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Restricted Boltzmann Machines (RBM) are simple statistical models defined on a bipartite graph
which have been successfully used in studying more complicated many-body systems, both classical
and quantum. In this work, we exploit the representation power of RBMs to provide an exact
decomposition of many-body contact interactions into one-body operators coupled to discrete aux-
iliary fields. This construction generalizes the well known Hirsch’s transform used for the Hubbard
model to more complicated theories such as Pionless EFT in nuclear physics, which we analyze in
detail. We also discuss possible applications of our mapping for quantum annealing applications
and conclude with some implications for RBM parameter optimization through machine learning.

I. INTRODUCTION

In recent decades, statistical methods based on artifi-
cial neural networks (ANN) have been proven extremely
valuable in studying the physical world. For a long time,
experimental high energy physics has been at the fore-
front of these applications [1–3] and today ANN-based
methods are of fundamental importance in analyzing par-
ticle accelerator data [4–7]. Thanks to the growing avail-
ability of large scale computational resources, this type
of approaches have started to play an important role
also in many-body theory more generally with applica-
tions as diverse as detecting phase transitions in simula-
tions [8, 9], preparing accurate variational state for lat-
tice systems [10], accelerating sampling in Monte Carlo
based simulations [11–13], constructing efficient energy
density functionals [14] and performing fast approximate
quantum state tomography [15, 16].

A particularly interesting class are the generative mod-
els commonly used in unsupervised learning whose aim
is to automatically discover underlying patterns in the
data that is being analyzed (see eg. [17, 18] for an in-
troduction). The main advantage of these class of meth-
ods is the possibility of finding a compact and possibly
accurate description of the supplied data without using
any pre-determined labelling. On one side, this allows
the automatic discovery of appropriate labels and on the
other simplifies dramatically the process of acquiring use-
ful data points to train the model on. Once model has
been trained it can be used, for instance, to generate
new data points from the reconstructed density distribu-
tion [18].

Our focus in this paper is a particularly simple ANN
model composed by only two layers of neurons with a very
sparse connectivity: the Restricted Boltzmann machine
(RBM) [19, 20]. We will describe this architecture in
some detail in Sec. II, but for now we want to anticipate
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that an RBM can be used as an universal approximator
for arbitrary probability distributions (see eg. [21, 22]) .
This fact, together with it’s simplicity, is one of the main
reasons for it’s wide-spread use in many-body physics
applications [9–11]. We note in passing that this con-
struction is also the basic building block of deep learning
models including Deep Boltzmann Machine (DBM) and
Deep Belief Networks (DBN) [23–25] where the number
of layers is increased to provide more flexibility to the
representation power of the model. For instance, three
layer DBMs have been successfully used in exact repre-
sentations of ground state wavefunctions [26].

In this work we will use an RBM model to find simpler
but exact representations for the many-body partition
function

exp
(
−βĤ

)
∝ Trs [exp (−Frbm ({ρ̂i}, s))] , (1)

in terms of the free energy Frbm of an RBM where the
visible layer is composed by quantum operators {ρ̂i} and
the hidden layer is made by a vector of classical aux-
iliary fields s which we marginalize over. Exact repre-
sentations of this form are of fundamental importance
for Quantum Monte Carlo (QMC) calculations of many-
body systems [27, 28] which approximate ground-state
expectation values as

〈0|Ô|0〉 = lim
β→∞

1

Z(β)
Tr
[
exp

(
−βĤ

)
Ô
]
, (2)

where we introduced the partition function Z(β) =

Tr
[
e−βĤ

]
. More specifically, given a many-body Hamil-

tonian Ĥ written as a linear combination of Hermitian
operators Ĥ =

∑
k Ĥk and some initial state |Ψ〉, the

basic computational step needed for QMC simulations is
the map

|Ψ〉 −→ |Ψk〉 = exp
(
−βĤk

)
|Ψ〉 , (3)

for each one of the Ĥk terms composing the Hamilto-
nian operator Ĥ. Efficient schemes to simplify the evo-

lution operators exp
(
−βĤk

)
using a map like Eq. (1)
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are key ingredients of QMC methods. Notable exam-
ples include auxiliary field methods such as the Hubbard-
Stratonovich [29, 30] and the Hirsch’s transform [31] or
the more recent approach proposed by Körber, Berkowitz
and Luu in [32].

In this work we focus in particular to two classes
of Hamiltonians of fundamental importance in nuclear
physics:

• realistic local interactions [33, 34] represented by
interactions of the form

ĤV =
∑
i

Vi(~R)wi(~σ, ~τ) , (4)

with Vi(~R) scalar coefficients dependent on the nu-

cleon coordinates ~R and wi(~σ, ~τ) a functional of
spin operators ~σ and iso-spin operators τ . Note
that it is always possible to choose the operators
wi in Eq. (4) to be involutive: wi(~σ, ~τ)2 = 1.

• nuclear potentials derived in low energy effective
theories expressed in terms of two and three-body
contact interaction [35] of the form

ĤV =
∑
i,j

vij ρ̂iρ̂jwij(~σ, ~τ)

+
∑
i,j,k

vijkρ̂iρ̂j ρ̂kwijk(~σ, ~τ) .
(5)

In this expression vij and vijk are scalar coefficient,
ρ̂i is a fermionic density operator (see Eq. (11) be-
low for a more formal definition) and wij(~σ, ~τ) and
wijk(~σ, ~τ) are idempotent spin and iso-spin opera-
tors as in Eq. (4). We note that these interaction
arise naturally also in the low energy description of
condensed matter systems (see eg. [36, 37]).

Thanks to this representation it is sufficient to find an
exact mapping in Eq. (1) for idempotent operators only,
and this will be the focus of our present work. Note
that it is always possible to express any operator on a
finite Hilbert space as a linear combination of involutive
operators by using (tensor product of) Pauli operators as
an operator basis.

In the rest of the paper, we provide an introduction to
the RBM and present it’s application to represent many
body forces in nuclear physics. In section II we proceed
to relate the free energy Frbm of this architecture to the
physical partition functions produced by many-body in-
teractions, starting with the familiar case of a two-body
potential term. We then present a novel generalization to
the case of three-body forces in Sec II B. Further details
on the construction for general terms is provided in Ap-
pendix A for completeness. One of the advantages of our
approach is that it can be easily generalized from binary
auxiliary fields to generic categorical classical variables
which take values on a larger set {0, 1, . . . ,K − 1}; in
Sec II C we discuss the advantages that this added flexi-
bility can provide.

We then proceed in Sec. III to show how this RBM
mapping could be used to improve the representation
power of quantum annealers based on the transverse Ising
model Hamiltonian. In Sec. IV we use the exact mapping
obtained before to analyze numerically the performance
of various optimization protocols for the RBM parame-
ters in reaching the known optimum for the simple case of
a 2D Ising model. Note that this optimization step is not
directly needed to use our results but instead addresses
the question of feasibility of machine learning through
RBMs and is of independent interest.

We conclude in Sec. V with a summary and possible
implications of our results.

II. RESTRICTED BOLTZMANN MACHINES AS
HAMILTONIANS WITH AUXILIARY FIELDS

The introduction of auxiliary fields as a mean of sim-
plifying the interaction term of the Hamiltonian is com-
mon practice in many areas of theoretical physics, and
is particularly popular in designing Quantum Monte
Carlo algorithms in both condensed matter and nuclear
physics [27, 28, 38–43]. In these applications, a system of
interacting particles is mapped into a free theory coupled
to a background fluctuating auxiliary field and the final
simulations is usually performed after integrating out the
physical fields.

One famous instance of this class of mappings is the
Hubbard-Stratonovich transformation [29, 30] which ex-
ploits the Gaussian-integral relation

exp
(τ

2
Ô2
)

=
1√
2π

∫ ∞
−∞

dhe−h
2/2−

√
τhÔ, (6)

with h a real auxiliary field, to provide a simpler represen-
tation for the evolution operator on the left hand side.
This transformation is used extensively to express the
evolution under two-body interactions as a superposition
of evolutions under one-body interactions parameterized
by the value of the auxiliary field and is commonly used in
Auxiliary Field Monte Carlo techniques [28, 41–43]. This
transformation can also be used for higher-order opera-
tors when they can be expressed as squares, a common
example is the three-neutron force (see eg. [44]). When
the interaction cannot be written as a perfect square one
can attempt a recursive application of the transformation
in Eq. (6) but this is usually accompanied by a drasti-
cally reduced efficiency (for an example of this applied to
the isospin-dependent spin-orbit force see [45]).

