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We present high-precision data for the time evolution of bubble area A(t) and circularity shape
parameter C(t) for several bubbles in a quasi-2d foams consisting of bubbles squashed between
parallel plates. In order to fully compare with earlier predictions, foam wetness is systematically
varied by controlling the height of the sample above a liquid reservoir which in turn controls the
radius r of the inflation of the Plateau borders. For very dry foams, where the borders are very
small, classic von Neumann behavior is observed where a bubble’s growth rate depends only on its
number n of sides. For wet foams, the inflated borders impede gas exchange and cause deviations
from von Neumann’s law that are found to be in accord with the generalized coarsening equation.
In particular, the overall growth rate varies linearly with the film height, which decrease as surface
Plateau borders inflate. And, more interestingly, the deviation from dA/dt ∝ (n− 6) von Neumann

behavior grows in proportion to nCr/
√
A. This is highlighted definitively by data for six-sided

bubbles, which are forbidden to grow or shrink except for the existence of this term. And it is tested
quantitatively by variation of all four relevant quantities: n, C, r, and A.

I. INTRODUCTION

Foams are out of equilibrium and made of bubbles that
coarsen by the diffusion of gas across the soap films be-
tween neighboring bubbles of different pressure [1, 2].
This occurs in both 2- and 3-dimensional systems, and
for any liquid content. Evolution kinetics like coarsening
also occur in other cellular systems but the macroscopic
nature of bubbles and a known microstructure make foam
an ideal system to study [3, 4]. For ideally-dry purely 2-
dimensional foams, a bubble’s area A changes at a rate
that depends only on it’s number n of sides according to
von Neumann’s law [5]:

dA/dt = Ko (n− 6) (1)

where Ko is a rate constant dependent on the physical
chemistry of the gas and the surfactant solution. This
coarsening equation depends only on local topology and
means that bubbles with less than 6-sides will shrink,
bubbles with more than 6-sides will grow and bubbles
with exactly 6-sides will have constant area. The shrink-
ing bubbles are small and eventually disappear leading
to an overall increase in the average bubble area; there
is an collective average growth rate and eventually the
foam enter a self similar regime where size and topol-
ogy distributions under proper normalization remain the
same as the foam coarsens [6–14]. Whether the foam is
or is not in a self similar state, the local coarsening rules
for individual bubbles hold. However, the conditions for
which Eq. 1 was developed can not be met exactly by
experiments on real foams which are necessarily wet and
quasi 2-dimensional. An appropriate question is whether
von Neumann’s law can be modified in a way to account
for these factors and accurately predict the behavior of
individual bubbles as they coarsen in wet foams. This is
our focus, which underlies but is entirely separate from
the question of self-similarity and the growth of the av-
erage bubble size.

We must first define the difference between “dry” and
“wet” foams. In both cases the foams obey Plateau’s laws
which are the structural criteria for foams in mechanical
equilibrium. In 2d, Plateau’s laws are as follows: films
separating bubbles are circular arcs; films meet in threes
at a vertex; the three films at a vertex are separated by
equal angles of 120◦. In accordance with Plateau’s laws
bubbles are polygons with curved edges and vertices are
all tri-connected. A foam is “dry” if there is effectively
zero liquid in films, Plateau borders and vertices. Foam
is “wet” if the both the Plateau borders and vertices are
inflated with liquid [15]. Wet quasi-2d foams, where bub-
bles are squashed between parallel plates, also have liq-
uid in surface Plateau borders along the top and bottom
plate. These surface Plateau borders are connected by
soap films of constant thickness, regardless of wetness
[16–18]. Foams can also be “very wet” where there is
a breakdown of Plateau’s laws and describing the foams
in terms of inflated vertices and Plateau borders is no
longer appropriate. Very wet foams have been studied in
Ref. [19] with regards to their collective growth dynamics
and Ref. [20] develops a prediction for coarsening rates
for individual bubbles but they are not considered here.

