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We use a random walk particle-tracking (RWPT) approach to elucidate the impact of porous
media confinement and cell-cell interactions on bacterial transport. The model employs stochas-
tic alternating motility states consisting of hopping movement and trapping re-orientation. The
stochastic motility patterns are defined based on direct visualization of individual trajectory data.
We validate our model against experimental data, at single cell resolution, of bacterial E. coli mo-
tion in 3D confined porous media. Results show that the model is able to efficiently simulate the
spreading dynamics of motile bacteria as it captures the impact of cell-cell interaction and pore con-
finement, which marks the transition to a late time subdiffusive regime. Furthermore, the model is
able to qualitatively reproduce the observed directional persistence. Our RWPT model constitutes
a mesh-less simple method which is easy to implement and does not invoke ad-hoc assumptions but
represents the basis for a multi-scale approach to the study of bacterial dispersal in porous systems.

I. INTRODUCTION

Bacterial migration through heterogeneous porous me-
dia is important for a wide range of processes, such
as bioremediation, biofilm formation and anticancer
drug delivery [1–4]. In natural environments, bacteria
employ diverse movement modalities while navigating
through porous media that characterize their migration
[5]. Motility is the capability of an organism to sponta-
neously perform independent moves, which enables bac-
teria to explore space and other resources and to forage
or disperse. Bacterial transport, therefore, encapsulates
processes that act across multiple spatial and temporal
scales, that are not only key for innovative applications
but also for their growth and interactions with the phys-
ical environment [6].

Many bacteria actively swim via flagella, or twitch over
surfaces. Disregarding the way they move, most obser-
vations of bacterial motility are undertaken in bulk fluid
to avoid artifacts arising from surface and cell-cell in-
teractions [7–9]. As a result, little is known about the
effects that confined porous spaces have on motility. A
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common assumption is that bacteria perform linear short
movements caused by collisions with the medium solid
boundaries. Interaction between cells and cell-boundary
collisions are thought to reorient cells, similar to tumbles
for E. coli [1] or flicks and reversals for V. Alginolyticus
[10], leading to a decreased diffusivity.

Traditionally, modeling the motility of many bacte-
ria via flagella movement in aqueous systems has been
conceptualized using two alternating movement periods
due to the stochastic nature of bacterial motion [11, 12].
Models assume that bacteria movement is composed of
two modes: runs consisting of a linear straight move-
ment followed by tumbles consisting of random changes
in direction that mimic interaction between cells and col-
lisions with obstacles [11, 13–15]. Other methods may
include particle tracking techniques that rely on image
segmentation algorithms [16], fitting cells path curve to
an evolving model [17], as well as non-Poissonian run-
and-tumble patterns [18] suggesting that at least one of
the steps in the regulation of reversal is thermodynami-
cally irreversible.

Numerical observations assume that cells’ movement
is a stochastic process [10, 11, 19], and the derivation of
its descriptive parameters requires clear discrimination
of the stochastic patterns that relies on the rules that
dictate random models. Random walk particle tracking
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(RWPT) approaches have been long used to model cell
migration [17, 20, 21]. Although this approach provides
an expression for modeling cell migration, in most cases,
the movement of individual cells cannot be attributed to
a simple random walk behavior. Recent mathematical
and modelling works have used modified random walk
models by introducing repelling, reflecting, or absorbing
barriers, to account for bacterial interactions with solid
boundaries and between cells [22–25]. While others in-
tersperse two turning events in strictly alternating order
to reproduce cell swimming directions. Despite some dif-
ferences in the migration process modeled, these mod-
els commonly obviate transient short time dynamics in
motility states; or how the diffusive dynamics depend on
the run and tumble velocities and the switching proba-
bilities between the two states.

