA and
Scripps Institution of Oceanography, UC San Diego,

9500 Gilman Drive, La Jolla, California 92093-0225, USA

Alex Kostinskif
Department of Physics, Michigan Technological University 1400 Townsend Drive, Houghton, Michigan 49931, USA
(Dated: January 29, 2021)

We devise a general method to extract weak signals of unknown form, buried in noise of arbitrary
distribution. Central to it is signal-noise decomposition in rank and time: only stationary white
noise generates data with a jointly uniform rank-time probability distribution, U(1, N) x U(1, N),
for N points in a data sequence. We show that rank, averaged across jointly indexed series of noisy
data, tracks the underlying weak signal via a simple relation, for all noise distributions. We derive
an exact analytic, distribution-independent, form for the discrete covariance matrix of cumulative
distributions for independent and identically distributed noise and employ its eigenfunctions to

extract unknown signals from single time series.

I. INTRODUCTION

Signal separation from noise is an essential part of any
experiment, be it a passage of an elementary particle, ar-
rival of a gravitational wave, or a radar echo. Instrumen-
tal noise, clutter, unwanted fluctuations are inevitable
[1] and the literature on the topic is vast, crossing many
fields, and containing a great variety of specialized solu-
tions [2—4]. For example, lock-in amplifiers detect low-
level signals obscured by noise, but the signal form must
be known.

Approaches to extraction of signals of unknown form
(non-parametric) typically rely on the assumption of ad-
ditive normally distributed noise, e.g., [4] and signal pro-
cessing literature has been dominated, for over a century,
by the additive Gaussian white noise model, e.g., the
least squares approach of maximum likelihood [5, 6]. But
pronounced fluctuations associated with “black swan”
events and heavy-tailed (power-law) distributions have
become increasingly common in statistical physics [7, 8],
e.g., ranging from photonics to air pollution [9-12]. To
that end, here we address situations where neither signal
form is known nor is the noise of a conventional variety.

Despite its ubiquity, noise is notoriously difficult to de-
fine (e.g., [1, 2, 13]) — as the old adage goes, one man’s
noise is another man’s signal [14]. To that end, based
on a simple signal-noise decomposition in a rank-time
plane [15, 16], we propose a general all-purpose signal
extraction method. Although there is a rich literature
on rank-based approaches to non-parametric hypothesis
testing [17, 18], there is a dearth of rank-based signal re-
trievals. In fact, to the best of our knowledge, rank-based
unknown signal extraction has not been considered. For
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grier-

example, the comprehensive three-volume set [19] on sta-
tistical signal processing does not suggest a single ordi-
nal method. Rank offers a broadly applicable framework
with no constraints; noise can be white or colored, addi-
tive (e.g., “dark” noise in detectors) or signal-dependent
such as fluctuations caused by an atmospheric turbulent
propagation channel [3].

With that in mind, consider data from n serially-
ordered channels (e.g., synchronously acquired time se-

ries), each comprised of N real-valued elements a:,(j ) as
depicted in Fig. 1. The superscript and subscript iden-
tify the time series and an observation within a given
series, respectively. Such n time series might represent
seismic or EEG detectors, elements of an antenna array,
stock prices in a portfolio, weather stations around the
globe, hot wires in a turbulent flow, etc., with each se-
ries containing N measurements of a noisy fluctuating
process. Several copies of an unknown sought signal s
are thus embedded in the several samples of noise. The
ubiquitous case of n = 1 is also treated in the material
below.

In applications, the unknown signal is typically calcu-
lated as the sample (arithmetic) mean

~ 1 n
skzﬁ(m,(:)—kz,(f)—!—...xé)) k=1,...N (1)

where the observations ac,(g ) are of the signal buried in
noise. The ~ denotes the estimate of the true mean sj.
It is one of the cornerstones of probability theory that
the sample mean in (1) converges to the true (ensemble)
mean as n — oo (law of large numbers) [3, 20], except
for fluctuations with infinite variance (e.g., Cauchy noise)
[21]. Perhaps no calculation is more commonplace in data
analysis than the sample mean yet, when first advanced,
it was hotly debated [22], making an early appearance as
the “Arithmeticall meane” in [23]. An alternative to the
ubiquitous (1) is proposed below and it applies to any
serially ordered data of arbitrary distribution.



FIG. 1. Mean rank tracks the weak signal via (2). The
data value x,(cj) for each series j =1...nand timek=1... N
is the sum of a random variable drawn from the Cauchy pdf
f(z) = (m[1+2%])~" and signal s(t) = sin(t)/2 on [0, 4], with
N = 64 and n = 500. Each data series is sorted to yield the
rank vs. time series which are then averaged “cross-track”.
That result for mean rank is shown in black on the last trace.
The red trace shows the ensemble limit for mean rank, which
clearly reproduces the form of s(t). The signal estimate itself,
8, is then derived from (2) with p; = (27)~'. The standard
deviation of the error in that estimated signal, ¢ = 8§ — s, is
oe =~ 0.0573. While the formal variance of Cauchy noise is
infinite, the sample-based signal-to-noise ratio is ~ 107°.

In order to develop a robust, distribution-independent
approach to signal extraction, we turn to ranking of data
[15], i.e., values in each of the n time series are sorted
by magnitude in ascending order, and N integer-valued
ranks recorded in the corresponding N “time slots” [5].
To illustrate this process and the notation used in Fig.
1, consider the following example:

Mock Data

x —0.45 0.35 0.56 0.13 0.64 0.65 1.37
t 1 2 3 4 5 6 7
r 1 3 4 2 5 6 7
or -3 -1 0 -2 1 2 3

where the top row x is a realization of raw data with
signal y(x) = « plus noise drawn from a uniform distri-
bution on the interval [—1/2,1/2], the second row t is the
time index, the third row r is the first row data reduced
to rank, and the bottom row dr is the deviation from the
expected mean rank for pure noise, (N +1)/2 = 4. The
rank information in this single trace can also be stored in
2D rank-time grid as a (permutation) matrix P, whose
rows and columns represent the time t and rank r vec-
tors respectively. The N unit entries of P, indicating
occupancy, are read from the vectors, e.g., P42 = 1 from
the fourth entry and P,; = 0 for j # 2. For n traces,
the sum of the n Ps, normalized by nN, yields the tradi-

tional (empirical) probability mass function (pmf), i.e.,
a normalized 2D histogram.

At first glance, ranking appears to hold little promise
as, for example, all strong monotonic signals (low noise)
such as increasing linear, logarithmic, and exponential
functions yield the identical monotone rank distribution
1,2,..N. Yet, Fig. 1 demonstrates that deviation mean
rank recovers the form of the weak signal faithfully. How
can this be? Paradoxically, even a tiny amount of noise,
it turns out, restores the magnitude information, up to
an additive constant.