Any further discussion is therefore focused on dry and
wet foams. Research on 2d and quasi-2d dry foams has
been conducted in both experiment [7–9, 21] and simu-
lation [10–14, 22] and general agreement with Eq. 1 is
observed. However there are instances where deviations
from von Neumann’s law are found; one such study ex-
plains such deviations by modifying von Neumann’s law
to account for differences from 120◦ of the internal angle
at the vertices of a bubble [6]; this leads to an overall re-
duction in the coarsening rate. A later experiment reveals
that removing much of the liquid from the foam makes
it so the internal angles have no measurable differences
from 120◦ and bubbles once again follow Eq. 1 for their
coarsening dynamics [7]. These early experiments are ev-
idence for the differences in coarsening behavior between
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wet and dry quasi-2d foam.

Theoretical work followed in Ref. [15] to show why wet
foams coarsen more slowly; broadly they found that the
liquid can entirely be decorated at the vertices of a 2-
dimensional foam. However the vertices grow in size with
increasing liquid volume fraction; this reduces the length
of the thin film faces between bubbles where gas diffuses
and slows the overall coarsening rate. Additionally the
liquid contained at the vertices can potentially change
the turning angle which provides a local quantity for de-
viations from von Neumann’s law for individual bubbles.

These early experiments show that wetness indeed af-
fects coarsening but they were performed on foams where
the coarsening rates are well approximated by von Neu-
mann’s law with only small deviations; the theoretical
work relies on knowing the liquid volume fraction of the
foam which is notoriously difficult to measure in real sys-
tems and also focuses on purely 2-dimensional foams.
Wet quasi-2d foams can have coarsening behavior much
different than either of these cases because the surface
Plateau borders run along the top and bottom plates
of the cell and can swell with liquid. The swelling of
the edges between bubbles was considered in simulation
with a 2d Potts models [23] and in experiments on mi-
crofluidic foam [18]. These studies developed empirical
formulas to describe the observed coarsening; still lack-
ing were experiments that systematically test how liquid
fraction affects foam coarsening and also develop some
kind of modified von Neumann’s law whose predictions
about the coarsening of individual bubbles rely on the in-
dividual bubble-level topology and liquid content of the
foam.

A pair of studies authored by previous members of this
group sought to fill that void. Work from Ref. [16] mod-
ifies von Neumann’s law for wet quasi-2d foams. This
study finds a new equation for coarsening that is derived
by accounting for the size of the Plateau borders due to
a higher liquid fraction foam and then going through the
same topology based arguments as von Neumann. The
resulting equation is developed for bubbles between two
parallel plates separated by a distance H and makes two
modifications to Eq. 1. The first is an overall reduced
coarsening rate because gas does not diffuse through the
Plateau borders enlarged by the liquid. The second is
a modification to von Neumann’s law due to the bubble
shape and size. This model assumes gas does not diffuse
at all through the Plateau border, i.e. “border blocking”,
but Ref. [20], the second work from the group, simulates
gas flux through the surface Plateau borders. It finds
the rate of gas diffusion is not zero and it is set by the
geometric mean of the size of the Plateau border and
the width of the thin film. Taking the shape and size
dependent von Neumann modification from [16] and cor-
recting its reduced coarsening rate for the amount of gas
that diffuses through the surface Plateau borders found
in [20] a new prediction for how the area A of an n-sided
bubble changes in time was developed. This generalized

coarsening equation is

dA

dt
= Ko

(
1− 2r

H
+
π
√
r`

H

)[
(n− 6) +

6nCr√
3πA

]
(2)

where r = (rt + rb)/2 is the average radius of curvature
of the top and bottom surface Plateau borders, ` is the
width of thin films that separate two bubbles, and C is a
dimensionless shape parameter “circularity” of a bubble
related to the curvature of the edges of bubble. For an
n-sided bubble the circularity is
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(
1

n

n∑
i=1

1

Ri

)√
A

π
(3)

where 1/Ri is the curvature of side i. Circularity is de-
fined so it equals 1 for circular bubbles, is positive for
convex bubbles, and negative for concave bubbles. Ex-
perimentally, the average and standard deviation of the
observed circularities were measured to be approximately
〈C (n)〉 = (1− n/5.73) ± 0.25 in the self similar scaling
state [16]. Though there is significant variance in circu-
larity between different bubbles of the same n, previous
work only compared dA/dt data to expectation in terms
of the average circularity.

