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Two dimensional free surface flows in Hele-Shaw configurations are a fertile ground for exploring
nonlinear physics. Since Saffman and Taylor’s work on linear instability of fluid–fluid interfaces,
significant effort has been expended to determining the physics and forcing that set the linear
growth rate. However, linear stability does not always imply nonlinear stability. We demonstrate
how the combination of a radial and an azimuthal external magnetic field can manipulate the
interfacial shape of a linearly unstable ferrofluid droplet in a Hele-Shaw configuration. We show
that weakly nonlinear theory can be used to tune the initial unstable growth. Then, nonlinearity
arrests the instability, and leads to a permanent deformed droplet shape. Specifically, we show
that the deformed droplet can be set into motion with a predictable rotation speed, demonstrating
nonlinear traveling waves on the fluid-fluid interface. The most linearly unstable wavenumber and
the combined strength of the applied external magnetic fields determine the traveling wave shape,
which can be asymmetric.

I. INTRODUCTION

Recently, there has been significant interest in the
physics of active and responsive fluids [1, 2]. For example,
swimming bacteria can take a suspension of microscopic
gears out of equilibrium and extract rectified (useful)
work out of an otherwise random system [3]. One promis-
ing approach to creating active fluids with controllable
properties and behaviors is by suspending many mechan-
ical microswimmers made from shape-programmable ma-
terials [4] and actuating them with an external mag-
netic field [5, 6]. This actuation mechanism is par-
ticularly enticing for biological applications due to the
safe operation of magnetic fields in the medical setting
(for, e.g., targeted therapies and drug delivery in vivo)
[7]. Even simpler than a suspension of magnetically-
responsive mechanical microswimmers is a suspension of
ferrofluid droplets, which can also respond to an external
magnetic field [8, 9]. Ferrofluids are colloidal dispersion
of ferromagnetic nanoparticles in a carrier liquid, such as
water, which can be immiscible when placed in another
liquid. However, the ferrofluid droplet’s interface motion
and response to different types of external magnetic fields
is not well understood. Previous work has addressed the
linear stability of such fluid–fluid interfaces [10, 11], in-
cluding stationary shapes [12], but not a droplet’s non-
linear dynamics or controllable motion. Guided by the
well-established ability of nonlinearity to “arrest” long-
wave instabilities [13], we demonstrate, using theory and
nonlinear simulation, that it is possible to “grow” linearly
unstable ferrofluid interfaces into well-defined permanent
shapes. These permanent shapes, which cannot be fur-
ther deformed without changing the forcing of the sys-
tem, can then be considers as solitary waves, in the sense
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of a “localized wave that propagates along one space di-
rection only, with undeformed shape” [14, p. 11]. Impor-
tantly, unlike previous work discussing traveling waves
on a ferrofluid interface in a Cartesian configuration [15],
we analyze the fully nonlinear dynamics of these waves
in a novel configuration, and thus ensure they satisfy the
solitary wave definition above. Specifically, we show that
the resulting coherent droplet shapes are reproducible
and controllable via an external magnetic field. These
droplets can be set into rotational motion with velocities
predictable by the proposed theory, leading to the possi-
bility of an externally-actuated active fluid suspension.

II. GOVERNING EQUATIONS

We study the dynamics of an initially circular ferrofluid
droplet (radius R) confined in a Hele-Shaw cell with gap
thickness b and surrounded by air (negligible viscosity),
as shown in Fig. 1, because “[i]f any [ferro]fluid mechanics
problem is likely to be accessible to theory and to direct
comparison of theory and experiment it should be this
one” [16]. Both fluids are considered incompressible. We
propose to apply the radially-varying external magnetic
field

H =
I

2πr
êθ︸ ︷︷ ︸

Ha

+
H0

L
r êr︸ ︷︷ ︸

Hr

. (1)

