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The fundamental idea of embedding a network in a metric space is rooted in the principle of prox-
imity preservation. Nodes are mapped into points of the space with pairwise distance that reflects
their proximity in the network. Popular methods employed in network embedding either rely on
implicit approximations of the principle of proximity preservation or implement it by enforcing the
geometry of the embedding space, thus hindering geometric properties that networks may sponta-
neously exhibit. Here, we take advantage of a model-free embedding method explicitly devised for
preserving pairwise proximity, and characterize the geometry emerging from the mapping of several
networks, both real and synthetic. We show that the learned embedding has simple and intuitive
interpretations: the distance of a node from the geometric center is representative for its close-
ness centrality, and the relative positions of nodes reflect the community structure of the network.
Proximity can be preserved in relatively low-dimensional embedding spaces and the hidden geom-
etry displays optimal performance in guiding greedy navigation regardless of the specific network
topology. We finally show that the mapping provides a natural description of contagion processes
on networks, with complex spatio-temporal patterns represented by waves propagating from the
geometric center to the periphery. The findings deepen our understanding of the model-free hidden
geometry of complex networks.

I. INTRODUCTION

A wealth of recent papers from the physics community
have demonstrated that representing complex networks
in metric space may be beneficial in several respects [1].
Geometric representations provide intuitive explanations
for several properties of real-world networks, includ-
ing structural features [2–4], navigability [5, 6], robust-
ness [7, 8], community organization [9, 10], and functional
modularity [11, 12]. Also, the computer science commu-
nity displays a growing interest in embedding networks
in vector space [13–15]. Resulting representations allow
for direct applications of standard machine learning al-
gorithms in traditional graph analysis tasks, such as link
prediction [16], node classification [17], community de-
tection [18], and graph visualization [19].

The two strains of work share the same basic rationale:
nodes in the space should have pairwise distance that re-
flects their similarity or proximity in the graph. However,
proximity preservation is implemented in different ways
depending on the scientific community of reference.

The approach adopted by the physics community of-
ten involves explicit network models. Such an approach
has the advantage of providing an immediate interpreta-
tion of the embedding. One of the most influential mod-
els, i.e., the so-called popularity-similarity-optimization
model (PSOM) [2, 20], is a very good example of this
statement. PSOM assumes that nodes are represented
by points in the hyperbolic disk, and that their radial
and angular coordinates are representative respectively
for individual popularity and pairwise similarity. The
model further assumes connection probability between
pairs of nodes to be an explicit function of their distance
in the hyperbolic space. The embedding of a given net-

work in the hyperbolic disk is then found by fitting the
network against PSOM, with the hyperbolic coordinates
of the nodes playing the role of the fitting parameters.
Model-based approaches to network embedding are in-
tuitive. However, they are useful only as long as the
assumed generative model is sufficiently accurate in de-
scribing the structure of the fitted network [1].

By contrast, typical methods for network embedding
developed by the computer science community do not as-
sume explicit generative models [14, 15]. Such a model-
free approach generally relies on defining a metric of pair-
wise node similarity and then seeking the vectorized rep-
resentation that best preserves the overall similarity of an
observed graph [21, 22]. The approach is flexible enough
to provide a non-trivial geometric representation of any
network. However, the interpretation of the inferred ge-
ometry may not be immediate. Take for example classical
methods based on the spectral decomposition of graph
operators, such as Laplacian Eigenmaps [23]. Only some
of the principal components of the space, where the graph
is projected to, have an intuitive physical meaning. Fur-
ther the distance between points in the embedding space
mostly reflects the similarity of the nodes in terms of
common connections to other nodes but is not necessar-
ily related to their physical distance in the graph space.
The meaning of the geometric representation of a net-
work becomes even more opaque for sophisticated graph
embedding methods aiming at preserving ad-hoc simi-
larity metrics through quite involved optimization tech-
niques, as for example Deepwalk [17], node2vec [16], and
HOPE [24]. The lack of a simple geometric interpretabil-
ity of network embeddings doesn’t hinder their usefulness
in machine learning tasks. However, it may seriously im-
pede human understanding in applications of graph em-



2

beddings to critical issues such as identifying high-risk
patients [25] and repurposing drugs for the treatment of
novel diseases [26, 27].