An essential ingredient is the observation that only
stationary white noise generates all permutations of N
ranks among the IV indexed slots with equal probability.
This equipartition U(1, N) is perturbed by weak signals so
that the change in equal rank probabilities of pure noise
is linearly proportional to (weak) signal amplitudes and
recorded by the deviation mean rank as illustrated in the
final trace of Fig. 1. Sampling variability, of course, is
present in all traces, including the final (black) trace.

Mean rank, unlike the arithmetic mean, couples the
“cross-track” and “along-track” directions as illustrated
in Fig. 1, sorting within a trace and then averaging across
traces, the last line of the above “mock data” illustrat-
ing such a sample trace numerically and sample traces
seen graphically with r(® to r(™ in the figure. As can
be seen in the final trace, despite the loss of magnitude
information, the (weak) signal-induced perturbation of
the (pure noise) uniform rank probabilities suffices for
the deviation mean rank, (SAI', to track the underlying sig-
nal faithfully. In the weak signal limit one anticipates
the signal-induced perturbation of equal rank probabili-
ties to be linearly proportional to signal amplitude and it
then remains to discover the constant of proportionality.

II. SUMMARY OF THE MAIN RESULTS

Fig. 1 demonstrates that for weak signals and large n,
mean rank accurately tracks the signal form. The (signal-
driven) perturbation from uniformity is defined by the
rank deviation §7 = rp — (N + 1)/2, where (N +1)/2
is the expected value for pure noise for all time slots.
Then, the deviation mean rank provides an estimate of
the exact signal via a remarkably simple relation:

1

B
N ps

0T ~ s, p1= /OO fx)?de. (2

where § is the rank-derived signal estimate and f(z) is
the probability density function (pdf) of the background
noise, (1). Note that being a pdf, f(z) has units so that
inverse p; in (2) has dimensions of the actual measured
signal amplitude. The pre-factor of 1/n in (1) is sub-
sumed in the computation of mean rank and S is defined
up to an additive constant. As explained in Section ITIC,
the estimate in (2) is the leading order term in an asymp-
totic expansion for an ensemble, n — oco.



Both signal estimates, (1) for arithmetic mean and (2)
for mean rank, converge to the true signal as n — oo,
but the arithmetic mean requires finite variance and fails
for heavy-tailed noise such as Pareto or Cauchy. The
mean rank converges via (2) only in the weak signal limit.
Convergence for stronger signals also holds but requires
that (2) be used in an iterative scheme, see section IIID.

The rates of convergence as given by the standard de-
viation in the mean rank and arithmetic mean signal es-
timates are, respectively

1 1 q 1 (3)
— and o—,
V12p V1 Vn

where o is the standard deviation of noise. The mean
rank expression arises from the zero-signal limit where
mean rank is uniformly distributed and its fluctuations,
(integer-valued counts) are described by the Poisson pro-
cess. Thus, the convergence comparison is governed by
the quantity v/12 p; 0. (The square of this quantity, the
Pitman asymptotic relative efficiency for rank spread test
vs. the ¢ test [24, 25], arose in mathematical statistics, in
the context of hypothesis testing. A detailed comparison
is supplied by the extensive table surveying the factors for
Pitman efficiency for not only rank vs. arithmetic mean
but also rank vs. median presented in Appendix B.2.)

A skeptic might object that n = 500 in Fig. 1 is rather
confining. Indeed, while some applications such as ocean
floats or earthquake sensors would allow large n [15], oth-
ers such as EEG measurements do not. Probably the
most common case in practice is that of a single time
series (n = 1). Of course, the arithmetic mean, median
estimates do no apply then. Remarkably, mean rank per-
forms well even in this n = 1 case, as demonstrated in
panels (a) and (b) of Fig. 2 where a weak sinc signal
buried in overwhelming noise of infinite variance is re-
trieved with high fidelity from a single time series. So in
what sense can we speak of “mean rank” when n = 17
Next, we highlight the key ideas.

The space of rank vectors consists of the N! permuta-
tions of the integers 1,..., N and one can compute the
exact covariance matrix for this space which, up to a scale
factor, assumes the “canonical” (indicated by *) form

k=N min(j, k) — jk, (4)

whose normalized eigenvectors of X*1,,, = A\, emerge
as harmonics

(5)

2 [sin(maxg) m even
N

Ym(ee) = cos(mzxr) m odd

where zy, = kn/N —m/2 for k=1,...(IN —1) and

N
2(1 — cos(mm/N)) " (6)

Am =

What is the relation of this result to iid noise? On rec-
ognizing that the mapping from stationary white noise
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FIG. 2. Nonparametric extraction for n = 1. (a) A series
consisting of a signal s(x) = 1.44sinc(4z) plus Cauchy noise
(full vertical scale is [—171, 888]). (b) True (unknown) signal
(blue), assumption-free estimate (red), and estimate assuming
signal symmetry about the peak (dashed black). (c) Color-
coded values of 6C from (7) with N = 256. (d) A Fourier
series expansion (8) of §C with M = 10. Note the similarity
of large-scale patterns in (c) and (d). P is found from this 5C
via (10), whose first moment yields the mean rank dr in (2).
Then p; = (27) 7! yields the curves in (b).

to rank generates all permutations with equal probabil-
ity of 1/N1, it follows that the same covariance matrix
also applies to the infinite ensemble. The harmonics in
(5), thus linked to white noise, are related in the next
section, via cumulative distribution fluctuations, to the
so-called Brownian bridge (Weiner process pinned at the
ends or returns of a zero-inertia Brownian particle)[26],
but with the Brownian part rendered inessential and the
eigenvalues for a Weiner process similar to (6) only for



small m, but not in the tails.

Towards signal extraction, consider raw data yielding
a perfectly ordered succession of ranks [1,2,3,..N]. De-
spite appearing “orderly”, this rank partition is just as
likely as any other to be generated by iid noise. But,
given this data, we can ask: is the white noise model
as likely as a signal plus noise model? This “likelihood”
type of question is quantified here beyond the confines of
parametric estimation and even for single trials (n = 1).

Guided by the equivalence of rank (r) and time (¢) for
independent and identically distributed (iid) noise, we
map the raw data to the rank-time (r,¢) plane. As n —
00, the resulting 2D discrete probability density (mass)
function (pmf) is jointly uniform, U(1,N) x U(1,N).
This characterization of stationary white noise defines
the absence of a signal, delivers a simple signal-noise
decomposition, and regards signals broadly as devia-
tions from pure randomness. This symmetry-breaking
property of signals then forms the basis for universal
(distribution-independent) signal extraction.