Work from [16] shows that Eq. 2 accurately captures
the coarsening behavior of bubbles in a wet foam on av-
erage; the data show there are deviations from von Neu-
mann’s law and they are more pronounced for smaller
wetter bubbles with n < 6. One other deviation that is
apparent from Eq. 2 but only briefly mentioned in [16]
is the fact that the generalized coarsening equation al-
lows for the coarsening of 6-sided bubbles. They do not
show data for individual bubble coarsening in violation
of von Neumann’s law nor do they find how this coarsen-
ing is affected by the bubble specific shape and size. To
explore the individual bubble dynamics in depth we use
novel methods of image analysis to carefully reconstruct
individual bubbles. From these reconstructions precise
measurements of the bubble areas and circularities are
obtained; the data is used to solve Eq. 2 and the solu-
tions predict the unique shape dependent coarsening of
a bubble with great accuracy. We present data for indi-
vidual 6-sided bubbles that coarsen. This behavior is an
obvious violation of Eq. 1 and it can only be driven by the
bubble shape. Other bubbles with n 6= 6 either grow of
shrink more slowly than predicted by von Neumann and
in a non linear fashion; this behavior is also predicted by
solutions to Eq. 2 and depends on the bubble size and
circularity.

II. MATERIALS AND METHODS

Our experiments begin by making foam in a custom
sample cell and allowing it to coarsen until it is quasi
2-dimensional. The custom sample cell, which has been
used previously in Ref. [16], allows us to control the liquid
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content of the foams so we can systematically increase
the wetness. As the foams increase in wetness the size
of the surface Plateau borders inflates; however all data
are collected from foams that obey Plateaus laws, have
vertices that are tri-connected, and have bubbles that are
polyhedra with faces separated by both thin films and
surface Plateau borders. We take images of the foam
over the course of many hours, and the images are used
to reconstruct the foam in a small neighborhood with
high precision. The foams are reconstructed using novel
techniques and from the reconstructions the bubble areas
and shapes are determined. We discuss these processes
in the following subsections.

A. Experimental Materials

The foaming solution is 92% deionized water and 8%
Dawn Ultra Concentrated dish detergent, and has a
liquid-vapor surface tension γ = 29 ± 6 dyn/cm. This
solution generates stable foams that do not have any film
ruptures. The foam is generated inside a sample cell con-
structed from two 1.91 cm-thick acrylic plates separated
by a spacing H=0.32 cm and sealed with two concentric
o-rings; additional details about the specifications of the
cell are found in [16] and in Fig. S1 of the supplemen-
tal information [24]. It features an annular trough that
surrounds the foam and acts a reservoir for excess liquid
drained from the foam due to gravity. The volume of the
trough is large compared to the volume of liquid in the
foam, so that the height d from the top of the liquid in
the reservoir to the middle of the gap between the plates
is constant. The value of d is then set by the amount of
liquid sealed into the sample cell, and serves as the key
parameter controlling the wetness of the foam. Specifi-
cally, the foam drains into the reservoir, which causes the
top and bottom surface Plateau border radii to decrease
until capillary and gravitational pressures become equal:

γ/rt = ρg[(d+H/2)− rt], (4)

γ/rb = ρg[(d−H/2) + rb]. (5)

Here g is gravitational acceleration and the terms in
square brackets represent the distance from the liquid
surface to the respective heights at which the surface
Plateau borders begin to flare out from the soap film.
These are the key heights which dominate the border-
crossing gas flux [20]. For a chosen value of d, the surface
Plateau border radii may thus be computed from these
equations for use in Eq. (2).

Foams are produced as follows. First the trough is
filled with the desired amount of liquid, then flushed with
Nitrogen and sealed. The entire sample cell is vigorously
shaken for several minutes until the gas is uniformly dis-
persed as fine bubbles that are small compared to the gap
H between plates. The foam is thus initially very wet,
opaque, and three-dimensional. Immediately it begins
to drain and coarsen, rapidly at first, then progressively
more slowly as hydrostatic equilibrium is approached.