Is it possible to find clear interpretations of the hid-
den geometry that are learned by model-free embedding
approaches? In this paper, we tackle directly this ques-
tion. We consider geometric representations where the
shortest path length among all pairs of nodes in the orig-
inal network is preserved as much as possible in the em-
bedding space. To avoid introducing prior knowledge on
the hidden geometry of the network, we use Euclidean
space for the embedding. Other than the objective to
find the network representation that best preserves pair-
wise shortest path lengths, the model-free technique im-
poses no further restrictions. We stress that the embed-
ding method considered here has been already employed
in Ref. [30] to assist graph drawing, in Refs. [31–33] for
the prediction of missing protein-protein interactions in
biological networks, and in Ref. [34] to aid the embed-
ding of networks in the hyperbolic space. Here, we re-
use the technique as it represents the most natural choice
if the goal is providing embeddings that are congruent
with the network structure with no underlying models
and minimum restrictions. The emerging geometries are
network dependent, and not necessarily similar to previ-
ously suggested ones [35]. Learned geometries have sim-
ple and intuitive meanings. For example, the distance of
a node from the geometric center is representative for its
closeness centrality [36], while the relative positions of
nodes reflect network community structure [37]. We find
that graph distance can be very well preserved in rela-
tively low-dimensional embedding spaces. Our analysis
further shows that the model-free embedding can assist
network routing [5, 6, 38] with high performance across a
wide spectrum of real and synthetic networks, including
the ones that the model-based approach fails on. The
structure of the model-free embedding also suggests a
geometrical representation of spreading processes, which
corresponds to waves propagating from the center to the
periphery of the embedding space.

II. RESULTS

A. Inferring the model-free embedding map

The approach to network embedding that we consider
here is a direct implementation of the principle of prox-
imity preservation: graph distance, i.e., the length of
the shortest path connecting two nodes in the network,
should to be preserved in terms of metric distance, i.e.,
the length of the shortest path connecting the projections
of the two nodes in the embedding space. To this end,
we take advantage of MultiDimensional Scaling (MDS,
see Appendix A for details), a dimensionality reduc-
tion method specifically devised to translate information
about the pairwise distances among a set of N objects
into a configuration of N points mapped into an abstract

Euclidean space [39, 40]. For networks with more than
7,000 nodes, we deploy the landmark MDS [41, 42] to
approximate the model-free embedding (see Appendix A
for details). As many other machine learning techniques,
also MDS has a relatively long history and is now expe-
riencing renovated interest in the emerging field of data
science [43]. MDS has been considered in a broad set
of disciplines, such as psychology, sociology, economics,
biology, chemistry, and archaeology [40].

As we mentioned above, some applications of MDS to
network data exist [30–34, 44]. Also, we remark that
the embedding method is quite often referred as ISOmap
rather than MDS, e.g., in Refs. [15, 32–34]. ISOmap is a
method for dimensionality reduction of data points in ar-
bitrary space that relies on MDS [45]. It consists of three
steps: (i) generation of a network representation of the
data; (ii) computation of the shortest path length matrix
of the obtained network representation; (iii) application
of MDS embedding. In our case, the network is already
at our disposal, so no data preprocessing is needed. We
prefer to think that what we use is the MDS method
with input consisting of the shortest path length matrix
of a network. Therefore, we will refer to the embedding
method used in this paper as MDS.

