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This study investigates the importance of molecular viscosity and diffusivity for the prediction of
transitional and shock-driven mixing flows featuring high and low Reynolds/Mach number regions.
Two representative problems are computed with implicit large-eddy simulations using the inviscid
Euler (EE) and viscous Navier-Stokes (NSE) equations: the Taylor-Green vortex at Reynolds num-
ber Re = 3000 and initial Mach number Ma = 0.28; and an air-SF6-air gas curtain subjected to
two shock-waves at Ma = 1.2. The primary focus is on differences between NSE and EE predictions
due to viscous effects. The outcome of the study illustrates the advantages of utilizing NSE. In
contrast to EE, where the effective viscosity decreases upon grid refinement, NSE predictions can be
assessed for simulations of flows with transition to turbulence at prescribed constant Re. NSE can
achieve better agreement between solutions and reference data, and the results converge upon grid
refinement. On the other hand, the EE predictions do not converge with grid refinement, and can
only exhibit similarities with NSE results at coarse grid resolutions. We also investigate the effect
of viscous effects on the dynamics of the coherent and turbulent fields, as well as on the mechanisms
contributing to the production and diffusion of vorticity. The results show that nominally-inviscid
calculations can exhibit significantly varying flow dynamics driven by changing effective resolution-
dependent Reynolds number, and highlight the role of viscous processes affecting the vorticity field.
These tendencies become more pronounced upon grid refinement. The discussion of the results
concludes with the assessment of the computational cost of inviscid and viscous computations.

I. INTRODUCTION

The Navier-Stokes equations (NSE) are a set of partial
differential equations used to describe the macroscopic
motion of continuous fluid media. For problems involv-
ing variable-density flow due to multi-material and com-
pressibility effects, this mathematical model is defined
by the conservation equations for mass, momentum, to-
tal energy, and fluid species [1, 2],
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where t is the time, xi are the coordinates of a Carte-
sian coordinate system, ρ is the fluids’ density, Vi are the
Cartesian velocity components, P is the pressure, and
σij is the viscous-stress tensor which for Newtonian fluid
equals
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Furthermore, µ is the fluid’s dynamic viscosity, δij is the
Dirac’s delta function, E = 1

2V
2
i + e is the total energy,

e is the internal energy, qc is the conductive heat flux,
qd is the interdiffusional enthalpy flux, cn is the mass
concentration of material n, and Jn is the mass fraction
diffusivity of material n. This system of equations re-
quires constitutive relations to close. Here, we use the
perfect gas relation,

P = (γ − 1)ρe , (6)

Fourier’s law of thermal conduction,

qcj = −κ ∂T
∂xj

, (7)

Cook’s [2] model for the interdiffusional enthalpy flux,

qdj =

nt∑
n=1

hnJ
n
j , (8)

and Fick’s law of diffusion,

Jn
j = ρD∂cn

∂xj
. (9)

In these closure models, γ is the specific heat ratio, T is
the temperature, hn is the enthalpy of a material n, nt
is the number of materials, and κ and D are the thermal
conductivity and diffusivity coefficients.

For high Reynolds number turbulent flow, it is not
feasible to perform a true direct-numerical simulation
(DNS), which fully resolves all the scales of motion that
the NSE give rise to. It is therefore necessary to model
either some or all the turbulent scales: just the smaller
scales in large-eddy simulation (LES), or all turbulent
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scales in Reynolds-averaged Navier-Stokes (RANS) sim-
ulation. In this case, the quantities in the NSE are re-
interpreted as averaged quantities, and additional model
terms may be added to the equations to model the un-
closed terms that appear due to the averaging procedure.

Although there are many explicit turbulence models
which can be employed, this work primarily considers
the implicit LES (ILES) method. An ILES is defined as
a simulation which uses the original NSE, along with a
numerical solution procedure with certain specific prop-
erties [3] such that numerical diffusion of the scheme be-
haves like a turbulence model. Thus, in ILES, an im-
plicitly provided numerical subgrid model captures the
physical effects of the unresolved scales of the turbulence.
This is in contrast to a DNS, in which turbulent scales
of motion are fully resolved down to the Kolmogorov dis-
sipation length-scale. Note that, since not all numeri-
cal schemes have the correct truncation properties, we
can say that while all ILES simulations can be viewed as
under-resolved DNS, not all under-resolved DNS is ILES.

In cases involving high Mach, Ma, and Re, numbers
(e.g. stellar astrophysics [4–6], shock-driven turbulent
mixing [7–9], detonation [10–12], and high-speed com-
bustion [13–15]), the Navier-Stokes equations are often
simplified to their inviscid form. This simplification is
typically justified by arguing that the magnitudes of the
molecular diffusion terms are expected to be small com-
pared to the corresponding turbulent transport terms,
which, in the case of ILES, are represented by the nu-
merical diffusion. This implies that σij , q

c, qd, and Jn

can be neglected. The resulting set of governing equa-
tions are the inviscid Euler equations (EE). Another jus-
tification for ignoring the molecular diffusion terms is the
assumption that a flow at sufficiently high Re becomes
Reynolds number independent, and converges to the in-
finite Reynolds number solution.

A consequence of assuming inviscid flow is that the sys-
tem of equations 1-4 changes from second-order parabolic
to first-order hyperbolic [16–20]. Along with the smaller
number of terms, this mathematical property reduces the
cost of solving the EE owing to the availability of highly
tested and efficient numerical algorithms [16–20]. This is
one reason the EE approach is so common.

However, despite its ubiquity, there is little formal
analysis and few numerical studies to justify the use of
EE, or identify its range of validity. In fact, there are
several reasons to question its widespread use. This is
what the current work is intended to investigate.

The practical envelope of the EE framework is typically
not precisely defined, i.e., for what ranges of Re, Ma, flow
conditions, and grid resolutions is the assumption of in-
viscid fluid acceptable? Previous studies by one of the
authors [21–24] demonstrate i) the importance of (tur-
bulent) viscosity in ship hydrodynamic simulations even
at Re = 2.03×109; ii) the relevance of Re in transitional
flows; and iii) the reduced flow Ma that shock-driven
turbulent mixing problems can achieve. These studies
motivate further assessments of EE based simulations in
transitional flows driven by hydrodynamic instabilities.

In addition, there are other reasons to be skeptical of
using the EE. First, although the global Re may be high,
flows which include transition will include regions where
viscous effects will be important, and these effects may
change the subsequent flow evolution. Second, there re-
mains the question of how high a Re is high enough? A
true separation between the large structures and the dis-
sipation scales may require a decade or decades of inertial
range, which may not exist except for geophysical and
astrophysical turbulence where Re ∼ O(1010) or higher
[25]. Studies show that for EE ILES, there is a flatten-
ing of the turbulent energy spectrum that starts near
the dissipation scale, and extends to significantly larger
scales. This effect is not present in the (lower Re) NSE
simulations [26]. Finally, neglecting viscosity can only
be correct for certain quantities of interest. For example,
while turbulent kinetic energy, which is dominated by the
large scale structures, should match data for reasonable
grids, enstrophy, which is dominated by the small scales,
will actually diverge with refinement.

Transition to turbulence can lead to an inertial range
exhibiting Kolmogorov’s −5/3 wave-number power-law
in the turbulence kinetic energy spectrum for sufficiently
high Re [27, 28] above the mixing transition threshold,
Re ∼ 1 − 2 × 104 based on the integral length scale L
(or Re ∼ 1 − 1.4 × 102 based on the Taylor microscale)
[27]. A higher threshold, Re ∼ 1.6 × 105, is needed to
achieve a minimum turbulent state [28] – proposed as
having enough large/small scale separation to ensure ro-
bustness of macroscopic flow characteristics. Transition
is inherently initial conditions dependent – e.g., [29–31].
Viscous effects are thus expected to matter less for suffi-
ciently high Reynolds numbers, Re.