After a few hours, the bubbles become large compared
to the gap and the coarsening rate is slow compared to
drainage. Thereafter Eqs. (4-5) hold and the foam is
quasi-2d as desired for measurement. Fig. 1 (a-c) shows
example images for three such foams with different d and
hence different wetness. There it is evident that the bor-
der radii r significantly increase with decreasing d. Foams
with these three wetnesses are used to garner all the data
and foams made using d = {11.4, 5.9, 3.5}mm have ap-
proximate liquid volume fraction φ = {0.01, 0.03, 0.06};
we note these volume fractions are imprecise but are im-
portant to show they are all relatively small and have
the same order of magnitude. Furthermore, the real fig-
ure of merit for wetness in a quasi-2d foam is the Plateau
border radius r in comparison with the gap H.

2 mm

(a) d =11.4mm

2 mm

2 mm

(b) d =5.9mm

(c) d =3.4mm

FIG. 1. Top down view of quasi 2-dimensional foams of vari-
ous liquid content as indicated by the distance d from top sur-
face of liquid in the sample cell reservoir to the center of the
gap between the plates. From (a) to (c) the wetness increases
as d gets smaller. The images show the surface Plateau bor-
ders along the top plate of the sample cell. The thick surface
Plateau borders along the top plate are connected to slightly
thicker ones along the bottom plate by thin films. Three sur-
face Plateau borders meet at a surface vertex. The vertices
appear bright due to light channeled through vertical Plateau
borders that span the gap between both plates.
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B. Image Analysis

After the foam is prepared it is immediately placed
75 cm above a Vista Point A light box and 12.5 cm be-
low a Nikon D90 camera with a Nikkor AF Micro 105mm
1:2.8D zoom lens. The lens is set to full zoom and the en-
tire field of view is 23.3 × 15.4 mm2. The location of the
camera is optimized to have the smallest absolute field of
view while also keeping the foam in focus which allows
us to devote as many pixels as possible to any individual
bubble. This limits the total numbers of bubbles we can
reconstruct in each image but each bubble will have very
accurate measurements of its area. An image is taken ev-
ery minute for a minimum of 24 hours, but only images
of the foam after it coarsens to a quasi-2d state are kept
for analysis. Once the foam enters this state, we must
identify the bubbles in each image to find their shapes
and areas. The latter can ostensibly be done by bina-
rizing, skeletonizing and watershedding the pictures of
the foam. However our images have features of varying
brightness that make the skeletonized images poor rep-
resentations of the foam and the subsequent watershed
basins invalid for measuring the area of bubbles. Instead
we have developed an algorithm for reconstructing these
wet foams where we find the (x, y) locations of the ver-
tices as well as the orientation of one of the three surface
Plateau borders of the vertex with respect to the x-axis.
For brevity we show our vertex finding method works by
displaying in Fig. 2 the found locations of the vertices; the
method finds neither false positive nor false negatives lo-
cations of vertices such that every bubble we reconstruct
only has only ever n-sided throughout its lifetime. The
supplemental material thoroughly explains the algorithm
for finding the vertices and why it is necessary over more
usual watershedding methods; also included is a movie
that demonstrates the vertex identifying process [24].

The orientations of the surface Plateau borders belong-
ing to a vertex are used to identify the network of neigh-
boring vertices. We know from Plateau’s laws that the
films in 2d and surface Plateau borders in quasi-2d foams
are separated at a vertex by an angle of 120◦. There-
fore knowing the orientation of one surface Plateau bor-
der informs us of the directions of the others. We know
precisely where to investigate in order to find the three
neighbors of a vertex. After the neighbors are deter-
mined for each vertex, we connect them to recreate the
film network of the foam.

Another of Plateau’s laws is that films connecting the
vertices in quasi 2-dimensional foam are arcs of circles.
The center and radius (xc, yc,R) of the circles that con-
nect any pair of vertices are defined by the vertex loca-
tions and a point midway between the two vertices in
the middle of the surface Plateau border. The method
used to determine this third point is presented in the sup-
plemental material [24]. Additionally the reconstructed
film network is adjusted to better satisfy Plateau laws;
explanations of this process and a movie representing the
evolution of the reconstructions are also included in the