Another popular family of transformations that
achieve a similar simplification can be obtained by con-
sidering auxiliary fields which can only take a discrete
number of values. The prototypical example of this is the
famous Hirsch transformation for the Hubbard model [31]
which we will discuss in some detail in the next subsec-
tion (see also [46, 47] for similar constructions). The
main purpose of our work is to show how these discrete
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FIG. 1. Restricted Boltzmann machine, visible layer below
(in blue) and hidden layer above (in red).

mappings can be described and generalized using the lan-
guage of Restricted Boltzmann Machines (RBM) [19, 20].
As we briefly described in the introduction and show pic-
torially in Fig. 1, the RBM is a statistical model orga-
nized in two interconnected layers: a visible layer com-
posed by a vector of Nv visible units v (depicted as blue
dots in Fig. 1) which represent the dynamical variables
whose statistics we want to model, and a hidden layer
composed by a vector of Nh hidden units h (depicted
as red dots in Fig. 1) which represent auxiliary variables
used to create correlations among the visible units. The
RBM is an energy based statistical model, meaning that
the probability distribution associated with the network
can be conveniently expressed as a partition function

Prbm (v,h) = N exp (−Frbm (v,h)) (7)

with N a normalization constant and free energy

Frbm (v,h) = B · v + C · h +

Nv∑
i=1

Nh∑
j=1

Wijvihj . (8)

This free energy is parameterized by the two bias vec-
tors B and C, which independently shift the probability
density of the variables in the two layers, and the weight
matrix W which couples the two layers. In Fig. 1 the lat-
ter is represented by the black connections. The reason
for this choice as a network structure is linked to the con-
ditional independence of the variables on the two layers
which allows for an efficient sampling of the conditional
probabilities

pv (v) = Prbm (v|h) and ph (h) = Prbm (h|v) , (9)

which can then be used to draw efficiently samples from
the wanted marginal probability distribution

P vrbm (v) = Trh [Prbm (v,h)] , (10)

using block Gibbs sampling. In the expression for the
marginal probability P vrbm above, we used Trh to denote
a summation over all the possible values of the hidden
variables. As we mentioned briefly in the introduction,
despite its simplicity the RBM is a universal approxima-
tor [21, 22], in the sense that by adding a sufficiently
large number of hidden variable one can accurately ap-
proximate any marginal probability distribution P vrbm of
the visible variables.

By promoting the units on which the RBM is defined
to operators acting on some Hilbert space one can also

define a Quantum RBM (see eg. [48]) allowing statisti-
cal inference on quantum states. We will defer a more
in-depth discussion about this model, and it’s possible
implementation using quantum annealers to Sec. III.

The main contribution of our work is the use of the
RBM network structure to define an hybrid quantum-
classical architecture, where the visible unit is composed
by quantum operators and the hidden units are classical
discrete variables, to generalize the auxiliary-field decom-
position of interactions to arbitrary many-body forces.
To the best of our knowledge the closest construction to
our architecture is the recently proposed map between
generalized Ising models and Deep Boltzmann Machines
presented in [49]. Our method overcomes some of the
difficulties encountered in that proposal by reducing the
depth of the required network (and thus simplifying sam-
pling) and removing any restriction on the numerical
value of the coupling constants.

To proceed further and present the model in more de-
tails, we will now focus on the description of physical
systems containing Nf species 1 of interacting fermions
and discretized over N modes. General contact interac-
tions can be expressed as powers of the density operator
ρ̂a(k) for mode k and species a as

ρ̂a(k) = c†a(k)ca(k) {c†a(k), cb(q)} = δk,qδa,b , (11)

with c†a(k) and ca(k) fermionic creation and annihilation
operators and {·, ·} the anti-commutator. For instance 2
and 3 body contact interactions can be written as

V̂2 = ρ̂a(k)ρ̂b(k) V̂3 = ρ̂a(k)ρ̂b(k)ρ̂c(k) , (12)

Note that, due to the Pauli exclusion principle, identical
fermions cannot occupy the same quantum state within
the system. Thus, Nf species in a system allows for many
body forces of up to Nf for a given mode. In order to
simplify the notation we will use the multi index µ =
(a, k), taking values from 1 to M = NfN , and use the
short-hand ρ̂µ to indicate the density operator ρ̂a(k).

Using these density operators as our visible units, we
can now write the free energy of our hybrid classical-
quantum model as

Frbm (ρ̂,h) = B · ρ̂ + C · h +

M∑
µ=1

Nh∑
j=1

Wij ρ̂µhj . (13)

In order to simplify the exposition we will consider for
the moment the special case where the hidden units are
binary variables hj = {0, 1}, and generalize the construc-
tion to more general categorical variables in Sec. II C.

Before describing in detail the special case of 2 and
3 body forces, we want now to show how, by care-
fully choosing the parameters that define the free energy

1 for instance Nf = 2 for neutrons due to the 2 possible spin
projections



4

Eq. (13), we can obtain all the possible contact inter-
actions up to the maximum order M . By tracing out
the hidden layer from the total probability distribution
Prbm (ρ̂,h) in Eq. (7) we obtain the following effective
Hamiltonian for the visible layer

Hrbm (ρ̂) = − log (Trh exp (−FRBM (ρ̂,h)))

=B · ρ̂ +

Nh∑
j=1

log

 1∑
hj=0

e(Cj+
∑M
µ Wµj ρ̂µ)hj

 ,
(14)

where we have implicitly added a (irrelevant) constant
energy shift in order to cancel the normalization con-
stant. It is now convenient to express this more com-
pactly as follows

Hrbm = B · ρ̂ +

Nh∑
j=1

K
(2)
j

(
M∑
µ

Wµj ρ̂µ

)
, (15)

where in the last line we have defined, similarly to [50],
the cumulant generating function

K
(2)
j (t) = log

(
1∑

h=0

e(Cj+t)h

)
= log

(
1 + eCj+t

)
(16)

where the superscript (2) indicates this definition is rele-
vant to binary hidden units only (we will generalize this
in Sec. II C). By performing a Taylor expansion we obtain

K
(2)
j

(
M∑
µ=1

Wµj ρ̂µ

)
=

∞∑
n=1

κ
(2)
jn

n!

(
M∑
µ=1

Wµj ρ̂µ

)n

=

∞∑
n=1

κ
(2)
jn

n!

∑
k1+···+kM=n

(
n

k1, . . . , kM

)M∏
µ=1

(Wµj ρ̂µ)
kµ

(17)

where in the second line we used the multinomial expan-

sion and we defined the (binary) cumulants κ
(2)
n as

κ
(2)
jn =

dn

dtn
K

(2)
j (t)

∣∣∣∣
t=0

. (18)

The key observation now is noticing that, due to idempo-
tency of the density operators we have ρ̂nµ = ρ̂µ ∀n > 0.
The effective interaction coupling strengths of all the in-
teraction terms are then given by the appropriate sums
of cumulants, and can be in principle controlled by ap-
propriately choosing the RBM parameters B,C and W .
In [50] the authors derived explicit expressions for up to
3 body interactions in this way.

In this work we use instead a different approach which
allow a simpler determination of the induced coupling
strengths in the visible layer by solving a linear system of
equations obtained by working explicitly in the eigenbasis
of the density operators. As we will see more explicitly
in the next section, this approach is similar to the one
used by Hirsch to find his discrete decomposition for the
Hubbard interaction [31].

=

FIG. 2. Two-body interaction from the RBM mapping.

In the next two sections we describe in some detail our
approach for the special cases of 2 and 3 body interac-
tions and explain in the Appendix A how to construct the
mapping for the general case. We comment on possible
extension to non-idempotent operators in Appendix C
but, as we commented in the introduction, this exten-
sion is not strictly needed.