The idea that viscosity effects would be important only
at very short scales in shock-tube problems of interest
was suggested in early work by Mikaelian [32]. On the
other hand, plasma viscosity effects growing with tem-
perature as ∼ T 2.5 become important in ICF hot spots
(T ∼ keV ). For example, this is demonstrated in the
studies of turbulence inhibition by viscous dissipation by
Weber et al. [33], where Re at the gas hot spot was found
to be Re ∼ 10 − 100, quite far from the Re ∼ 10, 000
transition threshold. Addressing the detailed impact of
viscous effects in applications at scale becomes particu-
larly important as recent advances in computer science
and resources promise to provide significant reductions in
numerical diffusion, and it becomes feasible to accurately
capture these effects in the future simulations.

From a verification and validation perspective, the ap-
plication of the EE also raises concerns since it hampers
the quantification of numerical and modeling errors. This
results from the fact that the effective flow Re, Ree, of the
simulations is not bounded. We define effective Reynolds
number as

Ree ≡
V0L0

νe
, (10)

where L0 and V0 are a reference length scale and velocity,
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and νe is the effective viscosity,

νe = ν + νn + νt , (11)

which comprises the physical ν, numerical νn, and tur-
bulent (closure model) νt viscosities. Since ν = 0 for
inviscid flow and νt = 0 (ideally) for laminar flow, the
effective Reynolds number is determined by the numer-
ical viscosity in EE computations. However, νn reduces
upon spatio-temporal grid refinement which makes Ree
increase. Finally, it is important to emphasize that the
utilization of numerical diffusion to model the terms in-
volving D and ν also affects the remaining inviscid terms
of the EE (equations 1-4: ρVi, ρViVj , P , PVj , ...).

This study analyzes the importance of molecular vis-
cosity and diffusivity effects on the prediction of tran-
sitional and shock-driven turbulent mixing flows featur-
ing high and low Re/Ma regions. For high-Re, the flow
mostly features high-intensity or fully-developed turbu-
lence, and so (Re dependent) phenomena like the onset
of turbulence may play a minor role in the flow dynam-
ics. However, there are many flows of practical interest
featuring regions of low and high Re, where viscous de-
pendencies of the onset of turbulence are essential and
must be captured. In the (low Re) transient and tran-
sitional regions, where the separation of scales may be
questionable and spectra are narrow, the physical or/and
numerical viscosity play an important point in the flow
physics. Furthermore, the history of the transition pro-
cess may persist, so capturing the viscous effects may
be essential to matching the overall history of the flow.
Our main focus is on assessing viscous effects; assessing
molecular diffusivity effects on scalar predictions deserves
further study which is not part of the current scope.

Two representative flows are calculated with ILES
[3, 34] using the EE and NSE: i) the Taylor-Green vor-
tex (TGV) [35] at Re=3000 [36] and initial Ma=0.28;
and ii) the air-SF6-air varicose gas curtain subjected to
two shock-waves at Ma= 1.2 studied by Balakumar et al.
[37]. The first case assesses the effect of viscous phenom-
ena in single-fluid transitional flow, whereas the second
also includes material mixing, diffusivity, high and low
flow Ma regions, and shock-waves. The simulations are
conducted for different grid resolutions to assess the ef-
fects of numerical diffusion on the flow dynamics, quan-
tities of interest, and inviscid flow assumption. The pre-
dictions are compared against reference data [36–38], and
their computational cost analyzed. The study also eval-
uates the effect of the molecular viscosity and diffusivity
on the turbulence and coherent fields, as well as on the
mechanisms contributing to the production of vorticity.

The remainder of the manuscript is structured as fol-
lows. The test-cases and simulations are described in Sec-
tion II. This includes details about the reference exper-
iments, numerical settings, and solver [39]. The results
are then discussed in Section III, and the conclusions are
summarized in Section IV.

II. FLOW PROBLEMS AND NUMERICAL
DETAILS

II.1. Taylor-Green vortex

The Taylor-Green vortex (TGV) [35] is an archetypal
flow problem for modeling and simulation of turbulence
onset, development, and decay. This flow is initially char-
acterized by multiple laminar vortices as illustrated in
figure 1a. These coherent structures evolve and interact
in time, and eventually lead to turbulent flow by the ac-
tion of vortex stretching and reconnection without need
for background perturbations [36, 40, 41].

Since viscous processes are expected to have a role
in the onset of the reconnection phenomenon [40], there
has been intense debate about the potential existence of
flow singularities in inviscid EE calculations [36, 42–47].
Nevertheless, the basic (convectively driven) physics of
reconnection [48, 49] and turbulence decay [50] can be
captured with a well-designed EE based ILES having ad-
equate non-vanishing residual numerical diffusion (recent
survey in [51]). The flow kinetic energy is expected to de-
cay (e.g., [52]) after the development of turbulence. The
TGV case has been also used to demonstrate how the
convective numerical diffusion of certain algorithms can
be used to emulate the dominant subgrid scale physics of
transition to turbulence and decay for high (but-finite)
Re flows [38, 53] in ILES.

The numerical simulations of the TGV are conducted
in a cubical computational domain defined in the Carte-
sian coordinate system (x1, x2, x3) shown in figure 1a.
The length of the domain is L/Lo = 2π (Lo is a refer-
ence length scale), and periodic boundary conditions are
prescribed at all faces. The initial velocity and pressure
fields [35] are:

V1(x) = Vo sin (x1) cos (x2) cos (x3) , (12)

V2(x) = −Vo cos (x1) sin (x2) cos (x3) , (13)

V3(x) = 0 , (14)

P (x) = Po +
ρoV

2
o

16
[2 + cos (2x3)] [cos (2x1) + cos (2x2)] ,

(15)
where Vo, Po, and ρo stand for the velocity, pressure,
and density magnitudes at the initial time instant, t = 0.
The calculations are conducted with a compressible flow
solver [39] using the ideal gas equation of state. This
option leads to maximum instantaneous and averaged
(L1 norm) variations of ρ that can reach 11.0% and
1.4% of ρo, respectively. In viscous calculations, the
Re= ρoLoVo/µ is set equal to 3000 to match the DNS
studies of Brachet et al. [36] and Drikakis et al. [38].
The initial thermodynamic and flow properties are the
following: Mao = 0.28, Vo = 104cm/s, Lo = 1.00cm,
ρo = 1.178 × 10−3g/cm3, Po = 105Pa, µ = 3.927 ×
10−3g/(cm.s), and heat capacity ratio γ = 1.40.
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(a) TGV.

(b) GC.

FIG. 1: Initial flow fields of the selected test-cases.

II.2. Shocked gas curtain

The gas curtain flow of Balakumar et al. [37] has been
designed to investigate the physics of shock-driven tur-
bulent mixing and provide validation data for numerical
simulations. This classical transitional mixing problem
initialized with an air-SF6-air gas curtain contained in-
side a horizontal shock-tube with a square cross-section
of 76.2mm. The curtain is located at 137mm from the
tube’s end wall and composed of a mixture of air, SF6,
and acetone to enable the use of PLIF (planar laser-
induced fluorescence) technique to measure the density
field. This experimental technique reduces the Atwood
number of the gas curtain in comparison to the pure air-
SF6 case (At= 0.67) [54]. The curtain is generated by
an array of 21 jets of 3mm diameter and separated by
3.6mm. The shock-wave is created by the rupture of a
diaphragm separating the driven and driver gases, air
and nitrogen. These fluids are initially at rest and at
pressures of 103,421Pa and 75,000Pa, respectively.

