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We derive a general lower bound on distributions of entropy production in interacting active
matter systems. The bound is tight in the limit that interparticle correlations are small and short-
ranged, which we explore in four canonical active matter models. In all models studied, the bound
is weak where collective fluctuations result in long-ranged correlations, which subsequently links the
locations of phase transitions to enhanced entropy production fluctuations. We develop a theory for
the onset of enhanced fluctuations and relate it to specific phase transitions in active Brownian par-
ticles. We also derive optimal control forces that realize the dynamics necessary to tune dissipation
and manipulate the system between phases. In so doing, we uncover a general relationship between
entropy production and pattern formation in active matter, as well as ways of controlling it.

Active matter systems are defined by forces that inject
energy locally into individual particles, driving nonequi-
librium steady-states that continuously dissipate energy.
This persistent dissipation and its associated entropy
production have been shown to have deep connections
with structural and dynamic properties of active matter
[1–10]. Subsequently, understanding the contributions to
the entropy production in active matter is the first step
in manipulating their emergent order [11–19], designing
active metamaterials with novel responses [20–23], and
utilizing active heat engines [24–30]. Stochastic thermo-
dynamics provides a framework for studying entropy pro-
duction and has supplied general theories that constrain
its statistics [31–35] and its role in nonequilbrium re-
sponse [36–50]. Here, we provide a general bound on the
distributions of entropy production for interacting active
matter using stochastic thermodynamics and large devi-
ation theory [51]. While not universal like the thermody-
namic uncertainty principle [52, 53], the specific consid-
eration of active matter admits a tight bound generically,
and one in which deviations can be physically under-
stood. The bound we present is valid arbitrarily far from
equilibrium for self-propelled particles and is saturated
in the limit that the interparticle contribution to the en-
tropy production is small. Near phase transitions, the
bound is weak as fluctuations are enhanced due to emer-
gent effective long-ranged interactions that we quantify.
This work provides a link between entropy production
fluctuations and collective phenomena in active matter.

We consider active matter systems that are self-
propelled and whose equations of motion are of the form

ṙi = v bi + µFi
(
rN
)

+
√

2Dtηi , (1)
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where ri denotes the position of the i’th particle, v and bi
set the typical magnitude and direction of self-propulsion,
µ is a single particle mobility, and ηi is a Gaussian white
noise with 〈ηαi (t)〉 = 0 and 〈ηαi (t)ηβj (t′)〉 = δijδα,βδ(t −
t′) for the α and β components of the random force.
The translational diffusion coefficient, Dt, satisfies a
fluctuation-dissipation relation, Dt = β−1µ where β−1 is
the temperature times Boltzmann’s constant. Through-
out, we take µ = Dt = 1. The interparticle forces are con-
servative, F (rN ) = −∇U(rN ), and in general depend on
all N particles’ positions, rN . This class of active matter
has a non-conservative self-propulsion term, vb, which
is driven by a constant energy supply. Our formulation
is independent of the statistics and dynamics of the self
propulsion vector, b, and may be correlated due to align-
ing interactions. The dynamics of the orientation vector
b are model specific and discussed in Appendix A, how-
ever our results are largely independent of its form. For
concreteness, below we will consider collections of inter-
acting active Brownian particles (ABPs), active dumb-
bells (ADPs), run and tumble particles (RTPs), and ac-
tive Ornstein-Uhlenbeck particles (AOUPs).

The entropy production follows from time reversal
symmetry arguments of stochastic thermodynamics [54–
58], ∆S = lnP [Γ]/P [Γ̃], where P [Γ] is the probability
of a forward trajectory Γ = {rN (t), bN (t)} and P [Γ̃] is
the probability of observing the time-reversed trajectory.
We use the convention that the parameter v is even un-
der time-reversal consistent with previous work [59–63].
This convention ensures that there is a nonvanishing en-
tropy production in the limit of noninteracting particles
with no external fields accounting for the energy injected
into the single particles to drive persistent motion. The
choice of convention for time reversal without an underly-
ing microscopic model of self-propulsion is somewhat ar-
bitrary [64]. However, all of the collective phenomena re-
ported below are independent of the convention [65]. The
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FIG. 1. Entropy production fluctuations for a variety of active matter systems. (a) Rate function obtained by importance
sampling versus the bound in Eq. 8 with the symbols corresponding to the labels in (b) and (c). (b) Entropy production
fluctuations for ρ = 0.1, ABPs with Dr = 3, ADPs with spring constant k = 100 ε/σ2 and rest length l = 1.5σ, and RTPs with
a tumble rate γ = 1 for different self-propulsion values. (c) Entropy production fluctuations for AOUPs for different parameter
ranges and Dr = 1. In all panels the red line denotes Ib(s) and the errorbars are smaller than the symbols.

convention we follow is analogous to the active work [61]
and can be derived independently from mechanical con-
siderations. Under this time reversal convention in the
long time limit, the entropy production is

∆S =
v

Dt

N∑
i=1

∫ t

0

dt′ bi ◦ ṙi , (2)

where ◦ denotes a Stratonovich product (see Appendix
B). This definition codifies the amount of energy directly
translated into motion in the form of persistent displace-
ment [63, 64, 66].