A. Two body interactions

To set the stage we consider now the familiar case of a
two body contact interaction, and show how this can be
generated by coupling a single binary auxiliary variable
(hidden unit) h ∈ {0, 1} to a pair of density operators
(the visible units) as schematically depicted in Fig. 2. In
this case the free energy of the RBM can be written as

F
(2)
rbm (ρ̂1, ρ̂2, h) = Ch+ h

2∑
µ=1

Wµρ̂µ , (19)

where we neglected possible biases B = (B1, B2) on the
visible layer since they only contribute to the one-body
interaction. If needed, these biases can be used to fur-
ther control the interactions generated by Eq. (19). The
induced Hamiltonian in the visible layer takes the form

H
(2)
rbm (ρ̂1, ρ̂2) = − log

∑
h=0,1

e−F
(2)
rbm(ρ̂1,ρ̂2,h)


= A(2)ρ̂1ρ̂2 +A

(1)
1 ρ̂1 +A

(1)
2 ρ̂2 ,

(20)

where a direct computation (see also Appendix. A 1 for
additional details) leads to the relations

A(1)
µ =− log

(
e−(C+Wµ) + 1

e−C + 1

)
A(2) =− log

(
e−(C+

∑2
µ=1Wµ) + 1

e−C + 1

)
−

2∑
µ=1

A(1)
µ ,

(21)

between the 3 parameters of the RBM and the 3 cou-
pling constants of the interactions in Eq. (20). These
equations can then inverted to determine the RBM pa-
rameters needed to produce the wanted two-body term,
further details on these derivations are provided in ap-
pendix A 1.

We note at this point that the discrete Hubbard-
Stratonovich transformations from Hirsch [31] are spe-
cial cases of Eq. (21) for a particular choice of RBM
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parameters. For instance, the transformation useful for
repulsive interactions (ie. A(2) > 0) was obtained in [31]
by coupling a classical spin σ = ±1 to the spin density
ρ̂sp = ρ̂↑ − ρ̂↓, the resulting partition function is

Zsp =
1

2

∑
σ=±

exp (2aσρ̂sp) = cosh (2aρ̂sp) (22)

where the coupling constant a is given by

tanh(a)2 = tanh

(
A(2)

4

)
, (23)

and Zsp contains additional one body terms correspond-

ing to A
(1)
1 = A

(1)
2 = −A(2)/2. Using the RBM model

of Eq. (19) a similar transformation, with different addi-

tional one-body terms A
(1)
1 − 2a = A

(1)
2 + 2a = −A(2)/2,

can be obtained choosing C = 0 and W1 = −W2 = 4a.
Note that there is a continuous set of RBM parame-

ters which will lead to the same two-body coupling A(2)

and different induced one-body terms in Eq. (21). These
possibly unwanted one-body contributions to the visible
layer Hamiltonian can then be removed by adding the
appropriate bias terms B in Eq. (19).

Before moving on to the new results for the case of
three-body forces, we want to show how the RBM map-
ping is not limited to contact interactions but can be im-
mediately applied to situations where the operators asso-
ciated to the visible layer are either different idempotent
operators (for instance projection operators) or, equiv-

alently, involutive operators for which Ô2 = 1. To the
latter class belong for instance the Pauli operators (and
more generally any element of the Pauli group formed by
arbitrary tensor products of Pauli matrices) which are
routinely used to model the spin-isospin structure of nu-
clear interactions. For instance, consider the case of the
following repulsive interaction acting on a pair of spins

U (~σ1 · ~σ2) = U

3∑
d=1

σd ⊗ σd . (24)

The propagator associated with it can now be written
using 3 binary auxiliary variables,

e−Uαt(~σ1·~σ2) =
e−3Uαt

8

3∏
d=1

1∑
hd=0

ea(2hd−1)(σd⊗1−1⊗σd).

(25)

In the expression above αt is the imaginary-time step size
used in the calculation, 1 is the identity matrix, and a is
given by Eq. (23) with A(2) = 4Uαt.

As we have seen, the complete generality of the map-
ping Eq. (19) allows its application to simplify a large
number of pair-interacting many-body theories.

B. Three Body interactions

The presence of three-body contact interactions is
of fundamental importance in low-energy effective the-

=

FIG. 3. Two-body interaction from the RBM mapping.

ories of nuclear physics and some bosonic cold gases
in order to avoid the Thomas collapse of finite clus-
ters [51] and ensure renormalizability of the Hamilto-
nian [37, 52, 53]. Due to the inability to use the stan-
dard Hubbard-Stratonovich or Hirsch’s transformations,
the inclusion of these 3 body contact interactions in aux-
iliary field calculations is not straightforward. Here we
will briefly review the approach used in Lattice EFT cal-
culations [35] as a relevant example. In order to integrate
out the fermionic degrees of freedom and carry out the
auxiliary field calculation one needs to decouple the in-
teracting part of the partition function

Zint = exp

−Uαt
2

∑
a,b

ρ̂aρ̂b −
V αt

6

∑
a,b,c

ρ̂aρ̂bρ̂c

 , (26)

which contains both a two-body and a three-body inter-
action, in terms of one-body fermionic operators only.
Similarly to the previous section, αt is the size of the
imaginary-time step.

The strategy proposed in [54] is to represent Zint using
a single continuous auxiliary field

Zint =

∫ ∞
−∞

dhP (h) exp

(
h
∑
a

ρ̂a

)
, (27)

for an appropriately chosen probability distribution func-
tion P (h) of the auxiliary field. In [54] it was shown how
one can use the solution of the truncated Hamburger mo-
ment problem to find the wanted distribution. In order
for this representation to exist one needs the interaction
couplings in Eq. (26) to satisfy

V 2 < −2αtU
3 , (28)

which then prevents this to work for repulsive two body
couplings U ≥ 0. In the more common case of an attrac-
tive two body interaction, this mapping can be exploited
only for a weak enough three body coupling V and large
enough imaginary-time step αt. Notably, for other classes
of QMC methods based on auxiliary fields like AFDMC
(see eg. [28]) this is not possible in general due to the
inability to introduce explicitly an energy cutoff like it is
done in a lattice formulation. We note in passing that
an alternative auxiliary field representation of the parti-
tion function of Eq. (26) can be obtained using the DBM
mapping introduced in [49]. Also in this case the map-
ping can be performed only for weak enough three-body
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interaction: |V | < −3U and attractive two body coupling
U < 0.

Thanks to the flexibility of the RBM mapping scheme
we can instead treat the two and three body interac-
tions separately using different hidden variables. In the
rest of this section we focus then directly on a mapping
that reduces the three-body term by using a single bi-
nary unit coupled to three density operators as depicted
in Fig. 5. The resulting free energy of the RBM is similar
to Eq. (19) and reads

F
(3)
rbm(ρ̂1, ρ̂2, ρ̂3, h) = Ch+ h

3∑
µ=1

Wµρ̂µ , (29)

while the target Hamiltonian can be written as

H
(3)
rbm(ρ̂) =A(3)ρ̂1ρ̂2ρ̂3 +

3∑
µ<ν

A(2)
µν ρ̂µρ̂ν +

3∑
µ=1

A(1)
µ ρ̂µ. (30)

Since we are only interested in producing a target three-
body termA(3) while removing the unwanted interactions
using lower order mappings, it is convenient to simplify
this to

H
(3)
rbm(ρ̂) = A(3)ρ̂1ρ̂2ρ̂3 +A(2)

3∑
µ<ν

ρ̂µρ̂ν +A(1)
3∑

µ=1

ρ̂µ, (31)

with mode-independent one and two body couplings. In
the same way we set Wµ = W in Eq. (29). As we did
for the two-body interactions above, a direct calculation
leads to the following relations between the physical cou-
plings and the RBM parameters (see also Appendix A
for the general case):

A(1) =− log

(
e−(C+W ) + 1

e−C + 1

)
A(2) =− log

(
e−(C+2W ) + 1

e−C + 1

)
− 2A(1)

A(3) =− log

(
e−(C+3W ) + 1

e−C + 1

)
− 3A(2) − 3A(1).

(32)

As before, in order to find the needed RBM param-
eters this relations need to be inverted and, depend-
ing on the sign of the physical three body coupling,
one needs to make appropriate choices for the range
of the RBM parameters. For instance, if we are inter-
ested in an attractive interaction, A(3) < 0, we can set
C = −2W while in the case of a repulsive interaction,
A(3) > 0, we can take C = −W . In both cases we ob-
tain the same magnitude for the three body coupling,
|A(3)| = log

(
cosh4

(
W
2

)
sech(W )

)
.