The present problem starts with the rupture of the
membrane separating the former gases. This gener-
ates a shock-wave that travels along the shock-tube and
strikes the gas curtain at t =0. At this instant, mo-
mentum is transferred to the perturbed air-SF6 interface,
which leads to its acceleration and initiates the mixing

of the two fluids by baroclinic production of vorticity.
Afterward, the Richtmyer-Meshkov instability and co-
herent structures [55, 56] start developing. This step
may lead to secondary hydrodynamics instabilities such
as the Rayleigh-Taylor [57, 58] and Kelvin-Helmholtz
[59, 60] instabilities. The shock-wave reflects off of the
end wall of the experimental facility and causes a reshock
at t = 600µs (the instant when the reflected shock-wave
passes the gas curtain). This phenomenon triggers tran-
sition to turbulence, which enhances the mixing rate of
the two materials. Brouillette [61] and Zhou [62, 63] pro-
vide comprehensive descriptions of this class of flows.

The numerical simulations are conducted in a rect-
angular computational domain defined in the Cartesian
coordinate system (x1, x2, x3) shown in figure 1b. The
origin is located at the intersection of the plane defin-
ing the position of the initial shock-wave and the left
and top boundaries of the shock-tube, with the x1 axis
aligned with the shockwise direction, x2 with the trans-
verse direction, and x3 with the vertical direction. The
gas curtain is initially at 138mm from the end wall, and
the cross-section of the shock-tube includes 10 out of the
21 jets used in the experiments, so the computational do-
main is 36mm wide. The initial flow conditions of the gas
curtain are extracted from the DNS results of Gowardhan
and Grinstein [54]. Reflective conditions are prescribed
at the x1 and x2 boundaries, whereas periodic condi-
tions are set at x2 = 0 and 36mm. The left boundary is
at x1 = −400mm so that the reflected shock-wave does
not reach it during the simulation time of 1200µs. The
shock-wave is initially at x1 = 0 and time is given with
reference to the moment the shock-wave strikes the up-
stream interface of the gas curtain (t =0). Reshock (R)
is completed at t = 600µs. The fluid and thermodynamic
properties of SF6, compressed air (air1), and ambient air
(air2) are: γair1 = γair2 = 1.40, γSF6

= 1.09, ρair1 =

1.28 × 10−3g/cm
3
, ρair2 = 0.95 × 10−3g/cm

3
, ρSF6

=

4.85 × 10−3g/cm
3
, µair1 = µair2 = 1.80 × 10−4g/(cm.s),

µSF6 = 1.50 × 10−4g/(cm.s), D = 9.22 × 10−2cm2/s.
Since µ and D were not measured by Balakumar et al.
[37], the values of these quantities are extrapolated from
Charonko and Prestridge [64] and tables available in lit-
erature [65]. We also assume γ, µ, and D independent
of the air’s pressure. The complete description of the
numerical setup and case is given in Pereira et al. [24].

II.3. Numerical settings

All calculations are conducted with the flow solver
xRAGE [39]. This code utilizes a finite volume approach
to solve the compressible and multi-material conservation
equations for mass, momentum, energy, and species con-
centration. The resulting system of governing equations
is resolved through the HLLC [66] Riemann solver using
a directionally unsplit strategy, direct remap, parabolic
reconstruction [67], and the low Mach number correction
proposed by Thornber et al. [68]. The equations are dis-
cretized with second-order accurate methods: the spatial
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discretization is based on a Godunov scheme, whereas
the temporal discretization relies on the explicit Runge-
Kutta scheme known as Heun’s method. The time-step,
∆t, is defined by imposing a maximum CFL number
equal to 0.45. Thus,

∆t =
∆x.CFL

N(|V |+ c)
, (16)

where c is the speed of sound, and N is the number of
spatial dimensions. The code can utilize an Adaptive
Mesh Refinement (AMR) algorithm for following waves,
especially shock-waves and contact discontinuities. This
option is only used for the gas curtain flow. The modeling
of miscible material interfaces and high convection-driven
flows is performed with a van-Leer limiter [69], without
artificial viscosity, and no material interface treatments
[53, 70]. xRAGE uses the assumption that cells contain-
ing more than one material are in pressure and tempera-
ture equilibrium as a mixed cell closure. For the present
work, we modified the xRAGE plasma module [71–73] in
order to consider the kinematic viscosity (ν) and diffusiv-
ity (D) terms of the multi-material NSE. In these cases,
the effective physical viscosity is defined as

ν =

nt∑
n=1

νnfn , (17)

where n is the material index, nt is the number of ma-
terials, and fn is the volume fraction of material n. The
thermal flux, qc, in equation 3 is neglected in this work.
Although this should not affect the TGV case, this term
would be necessary for a careful validation comparing to
the experimental gas curtain data [2, 74]. However, for
this study including only the dominant diffusion terms
should be sufficient to observe the trends we wish to in-
vestigate. Also, evaluation of the temperature field of the
gas curtain flow has shown that the instantaneous differ-
ence between its minimum and maximum value in the
entire domain does not exceed 15.1%. The exception oc-
curs during the instants of reshock where the differences
can reach 42%. Considering that the temperature differ-
ences between neighboring cells are significantly smaller,
these results suggest that including the heat flux would
not alter the conclusions of the study.

The selected spatial grid resolution and simulation
time of the calculations are problem dependent. Whereas
the TGV flow is computed for 20 time units on uniform
Cartesian grids with 1283, 2563, 5123, and 10243 cells; the
gas curtain calculations rely on an AMR algorithm to op-
timize the use of computational resources. We use three
grids gi with the same baseline grid resolution ∆ = 2mm
but with a different number of refinement levels. These
are 4 for g1, 5 for g2, and 6 for g3 and lead to a minimum
cell size ranging from 0.25 to 0.06mm. The selected re-
finement criterion is based on the magnitude of the pres-
sure and density gradients [39]. Figure 2 illustrates the
evolution of the number of cells, Nc, on the three grids
for EE and NSE simulations. It shows that the finest
grid resolution can reach 480.8× 106 cells and, most no-
tably, that the NSE simulations require fewer cells than

(a) g1.

(b) g2.

(c) g3.

FIG. 2: Temporal evolution of the number of grid cells
(Nc × 10−6) of gas curtain simulations for EE and NSE

on different grids gi.

the EE. In contrast, table I indicates that the NSE sim-
ulations lead to smaller time-steps than the EE. These
differences are discussed in section III.2.

III. RESULTS AND DISCUSSION

The effect of molecular viscosity and diffusivity on the
selected test-cases is now investigated. Each problem is
studied individually, and the quantities of interest com-
prise mean-flow, coherent, and turbulence variables. The
analysis of the simulations includes the evaluation of the
mechanisms contributing to the production of vorticity.
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TABLE I: Minimum and maximum time-step, ∆t, of
gas curtain simulations with EE and NSE on different

grids gi.

Grid Model (∆t)min (∆t)max

g1
NSE 8.00 × 10−9 8.00 × 10−8

EE 1.38 × 10−8 1.39 × 10−7

g2
NSE 4.00 × 10−9 4.00 × 10−8

EE 6.90 × 10−9 7.00 × 10−8

g3
NSE 2.00 × 10−9 2.03 × 10−8

EE 3.50 × 10−9 3.50 × 10−8

The discussion concludes with the computational cost of
the calculations.

III.1. Taylor-Green vortex

The TGV flow is initially defined by the set of laminar
vortices shown in figure 1a. These coherent structures
interact and evolve in time, leading to the onset of tur-
bulence. Since the TGV is an isolated system (no energy
sources), the total kinetic energy of the problem decays
in time due to viscous (νe, eq. 11) effects.

The temporal evolution of the mean total kinetic en-
ergy,

k =
1

2V 2
o

ρvivi
ρ

, (18)

predicted with the EE and NSE is depicted in figure 3. In
equation 18, k is Favre-averaged [75–78], the bar operator
denotes a spatially averaged quantity Φ, and we adopt
Einstein’s summation convention.