A long wire through the origin, carrying an electric cur-
rent I, produces the azimuthal component Ha. Anti-
Helmholtz coils produce the radial component Hr, where
H0 is a constant and L is a length scale [12, 17]. The
combined magnetic field H = Ha + Hr forms an angle
with the initially undisturbed interface [18]. The droplet
experiences a body force ∝ |M|∇|H|, where M is the
magnetization. To study shape dynamics, we assume the
ferrofluid is uniformly magnetized, M = χH, where χ is
its constant magnetic susceptibility. So, ∇|H| 6= 0 is the
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FIG. 1. Schematic illustration of a Hele-Shaw cell confin-
ing a ferrofluid droplet, initially circular with radius R. The
azimuthal magnetic field Ha is produced by a long wire con-
veying an electric current I. The radial magnetic field Hr

is produced by a pair of anti-Helmholtz coils with equal cur-
rents IAH in opposite directions. The combined external mag-
netic field H deforms the droplet, and its interface is given by
h(θ, t). In comparison, the fluid exterior to the droplet (e.g.,
air) is assumed to have negligible viscosity and velocity.

main contribution to the body force, and the demagnetiz-
ing field is negligible, as shown in previous work [17–20].

Enforcing no-slip on the confining boundaries and ne-
glecting inertial terms, the confined flow is governed by
a modified Darcy’s law [17] with gap-averaged velocity:

v = − b2

12η
∇ (p−Ψ) , ∇ · v = 0, (2)

where p is the pressure in the droplet, η is the ferrofluid’s
viscosity, Ψ = µ0χ|H|2/2 is a scalar potential account-
ing for the magnetic body force, and µ0 is the free-space
permeability. Here, v is the velocity field of the “inner”
ferrofluid, while the viscosity of the “outer” fluid is con-
sidered negligible (i.e., it is considered inviscid), so the
flow exterior to the droplet is neglected. The resulting
model is thus, essentially, a one-phase model.

At the boundary of the droplet, the pressure is given
by a modified Young–Laplace law [8, 9]:

p = τκ− µ0

2
(M · n̂)2, (3)

where τ is the constant surface tension, and κ is the cur-
vature of the droplet shape. The second term on the
right-hand side of Eq. (3) is the magnetic normal trac-
tion [8, 9], where n̂ denotes the outward unit normal vec-
tor at the interface. This contribution breaks the symme-
try of the initial droplet interface, due to the projection
of M onto n̂, and causes the droplet to rotate. The kine-
matic boundary condition

vn = − b2

12η
∇ (p−Ψ) · n̂ (4)

requires that the droplet boundary is a material surface.

III. MATHEMATICAL ANALYSIS

We employ the weakly nonlinear approach [21] pre-
viously adapted to ferrofluid interfacial dynamics (e.g.,
[12, 17, 18]). The droplet interface is written as h(θ, t) =
R+ ξ(θ, t), where

ξ(θ, t) =

+∞∑
k=−∞

ξk(t)eikθ (5)

represents the perturbation of the initially circular in-
terface, with complex Fourier amplitudes ξk(t) ∈ C and
azimuthal wavenumbers k ∈ Z. The velocity potential
φ = p−Ψ is then expanded into a Fourier series as

φ(r, θ, t) =
∑
k 6=0

φk(t)
( r
R

)|k|
eikθ, (6)

and φk is expressed in terms of ξk through the kinematic
boundary condition (4). Substituting Eqs. (5), (6) and
(3) into Eq. (2), keeping only terms up to second order in
ξ, we find the dimensionless equations of motion (k 6= 0):

ξ̇k = Λ(k)ξk +
∑
k′ 6=0

F (k, k′)ξk′ξk−k′ +G(k, k′)ξ̇k′ξk−k′ .

(7)
The mode-coupling functions in Eq. (7) are given by

F (k, k′) =
|k|
R

{
NBa

R4
[3− χk′(k − k′)]

+ NBr{1 + χ[k′(k − k′) + 1]}

− 1

R3

[
1− k′

2
(3k′ + k)

]
+

2χ
√

NBaNBr

R2
ik′
}
,

(8a)

G(k, k′) =
1

R
[(sgn(kk′)− 1)|k| − 1], (8b)

where sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0.
From mass conservation, ξ0 = −

∑
k>0 |ξk|2/R ∀t ≥ 0.