The two body interaction A(2) can be removed by ex-
pressing it in terms of additional auxiliary variables using
the identities in Eq. (21). Note that with this technique
no constraint like Eq. (28) needs to be imposed on the
value of the physical couplings. More details on these

derivations, and their extension to the case of categorical
hidden units, are provided in appendix A 1.

We now turn to the discussion of categorical variables
and provide a justification for their use in practical ap-
plications.

C. Categorical hidden variables

We proceed now to generalize the RBM mappings de-
rived above for hidden binary variables to the more gen-
eral case of categorical hidden variables which take val-
ues on a larger range {0, 1, 2, ...,K − 1}. From the form
of the general RBM free energy Eq. (13) we can expect
that the effect of increasing the magnitude of the hidden
variable, controlled by K, is to correspondingly increase
the energy term proportional to C and W . This, in turn,
will increase the magnitude of the induced physical cou-
pling at fixed RBM parameters. We expect this property
to be useful for instance in the sampling process as it
allows for smaller energy gaps when updating the hid-
den layer. Another instance when this could possibly be
useful is to minimize the systematic error introduced by
Trotter like decompositions of the imaginary-time prop-
agator (see eg. [28]) but we leave a more detailed explo-
ration of these possibilities to future work.

The modified expression for the induced one and two-
body coupling when coupling a pair of visible units with
a single categorical hidden variable, corresponding to the
generalization of Eq. (21), can be compactly written as

A(1)
µ =− log

(
e−K(C+Wµ) − 1

e−(C+Wµ) − 1

)
+ log

(
e−KC − 1

e−C − 1

)
.

(33)

for the one-body term, while for the two-body we have

A
(2)
K =− log

(
e−K(C+

∑2
µ=1Wµ) − 1

e−(C+
∑2
µ=1Wµ) − 1

)

+ log

(
e−KC − 1

e−C − 1

)
−

2∑
µ=1

A(1)
µ .

(34)

Note that, whenever the argument of the exponentials
in Eq. (33) and Eq. (34) becomes 0, one need to take
the limit continuously. To show the effect of increasing
the range of the hidden variable on the induced coupling
constant, we plot in Fig. 4 the magnitude of the two body
coupling as a function of K for two one parameter families
of RBMs:

• for attractive interactions A
(2)
K < 0 we take

W1 = W2 = −C = α2 > 0 , (35)

• for repulsive interactions A
(2)
K > 0 we take

W1 = −W2 = α2 > 0 C = 0 . (36)
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FIG. 4. Two body coupling as function of K. The dashed line
corresponds to the lower bound in Eq. (37).

Note that these choices were motivated only by the need
to obtain all possible two-body coupling by tuning a sin-
gle parameter α2 so that we could present the results
compactly in Fig. 4. This is therefore a completely gen-
eral construction and it is possible that similar results
could be obtained by performing different choices.

As the results show, the magnitude
∣∣∣A(2)
K

∣∣∣ increases

almost linearly with K for a fixed choice of the RBM
parameter α2. As an easier proxy to understand the ex-
pected behavior, and especially the apparent asymptot-
ically linear growth with K, we also show in Fig. 4 the
following lower-bound∣∣∣A(2)

K

∣∣∣ ≥ (K − 1)α2 − 2 log (K) , (37)

valid for both parameterizations Eq. (35) and Eq. (36).
Indeed we find the approximately linear increase with K
together with a mild logarithmic correction. A complete
proof of this lower-bound, and the one for three-body
interactions, is provided Appendix B.

Next, we turn our attention to the more complicated
case of the three body interaction induced by a single
categorical variable. The mapping between physical cou-
pling constants and RBM parameters remains the same
as Eq. (33) at the one-body level while the two and three
body couplings become (see also Appendix A 1 for a full
derivation)

A(2)
µν =− log

(
e−K(C+Wµ+Wν) − 1

e−(C+Wµ+Wν) − 1

)
+ log

(
e−KC − 1

e−C − 1

)
−Aµ −Aν

A
(3)
K =− log

(
e−K(C+W1+W2+W3) − 1

e−(C+W1+W2+W3) − 1

)
+ log

(
e−KC − 1

e−C − 1

)
−

3∑
µ=1

3∑
ν>µ

Aµν −
3∑

µ=1

Aµ ,

(38)

and similarly to above the induced physical coupling
grows approximately linearly with K. This is shown in

Fig. 5 where we plot both the actual magnitude
∣∣∣A(3)
K

∣∣∣
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( 1) 3 3log( )

FIG. 5. Three body coupling as function K. The dashed line
corresponds to the lower bound in Eq. (39).

and the lower-bound∣∣∣A(3)
K

∣∣∣ ≥ (K − 1)α3 − 3 log (K) . (39)

for two values of the RBM parameter, α3 = 1, 2. In the
three body case we’ve also chosen a simple one-parameter
family of RBMs given by the choices:

• for attractive interactions A
(3)
K < 0 we take

W1 = W2 = W3 = α3 > 0 C = −2α3 (40)

• for repulsive interactions A
(3)
K > 0 we take

W1 = W2 = W3 = α3 > 0 C = −α3 . (41)

As for the case of the two-body term in Fig. 5, we see that
the lower-bound is relatively tight. A complete derivation
of Eq. (39) is also provided in Appendix B.

Similarly to the results described in the previous two
sections (see Eq (25)), this more general construction can
be easily extended to many-body operators composed by
involutive operators with minimal changes.

Before concluding this section, we want to also point
out that it is relatively straightforward to use the expan-
sion of the cumulant generating function to get the effec-
tive Hamiltonian for the visible layer as proposed in [50]
and explained in detail at the beginning of Sec. (II). Since
this can be of more general interest, we provide here the
necessary generalization to the cumulant generating func-
tion of Eq. 16 which for categorical variables becomes

K
(K)
j (t) = log

(K−1∑
h=1

exp (−h(Cj + t))

)

= log

(
1− exp (−K(Cj + t))

1− exp (−(Cj + t))

)
.

(42)

After this change the polynomial expansion from Eq. (17)
remains essentially equivalent, with the only difference

that the value of the cumulants κ
(K)
jn will now need to be

extracted by taking appropriate derivatives of K
(K)
j (t).
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III. MANY BODY FORCES IMPLEMENTATION
ON QUANTUM ANNEALERS

Quantum annealing is an algorithm for finding approx-
imate solutions to non convex optimization problems us-
ing a quantum generalization of classical simulated an-
nealing [55–57]. This approach has been applied in the
past to hard optimization problems ranging from com-
puting Ramsey numbers [58] to finding low energy con-
figurations of proteins [59]. Used as an analog simulator,
a quantum annealer was also recently used to study phase
transitions in lattice models [60].

The underlying idea of quantum annealing based opti-
mization is to first encode the solution of the problem at
hand in the ground state of a k-local Hamiltonian acting
on spins. This Hamiltonian is then simulated by a physi-
cal system that is cooled down to reach a low energy state
which provides a good approximate solution to the opti-
mization problem. In order to decrease the time required
to find a solution of this approach, the physical system
is initialized as the ground state of an auxiliary Hamil-
tonian HA and then adiabatically evolved to the ground
state of the problem Hamiltonian HP . If this is done
slowly enough to avoid non-adiabatic transitions, the fi-
nal state will be the ground state of HP corresponding
to the optimal solution [61]. In some situations fast non-
adiabatic transitions can also be used to accelerate the
convergence to a close approximation to the final ground
state [62, 63].

Here we will focus more specifically to the class of
quantum annealers that uses a tunable transverse field
Ising model to implement this idea. An example of this
is the device manufactured by D-Wave Systems [64]. The
time-dependent spin Hamiltonian is given by

H(τ) =Bx(τ)HA +Bz(τ)HP

HA =−
∑
i

σxi

HP =
∑
ij

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

(43)

where σx,zi are Pauli matrices that operate on spin or
qubit i. Note that the optimization problem is encoded
in the diagonal Hamiltonian HP by tuning appropriately
both the pairwise couplings Jij as well as the on-site fields
hi. The auxiliary Hamiltonian HA is chosen for two rea-
sons, it’s ground state is a complete superposition of all
the basis states and it is easy to prepare by applying
a physical transverse field. The time evolution is then
performed by modifying the applied magnetic fields Bx
and Bz starting from Bx(0) � Bz(0) and evolving to
Bx(1) � Bz(1). Here τ = t/ta , where t is the physical
time and ta is the annealing time: the time that it takes
to perform the transition from the Hamiltonian HA into
the problem Hamiltonian HP .