Figures 3a and 3c, show the temporal evolution of k
for computations utilizing the EE and various spatio-
temporal grid resolutions. Similar to Shu et al. [79], it
is observed that the magnitude of k remains nearly con-
stant during the first time instants. Yet, the length of
this period, ∆t, depends on the grid resolution. Whereas
∆t ≈ 4 for the coarsest grid, this period exceeds 5 time-
units for the finest resolution. The origin of this differ-
ence lies in the reduction of numerical diffusion caused
by grid refinement. This delays the decay of k due to
the smaller values of νe (eq. 11) which, in turn, increase
Ree (eq. 10). Nevertheless, the most significant result in
these figures is the small growth of k during this initial
period. Although smaller than 0.4% of ko, recall that the
TGV represents an isolated system, and the total energy
is conserved by the governing equations of the mathe-
matical model. Thus, the observed growth in k can only
occur by the conversion of internal into kinetic energy,
so that k > ko. Although not clearly visible in figure
3a, this behavior becomes more pronounced upon grid
refinement. It is also interesting to note that Morf et
al. [80] and Brachet et al. [36] estimated the possibility
of the occurrence of a flow singularity between 4.2 and
5.2 time-units for inviscid calculations. After this initial

laminar flow period, t ≈ 4 − 5, the kinetic energy starts
dissipating, and the flow becomes turbulent. The results
also indicate that for the EE the decay rate of k depends
on the grid resolution.

The NSE results depicted in figures 3b and 3c exhibit
distinct tendencies. First, the decay of kinetic energy
begins immediately after t = 0 so that k(t) never exceeds
ko. Second, the solutions of the three finest grids are
nearly identical until t ≈ 11. After this instant, it is
possible to identify small discrepancies that are caused by
the grid resolution. This is quantified in figure 4 through
the numerical uncertainty (grey area) [81], Un(k), of the
simulations on Nc = 5123 and Nc = 10243. Here, Un(k)
is computed with the method of Eça and Hoekstra [82]
which uses an estimated uncertainty interval containing
the exact solution of the mathematical model with 95%
confidence, instead of an exact error, which would require
knowing the true solution exactly. A detailed description
of the method and the concept of numerical uncertainty is
given in [81, 82]. The results show that Un(k) is negligible
until t ≈ 11, but starts growing after this instant. This
is caused by the development of turbulence and leads to
values of Un(k) that can reach 24.2% on Nc = 5123, and
8.4% on Nc = 10243. These values of Un(k) indicate
that Nc = 10243 is adequate for the present study, and
that DNS studies using similar numerical settings would
require finer grids to achieve Un close to zero for k and
higher-order moments.

Next, figure 5 presents the temporal evolution of the
averaged total kinetic energy dissipation, ε,

ε = −∂k
∂t

. (19)

The predictions are compared against the simulations of
Brachet et al. [36] (incompressible) and Drikakis et al.
[38] (compressible) at Re= 3000. Focusing on the EE
predictions plotted in figure 5a, these exhibit a close de-
pendence on the grid resolution, and evidence the exis-
tence of five distinct periods where the simulations are
in poor agreement with the reference data [36, 38]: i)
until t ≈ 3−4, the predicted dissipation (eq. 19) is nega-
tive, which indicates that k is being generated. This is in
agreement with the EE results of figure 3 and stems from
the aforementioned conversion of internal into kinetic en-
ergy. ii) After this initial period, the kinetic energy of the
flow starts being dissipated. Yet, the absence of physi-
cal viscosity and the successive grid refinement make the
EE underpredict the magnitude of ε until t = 6. Con-
sidering t = 5, the dissipation predicted by DNS [36]
is equal to 2.6 × 10−3, whereas for the EE it does not
exceed 0.3 × 10−3. We emphasize that the onset of tur-
bulence occurs during this period [36]. As the flow un-
dergoes transition, energy cascades to smaller scales at
which dissipation occurs. Since for EE the dissipation is
purely numerical, and happens primarily at the smallest
resolved scales, the growth of ε is delayed until a sufficient
cascade can develop. iii) Afterward, ε starts growing at
a much faster rate than observed in the reference studies
and NSE. This stems from the rapid development of in-
creased fine scale motions, as shown in figure 6 for EE,
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(a) EE(Nc).

(b) NSE(Nc).

(c) EE and NSE using Nc = 10243.

FIG. 3: Temporal evolution of kinetic energy, k, for EE
and NSE on different grid resolutions.

which is due to the cascade of energy that would have oth-
erwise been dissipated by molecular viscosity at coarser

(a) Nc = 5123.

(b) Nc = 10243.

FIG. 4: Temporal evolution of kinetic energy, k, and
respective numerical uncertainty, Un(k), for EE and

NSE on grids with Nc = 5123 and Nc = 10243.

scales in NSE. Also, the solutions of ε do not converge
upon grid refinement, since in the true infinite Reynolds
number limit, the inertial range would extend to infi-
nite wavenumber and the enstrophy spectrum would not
converge. iv) The magnitude of ε starts diminishing in
time. Yet, it is possible to identify a second peak of ε
for the three coarsest grids. Since this peak is not ob-
served on the finest grid nor in Brachet et al. [36] data,
we attribute its origin to the grid resolution. v) At late
time, the decay rate on the fine grids does not match
the DNS. It is quite likely that may be a history effect
whereby the late-time behavior is contaminated by the
residual effects of the unphysical transition, however, it
underlines the fact that failure to capture the viscous ef-
fects may impact predictions even in the fully turbulent
region.

NSE simulations, on the other hand, lead to distinct
temporal evolutions of ε that are in close agreement with
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(a) EE(Nc).

(b) NSE(Nc).

(c) EE and NSE using Nc = 10243.

FIG. 5: Temporal evolution of dissipation, ε, for EE
and NSE on different grid resolutions.

the reference data [36, 38]. During the first 9 time-units,
the discrepancies between predictions and DNS data are

(a) EE.

(b) NSE.

FIG. 6: Vortical structures of the TGV flow for EE and
NSE on Nc = 5123 at t=7. Structures identified with

the λ2-criterion [83].

negligible, as well as the differences between solutions
obtained with the three finest grids. At 9 ≤ t ≤ 11,
the discrepancies grow, but the solutions are still in good
agreement with the DNS data, particularly to those of
Drikakis et al. [38]. Considering the excellent agree-
ment with these compressible simulations, we attribute
the small discrepancies between our predictions and Bra-
chet et al. [36] to compressibility effects. After this pe-
riod, the magnitude of ε starts decreasing, and it is pos-
sible to identify a small second peak. This phenomenon
is likely the consequence of sub-optimal grid resolution
at these late times [84].

Overall, the results of figures 3 and 5 show the limi-
tations of the EE to predict transition in the TGV. Al-
though it is expected that this flow will become Reynolds
number independent as sufficiently high Re, it is clear
that this has not yet occurred even at Re = 5000 [85].
At the current Reynolds number of 3000, the results are
Reynolds number dependent [36], and EE cannot capture
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(a) k.

(b) ε.

FIG. 7: Temporal evolution of kinetic energy, k, and
dissipation, ε, for viscous (NSE) and inviscid (EE)

RANS BHR-2 simulations on the finest grid.

that. In clear contrast, ILES using the NSE achieves an
excellent agreement with the DNS data, and the solu-
tions converge upon grid refinement. It is important to
note that although the EE and NSE solutions obtained
in the coarsest resolution possess some similarities due
to the magnitude of the numerical diffusion, these results
exhibit a poor agreement with the DNS data.

Before investigating the physics behind the results of
figures 3 and 5, we analyze the effect of viscosity to sim-
ulations using mathematical formulations modeling the
entire turbulent field. Toward this end, an extra set
of calculations is conducted with the viscous and invis-
cid Reynolds-Averaged Navier-Stokes (RANS) equations.
These RANS computations run for at least 12 time-units
in grid resolutions ranging from Nc = 1283 to 5123. The
turbulence field is modeled through the Besnard-Harlow-
Rauenzahn (BHR) multi-equation RANS model [86] in
the BHR-2 closure version [87].