(a) d 

2 mm

=11.4 mm (b) d =11.4 mm (c) d =11.4 mm

(d) d =3.4 mm (e) d =3.4 mm (f) d =3.4 mm

2 mm 2 mm

2 mm 2 mm 2 mm

FIG. 2. Three stages of the foam reconstruction for foams of
two different wetnesses as indicated by d. Parts (a),(d) show
the raw data. Parts (b),(e) show locations and orientations
of the vertices determined by a Monte Carlo like method de-
scribed in the supplement [24]. Parts (c),(f) show the circular
arcs that connect pairs of vertices as thick green lines. These
arcs reconstruct the film network and they match well with
the middle of corresponding surface Plateau borders.

supplemental material [24]. In Fig. 2 (c) and (f) we show
the circular arcs that reconstruct the film network.

With the film network carefully reconstructed we can
finally determine the areas and shapes of the coarsening
bubbles. We first identify which vertices belong to a bub-
ble. The bubble area is then calculated in two steps using
first the location of the vertices and then using the equa-
tions of the circular arcs that connect them. The bubble
is initially treated like a polygon where the vertices are
connected by straight lines. This treatment gives a polyg-
onal area of α =

∑
(xiyi+1 + xi+1yi)/2 where the sums

are between all pairs of connected vertices belonging to
a bubble. Because the vertices are actually attached by
arcs of circles and not straight lines we then account for
the area under the circular arcs; the bubble area is in to-
tal its polygonal area plus or minus the area under each
of the n circular arcs of the bubble if the arc bends away
or towards the centroid of the bubble, respectively. Once
the bubble area is known we use it along with the values
of R for each of the n sides of the bubble to evaluate
Eq. 3. This is done for all bubbles in an image and for
all images.

Finally we measure the uncertainty in the areas and
circularities. These uncertainties account for how well
the foam is reconstructed and to determine them we re-
fit the films connecting neighboring vertices. The new
fits are done on three points: two of the points are the
vertex locations slightly shifted so the distance between
them increases; the third remains in the bright band in
the middle of the film but is shifted to maximize the
distance from each vertex. This provides new values for
the center and radius (x′c, y

′
c,R′) and these are used to

find new areas A′ and circularities C ′. The values of
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FIG. 3. Rate of change of bubble area A versus A divided
by the square of the gap H between plates, for a dry foam
consisting of bubbles with different numbers of sides as labeled
by n. Each point represents the data for one bubble and there
are data for 1533 bubbles. The von Neumann expectation
dA/dt = Ko(n−6) is plotted forKo = 0.030±0.001 mm2/min,
as shown by horizontal dashed lines and gray swaths.

A′ and C ′ are only used to determine the uncertainties
which are then ∆A = A−A′ and ∆C = C −C ′; in these
equations A and C are the originally calculated values
of the area and circularity of each bubble and all data
presented in upcoming figures are A±∆A and C ±∆C.
Once the areas, circularities, and uncertainties for each
are calculated, all bubbles are tracked using standard
particle tracking procedures.

III. COARSENING RATES

Having tracked individual bubbles, we observe how
their areas change throughout their lifetime. Recall that
von Neumann’s law says for 2 dimensional dry foams that
the coarsening rate of a bubble should depend only on its
number of sides; bubbles with n > 6 grow, bubbles with
n < 6 shrink and bubble with n = 6 do not have their
area change. Eq. 2 generalizes coarsening behavior for
quasi-2d wet foams where the wetness of the foam along
with the size and shape of a bubble will have an effect.
Coarsening rates for bubbles in a quasi-2d geometry are
shown in Fig. 3 for foams that are effectively dry and in
Fig. 4 for wet foams of varying liquid content.

To test for von Neumann like behavior we make dry
foams by standing the sample cell so that the plane of
the foam is vertical. Drainage results in all the liquid
pooling to the bottom of the cell and bubbles far from
the liquid do not have any enlarged Plateau borders. A
very conservative estimate for this distance is 1 cm above
the bath which is about 4× the capillary length and only
bubbles this distance and above the liquid pool are ana-
lyzed. For dry foams it is easier to acquire information
about the bubble areas than for the wet foams. The areas
of dry bubbles are determined from a process where we
binarize, skeletonize, and watershed images of the foam.