B. Illustration and interpretation of the model-free
embedding map

To illustrate the model-free hidden geometry of net-
works learned by MDS in an intuitive setting, in Fig. 1
we display two-dimensional maps for two real-world net-
works: the European Roads (ER) [28] and European Air
Transportation (EAT) [29] networks. Nodes in both net-
works represent main European cities, with the caveat of
large cities potentially represented by multiple airports in
the EAT network (see details in Appendix B 2). In gen-
eral, nodes belonging to the same European country are
mapped close to each other in both maps, so that there is
a positive correlation between distance in the embedding
space and physical distance between pairs of cities. Some
exceptions to this rule are apparent. For example in the
ER map, Denmark nodes are separated into two groups
corresponding to the Jutland and Zealand regions of the
country. These groups are respectively mapped close to
Germany or Sweden, reflecting actual network proxim-
ity rather than purely geographical one. Even though all
nodes represent European cities, the emerging geometri-
cal pattern of the two maps is rather different because
of the different ways that connections are drawn in the
networks. In the ER network, geographical constraints
affect the existence of network connections between pairs
of cities, thus geographically adjacent countries are ad-
jacent in the MDS map too. Also, the relative location
of countries is congruent with their geographical posi-
tion. By contrast, the absence of physical constraints in
establishing connections among cities in the EAT net-
work leads to a circular geometrical pattern, resembling



3

Norway

Sweden

Germany

France

Italy

Greece

Romania

Russia Ukraine

Denmark

Denmark

Bosnia and Herzegovina

Spain

Finland

Hungary

Austria

Poland Bulgaria
Slovakia

Portugal

Croatia

Serbia

Finland

Norway

Denmark

Spain

France

Greece

Russia

FIG. 1. Model-free maps of real-world networks. Two-dimensional MDS maps of the (a) European Roads (ER) [28]
and (b) European Air Transportation (EAT) [29] networks. For details on the two networks see Appendix B 2. The size of
nodes in the ER network is proportional to the square of their degrees. For the EAT network, the size of nodes is proportional
to the square root of their degrees. Nodes in both figures are colored depending on the country they belong to. For sake of
clarity, we label and color only nodes corresponding to a subset of European countries, and display in gray nodes not belonging
to this subset. Also, only nodes with degree centrality larger than one are shown. The black x symbol in both panels denotes
the geometric center of the embedding space.

the one imposed in hyperbolic embedding [5]. Cities are
staggered into neat shells denoting their network central-
ity, and clustered into narrow angular slices depending on
the country they belong to.

Now that we have an intuitive picture of the result-
ing network geometry, we can proceed with the inter-
pretation and characterization of it. As we already ob-
served while describing Fig. 1, a possible geometric pat-
tern emerging from the mapping is characterized by a
hyper-spherical organization of the nodes around the ge-
ometric center. To explore potential geometric interpre-
tations of network properties, we calculate rank corre-
lations between the distance of the nodes from the ge-
ometric center in the hidden space and observable net-
work centrality metrics [36], including degree, between-
ness [46], eigenvector [47], Katz [48], PageRank [49], non-
backtracking [50], k-core [51], and closeness [52] centrali-
ties (see results in Fig. 2 and Appendix. C). We find that
the distance from the center of the embedding always
shows a highly negative correlation with the closeness
centrality. Further analysis suggests the existence of a

natural inequality between network closeness centrality
and distance from the MDS geometric center in case of
perfect embedding (see Appendix. C). The model-free ge-
ometry provides an elegant and intuitive interpretation
for the closeness centrality in the hidden space. The find-
ing also emphasizes a major difference of the model-free
embedding with hyperbolic embedding, where the radial
coordinate of a node is by definition a decreasing function
of its degree centrality.

C. Ability to preserve network information

Previous studies dealing with the MDS mapping of
networks focus on embedding spaces with 2 or 3 dimen-
sions [30–32, 34]. In the study of geometrical properties
of networks, we do not have to deal with a fixed value
of the dimension for the embedding space. Rather, we
can use it as a free parameter that allows us to find the
right comprise between the level of reduction of network
information and the effectiveness of the embedding in
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FIG. 2. Geometric interpretation of network cen-
trality metrics. Pairwise rank correlation between different
network centrality metrics and the distance from the geomet-
ric center of the MDS embedding. Here, the embedding di-
mension is d = 100. Note that we take absolute value of
correlation coefficients for convenient comparison. We com-
pute the correlation coefficients for nine real-world networks
(see Table I for details). Network centralities considered are
closeness (C), eigenvector (EV), non-backtracking (NB), Katz
(K), k-core (KC), betweenness (B), PageRank (PR), and de-
gree (D).

preserving graph distance. What is the minimum num-
ber of dimensions required to achieve a reasonable level
of congruence between graph and embedding distance?
The answer to this question should be network depen-
dent. For a network with strong geographical constraints
such as the ER network, a two-dimensional space should
suffice to provide an accurate geometrical description of
the network. For other networks, however, we may need
a higher number of dimensions.