The temporal evolution of the averaged total kinetic

energy, k, and dissipation, ε, obtained in the finest grid
resolution is depicted in figure 7. The results for the NSE
show that the temporal evolution of k and ε is identical
to that predicted by ILES (see figures 3 and 5) and DNS
[36] until t ≈ 6. After this instant, the well-known limi-
tations of RANS predicting transitional flows [88] lead to
the overprediction of turbulence and, consequently, of ε.
For this reason, the peak of ε is 50.2% larger than that
obtained with ILES. The inviscid RANS calculations ex-
hibit a similar peak. Furthermore, the assumption of in-
viscid fluid shifts the RANS prediction in the same man-
ner observed for the ILES. This stems from the growth of
the effective Reynolds number (see section III.1.1), and
demonstrates that the assumption of inviscid fluid also
affects formulations modeling the entire spectrum of tur-
bulence scales. Although not exhibited, the outcome of
grid refinement studies indicates that the apparent small
shift between EE and NSE solutions at t > 6 might be
a coincidence. The results of the two models on the two
coarsest grids exhibit significant differences for t ≤ 20.

III.1.1. Numerical Reynolds number

One of the consequences of assuming inviscid fluid is
the inability to set the effective Reynolds number, Ree, of
the simulations. This stems from the fact that the effec-
tive viscosity of the computations becomes determined by
its numerical component. Since the magnitude of the nu-
merical viscosity is grid dependent, Ree also varies upon
grid refinement. This feature poses challenges to predic-
tion and validation.

To evaluate the impact of this aspect on the compu-
tations’ accuracy, this section assesses the magnitude of
the numerical Reynolds number, Ren, for viscous and in-
viscid simulations. This quantity is estimated using the
method proposed by Zhou et al. [89] for decaying turbu-
lent flow. The numerical viscosity, νn, is defined as the
ratio between the magnitude of the averaged observed
dissipation, ε, and the enstrophy, Ω,

νn =
ε

Ω
. (20)

In equation 20, ε is given by equation 19 (without nor-
malizing k), and

Ω =
1

2

ρωω

ρ
, (21)

where ω is the magnitude of the vorticity vector,

ω = ∇×V , (22)

and bold symbols denote vectors. Then, Ren is defined
as

Ren ≡
VoLo

νn
. (23)

It is important to highlight that the effective and numer-
ical Reynods numbers, Ree and Ren, are equivalent for
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FIG. 8: Temporal evolution of the numerical Reynolds
number, Ren, for EE and NSE on different grid

resolutions.

FIG. 9: Temporal evolution of the enstrophy magnitude,
Ω, for EE and NSE on different grid resolutions.

ILES using the EE because ν = νt = 0 (see equation 10).
This property does not hold for ILES using the NSE since
ν is not assumed to be equal to zero.

Figure 8 depicts the temporal evolution of the ratio
between the Ren for inviscid and viscous calculations on
grids Nc = 1283 to 5123 (grid with Nc = 10243 is only
used to calculate k and ε). Since equation 20 assumes
turbulence decay [89], figure 8 only considers the inter-
val 9 ≤ t ≤ 20. As expected, the results indicate that
(Ren)EE/(Ren)NSE is closely dependent on the grid reso-
lution. Whereas this ratio is approximately constant and
equal to 1.4 for the coarsest grid, its magnitude ranges
from 2.8 to 6.0 for the finest grid resolution. This ten-
dency indicates that the numerical Reynolds number of
the EE calculations grows more rapidly than that of the
NSE. Unlike (Ren)EE, (Ren)NSE converges upon grid re-
finement.

Yet, more important than the observed growth in

Ren for the EE, one needs to understand the rea-
son for this outcome. Since Vo and Lo are constants,
(Ren)EE/(Ren)NSE is determined by νn. This quantity,
in turn, is calculated as the ratio between the flow dis-
sipation and enstrophy plotted in figures 5 and 9. From
these figures, it is possible to infer that the growth of
(Ren)EE/(Ren)NSE is essentially caused by a significant
increase of the enstrophy of the EE simulations upon grid
refinement. Lacking physical dissipation, the EE simula-
tions will continue to give rise to increasingly small scale
fluctuations as the grid is refined. Consequently, the vor-
ticity field predicted by the EE is more intense than for
the NSE at the specified Re, and may possess different
features.

III.1.2. Vorticity field

The results of figures 8 and 9 demonstrate the strong
impact of viscosity on the magnitude and dynamics of
the vorticity field. To illustrate the effect of assuming in-
viscid flow on the vorticity magnitude, figure 10 depicts
the iso-surfaces of the normalized vertical vorticity field
at t = 20 predicted with the EE and NSE. The struc-
tures are colored by the vorticity magnitude normalized
by its maximum value. The plots confirm that inviscid
calculations predict larger magnitudes of vorticity and,
consequently, finer-scale structures than the NSE. The
results also show that the NSE lead to a more homoge-
neous vorticity field due to the broader coloring range of
the structures (normalized by maximum value - |ω3|max).

The consequences for the vorticity dynamics of as-
suming inviscid fluid can be evaluated quantitatively by
studying the mechanisms contributing to the production
and diffusion of vorticity: stretching, TS , dilatational,
TD, baroclinic, TB , and viscous, TV . The first two pro-
cesses account for the stretching of vorticity [90, 91] due
to velocity gradients and compressibility effects. The
baroclinic mechanism describes the evolution of vortic-
ity due to the misalignment of the pressure and density
gradients, whereas the viscous mechanism accounts for
the diffusion of vorticity due to viscous effects. The tem-
poral evolution of vorticity can be best described by the
following equation [92, 93],

Dωi

Dt
= TSi

− TDi
+ TBi

+ TVi
, (24)

where,

TSi
= ωj

∂Vi
∂xj

, (25)

TDi
= ωi

∂Vj
∂xj

, (26)

TBi
= eijk

1

ρ2
∂ρ

∂xj

∂P

∂xk
, (27)
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(a) EE.

(b) NSE.

FIG. 10: Iso-surfaces of the normalized x3 vorticity field
(|ω3| = 1.7) colored by the vorticty magnitude for
distinct models. Results at t = 20 with Nc = 5123.

TVi = eijk
∂

∂xj

(
1

ρ

∂σkm
∂xm

)
. (28)

The viscous term only appears on the NSE, not EE. Fig-
ure 11 shows the temporal evolution of the magnitude of
these mechanisms for viscous and inviscid computations
upon grid refinement. The baroclinic term is not shown,
due to its minimal importance for the present flow prob-
lem, TB/TS ≤ 3% (Nc = 5123). The data are normalized
by the magnitude of TSi since this term is expected to
govern the right-hand side of equation 24.

Both the stretching and the viscous terms represent
phenomena that are not fully resolved in ILES, and which
therefore increase in magnitude with grid refinement.

(a) Nc = 1283.

(b) Nc = 2563.

(c) Nc = 5123.

FIG. 11: Temporal evolution of the norm of the
vorticity equation terms (TS , TD, and TV ) for EE and

NSE.

However, as dissipation is a small scale process, whereas
stretching is dominated by the larger scales, the ratio of
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these terms should increase as the grid is refined. This
can be seen in figure 11, where TV /TS reaches 19.0% and
73.9% at t = 5 and 20 for the finest grid (Nc = 5123).
This reiterates the importance of viscous effects in the
TGV, and further explains the discrepancies between EE
and NSE solutions. The increased relevance of TV upon
grid refinement is likely caused by the reduction of the
simulations’ numerical diffusion.