One convenient way to characterize the statistics of
∆S is through its scaled cumulant generating function
(CGF). For the time and system size intensive entropy
production, s = ∆S/(Nt), the CGF is defined as,

ψ(λ) =
1

tN
ln
〈
eλs(Γ)Nt

〉
0
, (3)

where 〈. . . 〉0 denotes average over paths and λ is the
counting variable that probes rare fluctuations of the
entropy production when nonzero. Cumulants of the
entropy production are computable from ψ(λ) through
derivatives with respect to λ. We define a rate function

I(s) = − 1

Nt
ln 〈δ[s− s(Γ)]〉0 , (4)

where δ(s) is Dirac’s delta function. The rate function is
the logarithm of the probability of s scaled by time and
particle number. We are interested in the fluctuations of
s in the macroscopic limit at long time and large system
size, where I(s) can be calculated by a Legendre-Fenchel
transform, I(s) = maxλ [λs− ψ(λ)]. The transient fluc-
tuations of entropy production would require an alter-
native method from the Legendre-Fenchel transform and
are not considered in our work.

Calculating ψ(λ) or I(s) exactly for interacting sys-
tems is difficult because of many-body correlations. How-
ever, we find that ψ(λ) can generally be rewritten by

factoring out the single particle part,

ψ(λ) = ψf (λ) +
1

Nt
ln
〈
eλ∆W

〉
uλ

, (5)

where ψf (λ) is the CGF for an isolated active particle.
The remaining contribution to ψ(λ) represents interpar-
ticle correlations and is given by the CGF of

∆W = βv

N∑
i=1

∫ t

0

dt′ bi · Fi , (6)

averaged over an ensemble with an additional force uλ.
The force uλ is the optimal control force to realize rare
entropy production fluctuations for an isolated particle
and its model specific form is considered below. The
observable ∆W is the dimensionless work done on the
surrounding particles due to self-propulsion. By applying
Jensen’s inequality to Eq. 5,

ψ(λ) ≥ ψf (λ) + βλv 〈b · F 〉uλ , (7)

ψ(λ) is bounded (see Appendix D). The correction over
the single particle CGF can be interpreted as βλv times
the effective drag a tagged particle feels in the direction of
the self-propulsion due to the surrounding particles [67].
This gives rise to an effective velocity that is smaller than
v and dependent on the density and λ [68].

Inserting the bound on the CGF in Eq. 7 into the
Legendre-Fenchel transform, we derive a bound on the
distribution of the entropy production, Ib(s),

I(s) ≤ Ib(s) = max
λ

[
λs− ψf (λ)− βλv 〈b · F 〉uλ

]
. (8)

By construction the bound recovers the correct mean dis-
sipation and is tight far into the tails of the distribution
in the limit that fluctuations in ∆W are small and the
saddle point approximation to its CGF is accurate. Data
in Fig. 1 confirms the upper bound for all of the ac-
tive matter models studied. Throughout, I(s) is com-
puted using the cloning algorithm [69, 70] and Ib(s) by
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computing 〈∆W 〉uλ from direct simulations. All simula-
tions are done with a WCA interparticle potential [71],
U(r) = 4ε

[(
σ
r

)12 −
(
σ
r

)6]
+ ε for r ≤ 21/6σ and zero oth-

erwise. The parameter ε is the energy scale of the interac-
tions and σ is the particle diameter. ADPs have an added
harmonic potential between composite particles. Our re-
sults are presented with a non-dimensional v in units of
Dt/σ, γ and Dr in units of Dt/σ

2, and bulk density ρ in
units of 1/σ2 in two dimensions. Also, Dt, and β are set
to 1. Data in Fig. 1a shows that there are large param-
eter regimes where the bound is tight. In practice, the
bound is accurate when the system is away from dynam-
ical phase transitions, this is valid when ρ(v/Dr)

2 < 1.
Nevertheless, even when ρ(v/Dr)

2 ≈ 1 we find the bound
is still reasonably tight.

The detailed forms for I(s) and Ib(s) are distinct for
different models of active matter. For ABPs, ADPs,
and RTPs, the entropy production fluctuations are Gaus-
sian for isolated particles, with ψf (λ) = v2λ(1 + λ)/Dt

(see Appendix C). The corresponding control force,
uλ = 2λvb, is appended to the existing forces in Eq. 1
such that rare entropy production fluctuations are real-
ized by a renormalized velocity, vλ = v(1 + 2λ). This
ψf (λ) gives rise to a bound that is nearly Gaussian, as
shown in Fig. 1b. For low densities and low velocities,
I(s) ≈ Ib(s). Increasing v, the bound weakens for smaller
than average entropy production fluctuations, s < 〈s〉0.
Fluctuations that result in larger than average entropy
production, s & 〈s〉0, for large v are more probable than
predicted by the bound due to neglecting contributions
from interparticle correlations. However, the relative er-
ror between the entropy production distribution and the
bound decreases into the tails due to the increasingly in-
dependent particle behavior elaborated upon below.

For isolated AOUPs, the entropy production fluc-
tuations are generically non-Gaussian and ψf (λ) =

Dr

(
1−

√
1− 2v2λ(1 + λ)/DtDr

)
, where Dr is the ro-

tational diffusion constant (see Appendix C). The fluc-
tuations in s are Gaussian only near the mean and are
asymmetric [61]. This is in contrast to the Gaussian
distribution that would be predicted by the thermody-
namic uncertainty relations, and reflects the finite mem-
ory in the self-propulsion vector. The control force in-
cludes the same renormalized velocity as for ABPs, but
in addition includes a force on the particle’s orientation,
uλ = ψf (λ)b. In Fig. 1c, we see that the bound gives an
accurate prediction of the fluctuations across the densi-
ties and Da’s considered. The fluctuations are still en-
hanced relative to the bound for s < 〈s〉0, though less so
than in Fig. 1b.