A detailed mathematical analysis of the motility prop-
erties of the micro-swimmers is essential for prediction
of microbial dispersal under realistic conditions. Based
on existing theories [26], we develop a two-state RWPT
model that mimics and describes the hopping and trap-
ping experimental dynamics reported in [27]. The model
uses stochastic alternating motility states derived from
direct inspection of cells trajectory data. The model
highlights the coupling between cell’s direction and speed
in confined geometries. We successfully capture the inter-
mediate and long term spreading of E. coli in a confined
porous medium.

The paper is organized as follows. Section II describes
the experimental and data analysis methodology, as well
as the RWPT approach. Section III discusses the motility
patterns observed in the experimental visualization, and
presents the modeling results. Finally, we conclude and
give an outlook on further expansion of our model in
Section IV.

II. METHODOLOGY

In the following, we first summarize the experimental
setup presented in Bhattacharjee and Datta [27], whose
data we use to evaluate our model’s ability to reproduce
the observed motility patterns. Then we recall the ap-
proach to analyze bacterial migration and discriminate
between motility states. Finally, we present a numerical
model to reproduce the observed findings in the experi-
ment.

A. Experimental data

As detailed in [27, 28], we use confocal microscopy
to visualize fluorescent E. coli (strain W3110) homoge-
neously dispersed in transparent, jammed packings of hy-
drogel particles. The packings act as solid matrices with
macroscopic interparticle pores of average size λ = 1.9
or 3.6 µm that the cells can swim through. The internal
mesh size of each hydrogel particle is much smaller than

the individual cells, but large enough to allow unimpeded
transport of nutrients and oxygen, giving rise to homo-
geneous nutrient conditions throughout the packing.

In each experiment, we disperse the cells within 4 mL
of a jammed hydrogel packing at 6×104 vol%, sufficiently
dilute to minimize intercellular interactions, crossing of
cellular trajectories, and any influence of nutrient con-
sumption. We confine each medium inside a sealed glass-
bottom petri dish, with a packing height ∼1 cm, and add
an overlying thin layer of 750 µL liquid medium to pre-
vent evaporation. We then use a Nikon A1R+ inverted
laser-scanning confocal microscope with a temperature-
controlled stage at 30◦C to capture fluorescence images
every 69 ms from an optical slice of 79 µm thickness. The
sampling interval of 69 ms is sufficiently fast to uniquely
identify cells, since they do not move more than approxi-
mately three cell body lengths between consecutive time
points, while minimizing photobleaching of the fluores-
cent signal. Further, to avoid any boundary effects, all
images are captured at least 100 µm from the bottom of
the container. Using this platform, we monitor bacterial
motion through the pore space, acquiring projected two-
dimensional (2D) movies within the porous media. To
track the individual cells, we then use a custom MATLAB
script developed in-house to identify and track each cell
center using a peak finding function with subpixel preci-
sion using the classic Crocker-Grier algorithm [29]. We
track cell motion for at least 10s, five times larger than
the unconfined run duration but over five times shorter
than the cell division time, and focus our analysis on cells
that exhibit motility within the tracking time.

This platform enabled us discover a new mode of motil-
ity exhibited by E. coli in porous media [27]. Instead
of moving via run-and-tumble dynamics with truncated
runs, as is often assumed, we found that the cells are
intermittently and transiently trapped in tight spots as
they move through the pore space. When a cell is
trapped, it constantly reorients its body until it is able to
escape; it then moves in a directed path through the pore
space, a process we call hopping, until it again encounters
a trap.

B. Trajectory analysis

In order to perform behavior discrimination, several
quantitative features have been proposed such as average
velocity [1], moving average of incremental displacements
[15], turning events [30, 31], among others. Here, we use
a moving average of incremental displacements (MAID)
to distinguish between motility states in the extracted
bacterial trajectories from [27]. MAID has performed
well in discriminating hopping and trapping modes com-
pared to other features in a limited number of bacterial
trajectories [15].