The ratio TD/TS remains approximately constant for
the EE. It can reach 16.0% for Nc = 5122, demonstrating
that compressibility effects are relevant for simulations
using this mathematical model. In contrast, the NSE
results indicate that TD/TS reduces by a factor of two
with the grid, reaching a maximum value of 7.5% for
Nc = 5123.

III.1.3. Spectral features

Figure 12 compares the temporal evolution of the ki-
netic energy spectrum of both models at time instants
after the peak of dissipation, once the flow is turbulent.
The spectra for the (numerical-diffusion constrained)
nominally-inviscid ILES-EE calculations exhibit a longer
inertial range – associated with a resolution-dependent
Ree, and show absence of a clear viscous sub-range.
Also apparent in the spectra for the EE case, is a sug-
gested power law shallower than Kolmogorov’s in the
near-dissipation region (the so-called bottleneck effect);
the latter is commonly observed in very high-Re DNS
predictions and laboratory observations, and recognized
to be a feature of the NSE solutions for high (but finite)
Re. In contrast, the spectra of the NSE calculations,
for which we can prescribe a lower Re of 3000, present
a significantly more rapid energy decay with k at later
times, and show a clear distinction between the inertial
and viscous sub-ranges.

III.1.4. Computational cost

The analysis of the TGV concludes with the assess-
ment of the computational cost of the two mathematical
models. This is important in order to address one of the
arguments driving the use of the EE instead of the NSE,
the cost. Table II shows that the cost difference between
the two models is typically around 10%, with the EE
computationally less expensive. Considering the gain in
accuracy, the additional cost of the NSE does not seem
to justify the use of the EE.

III.2. Shocked gas curtain

The experiments of Balakumar et al. [37] consist of a
varicose gas curtain impacted by an initial shock, which
triggers initial disturbance growth. This enhances the
mixing of the different materials and leads to the devel-
opment of the characteristic Richtmyer-Meshkov insta-

(a) EE.

(b) NSE.

(c) NSE vs. EE.

FIG. 12: Temporal evolution of the turbulence kinetic
energy spectrum, E(k), for EE and NSE. Grid

resolution is Nc = 5123.

bility and coherent structures. Subsequently the mixing
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(a) EE.

(b) NSE.

(c) Experiments [37].

FIG. 13: Temporal evolution of the SF6 intensity, ISF6
, for EE and NSE on the finest grid. Experiments taken from

Balakumar et al. [37].

region is impacted by a second shock (reshock) which
ultimately promotes transition to turbulence. The tem-
poral evolution of the gas curtain is illustrated in figure
13. This figure compares the predictions of the EE and
NSE on grid g3 against the experiments of Balakumar et
al. [37]. In this figure, the gas curtain is measured by
the concentration intensity of SF6, ISF6

,

ISF6 ≡
cSF6

(cSF6
)max

, (29)

where cSF6 is the local mass concentration of SF6 in the
mixture, and (cSF6)max is its maximum value. Except at
t = 0, the experimental results were measured 5µs before
the predictions. Although such a time lag can make the
comparison between experiments and predictions at time
instants close to the two shocks more difficult, it does
not affect the assessment of the influence of molecular

TABLE II: Computational cost in CPU.hour of EE and
NSE computations for different grid resolutions.

Grid tEE (CPU.h) tNSE (CPU.h) tNSE/ tEE

5123 302, 194 322, 284 1.07

2563 16, 057 17, 962 1.12

1283 1, 144 1, 204 1.05

viscosity and diffusivity effects to the predictions. To
be consistent with Balakumar et al. [37], all numerical
measurements shown in this section are taken at plane
x3 = 20mm.

The results of figure 13 show a close agreement between
numerical and experimental measurements until reshock,
t = 600µs. At t = 0, the perturbed gas curtain is at rest
and the shock-wave is about to strike its upstream in-
terface. The passage of the shock-wave compresses the
curtain (t = 20µs), and deposits vorticity through baro-
clinic processes. This triggers the mixing of the different
materials. Next, the downstream interface of the gas cur-
tain undergoes a phase inversion, whereas its upstream
interface starts growing (t = 40µs). In the following in-
stants (t ≤ 220µs), the curtain develops a symmetric
and sinusoidal form, where projectiles eject from the pri-
mary structure (figure 14). At this time, the bridges con-
necting different jets start getting thinner. In addition,
the interfaces of the gas curtain start to roll-up, lead-
ing to the generation of counter-rotating vortices with
the characteristic mushroom-like shape of the Richtmyer-
Meshkov coherent structure. These structures lose some
of their symmetry at late times (t ≤ 520µs). Despite the
good agreement between simulations and experiments
until reshock, it is still possible to identify some dis-
crepancies at late times. Figure 13 shows smaller ex-
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perimental asymmetries in the Richtmyer-Meshkov struc-
tures than for the simulations. This likely stems from dif-
ferences between the numerical and experimental initial
flow conditions [24, 54], which are those given in [37, 54].
Comparing the two models, the results exhibit negligi-
ble differences between inviscid and viscous calculations
(for the three grid resolutions tested). The reflected
shock-wave passes through the gas curtain at t = 600µs.
The experiments indicate that the reshock increases the
mixing of the different materials, and leads to a rapid
spatio-temporal development of the flow. At 620µs, the
bridges connecting neighboring jets become flatter and
the mixing-layer width reduces due to compressible ef-
fects. In the following instants, the mixing-layer expands
and the mixing rate increases. Also, it is possible to ob-
serve projectile-like structures ejecting from the mixing-
layer (t ≤ 820µs). At later times, the mixing-layer starts
exhibiting high intensity turbulence features, becoming
a homogeneous mixture with a characteristic cloud-like
structure.

During this period, the numerical simulations exhibit
an overall good agreement with the experiments. Never-
theless, it is still possible to identify some discrepancies
in solutions obtained at time instants just after reshock.
Once again, these mismatches are most likely caused by
the time lag between experimental and numerical mea-
surements, and the under characterization of the exper-
imental initial conditions [9, 54, 94]. The comparison of
the two mathematical models shows negligible qualita-
tive differences until t = 920µs. After this instant, the
composition of the mixing-layer predicted with the two
models starts exhibiting meaningful differences. Whereas
the EE predict small intensities of cSF6

, ISF6
, the NSE

lead to larger values of this quantity. These are in sig-
nificantly better agreement with the experiments. Note
that all intermediate values of ISF6

with EE are entirely
due to subgrid processes via the numerical diffusion, as
there is no molecular diffusion term in the equations.

To investigate these differences, figure 15 depicts the
volumetric fraction of mixture possessing values of cSF6

within seven ranges. These vary from 0 ≤ cSF6
< 0.10

to 0.60 ≤ cSF6
< 0.70. It is important to emphasize that

the homogeneity of the mixture enhances with the re-
duction of cSF6

. Considering the finest grid, figures 15a
to 15c, the results indicate that the NSE improve the
homogeneity of the mixture. In general, viscous compu-
tations tend to homogenize the mixing-layer by reducing
the flow regions with larger concentrations of SF6, this
increasing the fraction of the mixture where cSF6

< 0.10.
At t = 1120µs, for example, cSF6

is below 0.10 in 38.8%
of the mixing-layer predicted with the EE, whereas this
value grows to 43.2% for the NSE. The data also show
that at t = 1020 and 1120µs, only the EE lead to values
of cSF6 above 0.5 and 0.4, respectively. These results ex-
plain the observed differences in ISF6 , and demonstrate
that inviscid calculations can have a significant impact
on the composition of the mixture. As expected, the im-
portance of diffusivity effects diminishes for g2 due to
numerical diffusion. This behavior is observed in figures

15d to 15f and 16, where it is possible to infer that the
magnitude of ISF6 is similar for EE and NSE computa-
tions.