To implement this program, we continue with a cumu-
lative distribution function (cdf) of the iid noise, with a
particularly simple form (zy in the continuous case) and
whose fluctuations turn out to have universal correlation
properties. With rare exceptions, e.g., the cdf of opti-
cal depth in [27] or improvements of statistical tests [28],
physicists prefer pdfs to cdfs. Yet, the cdf has important
advantages both, fundamental and practical. On the fun-
damental side, there is the general propensity for the cdf
perspective to yield universal results, e.g., distribution-
independent convergence theorems of Kolmogorov and
Smirnov, as well as the celebrated Kolmogorov-Smirnov
(KS) test itself [5, 29] and the three-term cdf decom-
position theorem [29]. Perhaps most important, in our
view, is the following remarkable yet seldom mentioned
result. Let a random variable X have a continuous distri-
bution for which the cdf is F'x. Then the random variable
Y = Fx(X) has a standard uniform distribution, for any
Fx [30]. Dealing with data at the cdf level also has its
perks. For instance, it is not necessary to bin the data
to form a natural empirical cdf staircase whereas some
form of binning is required for the pdf. Single-pass esti-
mation of arbitrary quantiles is often desired, e.g., from
time to time one might need the median value (or 95th
percentile) of data seen thus far [5].

Returning to signal extraction, the ensemble limit of a
jointly uniform pmf, p(r,t) = U(1,N) x U(1, N), and its
associated discrete cumulative distribution function (sim-
ple zy for the continuous analog), C are both perturbed
by signals. Here we isolate that perturbation by means
of the 2D deviation cumulative distribution function §C
defined as:

k l
5Ck,l* Z Z <P1,g

1 =1

> (k1) =1,...(N—-1) (7)

where p; ; is the pmf and the J denotes deviation. The
subtraction of 1/N? removes the jointly uniform base

4

state [31]. In practice, one obtains p; ;s from ranked data
via the normalized 2D histogram.

We show that dC, generated by the iid noise, fluctuates
in a distribution-independent manner just as rank vectors
do. Moreover, the 6C covariance matrix is the Kronecker
tensor product of X7, with itself. This, in turn, yields a
convergent 2D (Fourier) eigenfunction expansion formed
by the direct product of all (N — 1)? pairs from (5) and
corresponding products of the associated 1D eigenvalues.

The main and seemingly contradictory idea now is to
apply (2) even at n = 1 as one estimates in Fig. 2(d)
a small subset of the 2D expansion coefficients for the
ensemble limit (n — oo) of 6C based on the single real-
ization of 0C in 2(c). As indicated in Fig. 7 of Appendix
B.4, a spectral signature guides the choice of the trunca-
tion M for the expansion:

M

M
5c~k,j = Z Z Cn,m 'l/)n(yk) wm(xj) . (8)

n=1 m=1
where
N—-1 N-1

wn yk wm x])éck]

k=1 j=1

From these estimated coefficients one obtains the smooth
dC and hence P(r,t) from

0xdy

which, in discrete form, means using the harmonics
A (2},) / m cos(mxj) m even
dx N —msin(ma)) m odd

(N =1).

P(l‘,y) =

where ), = kn/N —7/2(1 —1/N) for k = 0,.
Then

M M dm
szzz nmdz/”;l;yk) wdi 2| (10)

m=1

and 0f/N = P[l...N]I' (subscript 0 indicates zero
mean) from which we obtain the signal estimate plot-
ted in (2)b. The dashed curve is a better match yet
signal parity is used as prior information. An iterative
approach, quantifying the “weak signal” range of valid-
ity and extending (2) to weaker noise (summarized in the
caption of Fig. 3), again yields retrievals unmatched by
other methods.

III. UNDERLYING THEORETICAL
DEVELOPMENT

We begin with the derivation of (4) for the fluctuation
of rank vectors (discrete case) and then proceed with the
parallel derivation for cdf fluctuations (continuous case)
by treating cumulative distributions as order statistics
[32]. This culminates with the perturbation expansion
to arrive at (2) and higher order terms.



A. Discrete Covariance Matrix: rank

Consider iid noise-generated fluctuations of the sample
vector with N entries. All possible permutations of N
ranks in N slots occur with the same probability 1/N!.
Thus, an ergodic behavior is ensured as our “system”
samples all available “microstates” without bias or pref-
erence and the ensemble limit holds (n — 00).

Elements of the i-th permutation vector are denoted
by r,(;) fork=1,2,...N and i =1,2,... N, where N, is
the size of the permutation space, which depends upon
the allowed set of entries X = {x}. Towards calculating
the covariance matrix, we then define zero-mean partial
sums as

-3 (s

Jj=1

ZT(Z)/N

and calculate the covariance matrix from

Np

1 (i) (0)
EkJ = Fp Z Sp

(k1) =1,2,...(N—1). (12)

The discrete covariance matrix “standard” is given by
(4) and the simplest set of permutations yielding it is
N Iy, where Iy is the identity matrix of order N. A
broader context for this choice is the set of N! permu-
tation matrices Py, regarding the r,(:) as either the rows
or columns. Each yields the identity case covariance ma-
trix. Any particular permutation matrix can be regarded

as the rank-time realization [15]. Using the identity ma-

trix, we have r,(:) = J;,; and the zero mean partial sums
are given by
s = NH(k—i+1)—k k=1,...(N-1)

where H denotes the Heaviside function with the conven-
tion H(0) = 0. Elements in the covariance matrix reduce
to evaluation of the product

%Z (NH(j—i+1)—j) (NH(k—i+1)—k)

H(j—i+1)H(k—i+1)

uMz

_Z jH(k—i+1)+kH(G—i+1)]+jk
=1
= N min(j,k) —j k

(k) =1,...(N - 1)

For all general permutation classes in (12) then X, , =
a(N) X7, and it suffices to simply compute 11 in (12)
as a function of N to fix a(N) = ¥q11/(N —1). A va-
riety of examples of a(N) is presented in Appendix C.
That this result emerges, wholly independent of details

of the x; save through the vestigial factor of a(N) is par-
alleled in the order statistics argument below when the
perfect differential drops all reference to the underlying
noise distribution f(x).

Application of this covariance matrix to dC rests upon
the assumption of equal a priori occupancy of the cor-
responding finite state space for an infinite ensemble of
white noise input vectors. Individual realizations of 6C
derive from an N x N permutation matrix P:

Nackl_z Z ~1/N)

=1 j=1

(k,} =1,2,...(N=1)

Based on either rows or columns alone, this is equivalent

o (4) but for Iy rather than NIy, e.g, 1D a(N)/N2.
The double sum taken here then leads to a covariance
matrix which is (N—1)2x (N —1)? given by the Kronecker
tensor product of a(N) ¥* with itself. The singular value
decomposition of the cdf ensemble for §C is then given
by Uo VT where the columns of U are the reshaped
(N — 1)? 2D eigenvectors and o is a diagonal matrix
with entries that derive from corresponding products of
(6), subject to the scale factor for 6C, and the standard
factor of 1/4/N — 1 for the conversion from eigenvalues
of the covariance matrix to singular values[33]:

1 1
Anm INVN =1\ (1 — cos(mn/N)) (1 — cos(nm/N))’
(13)
where (m,n) = 1...(IN — 1) with the values sorted in
decreasing order, commencing with (m = 1,n = 1), and
columns of U and rows of V shuffled correspondingly.