We note that the authors of Ref. [33] studied how per-
formance of link prediction in protein-protein interaction
networks is affected by the choice of the embedding di-
mension of the MDS space. Here, we differentiate from
such an analysis in several important respects. First, we
focus on the quality of the embedding itself and not a
specific downstream task, e.g., link prediction. This fact
gives greater generality to our analysis. Second, we sys-
tematically study the quality of MDS embedding of syn-
thetic networks, so that we are allowed to vary system
size while keeping other properties invariant. The anal-
ysis serves to understand how the dimension of the un-
derlying space should be chosen for a given network size.
Third or more important, we consider different types of
real-world networks, not just biological ones. In particu-
lar, the quality of the embedding at a certain dimension
depends on the size of a real-world network in a similar
way as observed for synthetic networks.

We measure the quality of a network representation by
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FIG. 3. Preservation of graph distance in the embed-
ding space. (a) Relative error between the shortest path
length in the graph and the distance in the embedding space
as a function of the embedding dimension. Relative error
is averaged over all pairs of nodes in the network (see Ap-
pendix D 1 for details). We consider different types of network
models, either Poisson networks with average degree 〈k〉 = 4
or m-ary trees with m = 3, and two different network sizes
N = 100 and N = 1, 000. Continuous curves in the plot
are obtained by fitting data points with power-law decaying
functions towards an asymptotic relative error value (see Ap-
pendix E). (b) Same as in panel a, but for real-world networks
(see Table I). (c) Optimal embedding dimension as a function
of the network size N (see Appendix E). For network models,
we consider different sizes. Real-world networks are denoted
by a single point in the plot. (d) Asymptotic value of the
relative error as a function of the network size.

estimating the average value of the relative error between
the distances in the graph and the embedding spaces
across all pairs of nodes in the network (see details in
Appendix D 1). As the results of Fig. 3 show, the rela-
tive error committed by MDS embedding in preserving
graph distance quickly saturates to an asymptotic value
as the dimension of the embedding space increases. The
phenomenon is apparent for all networks we consider, ei-
ther real and synthetic. Ideally, the asymptotic value of
the relative error should equal zero for a perfect embed-
ding. We observe, however, that perfect MDS embedding
cannot be achieved even in high-dimensional spaces. As a
matter of fact, the shortest path length between nodes ex-
hibits persistent triangle inequality violation when we try
to embed the network into Euclidean space, thus impos-
ing a limit to the quality of the resulting embedding [57–
59]. We stress that the asymptotic relative error values,
although strictly larger than zero, are rather small (see
Table I). Considering the fact that the real-world net-
works we consider are very heterogeneous in terms of
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TABLE I. Model-free embedding of real and synthetic networks. We summarize here basic information and selected
metrics of the model-free embedding of the real-world networks and synthetic networks considered in this paper. From left
to right, we report: name and acronym of the network, size N of the network, total number of edges L, average degree 〈k〉,
asymptotic relative error Ê∞, optimal embedding dimension d̂o obtained at accuracy level ε = 0.05, the success rate ps of
greedy routing, the rank correlation coefficient ρ between the distance from the geometric center in the MDS space and the
average infection arrival time of nodes. The standard deviations of Ê∞ and ps in multiple repetitions are smaller than 0.002 and
0.007 respectively for all networks. The p-values of ρ are all close to zero. For IPv4 and AS2, the values of ρ are not available
due to computational limitations and other metrics are obtained using landmark MDS (see Appendix A). Three instances of
PSOM use the same parameters with N = 5, 000, γ = 2.1, and 〈k〉 = 5 but different values of T . Only the largest connected
component is kept for each instance. Since the PSOM instances are introduced to test greedy routing specifically, the values of
ρ are not provided.