The temporal evolution of the mixing-layer width, w,
predicted by both models on g3 and g2 is depicted in
figure 17. This quantity is defined as follows. Prior
to reshock (t < 600µs), the mixing-layer width is de-
fined as the largest distance between the upstream and
downstream points of each structure where the volume
of fraction of SF6, fSF6 , exceeds 5%. The values ob-
tained for each wavelength are then spatially averaged.
After reshock (t ≥ 600µs), the mixing-layer width is es-
timated using the same procedure but without averag-
ing over each wavelength. Instead, the final mixing-layer
width results from averaging the value of w computed at
each transverse plane. In contrast to the simulations, the
projectiles-like structures observed after reshock are not
considered in the experimental measurements of w.

Figure 17 shows again the close agreement between ex-
periments and simulations until reshock. After reshock,
however, the numerical simulations on g3 overpredict w.
This result stems from the aforementioned mismatches
between numerical and experimental initial flow con-
ditions [9, 24, 54, 94]. Comparing EE to NSE, the
data indicate that the predictions of w are similar un-
til t = 1000µs. After this instant, it is possible to iden-
tify discrepancies between the results of the two models.
These are caused by cSF6

/fSF6
variations in the mixture

(figure 15). Similar to the results of figure 16, the values
of w obtained on the coarsest grids are less sensitive to
the model due to numerical diffusion.

Next, we turn our attention to the temporal evolution
of the flow kinetic energy,

k =
1

2

(
v21 + v22 + v23

)
. (30)

In equation 30, vi is the fluctuating velocity, which is cal-
culated as the difference between the instantaneous, Vi,
and the spatial (along transverse direction) mean, V i, ve-
locities. The kinetic energy distribution across the mix-
ing zone at four instants are presented in figure 18.

At t = 700µs, both models predict profiles of ki-
netic energy exhibiting two peaks. The first, located at
x1 ≈ 50.75cm, is caused by the projectile-like structures
observed in figure 13, whereas the second coincides with
the center of the mixing-layer (x1 ≈ 51.05cm). The NSE
has a smoother profile and larger peaks of k compared
with EE. For this reason, kmax predicted by the NSE is
4% larger than by the EE. In the following instants, the
magnitude of k reduces for both models. From t = 700
to 1000µs, kmax decreases 84.4% for the EE and 82.7%
for the NSE. Furthermore, the profiles start becoming
symmetric; evidence of an enhancement in the mixing-
layer homogeneity. Yet, the most significant result in
figure 18 is the fact that kmax at t = 1000µs predicted
by the NSE is 16.4% larger than for the EE. Since the
magnitude of k strongly influences the mixing rate, these
results underscore the importance of molecular viscos-
ity and diffusivity phenomena to shock-driven turbulent
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(a) EE. (b) NSE. (c) Experiment [37].

FIG. 14: Visualization of the Richtmyer-Meshkov structure and projectiles at t = 220µs for EE and NSE on the
finest grid. Experiments taken from Balakumar et al. [37].

(a) g3 at t = 920. (b) g3 at t = 1020. (c) g3 at t = 1120.

(d) g2 at t = 920. (e) g2 at t = 1020. (f) g2 at t = 1120.

FIG. 15: Fraction of the gas curtain with a local mass concentration of SF6, cSF6
, within selected ranges for EE and

NSE at different time-instants and grid resolutions.

mixing. The growth of k observed in NSE calculations is
also connected to an increase in the flow Mach number.
It was observed that the instantaneous averaged values
of the Ma can exceed 11% those obtained with the EE
(considering the time instants of figure 17).

The importance of viscous effects is also observed in
the variance of cSF6 , var(cSF6), depicted in figure 19.
This, presents the results as the percent difference be-
tween var(cSF6) predicted with NSE and EE along the

mixing-layer (0 ≤ xw/wNSE ≤ 1) at three instants af-
ter reshock. Figure 19 also includes the line wEE which
represents the relative mixing-layer location predicted by
the inviscid calculation. The numerical results indicate
that the magnitude of var(cSF6

) of the viscous calculation
can be significantly larger than that of the inviscid com-
putation. It is observed that these differences can reach
25%. This result stems from viscous effects that enhance
material mixing, and the higher turbulence intensities of
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(a) EE.

(b) NSE.

FIG. 16: Temporal evolution of the SF6 intensity, ISF6 , for EE and NSE on g2.

(a) g2.

(b) g3.

FIG. 17: Temporal evolution of the mixing-layer width,
w, for EE and NSE on different grid resolutions.
Experiments taken from Balakumar et al. [37].

viscous simulations shown in figure 18. Also, it is im-
portant to emphasize that mixing in EE simulations is
only possible due to numerical diffusion. Figure 19 also
indicates that the differences in w verified in figure 17 be-

tween NSE and EE calculations are mostly driven by the
left interface (wEE). Whereas the right interface of the
mixing-layer predicted with EE is at xw > 0.97wNSE ,
the left one can reach xw = 0.10wNSE .

III.2.1. Numerical Reynolds number

Figure 20 presents the temporal evolution of the nu-
merical Reynolds number, Ren, for viscous and inviscid
computations on the finest grid. For this problem, Ren
is estimated through the method proposed by Zhou et
al. [89] as in the derivation leading to equation 30 in
Grinstein et al. [95],

Ren =
6w2

k
SijSij . (31)

In this relation, w is the mixing-layer width presented
in figure 17, k is the flow kinetic energy, and Sij is the
strain-rate tensor. Here, k and Sij consider the complete
velocity field (mean, coherent, and turbulent [96, 97]) so
that the estimated Ren represents an upper limit for its
magnitude.

As expected, figure 20 indicates that Ren increases
in time and upon grid refinement. Whereas the first
stems from the growth of the strain-rate tensor magni-
tude in time due to flow unsteadiness, the second origi-
nates from the reduction of numerical diffusion with the
grid refinement. The data also show that these differ-
ences are amplified after reshock, and can reach 17.0%
for g2 and 34.5% for g3. Naturally, the largest values of
Ren are achieved by inviscid calculations. At t = 1200µs,
(Ren)EE = 7.2× 104. This value clearly exceeds the crit-
ical mixing transition, Rec, proposed by Dimotakis [27]
(Rec ≥ 1.0 − 2.0 × 104), and shows the impact of vis-
cous effects on solutions at Re higher than for the TGV.
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(a) EE.

(b) NSE.

FIG. 18: Temporal evolution of the flow kinetic energy,
k, for EE and NSE on g3.

The results of figure 20 also illustrate that mismatches
between (Ren)EE and (Ren)NSE start earlier as the grid
refines.

III.2.2. Vorticity field

As previously demonstrated for the TGV, the dynam-
ics of the vorticity field is closely dependent on molecular
viscosity and diffusivity effects. Since the vorticity field
has a strong impact on the physics of material mixing,
figure 21 depicts the evolution of the vorticity magnitude
for viscous and inviscid computations on the finest grid.
The results reveal that the inviscid flow assumption leads
to a meaningful increase in the vorticity magnitude. Al-

(a) t = 920µs.

(b) t = 1020µs.

(c) t = 1120µs.

FIG. 19: Difference between the variance of cSF6
,

var(cSF6
), for NSE and EE on g3 at different instants.

Results are shown as a percentage of (var(cSF6
))EE .
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FIG. 20: Temporal evolution of the numerical Reynolds
number, Ren, for EE and NSE on different grid

resolutions.

FIG. 21: Temporal evolution of the vorticity magnitude,
ω, for EE and NSE on the finest grid.

though this tendency is visible before and after reshock,
it is more pronounced after the mixing-layer undergoes
the second shock. During this period, ωEE can exceed
ωNSE by 25.6%.