B. Continuous Covariance Matrix: order statistics

We shall now broaden the above derivation to the con-
tinuous case. There are two major reasons for doing so.
First, the approach is needed to derive the main result,
equation (2). Second, we establish universality of fluc-
tuations of the empirical cdf via order statistics [32, 34]
and link it with the universality of the pinned Wiener
process (so-called Brownian bridge [26, 28]). Our deriva-
tion does not invoke the central limit theorem, thereby
disentangling Brownian and bridge parts, an important
result in itself.

To that end, we adopt the perspective of order statis-
tics on the empirical cdf, e.g., [29, 34]. Let X =
(X1,X1...X,) be a random vector (sample) of size n
and (x1, 22, ...2,) be a realization of the random vector
X. For the iid case, let f(z) and F'(x) be their pdf and
cdf, respectively. When the observations are arranged by
ascending magnitude, X ;) denotes the jth order statis-
tic, that is, the jth smallest of the continuous iid ran-
dom variables X7, Xo,..., X, [29, 32]. The empirical
cdf (data staircase) can now be defined via the Heaviside



(step) function H(x) as a random process

Fo(z) =

S|

Z H(z — X;)

whose particular realization is obtained (measured) for
X; = x;. So the step heights of the increasing stair-
case F,(x) are multiples of 1/n. The key idea here is
that by proving the invariance of the iid-generated covari-
ance matrix we also show the universality (distribution-
independence) of F,(z) fluctuations.

Returning now to the order statistics, for the density
function of X of an iid random process, one has

(@) = r—i—y P@V 7 =F@)I"™ 1),

e.g., see p. 276 of [3] or Eq. (6.2) in [32].
The expectation value of F/(X()) is then

n! b
(n—ﬂNj—U!A Pl 04

< [F)l 7 1 = F(a)]"™ f(x) da

BIF(Xy)] =

The substitution s = F(z) and ds = f(z) dx yields

! I _ <Im—J _(n_])'j‘
/0 s/ [1—4] ds_i(nJrl)! .

Hence E[F (X)) =j/(n+1) j=1,2,...n.
Similarly from Eq. (6.6) in [32], the joint density of
X(j) and X(k)

n!

Fx .y (@5, 28) = G-Dlk—j—1Dl(n—k) (15)
x [F(ay)l ™ [F(an) — Fa))h 7
< [L= F(a)]" " flxg) fa).-
and, with the same variable change, E[X ;) X ()]
n!
ElX(j) X)) = (16)

G0 =D (n = k)l
n—k J(p— gb—i—1
x/o dt (1 — 1) t/odss(t )

This integral is evaluated in terms of the standard beta
function [29] and one arrives at the sought result for the
order statistics covariance matrix (j < k)

j(n+1—k)
(n+1)2(n+2)
(17)
Note j and k are interchanged for j > k. Equation (17)
is the same as the earlier result (4) to within a scaling
factor (see Appendix C).
Although we are not aware of the universality question
being posed in terms of the covariance matrix, a related

E[Xjy X~ E[F(X () E[F(Xx))] =

result exists in the theory of stochastic processes. Namely
eigenvalues for the Brownian bridge (pinned Wiener pro-
cess) are similar to (5) but rely on the normal approxi-
mation. Thus, it is particularly noteworthy that the re-
sult (17) is distribution-independent and yet neither this
derivation nor the discrete one above invokes the central
limit theorem.

To link (17) explicitly to the Wiener process, we em-
ploy the Gnedenko-Koroliuk map from the cdf difference
onto a pinned random walk [35]. Letting {Y%} be another
set of n iid random variables with the same cdf F(z),
one orders the 2n-tuple composed of (X1, X5 ... X,,) and
(Y1,Y>...Y,) in ascending order, and puts either 1 or —1
in the j-th entry, to replace X; or Y; respectively. One
thereby obtains a map onto a discrete random-walk of
2n steps that returns to the origin. In the Gaussian limit
this yields the Brownian bridge but for finite NV, the exact
covariance matrix generated by all (2N)!/(N!)? permuta-
tions of this Gnedenko-Koroliuk map is a constant times
(4). On the assumption that all permutations are equally
likely, this then is the exact ensemble limit for the finite
random walk.

In the continuous limit, equations (4) and (17) become
the function K (z,y) = min(z, y) —x y which is recognized
as the correlation function for the Brownian bridge [26,
28]. Principal components from an orthogonal function
expansion of the Karhunen-Loeve type [20, 36] are then
eigensolution pairs

f(z) = sin(kmx) gly) = k?lﬁ sin(kmy), k=1,2,....

arising from the integral equation

1
9(y) :/0 K(z,y) f(z)dz  K(z,y) = min(z,y) —zy

for the Brownian bridge [26]. The iid assumption is es-
sential for these results, e.g., our computations (to be
reported) show that a sufficiently strong negative corre-
lation, by forcing fine scale wrinkles in §C' fluctuations,
completely removes the principal mode (half-wave).

C. Mean rank: proof of (2) for weak signals

We prove (2) for N = 3 to distill the bare essentials
and the general case is treated in (B2). Following the
above machinery for order statistics, we introduce the
pdf, fr and cdf Fy. The three conditional pdfs for s; to
map to each of ranks r; » 3 are then

fl(skr — 7"1|X = LC) = (]. — F,L) (1 — Fj)fk
fg(sk — ?"2|X = LB) = [Fz (1 — Fj) -+ (]. —

fa(sk = 3| X =2) = F; F} fx

These expressions for the mutually exclusive events are
exact and, as a check, sum to fj.



Next, let the iid noise rank uniformity be perturbed
by a weak signal as f = f(x — esg) where ¢ < 1 and
similarly for Fy. (For e =0, P, = P, = P; = 1/3.)
From its Taylor series, the O(e) perturbation of pdf for
expected mean rank is

d
el —o (ri-fitre-fotrs-fa)=

— s [/ (x) — 25, F(z) f'(x) — (s + 85) f(2)

To find the mean rank perturbation at ¢;, we integrate
on [—oo,00] [37], appeal to vanishing boundary condi-
tions on f(z), and treat the second term by parts to
obtain

28k/_oo f(x)de—(si—i—sj)/_oo f(ac)2dac
:3[(sk—(si+sj+sk)/3] /_Oo f(l‘)le‘

This can be rewritten as 67, = 3p; Sk, a simple rearrange-
ment of (2) for N = 3, and one sees that the constant
offset of 5 amounts to a subtraction of the signal mean.
A generalization to all orders of the perturbed integral of
(18) for arbitrary N is given in (B2) of the Appendix.