In order to understand the origins of the deviations
from the bound and the connections to collective behav-
ior in active matter, we consider in detail a system of
ABPs at conditions near and far from its motility in-
duced phase separation (MIPS) transition. Addition-
ally, the asymmetry of entropy production fluctuations
about its average, motivates us to consider separately
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FIG. 2. Larger than average entropy production fluctuations
for ABPs with N = 10 (purple circles), 20 (blue squares), and
40 (black diamonds). Distribution of entropy production for
a) v = 10 and b) v = 120 with ρ = 0.1. In a) and b), the red
lines are Ib(s) and the dashed black lines are fits at λ = 0 to
extract the second cumulant. The average entropy production
at finite λ for c) v = 10 and d) v = 120 with ρ = 0.1. The
dashed lines are from the cumulant fits in a) and b), and the
red line is the non-interacting rate function.

fluctuations of s > 〈s〉0 and s < 〈s〉0. In Fig. 2, the
distributions for s > 〈s〉0 are shown for v = 10 and
v = 120, for a variety of system sizes at fixed density,
ρ = 0.1. While the probability is larger than predicted
by the bound, it can be perturbatively corrected. Specif-
ically, we can expand Eq. 5 up to the second cumulant,
ψ(λ) ≈ ψf (λ) +

(
λ 〈∆W 〉0 + λ2

〈
δ∆W 2

〉
0
/2
)
/Nt. The

result of this approximation to the rate function is shown
in Figs. 2 a) and b). For v = 10 the fluctuations are
well described by the cumulant approximation, while for
v = 120 asymptotic entropy production fluctuations are
narrower than predicted.

The asymptotic behavior for s � 〈s〉0 is well de-
scribed by free particle motion for all v’s. This can
be seen by considering dψ/dλ = 〈s〉λ from 〈s〉λ =∫
ds s exp{Nt[−I(s)+λs−ψ(λ)]}, which is a direct probe

of the tails of I(s). As shown in Figs. 2 c) and d), for
both large and small v, 〈s〉λ exhibits a crossover from
Gaussian statistics. Near λ = 0, 〈s〉λ varies linearly with
λ with a slope given by the variance 〈δs2〉0. For λ � 0,
〈s〉λ varies linearly with λ with a slope given by the free
particle variance. An analogous crossover has been noted
in the current statistics of an interacting tagged ABP
[68]. The asymptotic free behavior implies that the most
likely way for the system to produce large amounts of
entropy is to suppress density correlations and decrease
∆W . This behavior results from the system adopting
a net orientation for the particles’ self-propulsion vector
[60, 72]. If the net orientation persists in the thermody-
namic limit, it would represent a spontaneous symmetry
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breaking.
Fluctuations for s < 〈s〉0 are much larger than pre-

dicted by the bound and are collective in origin. Fig. 3
shows the distributions of entropy production and 〈s〉λ
for v = 10 and v = 120 at ρ = 0.1 for 3 system sizes.
The distributions in Figs. 3 a) and b) show significant
finite size effects for s < 〈s〉0. In Figs. 3 c), and d), this
is evident by a transition between two types of behavior
that sharpens with increasing N and occurs at larger λ
with increasing v over the limited range of system sizes we
can study numerically. These features are a hallmark of a
dynamical phase transition, in this case between a dilute
phase and a phase separated state reminiscent of MIPS
[73–75]. As has been found previously [60], this shows
that the most likely way for the system to produce little
entropy is to condense, decreasing the particles’ displace-
ment by increasing the effective drag. We find we can
describe I(s) by explicitly assuming that each dynamical
phase is well approximated by a Gaussian distribution.
Specifically, assuming ψi(λ)Nt = λ〈∆S〉i + λ2〈δ∆S2〉i/2
for i = d, c being the dilute and condensed phases, the
rate function can be computed from a contraction prin-
ciple [51] for the CGF, ψ(λ) = maxλ[ψc(λ), ψd(λ)] (see
Appendix A). The result is a Maxwell construction and
is shown in Fig. 3 to be a good approximation in the
infinite system size limit. Due to the exponential diffi-
culty of sampling large deviations in interacting systems
we are unable to study larger systems [76]. Effects from
the relatively large persistent length for v = 120 may
complicate the extrapolation of these finite size effects to
larger systems.

For s < 〈s〉0, it is not sufficient to perturbatively cor-
rect the bound even for v = 10, which is far from the
MIPS transition. To understand this behavior we have
developed a coarse-grained theory. We define a fluctu-
ating density field as ρ(r, t) =

∑N
i=1 δ[r − ri(t)]. With

this field, ∆W can be computed by assuming that the
collisions are concentrated directly in front of a tagged
particle. Under that assumption, ∆W can be written
in terms of ρ(r, t), ∆W ≈ −βv

∫
dt
∫
drdr′ρ(r, t)F (|r −

r′|)ρ(r′, t)/2 , which is a convolution of two points of the
density field with the interparticle force. For simplicity
we have assumed that F (0) = 0. Further assuming that
the force can be Fourier transformed, we find

∆W = −βv
2

∫
dt

∫
dk |ρ̂(k, t)|2F̂ (k) , (9)

where ρ̂(k, t) is the Fourier transformed isotropic density
field and F̂ (k) the Fourier transformed force.