Due to the presence of two-body spin coupling in HP ,
this system can be employed to approximately solve
Quadratic unconstrained binary optimization (QUBO)

problems. The goal of this section is to show how the
RBM mapping we derived in this work can be used to in-
crease the representation power of the problem Hamilto-
nian HP by implementing higher order diagonal interac-
tions using some of the available qubits as auxiliary spins
in the hidden layer. This process of reducing many-body
interactions to two-body terms has been extensively ex-
plored in the past (see eg. [65–67] and [68] for a recent
summary). Known mappings are limited in their appli-
cation to specific signs of the many-body coupling, for
instance only interactions with positive cubic terms are
known to embed into the Chimera topology without using
additional auxiliary qubits for the embedding [68]. Here
we show that our RBM construction can be applied at the
same cost for cubic terms of both signs. The technique
can also be easily extended to higher-body interactions.

For illustration purposes, we will consider a simple ex-
tension to the QUBO model to contain also cubic terms
implemented as effective couplings among three spins. In
particular consider the following cost function

E = a

3∑
i

qi + b

3∑
i<j

qiqj + c q1q2q3 , (44)

with only 3 binary variables qi. This can be converted
into a generalized classical Ising model by introducing
the spin variables si = 2qi − 1, and then mapped to a
diagonal quantum Hamiltonian acting on physical spins
(si → σzi ):

H =A

3∑
i

σzi +B

3∑
i<j

σzi σ
z
j + Cσz1σ

z
2σ

z
3 ,

A =2(a+ b− c), B = 4(b− c), C = 8c .

(45)

Using the notation from Ref. [68], this Hamiltonian cor-
responds to the K4 gadget.

Due to hardware restrictions the topology of the in-
teractions between qubits is restricted to only a finite
set. In this exploratory work we consider the Chimera
graph [69] found on D-Wave devices, the scheme can
however be generalized to different topologies. In the
Chimera graph topology, all qubits in one partition are
linked to the qubits in the other partition but not among
themselves as shown in fig. (6).

Given the coupling map in Fig. 6, we can implement
the K4 gadget using 4 ancilla qubits:

• qubits 1,2,3 represent the logical qubits

• qubit 4 mediates the pair interaction between (1, 3)

• qubit 5 mediates the pair interaction between (2, 3)

• qubit 6 mediates the pair interaction between (1, 2)

• qubit 7 mediates the cubic interaction
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FIG. 6. Cell of chimera graph in D-Wave systems.

This is also depicted in Fig. 7. The full Hamiltonian takes
the following form

HP = W1

3∑
i=1

σzi − sgn(C)W3σ
z
7

+ |W2| (σz1 + sgn(A3)σz2)σz4
+ |W2| (σz2 + sgn(A3)σz3)σz5
+ |W2| (σz1 + sgn(A2)σz2)σz6

+W3

3∑
i=1

σzi σ
z
7

(46)

where the first line represent on-site energy shifts, the
second through fourth represent the pair interactions in-
duced by qubits 4− 6 and the last one contains the pair
interactions with qubit 7 responsible for the three-body
term. The coupling terms can then be obtained using the
RBM mapping described above (see also Appendix A).
In practice we first compute the coefficient W3 from the
relation

|C| = 1

8
log
(
cosh4(2W3)sech(4W3)

)
, (47)

and the other parameters can then be found using

A2 =
sgn(C)

4
log(cosh(4W3))− 2B,

W2 =
sgn(A2)

2
log (cosh (A2)) ,

W1 =− sgn(C)

8
log(cosh(4W3))−A.

(48)

This mapping was derived from eqs. (A9) and (A14) by
replacing 0 with −1. If we trace out the auxiliary qubits
belonging to the hidden layer we recover the effective
Hamiltonian Eq. (45). Furthermore, one could reduce the
ancilla requirement even further by using a single ancilla
to embed direct pair interactions between qubit 1 and
qubits 2 and 3 while using a single ancilla to represent
the missing two-body term between qubit 2 and qubit
3 (qubit 5 in the mapping above). This would have the
same qubit overhead than the best method from Ref. [68]
while requiring only one ferromagnetic coupling for the
embedding.

Note that the RBM identities are valid for any direct
product of Pauli matrices σx,y,z as we discussed in the
introduction. This means that extensions like the one
presented here for the simple Hamiltonian Eq. (43) can
be generalized to the interesting situation where non sto-
quastic physical interactions are available.

σz
1

σz
2

σz
3

σz
4

σz
5

σz
6

σz
7

0

FIG. 7. Three body interactions implemented on the chimera
topology.

In practical applications an effective temperature Teff

is usually introduced to properly describe the generated
statistical distribution [70, 71]. Since the effective Hamil-
tonian is obtained by tracing over the global partition
function including the auxiliary spins, one will need to
estimate Teff first (see eg. [72]) in order to appropriately
tune the RBM parameters. We leave the exploration of
these issues for future work.

Before concluding we note that the RBM mapping de-
rived in this paper can also be used to show the equiva-
lence between various gadgets presented in Ref. [68]. For
instance, it is simple to use the RBM mapping to show
that the gadget K6 − e is equivalent, upon appropriate
rescaling of the interactions, to the simpler gadget K5.

IV. ON TRAINING THE RBM FOR PHYSICAL
SYSTEMS

In this final section we turn our attention to machine
learning, specifically on training neural architectures for
physical systems with many body interactions. The rel-
ative entropy is commonly used in the literature as an
objective function which measures the discrepancy be-
tween the target data distribution and the approximation
given by the neural architecture; the smaller the discrep-
ancy, the smaller its value. For energy based models like
the RBM, the probability of the model depends on the
accurate evaluation of the partition function in Eq. (1),
which is intractable as it requires all possible data sam-
ples. The inability to have a reliable estimate of the
relative entropy, makes it impossible to get its gradients
with respect to the RBM parameters. These gradients
are needed to update the parameters towards optimal
values. In practice, approximate gradients are obtained
through contrastive divergence (CD) [73]. This proce-
dure was employed in [50] to learn the Ising model from
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samples generated with the Swendsen-Wang algorithm.
However, CD might not always be a good approxima-
tion [74, 75] and the lack of a point estimator for an
objective function makes it harder to asses whether train-
ing has converged. In addition, in many cases of interest,
Monte Carlo sampling can be highly autocorrelated, so
we might not be able to find algorithms that provide sam-
ples which reliably represent the physical distribution.

In this section we provide several suggestions for how to
improve training. We can use our knowledge of the orig-
inal Hamiltonian to design a network with only a small
number of parameters, independent on system size. As
a first step, borrowing from the results presented in pre-
vious sections, we construct a sparse RBM whose archi-
tecture is based on the interaction order in the physical
Hamiltonian. For each interaction in the physical system
there is a corresponding auxiliary variable. This archi-
tecture is compared to an RBM with the number of aux-
iliary variables equal to the number of visible variables
with all–to–all connection between the two layers.

We then devise an objective function that does not
depend on the partition function and is inspired by
Monte Carlo acceptance and rejection method. As we
demonstrate through experiments, this objective func-
tion makes training much easier as it makes use of our
understanding of the physical system. Furthermore, since
it can be easily evaluated during training, this objective
function can serve as an indicator for convergence.

Lastly, we explore the scenario when we can not rely
on Monte Carlo samples collected for training and show
that learning is still possible.

As an illustration, we consider a classical anisotropic
2D Ising model in the eigenbasis of σz|s〉 = s|s〉,

Z2D =N exp

LX∑
i=1

LT∑
j=1

ΛXsi,jsi+1,j + ΛT si,jsi,j+1

 ,

(49)

This partition function approximates the 1D Ising model
with a transverse field through Trotter expansion [76],

H1D =− J
∑
i

σzi σ
z
i+1 −B

∑
i

σxi ,

ΛX =
β

LT
J, ΛT =

1

2
log

(
coth

(
β

LT
B

))
.