Bubbles are the watershedding basins of the skeletonized
images and the number of pixels within each basin is
converted into the bubble area.

Individual bubble tracks show areas that change lin-
early with time and to find the coarsening rate for each
bubble we fit lines to the data. The values of dA/dt are
plotted versus bubble area in Fig. 3. It is evident that
the coarsening rates are the same for all bubbles with the
same number of sides and the choice of x-axis shows this
is true regardless of the size of the bubble. The coarsen-
ing rates for n-sided bubbles follows von Neumann’s law
dA/dt = Ko (n− 6) and rate constant Ko is found to be
Ko = 0.030± 0.001 mm2/min.

Turning to our main interest in wet foams, we find by
contrast with the dry case that bubbles with the same
number of sides do not all coarsen at the same rate. This
is shown in Fig. 4 which plots dA/dt not versus area but

rather versus the quantity x = nC/
√
A that controls the

deviation from von Neumann behavior in Eq. (2); unlike
the data for the dry foams, the coarsening rates for in-
dividual bubbles in a wet foam will be affected by their
size as well as their shape and this is in accordance with
our generalized coarsening equation. Thus the choice for
the x-axis is appropriate and their values are determined
from the raw values of C (t) and A (t) taken for individ-
ual bubble tracks, as well as the number n of sides found
from the reconstruction of the network. The coarsening
rates on the y-axis are the numerical derivatives of the
area data smoothed over a Gaussian window. Indeed, we
find in Fig. 4 that dA/dt is not constant for a given n
but rather varies linearly in x as predicted. Also as pre-
dicted, the slope varies with wetness independent of n.
Thus there is good qualitative agreement with expecta-
tion, which may now be tested more quantitatively:

According to Eq. (2), the separation and slope of
the data clusters are set respectively by the values of

K = Ko

(
1− 2r/H + π

√
r`/H

)
and the average radius

of curvature r of the surface Plateau border. To find K
and r, these parameters are adjusted to simultaneous fit
the coarsening rates for all the bubbles in each wetness.
Excellent fits are achieved, as illustrated by the dashed
lines in Fig. 4. The gray swaths show the fitting equation
evaluated across the acceptable range of fitting parame-
ters, K ±∆K and r ±∆r.

To complete the analysis, the fitting parameter results
are plotted versus, d, the distance from top surface of liq-
uid in the sample cell reservoir to the center of the gap
between the plates which controls wetness, and compared
with expectation in Fig. 5. In part (a), results for the
average Plateau border radius r decrease with increasing
d for drier foams. The expectation for r is shown as a
solid curve surrounded by a gray swath that represents
the uncertainties in γ, ρ, and d. There are no fitting
parameters, and even so the agreement is very good. In
part (b), results for K increase with increasing d for drier
foams and the expectation is similarly shown. Now the
overall rate Ko is adjusted to give a good fit to the data.
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Wet Foam
(a) d = 11.4 mm

(b) d = 5.9 mm

(c) d = 3.5 mm
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FIG. 4. Coarsening rate versus number of sides multiplied by
the circularity and divided by the square root of the area of
individual bubbles; data are shown for wet foams with various
liquid content as labeled by d. Coarsening data for individual
bubbles are shown as colored dots and in parts (a),(b),(c)
there are data for N = [63, 90, 68] bubbles, respectively; the
x-axis values are calculated using the bubble specific values of
C (t) /

√
A (t). The black dashed lines show the expectation

for the generalized coarsening equation; they are evaluated
by making simultaneous fits to the coarsening rates for all
bubbles in each wetness where the reduced coarsening rate K
and the average radius of curvature of the Plateau borders
r are fit parameters. The gray swaths show the equation
evaluated using K ±∆K and r ±∆r.