Differences in bacterial motility modes lead to sig-
nificant effects on their migration. For instance, bac-
terial trapping produces a significant decrease in effec-
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tive swimming speed, and thus a decrease in incremental
displacement is expected. By contrast, the incremen-
tal displacements during hopping mode increases [1, 15].
Therefore, incremental displacements, defined as the Eu-
clidean distance between two consecutive points in a cell
trajectory, can be used quantitatively to discriminate be-
tween hopping and trapping states. In our case, hopping
and trapping states were identified by means of bacterial
speed as the threshold parameter before MAID is applied.
The moving average of the incremental displacements re-
duces noise effects in the incremental displacements anal-
ysis given as

κt =
1

w

(w−1)/2∑
i=−(w−1)/2

dt+i, (1)

where w is the window size for calculating the moving
average of the incremental distance κ at time t, and dt+i
is the Euclidean distance between consecutive time steps
in a cell trajectory. We extract the motility parameters
that govern bacterial transport separately for hopping
and trapping modes to characterize our mathematical
model. In summary, when a cell speed is above the en-
semble trajectory average speed, the cell is considered
to be in a hop. On the other hand, if the cell speed is
below the ensemble trajectory average speed, the cell is
regarded to be in a trapping state. We chose this specific
parameter value because it provides a good comparison
between the obtained classification of hopping and trap-
ping, and the traditional runs and tumbles [15, 31–33].
We performed a sensitivity analysis to other criteria to
discriminate between motility states (e.g., deviation an-
gle variance) and the resulting statistical characteristics
of the analyzed trajectories were robust to variations as
large as ∼ 10%. We determined the marginal distribu-
tion of velocities for hopping and trapping modes from
the trajectory analysis [15] to analyze and understand the
pore-scale cell motion which constitutes a central part in
the developed model. The change in the trajectory di-
rection or body orientation, θ, with respect to the arrival
direction in a given time step is computed from the bear-
ing angle α from x(t) to x(t+ ∆t) as the angle measured
in the clockwise direction from the line segment to the
horizontal line,

tanα(t) =
y(t+ ∆t)− y(t)

x(t+ ∆t)− x(t)
, (2)

where x(t) = [x(t), y(t)] is the position of the cell at time
t and ∆t is the experimental sampling interval. Figure 1
shows the trajectory of a cell during two successive steps
and how we extract α and θ from the pathways of each
cell obtained from the particle tracking module.

Our emphasis is on the comparison between simula-
tions and experimental data, therefore we assess the ac-
curacy of our numerical model based on the computed
the mean squared displacement (MSD) given as

MSD(S) = 〈| x(t+ S)− x(t) |2〉 (3)

x(t + Δt) = [x(t + Δt), y(t + Δt)]

x(t) = [x(t), y(t)]

α(t)

θ(t) = α(t + Δt) − α(t)

α(t + Δt)

FIG. 1. Illustration of the trajectory of a cell during two
successive steps.

where | x(t+ S)− x(t) | is the particle displacement be-
tween two time points, t denotes the absolute time while
S is the so-called lag time [1]. Additional information
about the experimentally observed bacterial behavior can
be extracted from the normalized velocity autocorrela-
tion function C

C(S) =
〈v(t+ S) · v(t)〉
〈v2(t)〉 , (4)

where v stands for velocity. C can also be found by
double differentiation of the MSD.

C. Mathematical model

To describe quantitatively the dispersal dynamics that
bacteria exhibit in [27], we propose the following random
walk model,

x(t+ ∆t) = x(t) + vm(t)∆t+
√

2D∆tξ(t), (5)

where vm is the motile velocity vector, and the diffusion
coefficient D is approximated from the experimental data
as

D =
〈[x(tm)− x(tm − S)]

2〉
6tm

, (6)

where tm is the maximum observation time. D varies
from 0.53 µm2/s for λ = 1.9µm to 5.71 µm2/s for
λ = 3.6µm . We substitute a shifted and scaled uniform
[0, 1] random variable