N L 〈k〉 Ê∞ d̂o(ε = 0.05) ps ρ
Real-world networks

Human Brain, layer1 (HB1) [53] 85 230 5.412 0.078 2 1.000 0.818
Human Brain, layer2 (HB2) [53] 78 218 5.590 0.089 3 1.000 0.900

European Road (ER) [28] 1,039 1,305 2.512 0.049 3 0.924 0.967
Air Transportation (AT) [29] 3,618 14,142 7.818 0.045 9 0.904 0.859

P2P (P2P) [54] 6,299 20,776 6.597 0.084 14 0.973 0.985
AS Oregon Internet (AS1) [55] 6,474 12,572 3.884 0.042 11 0.903 0.785

IPv6 Internet (IPv6) [53] 5,143 13,446 5.229 0.049 10 0.943 0.848
IPv4 Internet (IPv4) [53] 37,542 95,019 5.062 0.100 38 0.912 -

AS Internet (AS2) [56] 23,748 58,414 4.919 0.077 47 0.933 -
Synthetic networks

Poisson network, 〈k〉 = 4 1,000 2,029 4.058 0.102 9 1.000 0.986
m-ary tree, m = 3 1,000 999 1.998 0.015 13 0.913 0.879

PSOM, T = 0.1 (PSOM1) [2, 20] 4,521 12,175 5.386 0.027 12 0.905 -
PSOM, T = 0.5 (PSOM2) [2, 20] 4,731 12,553 5.307 0.042 9 0.861 -
PSOM, T = 0.9 (PSOM3) [2, 20] 4,068 6,821 3.353 0.048 9 0.877 -

size, edge density, degree distribution, etc., the quality
of the MDS representations that we obtain are excellent
for sufficiently high-dimensional embedding spaces. To
quantitatively establish an optimal value for the embed-
ding dimension that balances efficiency and quality of
the representation, we adapt the parametric method of
Ref. [60] to our error metric (see Appendix E). Our em-
pirical results show that the optimal dimension grows
only logarithmically with the network size in synthetic
network models. For the real networks considered in this
paper, optimal dimension values display a similar behav-
ior as in synthetic networks. In particular, all networks
have optimal embedding dimension smaller than 50 (see
Table I).

We also evaluate the ability of MDS to preserve graph
distance with the Pearson correlation coefficients. The
results are qualitatively similar with relative error (see
Appendix D 2).

D. Efficiency in guiding routing

To further validate the quality of the model-free ge-
ometry learned from MDS embedding, here we test its
ability of guiding navigation on networks through greedy
routing. This is a quite important task in several con-
texts, including routing of information packets in the In-
ternet, diffusion of electric signals in neural networks,

and the flow of people or goods in transportation and
delivery networks [5, 56]. We stress that greedy rout-
ing is very different from the downstream tasks usually
considered in the validation of other model-free network
embedding methods [13–15]. It is rather a common test
bed for model-based methods, such as hyperbolic embed-
ding [5, 34, 56].

In greedy routing [38], a packet should be delivered
from the source node s to the target node t. The packet
can walk along one edge each at a time until it reaches its
destination, preferably following the shortest path con-
necting s to t. If one relies on complete information about
the network structure, where every single node is aware
of its graph distance from any other node, then the pro-
tocol is optimal in the sense that all packets are delivered
with 100% success probability and always along the ac-
tual shortest path. However, such a procedure requires
nodes to store routing tables based on complete network
information, and it is thus not scalable. Network embed-
ding methods, especially the MDS embedding considered
here, provides a natural solution, as the distance between
nodes in the embedding space is representative for dis-
tance in the graph space. While walking towards its tar-
get t, a packet sitting on the arbitrary node i may simply
move to the neighbor j of node i that is closest to t ac-
cording to their distance in the embedding space. The
protocol requires each individual node to store informa-
tion only about its neighbors’ coordinates in the space,
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thus making it highly scalable.
Clearly under the MDS protocol, some packets may

visit the same node twice. In that case, the packet is con-
sidered lost and the routing process unsuccessful. Also,
even if a packet is delivered, it may have not followed the
true shortest path connecting the source node to the tar-
get. Success rate [5, 56] and efficiency [10] for randomly
chosen pairs of source and target nodes are the standard
metrics of performance for the evaluation of this type of
navigation protocols (See Appendix F for details).