Here,

Λ(k) =
|k|
R3

(1− k2)︸ ︷︷ ︸
surface tension

−2NBa

R4
|k|+ 2(1 + χ)NBr|k|

− 2χ
√

NBaNBr

R2
ik|k| (9)

denotes the (complex) linear growth rate, and

NBa =
µ0χI

2

8π2τL
, NBr =

µ0χH
2
0L

2τ
(10)

are the magnetic Bond numbers quantifying the ratio
of azimuthal and radial magnetic forces to the capillary
force, respectively. Terms multiplied by χ arise from the
magnetic normal stress. The time and length scales used
in the nondimensionalization are 12ηL3/τb2 and L, re-
spectively.



3

IV. LINEAR REGIME

First, consider Eq. (7), neglecting quadratic terms in
ξk, then <[Λ(k)] = λ(k) governs the exponential growth
or decay of infinitesimal perturbations. For λ(k) > 0, the
interface is unstable. Specifically, Eq. (9) indicates that
the radial magnetic field term ∝ (1 + χ)NBr is destabi-
lizing, while the azimuthal term ∝ NBa and surface ten-
sion are stabilizing. The most unstable mode km solves
dλ(k)/dk = 0:

km =

√
1

3

[
1− 2NBa

R
+ 2(1 + χ)NBrR3

]
. (11)

This wavenumber characterizes the dominant bkmc-fold
symmetry of a pattern. Note that the normal stress from
the azimuthal magnetic field does not contribute to the
linear dynamics.

The phase velocity of each mode,

vp = −=[Λ(k)]/k = 2χ
√

NBaNBrk/R
2 (12)

in the linear regime, is set by =[Λ(k)]. A periodic shape
on [0, 2π] forms a closed curve, meaning wave propaga-
tion is manifested as rotation of the droplet. Motion is
caused by the magnetic normal stresses arising from the
combined magnetic field. Intuitively, from vector projec-
tion, we observe that only the combined azimuthal and
radial magnetic field can break the symmetry and cause
a force imbalance leading to motion. This linear analysis
indicates that perturbations of the droplet interface can
propagate (and, since vp = vp(k), they also experience
dispersion). Such wavepackets will either decay or blow-
up exponentially according to the sign of λ(k). However,
this is not the whole story, and nonlinearly stable travel-
ing shapes exist, as we now show.

V. NONLINEAR REGIME

To demonstrate the possibility of nonlinear traveling
waves in this system, we numerically solve the weakly
nonlinear mode-coupling equations (7) for five modes
(i.e., k, 2k, . . . , 5k). The fundamental mode k = 7 is cho-
sen to allow propagating solutions over a wider swath of
the (NBa,NBr, km) space (compared to choosing k < 7),
while only requiring modest spatial resolution for simu-
lations (compared to k > 7). We verified that the am-
plitudes |cn| and phases ∠[cn] of modes saturate at late
times, leading to permanent propagating profiles with
ξnk(t) = cne

inω(k)t (see below).
Next, we perform fully nonlinear simulations to vali-

date the weakly nonlinear predictions. The vortex sheet
method is a standard sharp-interface technique for sim-
ulating dynamics of Hele-Shaw flows [22]. It is based on
a boundary integral formulation in which the interface is
formally replaced by a generalized vortex sheet [23] with
a distribution of vortex strengths γ(s, t), where s is the

arclength coordinate. We adapt this approach to handle
ferrofluids under imposed magnetic fields. First, we ex-
press the velocity of the interface solely in terms of the
interface position. To do so, it is convenient to identify
the position vector in R2 with a scalar z(s, t) ∈ C (∗ de-
notes complex conjugate) [23–25]. Second, to advance
the interface, we solve the dimensionless equations

z∗t = − γ

2zs
+

1

2πi
P
∮

γ(s′, t)

z(s, t)− z(s′, t)
ds′, (13a)