√
24D∆t(U(0, 1)−1/2) for the last

term where U(0, 1) is a vector of independent and iden-
tically distributed uniform random variables between 0
and 1 [34, 35]. This choice avoids the costly numerical
generation of Gaussian random numbers. The central
limit theorem guarantees that the sum of random dis-
placements is again Gaussian. Each particle represents
a single cell that moves with velocity vm(t) ∼ vm(t)e(t),
where the subscript m stands for motility mode. The
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speed vm(t) is the velocity of the cell and the unit vector
e(t) denotes the direction of propagation at time t. The
velocity magnitude and direction is simulated according
to

vm(t) = vm(t)

(
cos(θm(t))
sin(θm(t))

)
, (7)

where θm(t) is randomly chosen according to the turning-
angle distribution ph(θ) or pt(θ) in the hopping or trap-
ping state, respectively. While the speed vm(t) is chosen
from a marginal velocity distribution that depends on the
θ chosen in each motility mode. This vm(t) selection pre-
serves the correlation between θ and vm extracted from
the trajectory analysis. We use the methodology pre-
sented in [36, 37] as sampling method to select θm and
vm from their known distributions.

The transitions between the motility states are deter-
mined based on the probability distributions obtained
from the observed experimental trajectories. We found
that the observed duration distribution of staying in the
hopping state is well fitted by an exponential distribu-
tion; moreover, while the observed duration distribu-
tion of staying in the trapping state shows a long non-
exponential tail, an exponential distribution provides a
reasonable approximation for our computations. These
findings have been observed in other E. coli experiments
[5, 33, 38]. In our case, hopping times are approximated
to be exponentially distributed with a mean hopping time
τh, thus we use a hopping transition probability of the
form

P (t < t+ ∆t) ∼ e−(t−t0)/τh , (8)

where t− t0 is the time passed from the previous change
of state. Equation (8) describes the hopping probability,
the trapping transition probability is analogous. Note
that the probability of starting the motion in the hop or
trap phase is denoted by Ph0 and P t0 , respectively with

P t0 = 1− Ph0 . (9)

The choice of an initial fixed hop probability [39] for all
the particles showed no significant impact on the results
here. The occurrence of a motility mode transition event
is determined through a Bernoulli trial based on the tran-
sition probability (8).

In our numerical setup, the bacterial transport prob-
lem is solved with the RWPT simulator described (5). As
the initial condition for simulations of both pore length
experiments analyzed, we consider uniform areal distri-
butions of particles from [10, 120] µm and [5, 70] µm, in
x and y coordinates respectively. We implement bacte-
rial confinement and collective dynamics assuming phys-
ical interaction between swimmers. When a particle is
in hopping mode and closer than a cell body length,
γ = 2µm, to another particle, its motility mode changes
to trapping mode with P = 1, as a result of the collision
[21, 24, 33, 40].

III. RESULTS

In the following, we study the transport dynamics
of the experimental analysis in terms of the hopping
and trapping discrimination for bacterial motility states.
First, we describe the motility patterns for the evaluated
bacterial states observed in the experimental visualiza-
tion, which are the building blocks of the mathematical
model presented in the previous section.

A. Motility patterns

We analyzed 41 cell trajectories with an average length
of 12.42 s following the procedure detailed in the previous
section. A typical trajectory is shown in Figure 2 (top
plot), with the starting and final points respectively in-
dicated with blue and yellow marks. The corresponding
color-coded MAID plot against time in Figure 2 (lower
plot) shows hopping and trapping discrimination based
on the normalized ensemble mean incremental displace-
ment, or in other words, the cells’ ensemble mean veloc-
ity. Segments below 1 are identified as trapping states,
while segments above the normalized threshold indicates
that the cells are in hopping mode. As for window sizes
in MAID features, w values of 5 to 21 were tested to il-
lustrate the impact of the w value in the results to avoid
artificial smoothing from higher w values. Results of this
analysis show that w = 9 provides the best result in dif-
ferentiating the hopping and trapping modes. Nonethe-
less, a window size of 21 (black solid line in Figure 2 lower
plot), which implies a higher smoothing degree, provides
optimal results in reducing noise without losing relevant
information for bacterial motility state discrimination.
The methodology, thus, mitigates the error propagation
in the evaluation of the state discrimination in noisy data
by optimizing bacterial motility data and avoiding visual
calibrated motility state discrimination [33] from the em-
pirical data.