(50)

The Hamiltonian of this system is a simpler version of
Eq. (43). LX is the length of the Ising chain and LT is
the number of Trotter steps and is the second dimension
in the classical model. From appendix A 1 we can derive
the mapping between the physical couplings ΛX,T and
the respective RBM parameters.

To verify the RBM learning procedure we compare
the relative error in reproducing these couplings, δΛ =∣∣Λ−ΛRBM

Λ

∣∣. The results from [50] show that CD training
can have a good performance for the Ising model, but
this is not guaranteed in more complicated settings.

Coupling Numerical Value

ΛX 0.017857

ΛT 2.01273

TABLE I. Numerical values of the physical couplings for the
Ising model of Eq. (50).

Following the procedure outlined in [50], we generate
data of 105 samples with LX = LT = 28 and J = B =
2β = 1 through local Monte Carlo sampling and train in
batches of 500 samples with a learning rate of 0.001 using
CD with 10 Gibbs updates. The values of the physical
couplings are given in table I. To make sure there is little
autocorrelation in the data, we collected a sample every
103 Monte Carlo updates.
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FIG. 8. Training by CD of fully connected (solid lines) and
sparse (dashed lines) RBM. The average energy difference in
black, and relative errors in couplings ΛX,T . For the fully
connected RBM we also show the average values for spurious
couplings denoted by Λ̃.

In Fig. 8 we plot both the average error in energy per
configuration and the obtained couplings as function of
training epochs. One epoch consists of batch training
the entire data once. As Fig. 8 shows, while the error
in the couplings decreases with training, it is about two
order of magnitude lower for the sparse RBM. In addi-
tion, while in the Ising model there are only interactions
among neighboring spins, the fully connected RBM in-
cludes couplings between spins that are distant and which
should decrease to 0 when the training converges. These
are denoted by Λ̃ in Fig. 8 and are set to 0 by default
for the sparse RBM which has auxiliary variables cou-
pled only to neighboring spins. While the architecture
choice greatly helped the training process, we still need
to find an objective function we can easily compute and
optimize for.

Having access to the probability (up to an overall
norm) of a given configuration S for the physical Hamil-
tonian, allows us to cast the optimization process as su-
pervised learning by considering this probability as a la-
bel to be learned by the neural architecture. In [11] the



11

authors train the RBM by minimizing the difference in
free energies, which is the difference between the Hamil-
tonian of the physical system and the RBM Hamiltonian
for the visible layer,

∑
S |H(S)−HRBM(S)|. Due to the

similarity in functional form between the two, for the
system studied in [11] the authors were able to engineer
the one body coupling for the visible layer by directly
matching to the physical system and the other parame-
ters were optimized by minimizing the objective function.
As an overall constant shift in the energy has no impact
on the physics, the authors added a constant to the en-
ergies of the physical system to make them non-negative.
In general, one is not able to perform a direct matching
like in [11], so we opted to implement the same objective
function and training procedure, but we do not engineer
any RBM parameter. We trained the RBM using vari-
ous constant energy shifts and the results displayed here
are the best ones obtained, for which no energy shift was
used.
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FIG. 9. Training by minimizing the difference in energy of
fully connected (solid lines) and sparse (dashed lines) RBM.
The average energy difference in black, and relative errors in
couplings ΛX,T . For the fully connected RBM we also show
the average values for spurious couplings denoted by Λ̃.

The training in Fig. 9 is faster than CD training in
Fig. 8 as the average energy difference decreases rapidly
until it reaches a steady value. In addition, spurious
interactions Λ̃X,T decrease rapidly as well. However,
the errors in the couplings ΛX,T do not decrease to 0.
To improve convergence using this objective function,
one would need to also optimize for the constant en-
ergy difference, either through grid search through all
possible values or by other means. We recall that the
constant energy difference is related to an overall nor-
malization factor in the RBM which can be computed
exactly only by summing the probabilities of all configu-
rations. In our experiment there are quite many of them,
2LX×LT & 10236, and systems of physical interest are
typically much larger.

To remove any dependence on the normalization fac-
tors, we introduce a new objective function which we call

relative importance

α(P, PRBM) =
∑
SεπS

∑
S′επS′

∣∣∣∣log

(
P (S ′)PRBM(S)

PRBM(S ′)P (S)

)∣∣∣∣
=
∑
SεπS

∑
S′επS′

|4H(S,S ′)−4HRBM(S,S ′)| ,
(51)

where 4H(S,S ′) = H(S) − H(S ′) is the difference in
energy between two configurations. We sample S,S ′ from
two separate uniform distributions πS 6= πS′ defined over
disjoint subsets of the training dataset Ω

ΩS ∪ ΩS′ = Ω ΩS ∩ ΩS′ = ∅ . (52)

If the two distributions were equal, the objective func-
tion would be identically 0, so they must be chosen to be
different. In our experimental setup, for simplicity, we
pick a random batch in the beginning of the training to
be the support of πS′ and the rest of the data is reserved
for πS . The ratio inside the logarithmic function is the
Metropolis-Hastings acceptance rate to apply the Monte
Carlo update from S to S′ using the RBM distribution
to sample the new configuration [11]. In fig. (10) we plot
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FIG. 10. Training by minimizing the relative importance of
fully connected (solid lines) and sparse (dashed lines) RBM.
The average energy difference in black, and relative errors in
couplings ΛX,T . For the fully connected RBM we also show
the average values for spurious couplings denoted by Λ̃.

the error in relative importance and errors in couplings
during training. Similarly to the previous training exper-
iments, the sparse RBM produces much smaller errors
than the fully connected RBM. In addition, the training
for the sparse RBM is quite rapid and unlike the free en-
ergy difference, the relative importance error decreases
rapidly to 0 (numerically almost 0) at the same time as
the errors in the coupling decrease to 0. By combining
a sparse RBM with our new objective function we have
obtained complete learning and done so rather quickly in
the number of training epochs.

To compare how the 3 optimization methods perform,
in fig. 11 we plot the relative error in the physical cou-
plings for the sparse RBM for each of them. In all cases
we have employed the same batch size and learning rate.
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FIG. 11. Relative errors in couplings ΛX,T for the sparse
RBM for each of the 3 optimization methods discussed in
this section.

Relative importance training converges quickly to the ex-
act values while the two other methods either fail to con-
verge or require training for many more epochs.

We conclude this section with a consideration on the
data used for training, which is usually assumed to repre-
sent the physical distribution one is trying to learn. How-
ever, Monte Carlo sampling used to generate the data
might suffer from autocorrelation which invalidates this
assumption. In [50] this was circumvented by employing
the the Swendsen-Wang cluster algorithm. In our case
we had to run very long local Monte Carlo chains and
discard more than 99% of the samples. In cases of practi-
cal interest, one might not have any clustering algorithm
available and running long Monte Carlo chains to be dis-
carded afterwards is computationally expensive. Since in
our calculations we can evaluate the target distribution
for any configuration S (up to some normalization fac-
tor), the role of the training set is redundant when using
the relative importance as objective function. In fact,
we can even take the sampling distributions πS and πS′

that define the relative importance to be uniform over the
whole configuration space instead of just the training set
Ω. As a proof of concept, we perform the optimization by
uniformly sampling the full configuration space with πS′

having a smaller support than πS . In Fig. 12 we plot the
error in relative importance for a sparse RBM by uniform
sampling the configuration space. The inset displays the

objective function and Gaussian fit (N e−ax2

) for training
from the data collected with local Monte Carlo updates
and from uniform sampling 2. As the figure shows, this
procedure works quite well and the results are very simi-
lar (almost identical) to those obtained by the the sparse
RBM with pre-processed data displayed in Fig. 10. The
Hamiltonian studied in this section is rather simple and
mainly serves as an illustration since we can derive an ex-

2 We found a = 6.5 × 10−5 for uniform sampling and a = 5.3 ×
10−5 for data collected from local MC updates. These values
depend on both the underlying Hamiltonian and optimization
hyper parameters such as batch size and learning rate.
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FIG. 12. Training by minimizing the relative importance
sparse RBM. The average energy difference in black, and rel-
ative errors in couplings ΛX,T .

act RBM mapping of the physical couplings. In compli-
cated settings where such mapping might not be feasible,
the RBM can still be a useful approximation and the re-
spective parameters can be obtained by the optimization
procedure outlined here.