D. Mean rank nonlinearity and iterative error
reduction

Although weak signals are of most interest and (2)
works well in that limit, one needs the means to evaluate
the “weakness” of an unknown signal. To that end, the
validity of the linear approximation can be assessed by
the next order perturbation in signal amplitude. From
(B2) in the Appendix, a cubic truncation assumes the
form

(r) =pre [Nsk - Zsz]

3
—p‘?; le%3siZsi+3$stfZS§ + O(€%)

where

(19)

o0
po= [ (@)
— 00

As earlier noted, since f(x) is a pdf, the units of p;
are those inverse signal amplitude. Those of ps3, are
the inverse cube of the amplitude. Correction terms to
(19) up to O(€7) are illustrated in Fig. 4 of Appendix
B.1. Equations (2) and (19) apply “as is” to correlated
noise and also to non-stationary noise pdfs by computing
| f(x)? dx as a function of a relevant parameter and then
averaging over the range of that parameter.

Whereas the signal plotted in Fig. (2) derives from the
M x M approximation of 6C given in (8), we now ap-
proximate instead with only M x 1 lowest harmonics in

L (N=129, n=4)

True signal
——4C fit (o = 0.099)

4 R 0C single pass (o = 1.01) ° B
. *e + Raw Data
5 ! ! :
1 05 0 05 1
X

FIG. 3. Iterative reduction of rank nonlinearity yields
excellent signal retrieval. The signal (blue solid line) is de-
liberately generic: a Fourier synthesis with randomly chosen
coeflicients. Green dots (data) include added Cauchy (infinite
variance) noise. The dotted red line shows the first pass signal
estimate from (20), leaving ¢2 = 0.529. The amplitude error
is due to cubic (and higher) terms in (19). Iteration (solid
red) annuls the M mode coefficients (o2 = 107%), hence elim-
inating the cubic error. To the best of our knowledge, such
performance with merely n = 4 is unrivaled by other meth-
ods.

rank, 9 (zx). This is because signals in the time do-
main drive predominantly the first harmonic, with the
excitation of higher harmonics a function of moments of
the noise pdf, f(z). On the assumption that all of the
amplitude ¢y 1 derives from signal, removing that signal
from the time series will simultaneously zero out both ¢,
and the signal-induced contribution to higher harmonics,
Ck,(2,3,...)- In addition, the amplitude of that first rank
harmonic is a nonlinear function of forcing hence even
after obtaining the M x 1 approximation of dC, solving
for P and using (2), for all but very weak signals, the
M harmonics ¢, 1, k = 1..M will retain significant signal.
It is hence necessary to iterate, accumulating successive
contributions to the signal.
The modified (scalar) form of (2) becomes

1 2 mcos(m/2N) l dYi(yy)
ok N py [\/; 1 — cos(m/N) ; T (20)
where
N-1 N—1
si=— Y O Uily) (@) 6Ci, i=1,... M (21)
j=1 k=1
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FIG. 4. Tests of expansions (19) and (B2). Panel
(a): The test signals are step functions y(z) = H(z) and

y(z) = H(x)/2, captured well by the leading order estimate
(2), but each with a small gap caused by rank nonlinear-
ity. The lesser amplitude deficit, ~ 107% for H(x)/2, is
barely discernible, indicating validity of the “weak signal”
(small perturbation) regime for this ¢ = 2 Gaussian noise
(see text). Inset: a sample time series gives a visual sense
of the weak signal relative to noise. Panel (b) quartet: The
signal, sinc(z) on = = [—2,2] is buried in additive Cauchy
noise [38] (zo = 0,7 = 1) with (N = 24,n = 2 x 107). Solid
line is the residual Monte Carlo ér, progressively decomposed.
Dashed line is the analytic correction from (B2) removed at
each order in e. Along-track sorting confers a global character
to rank, exemplified by the O(e?) term in (19) with nonlocal
quadratic and cubic sums, while the linear sum over s; reflects
rank invariance to a constant offset.
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As an iterative scheme, s — sgcn)

551) = c,1, that is, the modal coefficients of the initial

0C. One then subtracts the resulting mean rank pre-

and ; — &™) with

diction of sg) from the raw data and recomputes JC. In

. . . . n
practice, after four or so iterations, convergence in {55 )}
as measured by

M
(22)

1
2 L =\2
e T M1 271(51 2

7

saturates at about 1074 [39].

In contrast to Fig. (2), for Fig. (3) the iteration is vital;
the first pass error is reduced by more than an order
of magnitude. Iteration is appropriate when a suitably
weighted value of o.ypic, the standard deviation of the
bracketed portion of the cubic term in (19), is large in
comparison to the noise contribution noted below in (23).
Further details are discussed in Appendix B.3.

A second trial with this signal was run using: (i) cor-
related Cauchy noise given by z; = (z; +x;+1)/2, and (ii)
an incorrect value for p;, namely that for Gaussian noise.
Iteration converged to a solution with ¢ = 0.18 quite
similar to that plotted. This success illustrates two key
points; first, noise correlation does not alter that there
remains a proportionality between mean rank and signal
and second, when iteration is applicable, that errors in
p1 are self-compensating.

The expected value of the noise standard deviation for
this M x 1 approach can be approximated as

Onoise ™

1 1 M 0.1410 1
mwa[ NN *O(N)] %

where M is the order of the Fourier expansion. This takes
the place of (3). The condition for successful extraction
of a weak signal for small n is that the needed number of
harmonics M for the signal is a small fraction of N. To
the best of our knowledge, for this mixed regime of mod-
erate n and M with arbitrary noise, there is no method
that can rival the accuracy exhibited here.

IV. CONCLUDING REMARKS

The main theme of this paper is that departures from
iid white noise are identified as “signals”. To gauge such
departures we began by noting that the ensemble limit
of the rank-time probability distribution for any N point
sequence is uniform and, in consequence, the deviation
cumulative distribution function §C vanishes. We then
establish the needed benchmarks for expected sample
variability with finite data sets, replacing our previously
purely computational singular value results in [15] by far
deeper analytical results, including an exact distribution-
independent form for the discrete covariance matrix of
cumulative distributions for iid noise, whether of discrete



(4) or continuous (17) origin, and the exact accompany-
ing eigenvalues and eigenvectors for noise-induced fluctu-
ations about the equilibrium state.

We also prove that mean rank from an average across
jointly indexed series of noisy data, tracks an arbitrary
underlying weak signal via the simple, leading order, rela-
tion (2) for all stationary noise distributions. An asymp-
totic expansion of this relation in (19) and (B2) sup-
plies precise meaning to signal “weakness”. When non-
linear terms become significant, (2) becomes an iterative
scheme.

Figures 1-3 and 6 illustrate the successful extraction
of (presumedly) deterministic signals, both weak and
strong, embedded in arbitrary iid noise, where other
methods are of little or no avail. Not only do we ex-
tract unknown signals for small n, as in Fig. 3, but even
single trials, as in Fig. 2, constituting perhaps the great-
est advance of this paper. The reason for the success
with n = 1 is that the mean rank utilizes both cross-
track information (V) and along-track (n), thus feasible
when the latter is unavailable. A devil’s advocate might
argue that, in lieu of cross-track coupling, one can also
form a local running mean (or median) in the along-track
direction. But that window makes no use of the univer-
sal, global, characterization of expected fluctuations for
stationary white noise.