Classical bacterial transport models fitted bacteria ori-
entation angles undergoing run-and-tumble cycles using
uniform distributions [41]. Experimentally, this means
that, when a cell swims around rounded obstacles over
a long enough time, the probability density function of
θ should be uniform as it eventually samples all values
of the cell body orientation angle (θ) within the plane
of that surface with equal probability. This is also true
for the overall orientation angles of an entire population
of bacteria, as long as the cell trajectories are indepen-
dent and interactions between trajectories (such as cell-
collisions or hydrodynamic interactions) are random with
no long-range correlations or event memory. This tradi-
tional notion changes in presence of chemical gradients,
medium confinement, or flow [15, 27, 31, 42]. The results
of θ orientation angle distribution from the experimental
λ = 1.9µm shown in Figure 3 suggest straight hops and
reverse turns in trapping mode, which is consistent with
the run-reverse concept due to flagella rotation [5, 43].
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FIG. 2. Top: Trajectory of one cell. Bottom: Normal-
ized MAID in which the color coded line shows initial po-
sition (blue) and final position (yellow) in the cell trajectory.
The red dashed-dotted line delineates hopping from trapping
mode. The black solid line corresponds to the MAID with a
higher value of w.
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FIG. 3. Turn-angle distributions of the hopping (blue dia-
monds) and trapping (red dots) mode from smallest pore size
(1.9µm) in the experimental data and their fitted distribu-
tions (solid and dashed lines).

We observe that key difference between hopping and
trapping is the ability of the cell to maintain its direction
of motion during the course of a hop, while when trapped,
the cell reverses its orientation which allows bacteria to
escape bead traps by reversing their swim [43–45]. This
feature sheds lights over the classical notion that broadly
distributed angles for trapping mode indicates that their
motion is uniform randomly oriented. Therefore, angu-
lar distributions in different motility modes cannot be ig-
nored as they provide information on bacterial swimming
strategy. The turn-angle distribution for both modes is
bimodal with higher peaks near lower and higher values
of | θ |. The distributions parameters, µh = [0.02π 0.88π]
and µt = [−0.94π 0.89π], while σh and σt are [0.69 0.94]
and [0.85 0.85] respectively, were found by fitting a Gaus-
sian mixture model to data [46]. The bimodal distribu-
tion in turn-angle distributions indicates that when a cell
chooses a new direction, is most likely to choose a new
direction not very different or opposite from the previous
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FIG. 4. Marginal velocity distribution for hopping (blue
squares) and trapping (red dots) states from the smallest
pore size (λ = 1.9 m) in experimental data and their fitted
gamma distribution (solid and dashed lines respectively) for
| θ |= [0, 10) (upper plot), and | θ |= [60, 70) (lower plot).

direction. This distribution is qualitatively similar to the
reported for E. coli strain AW405 [47] and O157:H7 [48];
and for Pseudomonas putida [49, 50]. We find similar
behavior for λ = 3.6 µm, thus we omit these data here
and focus on the small pore size case.

Figure 4 shows the marginal velocity distributions from
experimental data for λ = 1.9µm for two | θ | ranges. We
found that the gamma distribution is the continuous dis-
tribution that best fit the experimental marginal veloc-
ity distributions for hopping and trapping modes (Figure
4). The gamma fitted distribution shows smaller root
mean square error than other continuous distributions
(log-normal, beta, generalized extreme value) that were
tested. This result is the one expected for motile bacteria
and suggests signs of enhanced transport processes over a
scale larger than the pore size [15, 51]. It can be observed
in Figure 4 that, as it is expected, the hopping state
marginal distribution is slightly shifted to higher values
for lower | θ | ranges and thus shows higher mean veloc-
ity v̄h,|θ|=[0,10) =12.33µm/s (Figure (4 upper plot) than
for higher | θ | ranges where v̄h,|θ|=[60,70) =9.16µm/s
(Figure (4 lower plot). The overall mean velocity for
hopping state is v̄h = 9.26µm/s. The k and β param-
eters for the fitted gamma distributions for the hopping
state showed variations such as 1.31 < k < 1.77 and
4.01 < β < 8.54. The trapping state marginal distri-
butions display small variations for the different | θ |
ranges showing the highest v̄t =3.87µm/s (k = 1.12 and
β = 3.53) for | θ |= [10, 20); and lowest v̄t =2.95µm/s
(k = 1.42 and β = 2.14) for | θ |= [120, 130), with an
overall v̄t = 3.22µm/s.