In order to evaluate the statistics of ∆W , we require
an evolution equation for ρ̂(k, t). From the equation of
motion for the position and orientation of each particle in
the presence of the single particle control force, standard
techniques afford an exact equation of motion for ρ(r, t)
[77]. Its solution is complicated by its non-locality and
coupling to a polarization field arising from the dynam-
ics of the particle’s orientation (see Appendix E). Rather
than deal with it directly, assuming the system is macro-
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FIG. 3. Smaller than average entropy production fluctuations
and dynamical phase transition for ABPs for different system
sizes N = 10 (purple circles), 20 (blue squares), and 40 (black
diamonds). The phase diagram and example structures are
illustrated at the top with phase separation on the left of
the phase diagram and a homogeneous state on the right.
Distribution of entropy production for a) v = 10 and b) v =
120 with ρ = 0.1. In a) and b), the dashed red lines are a
Maxwell construction for the dynamical phases. The average
entropy production at finite λ for c) v = 10 and d) v = 120
with ρ = 0.1. The dashed red lines are from the Gaussian fits
in a) and b) used in the Maxwell construction.

scopically homogeneous on the largest scales, we expect
the density field to evolve diffusively. Thus, in the limit
that k → 0, the stochastic equation of motion for ρ̂(k, t)
takes the form,

∂ρ̂(k, t)

∂t
≈ −k2Dλρ̂(k, t) +

√
2∆λk2η̂ρ , (10)

where Dλ is the effective diffusion constant, ∆λ is the
effective mobility, and η̂ρ is a complex noise [67, 74, 78–
80]. Assuming that the polarization field relaxes quickly,
and linearizing around a homogeneous density, these pa-
rameters can be derived explicitly for each active matter
model.

Equation 10 has the form of an independent Ornstein-
Uhlenbeck process for each Fourier mode of the den-
sity [80]. The CGF for ∆W can be solved exactly
within this approximate linearized dynamics. Defining
∆ψ = ψ − ψf ,

∆ψ(λ) ≈ 1

N

∑
k>0

k2Dλ

1−

√
1 +

βλvλF̂ (k)∆λ

D2
λk

2

 ,
(11)
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we get an approximate correction to the bound in Eq.
(7) due to interparticle correlations. This correction is
valid for all positive λ, but becomes unstable at a crit-
ical value λc ≤ 0 reflecting the breakdown in the lin-
earized evolution equation for ρ̂(k, t). For a finite system
with largest wavevector k = 2π

√
ρ/N , the location of

the instability is found by setting the discriminant to
zero, λc ≈ −4π2D2

0ρ/βvF̂ (0)∆0N where for the short
ranged forces considered, we can approximate the force
as F̂ (0) and we can neglect the λ dependence in vλ,Dλ,
and ∆λ. This instability signals the dynamical phase
transition that occurs at λc = 0− in the thermodynamic
limit and whose influence on the dynamics of active mat-
ter increases with v, and with increasing proximity to
MIPS, consistent with the results in Fig. 3. In a phase
separated state, ∆W is a large negative number which
counteracts the free particle contribution and reduces the
entropy production.

The origin of phase separation can be understood by
noting that the optimal control potential which gives rise
to rare entropy fluctuations is, for large interparticle sep-
arations r/σ � 0 and in the limit λ approaches zero (see
Appendix E),

V̂λ ≈ −
βvλ

ND0

∑
k>0

|ρ̂(k, t)|2

2k2
F̂ (k) . (12)

The inverse Fourier transform will involve a convolution
between the WCA force and 1/k2 which gives rise to
a Bessel Function. Since the WCA potential quickly de-
cays, the long range contribution in real space is a logrith-
mic potential,

Vλ(r) ≈ −βλv
D0

ln r/2 , (13)

which is attractive for λ < 0 with a magnitude
that depends on v and the control force is uλ ≈
(βλv/D0)∇ ln r/2. For negative enough λ or large enough
v, this force will give rise to phase separation. This opti-
mal control force is similar to other passive models near
diffusive instabilities [80–82].

The long-ranged effective force demonstrates how ef-
fective attractions are introduced by self-propulsion in
order to minimize the entropy production. This force is
unique and encodes the way in which self-propelled par-
ticles interact provided the condition of obtaining a lower
than average value of the entropy production. As such, it
provides a sharp relationship between entropy production
and emergent collective behavior in active matter. Corre-
lations between entropy production and motility induced
phase separation have been observed previously at the
level of the mean behavior [1, 83, 84], however this work
codifies that relationship on the level of fluctuations.

For both MIPS and the dynamical transition we dis-
cuss, phase separation is the result of a diffusive instabil-
ity where density accumulates due to unbalanced fluxes
made possible by the system being kept from thermal

equilibrium. We have shown such collective behavior re-
sults from the reduction of entropy production and en-
hancement of density correlations. Large entropy pro-
duction by contrast, arises through the suppression of
density correlations. Thus, our results show how the
structure of entropy production fluctuations are inti-
mately connected to long-ranged correlations in active
matter. We expect that deviations from the bound de-
rived here can serve as a guide to identify criticality and
novel phases of active matter generally.
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Appendix A: Simulation Details

1. Model definitions and parameters

a. ABPs and RTPs

For both ABPs and RTPs the orientation vector has a
fixed magnitude, so in two dimensions it can be uniquely
parameterized by an angle θ. For the ith particle,
bi = {cos(θi)x̂i, sin(θi)ŷi}, where x̂i and ŷi are the unit
vectors in the x and y directions, respectively. For ABPs,
the dynamics of θi are Brownian,

θ̇i(t) = ηθi (t) (A1)

where ηθi is a Gaussian white noise, satisfying 〈ηθi (t)〉 = 0
and 〈ηθi (t)ηθj (t′)〉 = 2Drδijδ(t− t′) with Dr the rotational
diffusion constant. We take Dr = 3Dt/σ

2 throughout.
The dynamics of θ for RTPs are piecewise constant

over waiting times, τ , satisfying a Poisson process[85, 86].
The waiting time distribution is given by an exponential
distribution,

P (τ) = γe−γτ , (A2)

with constant reorientation rate γ. We take γ = Dt/σ
2.