γ

2
= <

{
zs

2πi
P
∮

γ(s′, t)

z(s, t)− z(s′, t)
ds′
}

+
[
κ(s, t)− (M · n̂)2 −Ψ

]
s
, (13b)

iteratively for the velocity zt, where (·)t ≡ ∂(·)/∂t,
(·)s ≡ ∂(·)/∂s, i =

√
−1, and P represents principal

value integration. Here, Ψ = NBar
−2 + NBrr

2, and

(M · n̂)2 = χ
[√

NBar
−1(êθ · n̂) +

√
NBrr(êr · n̂)

]2
is the

dimensionless magnetic normal stress. Time advance-
ment is accomplished by the Crank–Nicolson scheme.
The spatial discretization is implemented on an array
of Lagrangian points (N = 1024) with uniform ∆s;
see Appendix B for further details, including algorithm
flowchart and grid convergence study.

VI. EVOLUTIONARY DYNAMICS

The evolution of perturbed harmonic modes ξk un-
der the fully nonlinear simulation and the weakly non-
linear approximation are shown in Fig. 2(a). Starting
from small initial values (ξk|k=7 = 0.002, ξnk = 0 for
n > 1) with NBa,NBr, R, χ set so that the most unstable
mode is equal to the fundamental mode (km = k = 7),
they saturate at late times. The perturbed circular in-
terface grows exponentially in the linear regime and then
matches the weakly nonlinear approximation at interme-
diate times (t ∈ [0, tw]). The nonlinear simulations take
longer to saturate (t ∈ [tw, te]) and do so at higher fi-
nal amplitudes compared to the weakly nonlinear result.
The time-domain evolution is also shown in Fig. 2(b),
evolving from a nearly flat (unwound circular) interface
into a permanent propagating profile [26].

The rotating droplet, shown in Fig. 2(c), has a polyg-
onal shape with the symmetry set by the fundamental
mode, k = 7. The fully nonlinear profile has a sharper
peak compared to the weakly nonlinear approximation,
which is otherwise in good agreement. The key discovery
of the present work is the stable rotating shape, which
we now seek to analyze as a nonlinear wave phenomenon
[14].

VII. WHEN DOES WEAKLY NONLINEAR
STABILITY IMPLY NONLINEAR STABILITY?

A deficiency of linear and weakly nonlinear analyses is
that they do not provide sufficient conditions for stability.
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FIG. 2. (a) The evolution of the first 5 harmonic modes from fully nonlinear simulation (solid) and weakly nonlinear approxi-
mation (dashed), for NBa = 1.0, NBr = 37, R = 1, and χ = 1 (same parameters for (b), (c) and (d)). (b) The fully nonlinear
evolution of the interface from a small perturbation of the flat base state into a permanent traveling wave (rotating droplet). (c)
Comparison between the final shape from fully nonlinear simulation (solid) and weakly nonlinear approximation (dashed); (d)
Stability diagram based on the first two harmonic modes of the final shape (marked with N) shown in (b); ◦ (resp. ×) denotes
the stable (resp. unstable) initial conditions, solid (resp. dashed) curves tract the stable (resp. unstable) evolution trajectories.
The unstable region is shaded, and the ‘f ’ superscript represents the final harmonic mode amplitude.

Linearly stable base states can be nonlinearly unstable
[27], and vice versa. Importantly, however, our nonlinear
traveling wave solution is a local attractor (following the
terminology from [28]); see Fig. 2(d).

Shapes in a neighborhood of the propagating pro-

file, subject to small (ξk,2k/ξ
f
k,2k � 1) or intermediate

(ξk,2k/ξ
f
k,2k = O(1)) initial perturbations, converge to it.