The distributions of hop and trapping times are shown
in Figure 5 where both modes are well fit by exponen-
tial distributions. Note that while there is some devia-
tion in the tail of the trapping distribution (consistent
with a power law [28]), the exponential fit provides a
good first approximation. The mean hop time τh is given
by the average value of the experimentally derived hop
times, τh = 0.926s for λ = 1.9µm and τh = 0.804s for
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FIG. 5. Experimental distribution of duration of staying in
hopping (blue diamonds) and trapping (red dots) mode and
best fitting exponential distributions (green solid and black
dashed lines).

λ = 3.6µm. The lower value of τh for the greatest λ is
attributed to higher frequencies of short hops [31]. On
the other hand, the mean trapping time τt for λ = 1.9
and λ = 3.6µm are 0.44 and 0.42 s respectively. The ex-
ponential distribution is a simplifying assumption, which
is, however, crucial for the modeling calculations.

B. Model comparison to experimental results

Based on the information extracted from the trajec-
tory analysis, we simulate 5000 bacterial trajectories in
the absence of chemotaxis using the random walk algo-
rithm presented above. We validate the model against
the experimental results [27].

Results of the computed velocity autocorrelation from
the simulation and experimental data are shown in Figure
6. Time is made dimensionless by considering t′ = t/th.
For simplicity of notation, we omit the primes in the fol-
lowing. We find that the RWPT model provides a good
description of the experimental velocity autocorrelation
function. In particular, the model captures the shape
of the experimental velocity autocorrelation function in-
cluding the reproduction of the negative dip. This further
justifies that the RWPT model used is appropriate to de-
scribe the motility patterns of E. coli in a confined geom-
etry. We hypothesize that the quick decay and negative
peak observed in C is due to pore confinement. This ob-
servation is supported by direct inspection of individual
trajectory data. A clear example of this is inferred from
the lower plot in Figure 2, where the plot of κ shows that
the cell starts in hopping mode but changes its motility
mode to trapping at t < τh. Traditionally, this behav-
ior in C has been described as the preconfined regime in
RWPT models in confined geometries [21, 52, 53].

We now discuss the model’s ability to reproduce bacte-
rial directional persistence to determine whether turning
angle ranges of the bacterial population affect the ob-
served speed. We split up our data set of 10356 hopping
and 13086 trapping speeds for λ = 1.9µm to create sep-
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FIG. 6. Normalized experimental (blue dotted line) and
model (red dashed line) velocity autocorrelation function plot-
ted as function of dimensionless time t/τh.
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FIG. 7. Bacterial directional persistence in terms of different
turning-angles ranges in λ = 1.9µm for hopping and trap-
ping modes. Experimental and modeling results are shown in
symbols and lines, respectively.