At each τ , the particles reorient by drawing a new θ cho-
sen uniformly over the range [0, 2π].

b. ADPs

Each ADP is composed of two particles that are teth-
ered together by a harmonic bond. The harmonic bond
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potential is given by UH(r) = k(r − l)2/2, where k is
the spring constant, l is the rest length, and r is the dis-
placement between the two bonded particles. We take
k = 100 ε/σ2 and l = 1.5 σ. The self-propulsion direc-
tion is along the bond vector. For the ith ADP, composed
of monomers 1 and 2, bi = r̂i,12 where r̂i,12 is the unit
displacement vector between monomers 1 and 2. The
time evolution of the orientation vector is given by the
time evolution of the displacement vector between the
two composite particles as dictated by their individual
equations of motion [87, 88].

c. AOUPs

For AOUPs, the self propulsion vector changes both its
magnitude and direction. Its equation of motion takes
the form of an Ornstein-Uhlenbeck process and given by

ḃi = −Drbi + ξi (A3)

where ξi is a Gaussian random variable satisfying
〈ξi,α(t)〉 = 0 and 〈ξαi (t)ξβj (t′)〉 = Drδijδα,βδ(t − t′) for
each α, β component [9, 48].

2. Bound and Cloning calculation details

For all simulations we used N =10, 20, or 40 parti-
cles. A 2-dimensional square box of length L with pe-
riodic bounds was used and the length chosen to give
the desired density through the equation L =

√
N/ρ.

The equations of motion are discretized using a first or-
der Euler method. Calculations of the rate functions,
I(s), require enhanced sampling techniques in order to
probe rare fluctuations. For this we use the cloning
algorithm[69]. Cloning results were run with 2.4×104-
1.5×107 walkers. The cloning parameters varied for the
models considered. For ABPs, RTPs, and ADPs, we used
a time step of δt = 10−3 − 10−5, depending on the v, a
branching time of tint = 50δt, and an observation time of
t = 10tint. For AOUPs, we used a timestep of δt = 10−4,
a branching time of tint = 10δt, and an observation time
t = 30tint.

Each estimate for the CGF at a specific lambda is the
mean from 3 runs. They were checked for convergence in
walker number and time [76, 89]. For the simulations of
ABPs in Fig. 3, we used cloning with guiding forces to
accelerate convergence of the estimate [60, 70]. This was
done by adding the non-interacting control force uλ to
the equations of motion and using cloning with the weight
∆W (see Eq. 5). The full CGF was then obtained by
adding back the non-interacting CGF, ψf (λ).

In Fig. 4, we show the convergence in walkers (Nw) for
negative λ. The critical λ is close to −0.0015. In the limit
that the walkers go to infinity the hysteresis seen in the
dip around the critical λ will disappear. In Figs. 5, 6, 7
we show the convergence as a function of walker number

for λ = −6.94 × 10−4, λ = −0.0021, and λ = −0.0028
which are before, close to, and after the critical point.
The CGF estimate was easily converged for positive λ
for 1.2× 104 walkers which is consistent with [60].

To compute Ib(s), we require a numerical estimate
of 〈∆W 〉uλ , which was computed for all systems with
N = 40 particles for an observation time of t = 106δt.
The observation time and particle number were increased
until convergence of the running average was obtained.
The codes used to generate the data in this paper can be
found at: https://github.com/kklymko/active_work

FIG. 4. The convergence of the estimate of the CGF for
N = 40, v = 120 for t = 500 ∆t for different numbers of
walkers Nw.

FIG. 5. Convergence of the CGF estimate for v = 120, N =
40, t = 500∆t, λ = −6.94 × 10−4, which is right before the
phase transition. In theory, the CGF estimate is converged
at zero on the y-axis.
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FIG. 6. Convergence of the CGF estimate for v = 120, N =
40, t = 500∆t, λ = −0.0021, which is close to λc. In theory,
the CGF estimate is converged at zero on the y-axis.

FIG. 7. Convergence of the CGF estimate for v = 120,
N = 40, t = 500∆t, λ = −0.0028, which is after the phase
transition. In theory, the CGF estimate is converged at zero
on the y-axis.

3. Gaussian fits for Figs. 2 and 3

In Fig. 2, the Gaussian fits for small fluctuations for
v = 10 and v = 120 is 〈s〉0 = v2(1−0.84ρ), 〈(δs)2〉 = 3v2,
and 〈s〉0 = v2(1−0.63ρ), and 〈(δs)2〉 = 12v2 with ρ = 0.1
which are represented by black dotted lines. There is not
a clear size dependence for the system sizes studied here
and we have found that all three system sizes considered
have the same best fit.