Taking a more general view, noise other than iid it-
self constitutes a “signal”, reflected in a structured §C
improbable under iid sampling variability. Perhaps the
most common departure is colored, i.e., correlated, noise
which, though stationary, has a spectrum that is not flat.
That “signal” is not expressed in mean rank, which is
still zero (in the limit), but in the mean second moment
of rank. Positive correlation has in addition a systematic
effect mainly on the eigenvalues of the covariance matrix,
whereas negative correlation is more dramatically seen in
a sharp phase transition with a vanishing of the lowest
mode of the covariance matrix. Similarly, uncorrelated
but nonstationary noise, where the variance is a function
of time, also leaves mean rank zero, with the signal again
in the second moment of rank. In a variety of problems,
noise of either character — colored or nonstationary — i
present but there is also a deterministic signal derived
from mean rank that is of principal interest. We have
noted for such cases that, in application of (2), for col-
ored noise p; is unaffected and, for nonstationary noise,
p1 is modified by averaging over time.

Still farther from these generalized forms of noise,
chaos all the more departs from norms in (13) for sample
variability. Nonetheless, for discrete examples such as
the logistic and tent maps, chaos can maintain mixing of
rank with sufficient uniformity that one can extract lower
frequency signals buried within chaos based on the mean
rank relation, proceeding as in Section III.D, illustrat-
ing the wider applicability of (2). The proposed method
can also be used to test random number generators, e.g.,
[40, 41], quantify instrumental errors, detect over-fitting
(when the §C residual suggests anti-correlation), etc.
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Appendix A: Brief overview

Below we address technical but important issues such
as a more detailed characterization of the expansion for
mean rank and its limitations, the relation of mean rank
to arithmetic mean and median, error analysis that ac-
counts for nonlinearity and simultaneously gives guidance
on when iteration is needed, and extension of the idea of
mean rank to the second moment, employing symme-
tries in rank-time plane. We also give a brief illustration
of other instances of the discrete covariance matrix as
well as brief consideration of the kurtosis deficit that is
present for finite NV in the pdfs for Fourier modes of 4C.

Appendix B: On Mean Rank
1. Nonlinearity

Proof of the relation between mean rank and signal is
outlined in the main text for N = 3 and here we describe
it for a general n and in more detail. We begin with:

(B1)

ES'Fj,'m))

where f(z) and F(x) are probability density and cumula-
tive distributions, respectively on the interval [a, b]. Here
(Ik(:ll) is the binomial coefficient, 7 is a matrix whose rows
contain all possible choices of k — 1 elements from the set

{1,2,...,K}, and

{Tim}={1,2,..., K} \{1jn}-

where \ denotes the relative complement (set exclusion).
In contrast to the earlier, strictly formal, appearance of

(B1) as (B1) in [15] (with a slightly different notation), it

is used here to obtain an expansion for mean rank. Using

(B1), the ensemble mean rank is

N+1

Tn :kankes 2 (B2)

oo 2] 1 27 2_1 ) ) .N )
P2 —1 J i 2j—1—i i

> X () e
j=1 i=0 k=1
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FIG. 5. Convergence Table: Mean Rank Wins.

The 1/4/n rate of decrease in sampling error is a broadly applicable

result. While perhaps most familiar from characterizing accuracy of a sample mean, it is equally relevant here for addressing
random error in signal extraction. For each of the twelve pdfs we list pi1, the relevant factor in (3) for mean rank error, the
numerator o(u1) for arithmetic mean error, and the numerator o(u2) for median error. The color shading shows which of the
three averages converges fastest, with blue denoting an unconditional advantage while green indicates conditional restrictions
on parameters in the pdf. We note that the earliest invocation of this for mean rank was Pitman’s characterization of the

efficiency of the rank spread test in [24].

where

b dj—lf 2
Pej—1= /a da (dx.il)

Recall that, being a pdf, f(z) has units so that p; has
units of the inverse signal amplitude, p3 units of inverse
cube of the amplitude, etc. The simplest application of
this result is truncation at O(e3), as in (19), by means of
which we can precisely defines what is meant in this work
by a “weak signal”. For example, in Fig. 4a, we chose (as
suggested by a referee), two Heaviside functions, H(z) as
for H(x)/2, differing by a factor of two in the step height.
This example is ideally suited to separate magnitude and
shape recovery. As Fig. 4a shows, the signals are well ap-
proximated by (2) and so the leading order weak signal
approximation appears to hold. To check this more pre-
cisely we evaluate the cubic correction in (19).

Reading off values from Fig. 4a, we set ¢ = 1 and let
sk absorb both form and amplitude information. Remov-
ing the mean leaves odd step functions, hence the sums
with odd powers of s; vanish by antisymmetry. This
leaves only the single sum > s? in (19) which, as the
summand is constant, reduces to N S% so that the sec-

ond bracketed term is 4N si. Dividing through by Np1,
yields a refined mean rank signal estimate, with a cor-
rection term of —4p3ss /(3!p1). While for a general func-
tion, the form also influences the correction term, the
main operative factors that define a weak signal are thus
(i) the cube of the signal amplitude, scaled by, (ii) a
proportionality factor ps/p; reflecting a subtle charac-
terization of the background noise. For the Gaussian
pdf with ¢ = 2 in particular, p3 = (32y/7)"! and us-
ing s = 1/4 for the lesser step function H(z)/2 yields
a correction of —1/768 ~ —0.00130 for = > 0, and
the opposite signed correction for x < 0. This can be
checked by averaging the exact signal less the numeri-
cal mean rank signal estimator. On accounting for the
sign change at « = 0, the numerical average of the data
over [—1, 1] gives —0.000125, in excellent agreement with
the analytic cubic correction. The slight difference is due
mainly to noise in the numerical mean rank, as the suc-
ceeding quintic correction is only 6.1 x 107%. For the
larger step function, a prediction immediately follows of
8/768 = 1/96 = —0.0104, which also compares well to
the corresponding numerical mean of —0.0101. One sees
that judging a weak signal by the traditional signal-to-
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FIG. 6. A fractal signal retrieval from log-normal

noise. The signal is the Weierstrass function with (a =
0.99,b = 6), of Hausdorff dimension 1.9944, and sampled at
N = 256 points on the unit interval. The noise is log-normal
with pdf parameters (pn = 0,0, = 4/3). The mean rank is
an average over n = 4.27 x 10° time series. Magnitude of the
noise notwithstanding, influence of the cubic nonlinearity can
be seen in comparing the one (red) and two step (black) com-
putations of mean rank at the highest peaks. The former has
o = 0.00301 while the latter with o = 0.00253 is in excellent
accord with a pure noise error estimate of 0.00258. The me-
dian error in the inset panel is seen to be about twice as large
as the pure noise rank error, borne out both empirically with
o = 0.00481 and on the basis of the standard error prediction
from the Pitman table of o = 0.00493.

noise ratio has little relation to the terms in which it is
here defined.