arate velocity distributions for 18 different turning angle
ranges. Please note that for our simulation model we
fit the gamma distribution as explained in the previous
section to the velocities distributions. Figure 7 shows
the mean instant velocity of each motility mode for dif-
ferent | θ | ranges. We find directional persistence in
experimental data in hopping mode, as results indicate
that turning angles ranges [0,10) and [10,20) show higher
mean velocities than the rest of | θ | ranges. These re-
sults support the idea that higher velocities correspond
to straight hops [27, 47], and thus coupling between vh
and | θ |. At higher | θ | range intervals, we observe a
decrease in mean velocities in hops, which indicates that
when cells performs high angle turns in hopping mode
they reduce their instant velocity, and that hops after
cell reorientation are smaller than the bacterial popula-
tion mean. The model shows higher average swimming
speeds (v̄m) in hopping mode. The discrepancy between
experimental and model observations is attributed to a
more broad swimming speed sampling around the mean
in the experimental observations. Note that model re-
sults for hopping approach the reported experimental v̄h
after θ̄h. On the other hand, Figure 7 shows that the
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FIG. 8. Evolution of the mean squared displacement (MSD)
computed for different pore sizes, 1.9 µm (upper plot) and
3.6 µm (lower plot). Experimental MSD is shown in symbols
in both plots, and the RWPT simulation results for 1.9 µm
(red dashed line in upper plot) and 3.6 µm (green solid line
in lower plot).

trapping mode exhibits a more stable range of mean in-
stant velocities around the reported v̄t. We find good
agreement between model and experimental evidence.
Our findings shed light on the mechanisms underlying
cell reorientation as E. coli swimming is driven by the
rotation of flagella. The resulting reorientation is com-
monly modeled using rotational diffusion, which implies
a persistence that decreases exponentially with trapping
duration [30, 32] that fails to capture bacterial dispersion
at late times. Moreover, the changes in mean instant ve-
locities according to | θ | that we observe do not result
from differences in trapping duration. Further imaging
studies of swimming cells with labelled flagella may be
able to clarify this observation.

Results of the computed MSD from both the exper-
imental and the simulated trajectories are presented in
Figure 8. At early times, we observe that experimental
MSD for both pore lengths experiments, t � τh, shows
superdiffusive regime which our model is not able to cap-
ture as the MSD from simulations exhibits diffusive be-
havior at early times. The discrepancy between model
and experiment can be attributed to the use of the ap-
proximated D coefficient following (6) in the diffusive
step in (5), which does not quantify properly spreading
at t� τh. As t approaches τh, a transition to a diffusive
regime occurs. The transition happens because cell-cell
and cell-obstacle interaction effects increase which affects
bacterial step lengths and thus, their motility behavior.
Please note that the duration of superdiffusive motion de-
creases as pore confinement increases (Figure 8). This is
observed by direct comparison of the experimental MSDs
for the two different pore sizes, which reveals that the
superdiffusive behavior in λ = 3.6 (Figure 8 lower plot)
and λ = 1.9µm (Figure 8 upper plot) lasts t = 0.5τh

and t = 0.15τh, respectively. There is good agreement
between experimental and model results. At late times,
the emergence of a subdiffusive regime is observed in the
case of λ = 1.9µm, where bacterial confinement leads to
non-linear behavior, which is consistent with previous ob-
servations [54]. This subdiffusive phenomenon is delayed
in the larger pore size but is also expected for t � 10.
Note that we restricted our experimental analysis to 10
s because of noisy data at greater times. The late time
subdiffusive regime is reflected in the evolution of the
experimental MSD, which grows as ∼ t1/2, shown in Fig-
ure 8 upper plot. The non-linear increase of the MSD is
well described by the RWPT model as it captures inter-
action between cells and pore confinement which affects
bacterial motility. In addition, the late time agreement
between model and experimental data in Figure 8 (up-
per plot) stems from the correct characterization of the
experimental directional persistence in trapping mode as
subdiffusive dynamics are commonly attributed to trap-
ping states [54, 55]. Analysis of MSD of individual cells
for λ = 1.9µm reveals that subdiffusive behavior may be
transient and collapses back to normal diffusion in some
cells. This effect is masked in averaging. The transient
subdiffusive behavior have been observed in the exper-
imental cases of obstructed diffusion [56] and computa-
tional models [25] at sufficiently large times. We remark
that our analysis is limited due to finite size effect at long
times, thus we do not observe such transient behavior in
the global MSD. A detailed analysis of this limitation is
discussed in Appendix A.