In Fig. 3, we fit the dense phase in a similar way.
Although the transition has a system size dependence,
once the system is within the phase separated state there
is not a clear system size dependence in the variance. The
Gaussian fit for the phase separated peak in Figure 3a)
and 3b) is given by 〈s〉0 = v2(1−0.84ρ), 〈(δs)2〉 = 2v2 for
v=10 with ρ = 0.58 , and 〈s〉0 = v2(1− 0.84ρ), 〈(δs)2〉 =
2v2 for v=120 with ρ = 1.12. Note that the variance

for both v’s considered for the phase separated system is
given by the non-interacting CGF. The averages used in
the Maxwell construction and those in Fig. 3c), and d)
are slightly different due to the shift in the mean in the
thermodynamic limit given by 〈s〉λc = 〈s〉0 + λc〈(δs)2〉0
but the slopes are identical.

Appendix B: General form for the Entropy
production

In order to derive the entropy production for each
model, we assume that the self-propulsion is even under
time reversal. The difference between choosing the self-
propulsion to be even under time reversal is that there
is a non-interacting term, as shown in Ref. [65]. All of
the collective phenomena are thus going to be indepen-
dent of the convention. The distinction between choice
of sign is described in more detail in Ref. [61]. We note
that the convention used in this manuscript is consistent
with Ref. [59, 60, 62, 63]. We also note that the form
of the active work is closely related to the swim pressure
described in the literature [90, 91] and can be derived
independently from mechanical considerations.

We take the standard definition of the entropy produc-
tion based on the path probability and its time reversal,

∆S = lnP [Γ]/P [Γ̃], (B1)

P [Γ] is the probability of observing a path denoted
Γ = (rN (t), bN (t)), and Γ̃ = (r̃N (t), b̃N (t)) is the time
reserved path. In the time reversed path, we change
the signs of functions with explicit time dependence,
˙̃ri(−t) = −ṙi(t) and ˙̃

bi(−t) = −ḃi(t). In the subse-
quent sections, we write out P [Γ] for ABPs and AOUPs
and their corresponding entropy production. The ADPs
and RTPs can be derived analogously. It is found that
all models considered have the same form of ∆S in the
long time limit.

a. ABPs

The probability of observing a path for a system of
ABPs with conservative interactions in the Stratonovich
convention is

P [Γ] ∝ exp

[
−

N∑
i=1

∫ t

0

dt′

(
ṙi − v bi − µFi

(
rN
))2

4Dt

+

∇ri ·
(
µFi

(
rN
))

2
+
ḃ2
i

4Dr

]
, (B2)

where the gradient term in the second line follows from
the Stratonovich convention. After performing the time
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reversal operation and taking a ratio of path probabili-
ties, the entropy production then becomes

∆S =
1

Dt

N∑
i=1

∫ t

0

dt′
[
v bi ◦ ṙi(t′) + ṙi ◦ µFi

(
rN
)]

,

(B3)
which is a sum of two terms. However, since we are using
the Stratonovich convention the chain rule is preserved
and the term

N∑
i=1

∫ t

0

dt′ṙi ◦ Fi
(
rN
)

= U(rN (0))− U(rN (t)) , (B4)

does not grow with time, unlike the first term. In the long
time limit it will become negligible, and can be neglected
in the entropy production.

b. AOUPs

For AOUPS using the Stratonovich convention, the
derivation of the form of the entropy production follows
similarly as for the other models. Specifically, the path
probability is

P [Γ] ∝ exp

[
−

N∑
i=1

∫ t

0

dt′

(
ṙi − v bi − µFi

(
rN
))2

4Dt

+

∇ri ·
(
µFi

(
rN
))

2

+

(
ḃi +Drbi

)2

2Dr
− ∇bi ·Drbi

2

]
, (B5)

where the additional force on bi results in the last two
terms. After performing the time reversal operation, the
entropy production is

∆S =

N∑
i=1

∫ t

0

dt′
(
v bi ◦ ṙi
Dt

+
ṙi ◦ µFi

(
rN
)

Dt

+ 2ḃi ◦ bi
)
, (B6)

where the first two terms are analogous to the ABPs.
Both the second term and third term do not grow with
time, and so in the long time limit the entropy production
reduces to

∆S =
v

Dt

N∑
i=1

∫ t

0

dt′ bi ◦ ṙi , (B7)

which is equivalent to the form found for the ABPs.

Appendix C: Free particle CGFs and optimal control
forces

The free particle CGF is computable from the solution
of a generalized eigenvalue equation of the form

Lλνλ = ψf (λ)νλ , (C1)

where Lλ is the Lebowitz-Spohn, or tilted, operator and
νλ and ψf (λ) are the maximum eigenvector eigenvalue
pair. The tilted operator is derivable from the time evo-
lution of the CGF and the relation to the spectrum of Lλ
and the CGF follows from the long time limit. Gener-
ically, for a current-type variable [51, 54] the optimal
control force that realizes rare entropy production fluc-
tuation is given by

uλ = 2λvb+ 2D · ∇ ln νλ , (C2)

where D is a matrix of diffusion constants in define in
space crossed with the self-propulsion vector dimension
and ∇ = {∇r,∇b}. The optimal control force is encoded
in the maximum eigenvector associated with Lλ [51].