The infinite series in (B2) holds for many common C'*°
pdfs whose support is R. Convergence of that series de-
pends on both the signal s, and the noise, through pg;_i.
For example, it converges for almost all weak signals for
Gaussian and logistic pdfs but is always asymptotic for
log-normal noise owing to a controlling factor for pa;_;
that grows like exp((2j — 1)20%/4). In Fig. 4b, with
Cauchy noise as an example, the terms in (B2) up to
O(€") are shown. A second calculation (not shown) gave
similar agreement up to and including O(e'!) for a signal
in Gaussian noise.

For pdfs with finite or semi-infinite support, (B2) as
written can break down at an order that depends on
properties of each particular f(z). In all cases the first
term in the expansion holds. But while e.g. a uniform dis-
tribution on [0, 1] formally yields p; = 0, there is nonethe-
less a cubic correction to rank whose form in terms of s
is still that given in (19). However, the expression for the
coeflicient in place of p3 is not yet known.

11
2. Relation to other averages

Color shading in the table of Fig. 5 is used to denote the
smallest factor controlling convergence as n~1/2. Blue de-
notes unconditional dominance, e.g. for Gaussian noise,
the arithmetic mean is best for all ¢ while for noise with
a uniform distribution, mean rank and arithmetic mean
are tied. Green indicates dominance over a broad, but
not unlimited, range of parameter(s) in the pdf. Specifi-
cally: for a chi-square distribution mean rank is best out
to k = 33. For a beta distribution, mean rank and arith-
metic mean divide the (o, 8) plane between them, with
a wedge symmetrically disposed about @ = 8 where the
arithmetic mean converges faster, and the complemen-
tary region is mean rank. There is in addition a technical
point: the expression given in the table for mean rank is
limited to («, 8) > 1. Outside of that region, e.g. along
the line o = 8 on [0, 1], the governing coefficient remains
well defined through some form of regularization yet to
be explained. For the Student distribution, one could
also shade the arithmetic mean in green. Here is a triple
exchange. For v on [0, 1.81] (including Cauchy noise) the
median is best. Then for [1.81,61.1], mean rank. And
finally, recovering the limiting case of Gaussian noise, on
[61.1, 0], it is arithmetic mean.

The random errors in the table are due to noise. As
shown above in (19) for mean rank, there are in addi-
tion systematic nonlinear corrections, commencing with
cubic terms. When the leading (linear) mean rank signal
estimate is dominated by random error, this precludes
trying to make a cubic correction. But an example here,
and also in the main paper, illustrate when and how that
nonlinear error can be eliminated. For median and arith-
metic mean, no such consideration arises.

3. Error analysis: noise 4+ nonlinearity

Errors owing to (19) and the standard error (3) arise
from opposing tendencies with respect to signal ampli-
tude. Characterizing a general signal as €s where s itself
is normalized in some convenient fashion and the scale
varied with €, the random noise errors diminish with in-
creasing € while the cubic deviations increase. The spe-
cific form of the error £ (in units of signal, 1/p1) is given
by

2 4
1 P3E° o
6271 3N2 cubic

E(e,n) (B3)

1
CVizZp

where o.upic 18 the standard deviation of the bracketed
portion of the cubic term in (19). Note that o2, is a
rational function of N which, to leading order, is O(N?).
This cancels against the N2 dependence of the denomi-
nator. For fixed ¢, the standard deviation (e, n) at first
decreases sensibly with increasing n but ultimately satu-
rates at a level controlled by the cubic term.



Further demonstration of mean rank-based signal ex-
traction is seen in Fig. 6, where a small amplitude frac-
tal, nowhere differentiable, Weierstrass function is faith-
fully recovered, demonstrating that there is no implicit
smoothness, or other, constraint on the form of the signal
that can be extracted by mean rank. Log-normal noise
was used with (u, = 0,0, = 4/3). Applications may
include fractional Brownian motion, etc.

The plot shows extraction of the original signal s itself.
The imposed signal was es with e = 0.164. A companion
value of n = 4.27 x 10® was used. For this noise

expoz/4  3exp4/9

pr= 20,/ 8T
_exp(907/4) (02 +2)  5lexp(4)

ps = = 2567

803 /T
and from (3) the predicted standard error for pure noise
(incorporating a factor of 1/¢) is 0.00258. With ceypic =
7.9267, the estimated cubic error contribution is identi-
cal. (The value of n was chosen purposely to bring this
about.)

The predicted combined error in (B3) is hence a factor
of v/2 larger, or ¢ = 0.00365. The actual error after one
step was o = 0.00301, i.e. less than expected. However,
ps = 2.13 x 10*, leading to a quintic term in (19) op-
posite in sign, and twice as large as, the cubic. This is
indicative of the asymptotic character of the expansion
for log-normal noise and so one should not be surprised
that a more precise estimate for nonlinear error is prob-
lematic. In any event, with just one further iteration,
the standard deviation is reduced to o = 0.00253, almost
exactly the predicted value noted above for pure noise
with a mean rank estimator.

For comparison in the inset, we show the error for the
signal estimate based on the median. The indicated tab-
ular value of the factor for the median standard error in
Fig. 5 predicts 0.00493, in close conformity with the ac-
tual numerical value of 0.00481. And the pointwise error
of the iterated rank solution is indeed visually seen to be
about one-half that for the median-based extraction.

That all the nonlinearity has been accounted for is
suggested on noting that the correlation of the one-step
residual with the original signal is —0.49 (the negative
sign pairs with that of the cubic correction) while after
two steps that residual correlation is 0.05. Interestingly,
the correlation of the final mean rank residual and me-
dian residual is 0.84, suggesting an intriguing and un-
expected relation between global (along track) rank and
strictly local (cross track) median methods.

We note that another approach to signal extraction
can be suggested here which has, for unclear reasons,
never achieved much prominence. Remarkable efforts
have gone into the derivation of countless special pur-
pose algorithms for parameter estimation. In particular
we note the more than 200 page compendium [42]. As
an example, for the Pareto distribution, defined by

a®
flzs A o) = Zatl”

= 0.3299

= 6.1366
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a particular parameter estimation algorithm appears as
Ex. 2 of [42]. Namely, denoting X = (X1, Xo,...,X,)
where X; ~ f(z; A, ) we let X1y = min; Xj, setting

n Sn

Then T,, — A. In comparison, the median approaches
{/2\. Though presented as an exercise in parameter
estimation, this same algorithm is equally applicable to
signal estimation. For example with (A = 3/2,a = 2) the
standard deviation as a signal estimator scales as

0.7474  0.7009
_|_

- St o(n=3), (B4)

standing in sharp contrast to the convergence of the mean
rank for signal extraction, which scales as

5v3 1 _
(The leading coefficient for median is 3/2v/2.) Clearly
(B4) is preferable, with a rate of convergence beyond the
typical n=1/2. At the same time, it works for precisely
one noise pdf, Pareto. We can thus distinguish very gen-
eral methods of arithmetic mean, median, and mean rank
from special purpose, and sometimes very potent, means
of signal extraction for large n. But mean rank stands
out among all these competitors because of its effective
extension to n = 1.