Despite the increase of ω, figures 13 and 15 have shown
that the NSE enhance the homogeneity of the mixture.
This shows the role of molecular viscosity and diffusiv-
ity to the predictions. To address this point, figures 22
and 23 present the evolution of the magnitude of the flow
mechanisms responsible for the production and diffusion
of vorticity: stretching, TS , dilatation, TD, baroclinic,
TB , and viscous, TV (eqs. 25-28). As observed in Pereira
et al. [24], the results of both models illustrate that the
baroclinic mechanism dominates the production of vor-
ticity until reshock. Nevertheless, the magnitude of the

dilatation and stretching processes is not negligible. On
the other hand, the viscous mechanism does not exceed
4% of TB for NSE computations. The comparison of EE
and NSE indicates that inviscid calculations lead to a
small increase in TS and TD.

Upon reshock, t ≥ 600µs, TB experiences a rapid de-
cay, whereas TS and TD a substantial growth. The latter
result makes these two mechanisms the largest contrib-
utors to the production of vorticity. Regarding viscous
effects, the results show that TV experiences a significant
relative increase, which makes its magnitude represent
more than 20% of TS or TD. Also, the magnitude of
TV can surpass that of TB at t > 1000µs. Along with
the results of the previous sections and the fact that the
present finest grid is adequate but not optimal for this
problem [24], figures 22 and 23 reiterate the importance
of molecular viscosity and diffusivity effects to the qual-
ity of the predictions. Figure 22 also shows that the dif-
ferences between the various mechanisms predicted with
EE and NSE increase after reshock. Whereas inviscid
calculations lead to larger TS and TD, with values that
can exceed 36.4% and 29.5% of those obtained with the
NSE, TB predicted by the NSE is globally larger than by
the EE.

III.2.3. Spectral features

Figure 24 depicts the turbulence kinetic energy spec-
trum for inviscid and viscous computations at various
time instants after reshock. The spectra are calculated
using solution points inside a 2563 cubic domain located
at the center of the mixing-layer. This grid possesses a
lower resolution than that used in the computations be-
cause we map the AMR grid onto a uniform grid. Similar
to the TGV case, the results show that the inviscid as-
sumption affects the turbulence field dynamics. It is visi-
ble that inviscid calculations lead to an earlier transition
to turbulence due to the fact that the spectrum of EE
at t = 700µs contains a wider range scales (wavelengths)
than for NSE. At late times, the spectra obtained with
the EE also feature broader inertial ranges (t ≥ 1000µs).
In fact, it is not possible to identify a dissipative sub-
range in the EE results. Differences in Ree cause this
outcome.

III.2.4. Computational cost

The discussion of the results concludes with the as-
sessment of the simulations’ computational cost. This
is presented in table III for the different grids. Despite
the EE having fewer terms than the NSE and requiring
larger time-steps (table I), the results indicate that in-
viscid calculations are at least 2.1 times more expensive
than viscous simulations. To understand this result, fig-
ure 25 depicts the spatial resolution of g3 at t = 220µs
for both EE and NSE. The results show that when em-
ployed in EE calculations, the AMR algorithm refines the
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(a) TS and TV .

(b) TD and TV .

(c) TB and TV .

FIG. 22: Temporal evolution of the norm of the
vorticity equation terms (TS , TD, TB , and TV ) for EE

and NSE on grid g3.

grid in larger areas of the domain, where the computa-
tions should not need fine grid resolutions. In addition

FIG. 23: Temporal evolution of the norm of the
vorticity equation terms (TS , TD, TB , and TV ) for NSE

on grid g3.

to larger values of Ree, this stems from the fact that
inviscid calculations are not able to rapidly damp flow
perturbations originating in the passage of the shock-
wave through the gas curtain. As a result, the gradients
of pressure and density used as refinement criterion get
steeper, increasing the the number of cells (figure 2) and,
consequently, the computational cost of inviscid simula-
tions. Viscous computations, on the other hand, rapidly
dissipate such perturbations and so only refine the grid
in the mixing-layer and shock-wave regions.

Although modified AMR algorithms may minimize this
issue, the underlying problem will persist due to the in-
viscid fluid assumption, ν = 0. In this manner, density
and pressure perturbations created by the two shocks
are not dissipated, thus leading to steeper flow gradi-
ents that AMR algorithms are designed to calculate ac-
curately. Considering the impact of molecular viscosity
and diffusivity effects in the accuracy and cost of the sim-
ulations, the viscous NSE seem to be the best approach
to predict the present transitional shock-driven turbulent
mixing flow.

IV. CONCLUSIONS

We investigated the importance of molecular viscosity
and diffusivity effects on the prediction of transitional
and shock-driven mixing flow problems that include high

TABLE III: Computational cost in CPU.hour of EE
and NSE computations for different grid resolutions.

Grid tEE (CPU.h) tNSE (CPU.h) tNSE/ tEE

g3 380, 328 156, 699 0.41

g2 26, 766 12, 493 0.47

g1 2, 972 888 0.30
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(a) EE.

(b) NSE.

(c) NSE vs. EE.

FIG. 24: Temporal evolution of the turbulence kinetic
energy spectrum, E(k), for EE and NSE on grid g3.

and low Re/Ma regions. Two representative transitional
test-cases are studied with ILES using the EE and NSE:
the TGV at Re = 3000 and initial Ma = 0.28; and the
air-SF6-air gas curtain subjected to two shock-waves at
Ma=1.2 studied by Balakumar et al. [37]. Grid refine-
ment studies are performed to assess the influence of nu-
merical diffusion on the computations. The simulations
are compared against available reference data, and their
computational cost analyzed. The study evaluates the
effect of the molecular viscosity and diffusivity on the
turbulence and coherent fields, as well as on the mech-
anisms contributing to the production and diffusion of
vorticity.

The results of this work illustrate the differences be-
tween NSE and EE predictions due to viscous effects. In
contrast to the EE solutions, the NSE results are in close
agreement with the reference data, in particular for the
TGV case. On the other hand, the EE solutions lead
to meaningful discrepancies with the reference data and
only exhibit similarities with the NSE results at coarse
grid resolutions. One of the major contributors to this
result is the inability of the EE to bound the Ree of the
computations. The assumption of inviscid flow makes
Ree dependent on the grid resolution so that its magni-
tude varies upon grid refinement. This aspect reveals of
importance to the prediction of the mean-flow, coherent
and turbulent fields. For instance, it is observed that
the turbulence field of inviscid calculations is featured
by wider (range of wavelengths) and energetic inertial
ranges than that obtained with the NSE. In regard to
the vorticity field, the results show that the EE alter
the dynamics of all mechanisms responsible for the pro-
duction of vorticity. Most notably, the data illustrate
that the magnitude of the viscous diffusion of vorticity
can even exceed that of the production mechanisms. Fi-
nally, it is shown that the cost of performing EE and
NSE calculations without AMR is similar. Yet, the uti-
lization of AMR makes the EE significantly more costly
than the NSE. In this case, inviscid calculations are at
least 2.1 times more expensive than NSE computations.
This stems from the larger effective Re achieved by EE
simulations, as well as from the inability of this mathe-
matical model to rapidly dissipate fluctuations caused by
shock-waves.

In summary, this study demonstrated the importance
of molecular viscosity and diffusivity effects on the pre-
diction of transitional and shock-driven mixing flow prob-
lems. Our main focus has been on assessing viscous ef-
fects; assessing molecular diffusivity effects on scalar pre-
dictions deserves further study and has not been part of
the current scope. Naturally, there are applications at
full scale involving onset and decay of turbulence where
available computational algorithms and resources may be
insufficient to reduce the magnitude of numerical diffu-
sion to optimal levels allowing for accurately resolved
effects. In these cases, EE and NSE may lead to sim-
ilar predictions. However, future advances in computing
power and the present analysis (cost and accuracy) sug-
gest that the performance of NSE computations may still
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(a) EE.

(b) NSE.

FIG. 25: Spatial resolution of grid g3 at t = 220µs for EE and NSE.

be advantageous in such cases.
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dÉntropie, de Concentration, de Rotationnel dans
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[78] A. Favre, Équations Statistiques des Gaz Turbulens
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