Larger perturbations (shaded region) lead to nonlinear
instability of the weakly nonlinearly stable profiles; “fin-
gers” continue to rotate and grow without bound under
the effect of the radial magnetic field ∝ NBr, which in-
creases with distance to the center of the droplet. Con-
vergence to the attractor is sensitive to the initial am-
plitude of the first harmonic mode ξk. For the chosen
parameters, λ(k) > 0 and λ(2k) < 0: high wavenum-
bers decay and the fundamental wavenumber grow in

the linear stage. Consequently, for low ξk/ξ
f
k and high

ξ2k/ξ
f
2k, the low wavenumber modes grow and saturate,

as high wavenumber modes decay exponentially in the

linear regime. With higher initial ξk/ξ
f
k , the perturbed

droplet will not go through the linear regime, and the
amplitudes of both modes will rapidly increase to cre-
ate a skewed shape, with multivalued h(θ, t), for which
harmonic modes can no longer be defined. Note that
Fig. 2(d) is a projection in the (ξk, ξ2k) plane, where the
initial values of ξ3k, ξ4k, ξ5k are set as the final amplitudes
(and phases) from the weakly nonlinear equations. A fast
Fourier transform was used to decompose the nonlinear
profile into normal modes that we plot in this figure.
Note that even though Fig. 2(a) indicates ξ3k makes a

non-trivial contribution to the final shape, while ξ4k, ξ5k
play a smaller role, the projection is sufficient to conclude
that the propagating wave profile is an attractor.

VIII. PROPAGATION VELOCITY

A permanent traveling wave profile has ξ(θ, t) =
Ξ(kθ − ωt), and vf = ω/k is its propagation velocity.
Expressing the modes’ complex amplitudes as ξnk(t) =
cne
−inω(k)t, with constant cn ∈ C that account for their

relative phases, we have vp(k, t) = nω(k)/nk = vf . The
mean vp of the first five harmonics is used to calculate
vFf for the fully nonlinear simulation and also vWf for the

weakly nonlinear approximation. Meanwhile, vLf = vp as

given by Eq. (12).
For a quantitative comparison, three sets of parameters

are considered, fixing χ = 1. Two sets (i) and (ii) are for
km = 7, and the variation of NBr is according to Eq. (11).
A third set (iii) explores the effect of km under the same
linear propagation velocity vLf . Figure 3(a) compares the

final propagating velocity predictions. Both vLf and vWf
are in relatively good agreement with vFf for small ve-

locities. When NBa → 0 (the magnetic field becomes
radial), only a stationary (non-rotating) droplet (vf = 0)
exists [12]. For higher vf , the larger deviation in the pre-
dictions highlights the importance of nonlinearity. Nev-
ertheless, the linear and weakly nonlinear results follow a
similar trend. Importantly, vLf and vWf help identify the
key control factors: the coupled magnetic field strength√

NBaNBr and the radius of the initial droplet R. The
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FIG. 3. (a) Comparison of the propagation velocity predicted
by linear theory vLf (dashed), weakly nonlinear theory vWf
(empty symbols), and fully nonlinear simulation vFf (filled
symbols). The circles represent results for case (i) R = 1 fixed
and NBa ∈ [0, 10−3, 10−2, 10−1, 1, 3, 5], the triangles represent
results for case (ii) NBa = 1 fixed with NBr varying according
to R ∈ [0.8, 0.9, 1.1, 1.2], and the squares represent case (iii)
km ∈ [5, 6, 7, 8, 9], R = 1 and NBa,NBr determined so that
vLf = 85.16. (b) The skewness Sk of the fully nonlinear profile.
(c) The permanent wave shape (only one wavelength shown).

salient physics uncovered is that the propagating veloc-
ity can be non-invasively tuned.

IX. TRAVELING WAVE SHAPE

The most unstable mode km sets the propagating pro-
file, which has a sharper peak for higher km [Fig. 3(c)].
To quantify the shape change, we introduce the skewness
Sk(t) = 〈ξ3〉/〈ξ2〉3/2, which is used to define the verti-
cal asymmetry of nonlinear surface water waves [29, 30];
Sk > 0 corresponds to narrow crests and flat troughs.

Here, 〈 · 〉 = 1
2π
∫ 2π

0
( · ) dθ. Figure 3(b) shows that Sk

(for the fully nonlinear propagation) increases with km,
as expected from the sharper peaks in Fig. 3(c). This
observation also explains why vLf becomes a worse ap-

proximation of vFf as km increases [inset of Fig. 3(a)]:

smoother peaks (lower km) are better captured by the
linear theory based on harmonic modes.