V. CONCLUSION

Computational methods based on neural networks
have seen many successes in computer vision and nat-
ural language processing in recent years. In this work we
used a particularly simple architecture, the Restricted
Boltzmann Machine, as a tool to represent the parti-
tion function of fermionic systems with many body in-
teractions in terms of non-interacting fermions coupled
to an external auxiliary field. This generalized Hubbard-
Stratonovich transformation is obtained by introducing
a hybrid quantum-classical RBM model where the vis-
ible layer is composed by quantum operators while the
hidden layer represents the (classical) auxiliary fields.

Due to their importance in Effective Field Theories in
nuclear physics, we focus most of our discussion in Sec. II
to contact interactions among fermions like Eq. (5) but
also discuss in detail how this can be generalized to any
interaction of the form Eq. (4) (see eg. the discussion at
the end of Sec. II A).

In order to provide support to the implementation of
the RBM-based scheme we propose here, we provide de-
tails of the construction for the most common situation of
two and three-body interactions in Sec. II A and Sec. II B
respectively (see also Appendix A for the general case).

Thanks to the generality of the scheme, we expect the
identities we have obtained here to prove useful in appli-
cations to Quantum Monte Carlo simulations based on
auxiliary fields like Lattice-EFT and AFDMC.

An interesting application of these ideas is in finding
efficient mappings of optimization problems into the na-
tive Hamiltonian of a quantum annealer as we discuss
in Sec. III. Since the mapping is at the level of parti-
tion functions, robust techniques to extract the effective
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temperature will need to be used in this case.

In situations where exact representations cannot be
used, we hope the optimization procedure outlined in
Sec. IV could be helpful in finding useful approximations.
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Appendix A: Mapping between the RBM and many
body interactions

In this appendix we provide further details on the ap-
proach we followed in producing the RBM representa-
tions for specific many-body interactions. Due to the
fact that our visible layer is composed of operators, and
therefore the RBM mapping is at the level of the quantum
partition function, it is useful to fix a basis to work with.
After the mapping is established for every element of the
complete basis, we are guaranteed that it will work on
any superposition state living in the same Hilbert space.
A convenient basis to carry out the calculations is, not
surprisingly, the eigenbasis of the operators that define
the visible layer. For fermionic density operators, which
are the main focus of this work, this is the Fock, or oc-
cupation number, basis for which

ρ̂k|ρ〉 = ρk|ρ〉 ρk = 0, 1 . (A1)

Here the number of possible orbitals, elements in the real
vector ρ, is M as in the main text. As we have discussed
in Sec. II of the main text it is easy to see that, upon
tracing out the hidden layer of the RBM, the induced
Hamiltonian in the visible layer

Hrbm (ρ̂) = − log (Trh exp (−FRBM (ρ̂,h))) , (A2)

contains all possible terms up to the maximum M -body
interaction. This can be shown for instance using the
cumulant generating function. Here we will rewrite
Hrbm (ρ̂) in a form which will simplify further manipula-
tions. If we denote by C(M,k) the set of k combinations
from the set of orbital indices I = {1, . . . ,M}, we can
express the Hamiltonian as

HA
rbm (ρ̂) =

M∑
µ=1

∑
P∈C(M,µ)

A
(µ)
P

∏
ν∈P

ρ̂ν , (A3)

which makes evident the presence of 2M − 1 coupling
terms. Note that we removed an irrelevant constant en-
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ergy shift from Eq. (A3) since it only affects the overall
normalization of the partition function.

We can also express the right hand side of Eq. (A2)
explicitly in terms of the RBM parameters, for a single
hidden variable we find

HB
rbm (ρ̂) = − log

(K−1∑
h=0

eh(C+
∑M
µ=1Wµρ̂µ)

)
(A4)

where we set the visible biases B to 0 as it is easy to
reintroduce them if need be. As discussed at the begin-
ning of this section, we will now match these two energy
functionals HA

rbm and HB
rbm on the states that span the

fermionic Fock space. This allows us to replace the vec-
tor of operators ρ̂ with a vector of eigenvalues ρ. Fur-
thermore, if we want the RBM to represent the physical
system exactly, the two energy functionals can only differ
by a constant. In order to take this possible difference
into account, we introduce the shift A(0) in Eq. (A3) and
fix it’s value by performing the matching in the vacuum
state |0〉. This immediately yields

A(0) = − log

(K−1∑
h=0

exp (hC)

)
. (A5)

The matching condition becomes now

M∑
µ=1

∑
P∈C(M,µ)

A
(µ)
P

∏
ν∈P

ρν =− log


∑K−1
h=0 exp

(
h
(
C +

∑M
µ=1Wµρµ

))
∑K
h=0 exp (hC)

 (A6)

where for simplicity we have subtracted the constant
term A(0) on both sides. For practical purposes we can
use this compact relation to construct a simple linear sys-

tem for the unknown induced couplings A
(µ)
P using the

remaining 2M − 1 basis states (note that for the applica-
tions discussed in the main text M is usually not large)
and considering the right hand side as fixed for a given
choice of RBM parameters. If we want a specific value
for the some induced coupling we can then use the solu-
tion to this simple linear system (which is guaranteed to
be non-singular) together with a root-finding algorithm
to determine a possible solution for the RBM parameters
that satisfy the constrain. This is the procedure we used
throughout our work.

In the next subsection we show in more detail this pro-
cedure for the physically relevant cases of the two and
three body forces we mention in the main text. This
procedure can be repeated for higher many body forces,
and at each step, we can represent the lower order cou-
plings in term of RBM parameters from the identities
already found for them.

Similar relations can be obtained when the visible layer
is composed by (for instance) spin operators by ensuring
that the matching condition is enacted for every state in
the corresponding eigenbasis. For Pauli matrices this will
lead to the change ρi → σi = ±1.

1. Derivation of RBM mapping for two and three
body interactions

Having set up the system of linear equations the allows
one to solve for the many body couplings in the previous
section, we proceed to derive the identities presented in
the main text for the two and three body interactions

in a way that makes easy the generalization to arbitrary
categorical hidden variable h = {0, . . . ,K − 1}.

We start by denoting by Z2 the general partition func-
tion with one two body interactions

Z2 = exp
(
−A(2)ρ1ρ2 −A(1)

1 ρ1 −A(1)
2 ρ2

)
. (A7)

We can express the equation that maps the physical sys-
tem to an RBM with free energy given by Eq. (19) as

Z
(2)
rbm = N2

K−1∑
h=0

e−h(W1ρ1+W2ρ2+C). (A8)

where N2 is an overall normalization factor. As discussed
above, the matching condition Eq. (A6) can be converted
to a system of linear equations. The result is:0 0 1

0 1 0

1 1 1


A(2)

A
(1)
1

A
(1)
2

 =

L(2)(0, 1)

L(2)(1, 0)

L(2)(1, 1)

 (A9)

where the entries of the right hand side vector are

L(2)(ρ1, ρ2) = − log

(K−1∑
h=0

exp

(
−hC − h

2∑
µ

Wµρµ

))

+ log

(K−1∑
h=0

exp (−hC)

)
.

By solving this linear system we can find that the general
expression for both the one body term

A(1)
µ = − log

(∑K−1
h=0 exp (−h (C +Wµ))∑K−1

h=0 exp (−hC)

)
, (A10)
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and the two body coupling is obtained as

A(2) = L(2)(1, 1)− L(2)(1, 0)− L(2)(0, 1)

=− log

(∑K−1
h=0 exp (−h (C +W1 +W2))∑K−1

h=0 exp (−hC)

)
−A(1)

1 −A
(1)
2 .

(A11)

Note that the three parameters (W1,W2, C) define a hy-
persurface of equivalent RBMs corresponding to the same
two body coupling and different one body counter terms.