We test MDS greedy routing on nine real-world net-
works and three instances of the PSOM (see Table I
and Appendix B 1 for details). We use greedy routing
based on hyperbolic embedding as the term of compari-
son to assess the performance of the MDS protocol, see
Fig. 4. The hyperbolic embedding algorithm we used
here is HyperMap-CN [20], which has been proven to
provide one of the best performance of all hyperbolic em-
bedding methods considered in Ref. [34]. Regardless of
the network, the success rate of the MDS greedy protocol
is excellent. Hyperbolic embedding generates protocols
with performance comparable to MDS only in some net-
works, likely those networks that are suitably described
by hyperbolic geometry, while it provides much poorer
performance than MDS in many other networks. The
GR-score [34, 61] is also calculated to measure the per-
formance of greedy routing. The results are the same as
for the success rate (see Appendix F).
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FIG. 4. Routing protocols relying on network ge-
ometry. We compare (a) success rate and (b) efficiency of
greedy routing in MDS and hyperbolic spaces for different
real-world networks (acronyms and symbols are the same as
in Fig. 3). We consider also three instances of PSOM with
N = 5000, 〈k〉 = 5 and degree exponent γ = 2.1, and different
values of the temperature parameter T = 0.1, T = 0.5, T =
0.9 (respectively indicated as PSOM1, PSOM2, and PSOM3).
The markers located in the upper triangle area represent the
cases where success rate or efficiency in MDS space is higher
than in hyperbolic space.

E. Application in mapping the contagion spreading
on networks

In this final section, we provide evidence that MDS
embedding may be used for the geometric description of

the spatio-temporal patterns of spreading process occur-
ring on networks [62]. Specifically, we hypothesize that
MDS may provide an effective representation of complex
spreading patterns in terms of standard wave equations in
continuous Euclidean space. Such a representation would
have the great potential of allowing us to leverage knowl-
edge of the mathematics of waves in classic systems and
eventually exploring the analogue of wave-related phys-
ical phenomena, such as interference and resonance, in
spreading processes occurring on networks. The rationale
of such an hypothesis stems from the fact that infection
arrival time can be approximated by network centrality
measures [63, 64], and that the distance to the embedding
center of each node corresponds to its closeness centrality.

FIG. 5. Geometric description of spreading in com-
plex networks. In the main panel, we display the scatter
plot of the average infection arrival time against the distance
of nodes from the geometric center of the MDS map. Each
point in the plot is a node of the network. The average in-
fection arrival time is calculated based on N independent in-
stances of the susceptible-infected model simulated on the air
transportation (AT) network with a random seed each time,
where N is network size. The network is embedded in d = 100
dimensions. For illustrative purposes only, we display in the
inset how spreading looks like in a 2-dimensional MDS map.
Nodes with larger size and darker color are infected earlier.