Figure 3(c) reveals that the wave profile for km = 5
(NBa = 1.9, NBr = 19.5) is more asymmetric than the
one for km = 9 (NBa = 0.60, NBr = 60.8). Under a
purely radial magnetic field (NBa = 0), the stationary
shape has azimuthal symmetry [12]. For the combined
magnetic field, on the other hand, the dimensionless gov-
erning Eq. (2) and pressure boundary condition in Eq. (3)

can be rewritten as

v = −∇
(
p−NBa

1

r2
−NBrr

2

)
, (14)

p = κ−
[
χ

NBa

r2
(êθ · n̂)2 + χNBrr

2(êr · n̂)2

+2χ
√

NBaNBr(êθ · n̂)(êr · n̂)
]
, (15)

where êθ · n̂ = −hθ/(h2 + h2θ), êr · n̂ = h/(h2 + h2θ),
and hθ = ∂h/∂θ. The magnetic scalar potential in
Eq. (14) results from the body force, and the terms pre-
multiplied by χ in Eq. (15) represent the magnetic normal
stress. For a droplet with symmetric azimuthal pertur-
bation, the body force alone cannot break the symmetry.
Therefore, the asymmetry of shapes discussed is to be
attributed to the magnetic normal stress.

This observation can be intuitively understood by con-
sidering one wavelength of a symmetric waveform. The
first three terms on the right-hand side of Eq. (15) are
equal on both sides of the peak, while the fourth term
changes at the peak due to the sign of hθ, which requires
different curvatures on either side of the peak to remain
balanced. Therefore,

√
NBaNBr can be taken as the mea-

sure of the coupling effect between the magnetic field
components.

To further understand the asymmetry of propagating
shapes induced by the combined magnetic field, we ex-
tend the parameters of case (i) to a new case (iv): km = 7,
R = 1 and NBr varying according to NBa (see Fig. 4 cap-
tion). To quantify the fore-aft asymmetry of the shape,
we introduce As(t) = 〈H[ξ]3〉/〈ξ2〉3/2 [29, 30]; H[ · ] is
the Hilbert transform. For As > 0, waves tilt “forward”
(i.e., counter-clockwise).

Figure 4(a) shows As(t) for different
√

NBaNBr, which
quantifies the coupled field effect, starting with small
symmetric perturbations. For a stable case, As(t) reaches
a maximum value (t ≈ t1) during the initial unsta-
ble weakly nonlinear growth (dark shadow region), and
asymptotes to a value close to zero (t ≥ t6). The differ-
ences in the final propagating profile (under the same km)
shown in Fig. 4(b) are hard to capture, which is consis-
tent with the observation in Fig. 3(b). For the unstable
cases, “wave breaking” occurs, which is highlighted by
a change of sign of As. Also, now, As(t) no longer sat-
urates at late t. Instead As(t) crosses zero (at t & t3)
and approaches a singularity. This unstable example is
shown in the second row of Fig. 4(c). As its amplitude
first grows, the wave tilts forward (t = t2), but nonlinear
effects restore its symmetry (t = t3). Subsequently, the
wave tilts backwards (t = t4, t5) and its amplitude con-
tinues to grow (t = t6). The calculation of As then fails
because H requires the perturbation ξ(θ, t) to be single-
valued in θ. The distorted wave has a wider base and
evolves into long unstable fingers.