4. Rank and Symmetries

Here we link the rank expression (2) developed here
with earlier results on symmetries of 6C [16]. These links
open up new vistas and, in particular, motivate another
new result for the mean rank as sketched below.

First we note for the discussion on an M x 1 approxima-
tion of 6C that one might like some guidance on choosing
M. For this purpose, the restricted set of singular values

1

1
Aj1 = INVN -1 \/(1 —cos(m/N)) (1 — cos(jm/N))
(B5)

is helpful. In Fig. 7, we plot the log of

N—-1 2
2j=N-k i

N-1 2
Zj:ka )‘j,l

Note the inverted order of summation: from smallest to
largest. In the ensemble limit over many realizations of
the {c;1} with pure noise, S; = 1 for all j. The distri-
bution of S; is a function of j, approximately Gaussian
in the middle, but exponential at the ends. This is taken
into account with the dashed lines, which show the 5%
and 95% confidence limits. The very clear spike at the

Sy = k=1,...,(N-1).
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Scheme a(N) {x} N,

NN 1 z1=1 z23.8n=0 N

Rank % ze=k k=1.N N!
Gnedenko-Koroliuk 2N17 1 T2, =1 Z(nyp1),..on =—1 8\]]\'7))2'

Generalized Gnedenko N _411\)[2(?2]]; ﬁ)k: ) 12, .N =1 Tny1),..2N—k =—1 %

Coin toss % r1=1,20 = —1 oN
N-sided dice Nl 22]’\]1 ar=k k=1.N NN

Order statistics __ R 00

N2 (N +1)

TABLE 1. Comparison of a(NN) for various permutation classes. Third column shows the elements in the set. The final
column, Ny, shows the number of permutations. The first four examples are sampling without replacement. By design to map
the statistics of the K-S test to a discrete random walk, the z; for the Gnedenko-Koroliuk case sum to zero, i.e. the “Brownian
bridge” is automatically enforced. The succeeding generalized case simply requires a fixed subtraction of —k/(2N — k). The
next two cases are sampling with replacement; a fair two-sided coin and fair N-sided die. Allowed permutations for the two-
sided coin range from all heads to all tails, with the Genedenko-Koroliuk and generalized Gnendenko families both embedded
within. For completeness, the final case recasts (17) also within this same framework of a universal covariance matrix. (For
convenience we make the variable change n + 1 — N.) Explicit combinatorial arguments for a(/N) in these cases differ greatly
in details and none resembles the reasoning in III.B for order statistics. But the common theme is that each final covariance
matrix differs only by a simple factor from X* contingent — in the discrete cases — on the key assumption that all permutations
in each class are equally likely. Thus, the ratio of any two elements of the covariance matrix is universal.

right hand side gives the guidance needed to choose a
sensible value of M for both Figs. 2 and 3 in the main
text: the base of the very sharp rise.

As presented in the main body of the paper, a suit-
able basis for signal extraction is (20) from which one
can now see the analytic basis of Fig. 6(a,b) in [15]. In
particular the mode ¢, (y;) ¥m(zr) is excited by forcing
of the form dv,(y})/dz provided m is odd, i.e. even in
rank (horizontal) and either even or odd in time. This
explains the contribution from group symmetries Ds, Dy
and C{y). What then of the other two point groups?

In a striking parallel to (19), we conjecture (with ex-
tensive numerical evidence) that

56 = SOt ~ b0 (B6)

2y,
where & is the rank-based estimate for a weak signal in
a form of non-stationary standard deviation (e.g., caused
by multiplicative noise [3]) and dror is the deviation of
mean square rank from uniformity (with o denoting the
Hadamard product). As with s previously, so too here 0o
represents variation relative to the mean. The constant
vy is given by an integral whose dependence on f(z) is
still to be determined. Note that contributions to (B6)

derive from the C{w) and Ry group components of §C,

cleanly divided from the D4 and C%y) components that
drive the nonstationary mean. Not surprisingly, higher

rank moments similarly pair with nonstationary skew-
ness, kurtosis, etc. of the raw data.

Appendix C: a(N) for Covariance Matrices

See Table I for six discrete examples — sampling with
and without replacement — that give a covariance matrix
differing only in the prefactor «(N) from the universal
form ¥* given by 4 of the main text.

The key defining property of all these discrete exam-
ples is that each of the vector spaces is invariant to the
interchange of any possible pair of entries (7, k) applied
to all members in the space.

Appendix D: Kurtosis corrections for finite NV

Departure of modal pdfs from Gaussian form for finite
N is important when devising KS-type tests of pure noise.
The derivation of the covariance matrix supplies the el-
ements of U and singular values o (whose squares are
pure noise variances), but about the pdf for normalized
Fourier amplitude of mode & (the k*" row of V) one can
infer only that it is zero-mean, symmetric, and has unit
variance. A suitable representation for the 1D problem



4 . .
——PFig. 2
——Fig. 3
sl Pure noise ensemble limit

— — [5,95]% confidence
-------- M cutoff Fig. 2
-------- M cutoff Fig. 3

In Sy,

0.1 02 03 04 05 06 07 08 09 1
k/(N —1)

FIG. 7. Running test of significance: A running log of
the ratio of the cumulative sum of the squares of the expan-
sion coefficients ¢;1 to the cumulative sum of the square of
the corresponding singular values derived from the covariance
matrix of 6C for white noise. The running ensemble limit is
unity. As seen here, the sharp rise at the end indicates the
departure from iid noise, albeit only marginally so for Fig. 2
(main text). The spike gives guidance on a suitable choice
of M in signal extraction at moderate n (here n = 1 and 4
respectively). Black dashed lines show the 5% and 95% con-
fidence limits for pure noise. In passing one notes the noise
for Fig. 2 is as “middle of the road” as possible while Fig. 3
(main text) enjoys a decidedly low noise background. This
contrast, which has nothing to do with respective signal am-
plitudes, though clear here, can in no way be apprehend from
a direct visual comparison of the two plots of the raw data.
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is then

For N — oo we recover the Gaussian result with ¢y =
—1/2log(27) = —0.9189, ¢; = —1/2, and remaining ¢; =
0. Departure from these values is shown in Table II for
N = 32.

However, for odd N, an idiosyncrasy arises in apply-
ing (D1) for the median Fourier mode (N + 1)/2, whose
entries are:

[1,0,—1,0,1,...].

2
N +1

For this single mode a distinct expansion applies, as

given by the coefficients c§-2) in Table II. Note that

limpy o0 co(N) — log(1/v/27), ¢y — —1/2, and all higher
coefficients vanish, i.e., one recovers the standard zero
mean unit variance normal distribution. The 2D exten-
sion for JC is straightforward.
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