To test our hypothesis, we consider the susceptible-
infected (SI) model as the spreading process (see Ap-
pendix G 1 for details). We simulate it on different real-
world and synthetic networks. In all our simulations, we
always start from a configuration where all nodes are in
the susceptible state, with the exception of one node in
the infected state. We measure the time required for the
infection to arrive to each node. The source of the in-
fection is randomly chosen, and results are averaged over
a number of instances equal to the size of the network
N . Fig. 5 shows the relationship between the average in-
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fection arrival time of each node and its distance to the
geometric center for the AT network. The high value of
the rank correlation denotes that spreading is well rep-
resented by a wave whose front is moving in a rather
homogeneous way in the embedding space. The finding
is further substantiated by the graphical illustration of
the inset of Fig. 5, where a clear concentric wave appears
in the 2-dimensional representation of the network. Sim-
ilar results can be observed for all the other networks
(see the correlation values in Table I and more results in
Appendix. G 2). The high correlations between the infec-
tion arrival time and the distance from the MDS embed-
ding center across all networks confirm our hypothesis.
We stress that similar or even slightly higher correlation
can be measured if closeness centrality is used in place of
the distance from the geometric center of the embedding.
However, closeness centrality doesn’t provide us with an
immediate geometric representation of the network, and
the description of spreading in terms of wave equations
becomes more complicated than the one obtained in the
MDS embedding, thus Euclidean, space. Unlike other
efforts to reorder the nodes of a network to construct
wave-like patterns [65, 66], the connection between the
hidden geometry and contagion spreading here is a natu-
ral implication of the model-free hidden geometry of the
networks.

III. DISCUSSION

Different approaches to the embedding of network in
hidden geometric space exist. The model-based ap-
proaches from the physics community can offer an im-
mediate interpretation of the learned geometry, but only
work when the model and the network topology are con-
gruent. The model-free approaches adopted by the com-
puter science community have no such limitation, but
the lack of an immediate interpretation greatly hinders
the human understanding of the learned geometry. Here,
we consider a compromise between the two above ap-
proaches, consisting of a model-free method with imme-
diate geometric interpretation. The method, named Mul-
tiDimensional Scaling (MDS) relies on the preservation
of shortest path distance in the embedding space. MDS
has been considered in the past as a viable method to
embed networks in applications such as link prediction
and graph drawing. Here, we re-consider it as one of the
most natural way of learning the hidden geometry of a
network, and translate network properties in geometric
space. Indeed, we show that the distance of a node from
the geometric center corresponds to its closeness central-
ity, and the relative positions of nodes reflect the network
community structure.

Our work shows that the MDS mapping of networks is
a meaningful operation, as the distance among pairs of
nodes in a network can be preserved to a great extent in
relatively low-dimensional vector spaces, irrespective of
the specific network considered. Furthermore, the perfor-

mance of greedy routing on all kinds of networks embed-
ded in the vector space using MDS is better than, or com-
parable to, the networks mapped using the state-of-the-
art hyperbolic embedding method. The MDS embedding
space provides an alternative choice of the navigable hid-
den space for networks, especially for the networks whose
structures are not congruent with hyperbolic maps.

Also, we show that the complex spreading patterns in
the original network can be mapped to a propagating
wave in the MDS embedding space. Our results suggest
that MDS embedding can be an effective tool to study
dynamical process on networks.

In this work, we use Euclidean space as the target
and geodesic distance, the most common definition of
graph distance, as the input metric to be preserved. Both
choices have been made for clarity and simplicity. How-
ever, the approach can be easily generalized to other
metric spaces and definitions of pairwise distance among
graph nodes. For example, it is possible to preserve the
geodesic distance in hyperbolic space to take advantage of
the hyperbolic geometry, or it is possible to replace short-
est path distance with another metric of distance or sim-
ilarity, e.g., communicability [67], to obtain slightly dif-
ferent MDS embeddings. One can also unitize weighted
path length in the embedding process to incorporate ex-
tra information like traffic [65] or characteristics of the
dynamics [66] for better predictions of the arrival time of
infection. We leave such extensions for future work.
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Appendix A: MultiDimensional Scaling (MDS)
embedding of networks

1. Algorithm

We take the geodesic distance matrix D of a net-
work and the embedding dimension d as inputs of the
MDS method. The output are the coordinates xi =

(x
(1)
i , . . . , x

(v)
i , . . . , x

(d)
i ) of all nodes i in a d-dimensional

space. Coordinates are learned from the input data
through the minimization of the stress function

S(x1,x2, ...,xN |D) =
∑
i>j

[Dij − ||xi − xj ||]2 , (A1)
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where ||xi−xj || =
√∑d

v=1(x
(v)
i − x

(v)
j )2 is the Euclidean

distance between the points xi and xj in the vector space.
Scaling by MAjorizing a COmplicated Function (SMA-
COF) [40] algorithm is used to solve the stress minimiza-
tion problem. We remark that the choice of the matrix D
to be the geodesic distance between all pairs of nodes is a
specific choice made in this paper. One can replace that
matrix with any other arbitrary node distance matrix.
Also, the minimization of the stress function of Eq. (A1)
is the so-called metric MDS, i.e., one of the most pop-
ular algorithms within the MDS family. Similarly, the
Euclidean distance in Eq. (A1) can be replaced with an-
other distance metric.