We now turn to the more involved three-body case, as
we will see the structure of the mapping between physical
and RBM coupling follows a similar pattern to the two
body case. Let’s first introduce, in analogy to Eq. (A7),
the three body partition function

Z3 = e−A
(3)ρ1ρ2ρ3−

∑
µ<ν A

(2)
µν ρµρν−

∑
µ A

(1)
µ ρµ . (A12)

The relation between physical and RBM parameters for
three body case is now given by

Z3 = Z
(3)
rbm = N3

K−1∑
h=0

e−h(W1ρ1+W2ρ2+W3ρ3+C) . (A13)

with N3 an overall normalization factor. As before we
can convert this to a system of linear equations,

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 1 0 1 1

0 0 0 0 1 0 0

0 0 1 0 1 0 1

0 1 0 0 1 1 0

1 1 1 1 1 1 1





A(3)

A
(2)
12

A
(2)
13

A
(2)
23

A
(1)
1

A
(1)
2

A
(1)
3


=



L(3)(0, 0, 1)

L(3)(0, 1, 0)

L(3)(0, 1, 1)

L(3)(1, 0, 0)

L(3)(1, 0, 1)

L(3)(1, 1, 0)

L(3)(1, 1, 1)


(A14)

where, similarly to before, we have defined

L(3)(ρ1, ρ2, ρ3) = − log

(K−1∑
h=0

exp

(
−hC − h

3∑
µ=1

Wµρµ

))

− log

(K−1∑
h=0

exp (−hC)

)
.

The solution for the one-body couplings is the same as
Eq (A10), while the two body term is generalized to

A(2)
µν =− log

(∑K−1
h=0 exp (−h (C +Wµ +Wν))∑K−1

h=0 exp (−hC)

)
−A(1)

µ −A(1)
ν .

(A15)

We can now move to the solution for three body term

which reads

A(3) =− log

∑K−1
h=0 exp

(
−h
(
C +

∑3
µ=1Wµ

))
∑K−1
h=0 exp (−hC)


−
∑
µ<ν

A(2)
µν −

∑
µ

A(1)
µ ,

(A16)

and, again, the four parameters (W1,W2,W3, C) define
a hypersurface of equivalent RBMs. Note that the sums
that appear in the definition of the physical couplings
can be summed directly using standard relations for ge-
ometric progressions as we did for the two body case in
Eq. (34) and Eq. (38) of the main text. We will make
use of this in the next section.

Appendix B: Derivation of the bounds for general
categorical hidden units

In this section we provide the proof for the two lower
bounds Eq (37) and Eq. (39) presented in the main text
to explain the rate of growth of the induced couplings
with the maximal value K that defines the range of the
categorical auxiliary variable h ∈ {0, . . . ,K − 1}.

Given the fact that for a given target value of the phys-

ical couplings like A
(2)
K and A

(3)
K there is a continuous

space of solutions for the RBM parameters, in this sec-
tion we will restrict the discussion to just a one-parameter
subspace for convenience. For the two-body case we
choose the RBM parameters (W1,W2.C) according to the
following

• for attractive interactions A
(2)
K < 0 we take

W1 = W2 = −C = α2 > 0 , (B1)

• for repulsive interactions A
(2)
K > 0 we take

W1 = −W2 = α2 > 0 C = 0 , (B2)

while for the three-body case we take

• for attractive interactions A
(3)
K < 0 we take

W1 = W2 = W3 = α3 > 0 C = −2α3 (B3)

• for repulsive interactions A
(3)
K > 0 we take

W1 = W2 = W3 = α3 > 0 C = −α3 . (B4)

Note that, as we mention in the main text, these param-
eterization choices do not have any particularly useful
property other than being able to generate the desired
couplings with the adjustment of a single real parameter
α. Depending on the particular application one is inter-
ested in, different choices might be closer to optimal but
this will need to be assessed on a case-by-case basis.
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Using the general expressions found in the previous sec-
tion, Eq. (A10) and Eq. (A11), together with the choice
of parameterization for attractive interactions Eq. (B1),
we find that the induced one-body couplings are all equal
to

A
(1)
K =− log(K) + log

(
1− exp (Kα2)

1− exp (α2)

)
, (B5)

while we find for the two-body term

A
(2)
K = (K − 1)α2 + 2 log (K)− 2 log

(
1− eKα2

1− eα2

)
. − (K − 1)α2 + 2 log (K) ,

(B6)

where we used the fact that for α2 > 0 we have

log

(
1− eKα2

1− eα2

)
≥ (K − 1)α2 . (B7)

In the case of a repulsive interaction, the parameteri-
zation Eq. (B2) leads to the following one-body terms

A
(1)
1 =− log

(
exp (−Kα2)− 1

exp (−α2)− 1

)
+ log(K)

A
(1)
2 =− log

(
exp (Kα2)− 1

exp (α2)− 1

)
+ log(K)

= A
(1)
1 − (K − 1)α2 .

(B8)

For the induced two-body coupling, we first note that the
first term in Eq. (A11) vanishes when taking the param-
eterization Eq. (B2). The final result reads

A
(2)
K = −A(1)

1 −A
(1)
2 = −2A

(1)
2 − (K − 1)α2

= (1−K)α2 − 2 log (K) + 2 log

(
1− eKα2

1− eα2

)
& (K − 1)α2 − 2 log (K) .

(B9)

These results can then be summarized in a single lower
bound for the magnitude of the two body coupling

|A(2)
K | & (K − 1)α2 − 2 log (K) . (B10)

As we mention in the main text, Eq. (B10) shows that
we have an almost linear dependence of the magnitude
of the two body coupling on the maximal value of the
auxiliary variable.

Next, we turn our attention to the three body cou-
pling. Using the parameterization for the attractive case
Eq. (B3) we find for the one body terms are all equal to

A
(1)
K = − log

(
1− eKα3

1− eα3

)
+ log

(
1− e2Kα3

1− e2α3

)
= log

(
1 + exp (Kα3)

1 + exp (Kα3)

)
,

(B11)

and similarly for the two body terms we find

A
(2)
K = − log(K) + log

(
1− e2Kα3

1− e2α3

)
− 2A

(1)
K , (B12)

for all pair interactions. The final result for the induced
three body term in the attractive case is then

A
(3)
K = 3 log (K) + (K − 1)α3

− 3 log

(
1− eKα3

1− eα3

)
+ log

(
1 + eKα3

1 + eα3

)
.

(B13)

Moving now to the repulsive case, the parameterization
Eq. (B4) implies that the one and two body couplings are
the same as what we found for the attractive two-body
case in Eq. (B5) and Eq. (B6) but with α2 replaced with
α3. The three-body interaction is instead given by

A
(3)
K = −3 log (K)− (K − 1)α3

+ 3 log

(
1− eKα3

1− eα3

)
− log

(
1 + eKα3

1 + eα3

)
,

(B14)

and together with the result for the attractive case we
have∣∣∣A(3)

K

∣∣∣ = −3 log (K)− (K − 1)α3

+ 3 log

(
1− eKα3

1− eα3

)
− log

(
1 + eKα3

1 + eα3

)
& (K − 1)α3 − 3 log (K) .

(B15)

To obtain the lower bound, we used the fact that

log

(
1− eKα3

1− eα3

)
− log

(
1 + eKα3

1 + eα3

)
≥ 0 , (B16)

together with the inequality Eq. (B7). This concludes
the proof for the bounds referenced in the main text.

Appendix C: General quantum operators in the
visible layer

The RBM network structure in our work is a hybrid
quantum-classical architecture with quantum operators
in the visible layer and classical categorical variables in
the hidden layer. Up to now our main focus has been
the fermionic density operator ρ̂, and we have also pro-
vided an example for Pauli matrices in Eq. (25). In the
first case, the RBM mapping was made possible due to
the idempotency of the operator, ρ̂2 = ρ̂, and in the sec-
ond case the Pauli matrix is involutory, σ2 = I. These
properties are special cases of operators with generalized
idempotency

ÔR = Ô, (C1)

for some integer R > 1 (for Pauli matrices R = 3). Due
to Eq. (C1), the highest exponent present in the Taylor
series expansion of the cumulant generating function in
Eq. (17) is bounded above, kµ ≤ R − 1, effectively trun-
cating the order of operator products that can be gener-
ated by the RBM. Note that for more general operators



18

not satisfying the idempotency condition of Eq. (C1), the
induced operators may not have any particularly useful
structure to be exploited to match to some target parti-
tion function. However, this is not a problem since, as
already mentioned in the main text, any operator on a fi-

nite Hilbert space can be represented by direct products
of Pauli matrices. The general idempotency described
here, while not necessary, could be useful if present in a
given Hamiltonian.
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