In order to fully solve the eigenspectrum it is necessary
to solve the eigenvalue problem for the adjoint tilted op-
erator [92]

L†λqλ = ψf (λ)qλ . (C3)

since in general Lλ is not Hermitian. The boundary
conditions of the eigevectors must obey a normalization
boundary condition νλ(b)qλ(b)→ 0 as b→∞ [92]. The
boundary condition can equivalently be written as∫

db qλ(b)νλ(b) = 1, (C4)

and for convenience we impose that∫
db qλ(b) = 1. (C5)

a. ABPs

The tilted generator for the entropy production of an
isolated ABP is

Lλ = v b ·
[
∇r + λ

v b

Dt

]
(C6)

+Dt

[
∇r + λ

v b

Dt

]
·
[
∇r + λ

v b

Dt

]
+ ∇2

bDr ,

which can be solved on a periodic domain by a constant
eigenvector, νλ = const. This is equivalent to assuming
that the stationary state is uniform and isotropic for all
λ. The CGF follows by noting b · b = 1 and is

ψf (λ) = λ
v2

Dt
+ λ2 v

2

Dt
, (C7)
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and that the control force that realizes the rare dynamics
reduces to uλ = 2λv b. The corresponding equation of
motion is

ṙi = v (1 + 2λ) bi +
√

2Dtηi , (C8)

where we see explicitly that the control force acts to
renormalize the self-propulsion velocity.

b. AOUPs

The tilted generator for the entropy production of an
isolated AOUP is

Lλ = v b ·

[
∇r+λ

v b

Dt

]
+Dt

[
∇r+λ

v b

Dt

]
·

[
∇r+λ

v b

Dt

]

+
Dr

2
∇2
b −Drb · ∇b , (C9)

which contains an additional convective term in b due
to the constant restoring force. Assuming the system
maintains a uniform and isotropic state at all λ, such that
the eigenvector does not depend on r, we can simplify the
tilted operator,

Lλ = λ
v2|b|2

Dt
+ λ2 v

2|b|2

Dt
+
Dr

2
∇2
b −Drb · ∇b , (C10)

where b is the magnitude of the vector b. The domain of
b is from 0 to ∞, the eigenvector from equation (C1) is

νλ(b) = exp

(
|b|2ψf (λ)

2Dr

)
, (C11)

and its corresponding eigenvalue is

ψf (λ) = Dr

1−

√
1− 2v2

DrDt
λ(1 + λ)

 , (C12)

which can be verified by inserting ν(b) back into Eq. C10
and noting that since it’s in two dimensions it is split up
into the x and y dimensions with |b|2 = b · b = b2x + b2y
and ∇2

b = ∇2
bx

+ ∇2
by
. The left eigenvector can also be

solved to obtain the normalization constant but it is not
needed for the control force calculations.

The optimal control force in the r and b directions,
uλ = {urλ,ubλ} are

uλ = {2λv b, bψf (λ)} , (C13)

which is the result for the control force for non-interacting
AOUPs. The biased equations of motion become

ṙi = v (1 + 2λ) bi +
√

2Dtηi , (C14)

and

ḃi = −Drbi (1− ψf (λ)/Dr) +
√
Drξi , (C15)

where the former is identical for ABPs and the latter is
specific to AOUPs.

Appendix D: Entropy bounds from Girsanov
transformation

The CGF for the entropy production can be rewritten
as an average over the biased ensemble by preforming a
change of measure, or Girsanov transformation, from the
original path ensemble with probability P [Γ],

ψ(λ) =
1

tN
ln

∫
D[Γ]P [Γ]eλ∆S

=
1

tN
ln

∫
D[Γ]

P [Γ]

Puλ [Γ]
Puλ [Γ]eλ∆S

=
1

tN
ln

〈
P [Γ]

Puλ [Γ]
eλ∆S

〉
uλ

, (D1)

where Puλ [Γ] denotes a path ensemble with an additional
force uλ added to the original equations of motion, and
〈. . . 〉uλ denote ensemble average with respect to that
measure. Using Jensen’s inequality, we find a general
bound within an arbitrary control ensemble [93],

ψ(λ) ≥ 1

tN

(
λ 〈∆S〉uλ +

〈
ln

P [Γ]

Puλ [Γ]

〉
uλ

)
, (D2)

which need not be tight. However, below we show how
in the systems studied by choosing uλ to be the optimal
control force for the free particle, we can arrive at the
tight bound on the entropy production.

a. ABPs

The relative actions with and without the single par-
ticle control force for a system of interacting ABPs is

ln
P [Γ]

Puλ [Γ]
=

N∑
i=1

∫ t

0

dt′
v2λ(1 + λ)

Dt
− v

Dt
λbi ◦ ṙi

+ βvλbi · Fi
(
rN
)
, (D3)

which employs the identity b · b = 1. We recognize the
first term on the right hand side as ψf (λ), the second
term as the negative of the entropy production, and the
final term as ∆W . Inserting this relative action into
Eq. D1, we note that the entropy production terms can-
cel, and we can pull the constants out of the average.
The bound can be shown to work analogously for the
ADP and RTP models since the added control force does
not change the statistics of the orientation, b, and only
changes the positional degrees of freedom.
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b. AOUPs

The relative actions with and without the single par-
ticle control force for a system of interacting AOUPs is

ln
P [Γ]

Puλ [Γ]
=∫ t

0

dt′
(
v2λ(1 + λ)

Dt
− ψf (1− ψf/2Dr)

)
b2

+ ψf (λ)− v

Dt
λbi ◦ ṙi + vβλbi · Fi

(
rN
)
, (D4)

which is more complicated than for the ABPs due to the
fluctuating magnitude of the self-propulsion vector. We
still can identify the same structure as before, with the
free particle CGF, negative of the entropy production,
and ∆W , however there is an additional first term in the
parenthesis. Inserting the definition of ψf from Eq. C12
we find that the term proportional to v2b2 is identically
0. This leaves us with the bound for AOUPs.