The presented RWPT model here is able to accurately
model bacterial transport in confined porous media in
an effective way. Our RWPT model differs from previous
modeling attempts using two transport modes, which ne-
glect the angular distribution in the trapping mode and
only use the two preferred turning angles in this mode to
model cell transport [5, 31]. Most importantly, our pro-
posed approach provides means to define a quantitative
measure to understand the transition spectrum between
hopping and trapping modes and its impact on different
variations of trajectory.

IV. CONCLUSIONS

We use pattern recognition techniques in a direct vi-
sualization of bacterial migration to extract statistical
parameters used as input for the trajectory simulations.
The analysis of turn-angle distributions in combination
with speed shows coupling, which suggest directional per-
sistence in bacteria trajectories. This means that when
cells are moving fast the probability of staying in a di-
rected path through the pore space is high. Moreover,
when cells encounter a trap they reorient its body un-
til it is able to escape with almost uniform distribution
of speed. Inspection of the transport dynamics shows
that for both hopping and trapping modes, the Gamma
distribution fits the marginal velocity best, while an ex-
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ponential distribution shows that describes well the hop-
ping and trapping-time distributions when used as an
approximation. These observations thus contradict the
paradigm of run-and-tumble motility which traditionally
is assumed to persist in a porous medium [1], and clari-
fies the impact of porous media confinement on bacteria
motility.

Our RWPT model describes well the transport dynam-
ics of motile bacteria observed in the experimental visual-
ization analyzed as it takes into account the constraints
imposed by the device itself and its obstacles, as well
as cell-cell collisions, which may induce the subdiffusive
behavior observed in the smaller pore size. Moreover,
the model provides a good description of the observed
MSD and velocity autocorrelation functions. This is a
further justification that the RWPT approach is appro-
priate to describe the motility patterns of E. coli in con-
fined porous media. The approach used imposes no sta-
tistical restrictions on the stochastic processes represent-
ing bacterial spatial random increments. Each particle
moves based on alternating motility states based on the
information extracted from the trajectory analysis, and
Brownian diffusion.

The RWPT framework used can also provide a sys-
tematic approach to extract knowledge and insights of
bacteria motility that leads to a better understanding of
bacteria behavior at larger scales.

V. ACKNOWLEDGEMENTS

L.P., R.P. and N.S. work was financially supported by
U.S. Department of Energy (DOE) grant DESC0019437.
L.P. acknowledges the support of the Desert Research In-
stitute (DRI) through the Post Doc Support (PG19123).
Work by T.B. and S.S.D. was supported by NSF grant
CBET-1941716, the Project X Innovation Fund, a distin-
guished postdoctoral fellowship from the Andlinger Cen-
ter for Energy and the Environment at Princeton Univer-
sity to T.B., and in part by funding from the Princeton
Center for Complex Materials, a Materials Research Sci-
ence and Engineering Center supported by NSF grant

DMR-1420541.

Appendix A: Finite size effects on experimetal data

We illustrate here the full evolution of the experimental
global MSD which suggests a late diffusive regime arises
after the subdiffusive behavior. However, at these long
times where the transition is expected to occur, we lost
∼ 30% of the cells tracked for λ = 1.9µm and ∼ 25%
for λ = 3.6µm, such data reduction affects the MSD ob-
served and consequently noisy data appear. This limita-
tion prevent us to claim that the subdiffusive behavior is
transient and collapses back to normal diffusion. On the
other hand, the model captures such subdiffusion tran-
siency and predicts a diffusive regime at t� τh, however
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FIG. 9. Full evolution of the mean squared displacement
(MSD) computed for different pore sizes, 1.9 µm (upper plot)
and 3.6 µm (lower plot). Experimental MSD is shown in sym-
bols in both plots, and the RWPT simulation results for 1.9
µm (red dashed line in upper plot) and 3.6 µm (green solid
line in lower plot).

the crossover time at which our RWPT converges to the
diffusive behavior cannot be verified against our experi-
mental data.
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