Note that NBa/NBr also increases with
√

NBaNBr for
our choices of NBa and NBr. Equation (9) shows that
the radial magnetic field is destabilizing, while surface
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FIG. 4. (a) Time evolution of the wave profile asymme-
try for different combination of NBa ∈ [0, 0.1, 1, 3, 5, 6, 7, 8, 9]
and NBr varying so that km = 7 for R = 1. Solid curves
represent stable cases yielding a propagating profile; dashed
curves represent unstable cases in which the profile distorts
and grows without bound. (b) Permanent wave profiles
that emerge and propagating in a stable manner. (c) Sta-
ble (top, with NBa = 1,NBr = 37) and unstable (bottom,
NBa = 8,NBr = 41) evolution of the profile. The instants of
time (at which the shapes in (c) are shown) are marked with
white dots in (a), superimposed on the asymmetry profiles.

tension (k > 2 here) and the azimuthal field are stabiliz-
ing. However, the nonlinear simulations indicate that, for
the same km, increasing NBa/NBr can induce instability
because it engenders a larger vf (and As), leading to a
global bifurcation with Fig. 2(d) as one stable slice. This
result has an analogy to solitary waves in equations of the
Kortweg–de Vries (KdV) type. Specifically, initial per-
turbations grow, deforming a shape until nonlinearity is
balanced by dispersion, when a permanent wave emerges
[31]. However, depending on the form of the nonlinearity,
not all such permanent waves are stable attractors, and
conditions must be placed on the wave speed [32].

X. CONCLUSION

This study demonstrates how a perturbed circular fer-
rofluid droplet can evolve into a nonlinearly stable rotat-
ing shape. The most unstable mode sets how perturba-
tions evolve into a permanent profile (and its skewness
and asymmetry). Weakly nonlinear theory, in hand with
fully nonlinear simulations, revealed permanent rotating
shapes (traveling waves) with predictable propagation ve-
locity. We showed how the coupling of the magnetic field

components modifies the asymmetry and the nonlinear
instability.

Although the manipulation of the linear growth rate of
interfacial perturbations in Hele-Shaw cells is well stud-
ied [33], including extensions based on the weakly non-
linear expansion from Eq. (7) [34], the control of the dy-
namic, fully nonlinear, patterns is not. Our approach
harnesses the magnitude and the direction of coupled
magnetic fields to generate ferrofluid droplets, with well-
characterized shapes and rotational speeds, by purely ex-
ternal means.

Open questions remain: e.g., which fundamental
modes evolve into propagating shapes? Work on the sta-
tionary problem [17, 35] gives a hint, however, for a prop-
agating shape the Birkhoff integral equation [36] must be
solved, making an extension of [17, 35] challenging. In-
terestingly, our simulations also reveal that patterns pre-
dicted as stable by weakly nonlinear analysis can be un-
stable. In Appendix A, we provide an example showing
that perturbations with k = 4 will not evolve into either
a stationary or a propagating shape (although both are
predicted to exist by weakly nonlinear analysis).

Additionally, does this system accommodate more
than one propagating wave? If so, do such waves keep
their shapes upon collision, as with soliton interactions
[31, 37]? Previous studies derived KdV equations for
unidirectional small-amplitude, long-wavelength distur-
bances on fluid–fluid interfaces in Hele-Shaw [38] and ax-
isymmetric ferrofluid configurations [19, 39], demonstrat-
ing the celebrated “sech2” solitary wave. Instead, in our
study without such restrictions, we discovered periodic
traveling nonlinear waves, which are akin to the cnoidal
solutions of periodic KdV, i.e., the fundamental nonlin-
ear modes (“soliton basis states”) [40]. Additionally, we
observed wave breaking [Fig. 4(c,bottom)].

Finally, it would be of interest to verify the pro-
posed shape manipulation strategies by laboratory ex-
periments. Previous theoretical studies [17, 41–43] sug-
gest that many exact stationary droplet shapes are un-
stable, thus their relevance to experimental studies is lim-
ited. On the other hand, the nonlinear simulations in our
study, showing stable rotation, pave the way for future
experimental realizations.
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Appendix A: Unstable pattern with k = 4

As mentioned in the main text, linear (or even weakly
nonlinear) stability does not always imply nonlinear sta-
bility (see also [27]). Indeed, it is not known under what
conditions the weakly-nonlinear stable droplet shapes are
actually nonlinearly stable. In the main text, we pre-
sented examples for which this implication holds true.
Here, in Fig. 5, we demonstrate, for completeness, an ex-
ample to the contrary. To the best of our knowledge,
such an example has not been analyzed before, and thus
remains an avenue of future work. This exploration also
requires caution, to rule out physical from numerical in-
stability.