This yields Ko = 0.023±0.002 mm2/min, taking the film
thickness from across a reasonable wide range of values,
10−5 mm < ` < 10−3 mm [25–27]. The result is some-
what smaller than the valueKo = 0.030±0.001 mm2/min
measured in Fig. 3 for a perfectly dry foam using the
usual von Neumann equation. The source of discrep-
ancy is not known, but could arise by a slight change in
the physical chemistry of the solution. Nevertheless, the
parameters r and K give excellent fits in Fig. 4 to the
expected variation with wetness, further demonstrating
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FIG. 5. The average Plateau border radius (a) and reduced
coarsening rate (b) versus the distance d from top surface of
liquid in the sample cell reservoir to the center of the gap be-
tween the plates. Data are shown as points, and expectations
are shown as solid curves with a gray swath reflecting uncer-
tainty in γ, ρ, d and `. Part (b) plots the value of Ko used
to evaluate the expectation as a dashed line. Note that as d
increases, the foam becomes drier and hence r decreases and
K increases in good accord with expectation.

the validity of the generalized coarsening equation.

IV. INDIVIDUAL BUBBLE COARSENING

In this final section we highlight that bubble shape
drives the deviations from von Neumman’s law, by re-
turning to the raw data for bubble area and circularity
versus time for a few individual bubbles in the above
analyses. We begin with six-sided bubbles, some of which
grow and some of which shrink as seen by careful inspec-
tion of the sign of dA/dt data in Fig. 4. This effect, and
its analogue for n 6= 6, is more obvious and dramatic in
A(t) versus t data for individual bubbles as follows.

A. Bubbles with n = 6

According to von Neumann’s law, the area of 6-sided
bubbles in a dry foam should not change in time. By
contrast, for wet foams, the expectation of Eq. 2 for 6-
sided bubbles reduces to dA/dt = 6KnrC (t) /

√
3πA (t).

Therefore, sign of the circularity shape parameter C(t)

and the magnitude of C (t) /
√
A (t) determines whether

a 6-sided bubble grows or shrinks and at what rate. Data
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for the area of examples bubbles in foams of various wet-
ness are shown in Fig. 6, where the area is seen to either
decrease as in parts (a)/(b) or to grow as in part (c).
The corresponding circularities are plotted in Fig. 6 (d-f).
There we see C (t) < 0 in (d)/(e) for bubbles that shrink
and C (t) > 0 in (f) for the bubble that grows. This shows
there is good qualitative agreement with Eq. 2 and the
coarsening behavior. Additional data in the supplement
for A (t) and C (t) versus time [24] show more examples
of qualitative agreement between the change in area and
bubble shape for many 6-sided bubbles from foam with
d = 5.9mm.

To demonstrate the quantitative validity of Eq. (2) for
dA/dt for these three six-sided bubbles, we numerically
integrate it using the displayed C(t) data in order to ob-
tain A(t) versus t along with the fitted values of K and r
discussed above. The resulting predictions for A(t) ver-
sus t are displayed as dashed curves with a surrounding
gray swath that reflects statistical uncertainties in K, r,
and C. Evidently, the agreement is remarkably good. Of
course this is expected based on the success of the fits in
the previous figures. Nevertheless it is a powerful demon-
stration that von Neumann’s law is indeed violated for
wet foams according to prediction in terms of the bubble
shape. Note that the agreement is accurate at the level of
≈ 0.01 mm, and that the comparison was made possible
by the high precision of our data.

These results raise a new question: What controls the
value and time-evolution of a bubble’s circularity shape
parameter and hence whether A grows or shrinks? To
begin exploring this issue, we examine the photographs
of the example bubbles shown in Fig. 6 at early and late
times. In these it is not possible to visually discern the
area changes. But, in (d), it is nevertheless apparent that
the shortest side becomes much shorter and more highly
negatively curved. Since the Eq. (3) definition of C fea-
tures an unweighted sum of curvature for each side, the
very-short very-curved film contributes very strongly to
C and hence is responsible for it being both negative and
a decreasing function of time. More generally, six-sided
bubbles often have a small few-sided bubble as neighbor
that shares a short film that shrinks and becomes more
curved with time. Thus we find C(t) tends to be nega-
tive and decreasing for many six-sided bubbles. Six-sided
bubbles with C > 0, that grow with time as in part (c),
exist but are more rare. We leave it to future studies to
further consider the distribution and evolution of shape
parameters in terms of nearest-neighbor size and shape
correlations.