Appendix E: Entropy production from
coarse-grained density field

Here we elaborate on our coarse grained theory of the
interacting term. Assuming that the important contribu-
tions to the interparticle entropy production come from
forces that directly oppose self-propulsion, we approxi-
mate bi · F (rij) ≈ −F (rij) where F (rij) is the contri-
bution of the ith particle’s force due to particle j and
rij is the displacement vector between particles i and j
with magnitude rij . As presented, under this approxi-
mation the fluctuations of ∆W depend only on the time
evolution of the density field. Below we first derive an ap-
proximate equation of motion for the density, in the limit
of small k and small fluctuations from its mean. Then
we describe the approximate calculation of the cumulant
generating function and control force.

1. Equation of motion for the density

We are interested in the density fluctuations with the
added control force which changes the self propulsion
speed proportional to lambda as vλ = v(1 + 2λ). To
arrive at an effective equation of motion for the density
we first define the instantaneous density field as,

ρ(r, t) =

N∑
i=1

δ[r − ri(t)] , (E1)

and corresponding polarization field as

P (r, t) =

N∑
i=1

δ[r − ri(t)]bi(t) , (E2)

where δ are Dirac’s delta function. In principle, higher
order multipoles in the orientation field are needed to
completely describe the dynamics, however we neglect
quadrupole and higher fields. For the homogeneous
states considered, this has been shown to be a good
approximation [94, 95]. Following the standard proce-
dures [77, 85] a set of coupled stochastic equation of mo-
tion for both fields. For the density field,

∂ρ(r, t)

∂t
= −∇r

[
µρ(r, t)

∫
dr′F (r − r′)ρ(r′, t)

+vλP (r, t)] +Dt∇2
rρ(r, t) +∇r

√
2∆ληρ(r, t) (E3)

where ∆λ = Dtρ(r, t) is the mobility and the noise obeys
the statistics 〈ηρ(r, t)〉 = 0 and 〈ηαρ (r, t)ηβρ (r′, t′)〉 =
δα,βδ(t− t′)δ(r − r′). For the polarization field,

∂P (r, t)

∂t
= −∇r

[
µP (r, t)

∫
dr′F (r − r′)ρ(r′, t)

]
−∇r

vλρ(r, t)

2
+Dt∇2

rP (r, t)

−DrP (r, t) +∇r
√

2ΛPηP (r, t) (E4)

where ηP (r, t) has the same noise statistics as ηρ and
ΛP = DtP (r, t).

We assume there is a separation of time scales between
the density field, which we assume to be slow, and the
polarization field, which we assume to relax quickly. Fur-
ther we assume that on the scale of density fluctuations,
the polarization is constant and homogeneous [67]. These
so-called adiabatic assumptions are standard in the treat-
ment of instabilities in the ABP system. Under these
assumptions, the polarization is stationary and can be
averaged separately from the density and we can neglect
its gradient terms. Rearranging the remaining terms, we
have an explicit relation between the polarization and
density fields,

P (r, t) = − vλ
2Dr
∇rρ(r, t) , (E5)

which effectively separates the evolution of the two fields.
Inserting this into Eq. (E3) we arrive at a closed equation
of motion for the density,

∂ρ(r, t)

∂t
= −∇r

[
µρ(r, t)

∫
dr′F (r − r′)ρ(r′, t)

]
+Dλ∇2

rρ(r, t) +∇r
√

2∆ληρ(r, t) (E6)

withDλ = Dt+v
2
λ/2Dr as the effective diffusion constant.

While the equation is closed, it is still nonlinear due
to the fluctuating convective term from the interparticle
interactions. While more sophisticated expansions exist,
for the low densities we consider, we can linearize the
evolution equation by simply dropping the second order
term in the density,

∂ρ(r, t)

∂t
= Dλ∇2

rρ(r, t) +∇r
√

2∆ληρ(r, t) , (E7)
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which results in a standard fluctuating diffusion equa-
tion. Corrections due to interactions can be included
phenomenologically by making Dλ and ∆λ depend on
the mean density.

Introducing the Fourier transforms, for the density

ρ̂(k, t) =

∫
dre−ik·rρ(r, t) , (E8)

and the noise,

η̂(k, t) =

∫
dre−ik·rη(r, t) , (E9)

we can arrive at the equation of motion in Eq. 10.

2. CGF and optimal control force

The equation of motion for the Fourier transformed
density takes the form of a set of uncoupled, complex
Ornstein-Uhlenbeck processes for each wavevector. The
large deviations of such a system for observables like ∆W
have been considered in detail in Ref. 80. The tilted op-
erator for which the CGF of ∆W is the largest eigenvalue
and has the form

Lλ =
∑
k>0

−k2Dλρ̂k∇ρ̂k + k2∆λ∇2
ρ̂k
− λβvλ

2
F̂ (k) |ρ̂k|2 ,

(E10)

which has to be solved for both the real and imaginary
parts of ρ̂k. This can be done following the method of
Ref. 80. The resulting CGF is

∆ψ(λ) =
1

N

∑
k>0

∆ψk(λ) , (E11)

where for each k,

∆ψk(λ) = k2Dλ

1−

√
1 +

βλvλF̂ (k)∆λ

D2
λk

2

 , (E12)

and the corresponding eigenvector

νλ =
∏
k>0

exp

[
|ρ(k, t)|2

2∆λk2
∆ψk(λ)

]
, (E13)

factorizes into a product of independent modes, each
quadratic in the density. For a density type variable, the
optimal control force is a gradient force, and so can be
written as a potential. It is computable following Refs. 80
and 96, which in the limit that λ approaches zero we re-
cover Eq. 13.
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