FIG. 5. The unstable evolution of the first 5 harmonic modes
(k = 4, 8, 12, 16, 20) from fully nonlinear simulation (solid)
and their stable evolution from weakly nonlinear approxima-
tion (dashed) for (a) nonrotating (km = 4, NBa = 0) and (b)
rotating (km = 4, NBa = 1) shapes.

Appendix B: Implementation of the numerical
method and grid convergence

The principal value integration in Eqs. (13) is per-
formed numerically by a spectrally accurate spatial
scheme [24]:

PVj =
2∆s

2πi

∑
j+k odd

γk
zj − zk

, (B1)

where a j subscript denotes the evaluation of a quantity
at the jth Lagrangian grid point j∆s with ∆s = L/N ,
L =

∮
ds, and N is the number of grid points. The

parametrization of the interface via its arclength reduces

the stiffness of the numerical problem caused by the pres-
ence of third-order spatial derivatives. A rearrangement
of the grid points is conducted with cubic interpolation,
after each time step, to maintain uniform grid spacing
∆s. The uniform arclength spacing then allows the use
of the second-order central differentiation formulæ for all
derivatives. A fixed-point iteration scheme is used to re-
solve the implicit Eq. (13b) to obtain γj at each interface
point zj , as shown schematically in Fig. 6.

Time advancement (superscripts denote the time step
number) is accomplished with a Crank–Nicolson scheme:

z∗n+1 = z∗n − ∆t

2

[
γn+1

2zn+1
s

+
γn

2zns

]
+

∆t

2

[
PV n+1 + PV n

]
,

(B2)

where both of the nonlinear terms γn+1/2zn+1
s and

PV n+1 are obtained by subiteration with index m, as
shown schematically in Fig. 6. Equation (B2) converges
and zn+1 = zm+1 when ‖zm+1 − zm‖ < tolz with
tolz = 0.1 max |znt |∆t.

A grid convergence study with 4 levels of the grid res-
olution was conducted for two cases: km = 7 and km = 9
with NBa = 1. The most frequently used case in the main
text is km = 7, while the sharper peaks for km = 9 de-
mand on the highest grid resolution. Figure 7(a) shows
the spectral energy content of harmonic modes (k, 2k,
3k, . . .) of the propagating waveform, where the “pil-
ing up” near the tail on the finest grid (N = 2048) is
numerical noise. This plot supports our decision to con-
sider the N = 1024 grid as offering sufficient resolution.
Figure 7(b) shows the root-mean-squared error in the
shape z itself, taking ẑ as the “reference shape” on the
N = 2048 grid. The error decreases with grid refinement.
The error at N = 256 for km = 9 is not shown for the
propagating shape because the scheme is not even stable
on such a coarse mesh for this case.

Figure 7 further shows the evolution of (c) the skewness
Sk and (d) the asymmetry As. The skewness matches
well on all grids used, showing it is a well-converged quan-
tity, while the asymmetry is seen to be more sensitive to
the grid resolution. The differences between N = 1024
and N = 2048 are small enough so that it is safe to use
N = 1024 for the simulations reported in the main text,
considering the significantly higher computational cost
incurred by using finer grids.
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FIG. 6. Flow chart of the vortex-sheet algorithm using Crank–Nicolson for time advancement and fixed-point iteration for
resolving the implicit nonlinear terms.

FIG. 7. Grid convergence study for fundamental modes km = 7 (black) and km = 9 (blue) with NBa = 1 and N = 256 (dotted),
N = 512 (dot-dashed), N = 1024 (dashed), and N = 2048 (solid). (a) Spectral energy of harmonic modes (k, 2k, 3k, . . .). (b)
The root-mean-square error taking the N = 2048 solution ẑ as “exact”. (c) Grid convergence of the evolution of the skewness
Sk(t). (d) Grid convergence of the evolution of the asymmetry As(t).
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