B. Bubbles with n 6= 6

While the way bubble shape drives violation of the
von Neumann law is most evident for six-sided bubbles,
it can also be seen for bubbles with other side numbers
n. According to Eq. (2) the coarsening rates for bubbles
with the same n are different from one another depend-

ing on the individual bubble shape; how the circularity
of a bubble affects its coarsening is demonstrated quali-
tatively in the supplement with plots showing A (t) and
C (t) versus time for many n-sided bubbles from foam
with d = 5.9mm [24].

Quantitatively this is demonstrated for one five-sided
and one seven-sided bubble in Fig. 7 and for other bub-
bles in [24]. Just as in Fig. 6, the top and bottom rows
respectively show area and circularity data versus time,
along with photographs of the bubbles at early and late
times. For n = 5 and for n = 7 the bubbles respectively
shrink and grow, nearly linearly with time as expected
from the von Neumann law. Indeed the area change is
evident in the photographs. However, in both cases the
area change is slightly slower than linear. And in fact
this deviation is perfectly captured by numerical inte-
gration of the coarsening equation using the C(t) data,
exactly as done for the six-sided examples. Now the sign
of the deviation is more clear: Five-sided bubbles always
have positive circularity, while (n− 6) is negative; there-
fore they shrink more slowly than von Neumann. Simi-
larly, seven-sided bubbles always have negative circular-
ity, while (n − 6) is positive; therefore they grow more
slowly than von Neumann. For the example n = 5 bub-
ble, the circularity is roughly constant as it shrank. By
contrast, the circularity of n = 7 example bubble de-
creased as two of its shorter sides became even shorter
and more curved – similar to what was seen for typical
n = 6 bubbles.

V. CONCLUSION

In this work we show that the generalized coarsening
equation describes the coarsening behavior of bubbles in
a wet foam and predicts changes to the area of individ-
ual bubbles. This is some of the most precise data taken
of coarsening bubbles and very small changes in bubble
area are accurately measured. This becomes increasingly
important when considering how small in magnitude the
area changes are for 6-sided bubbles. To show the aver-
age behavior follows Eq. 2, we make a simultaneous fit to
the data of different n-sided bubbles where the fit param-
eters are the reduced coarsening rate K and the radius
of curvature of the Plateau borders r. The r values from
the fit agree with the calculated values of r values deter-
mined from Eq. 5 and Eq. 4. A mystery remains why the
K values from the fit are somewhat different from the
expected values; still the K values from the fit decrease
monotonically with increasing wetness and are predicted
if Ko = 0.023 mm2/min. We show that dA/dt is not con-
stant for any set of n-sided bubbles but instead depends
on the individual bubble shape and size.

Using these parameters we show how Eq. 2 also pre-
dicts the coarsening behavior of individual bubbles. In
particular the coarsening of 6-sided bubbles, which is not
predicted by von Neumann’s law, is determined exclu-
sively by the bubble shape. We show this by solving Eq. 2
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through numerical integration of the circularity data for
several 6-sided bubbles from foams of different wetness.
The data show the 6-sided bubbles coarsen with rate
changes depending on their shape and this is matched
by solutions to the generalized coarsening equation. The
shape changes that drive the coarsening rate changes are
easily visualized, especially for shrinking 6-sided bubbles,
from changes in the film network that cause changes in
circularity. Coarsening 6-sided bubbles are the most ob-
vious violations of von Neumann’s law but other n-sided
also have their coarsening rates reduced due to shape
effects. In some cases this leads to obvious non-linear
behavior.

Further verification of our generalized coarsening equa-
tion is possible by working with a hexagonal packing of
bubbles, which can be accomplished with a specialized
cell with hexagonal boundary conditions. If all bubbles
are 6-sided then any observed coarsening is both in vi-
olation of von Neumann’s law and would necessarily be

due to the bubble circularity. Additionally future work
could continue to increase the liquid volume fraction of
the foam to study systems that are “very wet” where
there is a breakdown of Plateau’s laws and bubbles are
separated only by liquid faces. The coarsening behavior
of these foams is predicted in [20], but this equation is
not yet tested experimentally. Coarsening also necessar-
ily relaxes the system and induces rearrangements [28].
While this study focuses on the dynamics of coarsening,
we can also study bubble rearrangements in both dry and
wet foams brought on by coarsening.
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