The above algorithm does not scale well with net-
work size. However, there are lots of speed-up methods
available. Here we adopt the so-called landmark MDS
method [41, 42]. The approximation relies on a small set
of landmark nodes to embed the other nodes on the basis
of distance-based triangulation. The steps for landmark
MDS are:

1. Select l (l � N) landmark nodes randomly from
all nodes of the network. In this paper, we set
l = 1, 000.

2. Apply metric MDS to find the coordinates of land-
marks Xlands.

3. The coordinates of the remaining non-landmark
nodes Xnon-lands are computed using the distance-
based triangulation, i.e.,

Xnon-lands = −1

2
X†landsB , (A2)

where X†lands is the pseudo-inverse of Xlands and
the (i, j)-entry of B is computed as

Bij = F 2
ij −

1

l

l∑
j=1

E2
ij , (A3)

with the matrix E ∈ Rl×l representing the dis-
tance matrix of the landmark nodes and F ∈
Rl×(N−l) the distance between the landmark and
non-landmark nodes.

Different landmarks selection strategy in step 1 may
affect the performance of landmark MDS. Here we com-
pare two different landmark selection methods, i.e., ran-
dom selection and Maxmin. Maxmin randomly picks the
first landmark node l1. Then, for i ∈ {2, ..., l}, the i-
th picked landmark maximizes, over the remaining un-
touched nodes, the minimum shortest path length dis-
tance to any of the existing landmarks

li = argmax
v∈V \{l1,...,li−1}

min
l∈{l1,...,li−1}

Dvl, (A4)

where V represents the set of all the nodes in the network.
The cost of using Maxmin instead of random selection
amounts to O(lN) extra operations.

In Fig. 6 and Fig. 7, we compare the performance
of landmark MDS with random selection and Maxmin
methods on IPv6 network (N = 5143). Metric MDS is
used as the baseline. For a systematic comparison, we
report running time, relative error, Pearson correlation,
greedy routing success rate, average path length, and ef-
ficiency in both figures.

Fig. 6 focuses on the effect of landmark number. The
range of landmark number is l ∈ [2d, 10d]. For both
landmark selection approaches, l = 4d is sufficient to get
a decent low-dimensional representation of the network.
In Fig. 7, we fix the number of landmarks with l = 10d
and study the effect of embedding dimension by vary-
ing d ∈ [1, 100]. Results show that while Maxmin takes
more time than random selection, the performance is very
close. Therefore, we use the random selection approach
with l = 1000 for landmark MDS in this paper.

2. Computational and space complexity

The naive version of the metric MDS algorithm has
high computational and space complexity. The landmark
MDS reduces the time and space complexity significantly
when the number of landmarks is small, i.e., l� N . Here
we analyze the complexity of both algorithms.

To store the distance matrix, metric MDS requires
O(N2) space while landmark MDS has a space complex-
ity of O(lN), where N is the size of network, l is the num-
ber of landmark nodes. The computational complexity
of MDS contains two parts:

1. Calculating distance matrix. Metric MDS requires
O(CN2) as compared to O(ClN) for landmark
MDS, where C is the cost to compute each en-
try of the distance matrix. For example, C equals
O(LlogN) with Dijkstra’s algorithm, where L is the
number of edges in a network.

2. Finding the embedding coordinates. The cost of
metric MDS is dominated by the majorization of
the stress function, i.e., SMACOF algorithm. The
time complexity of per-iteration of SMACOF is at
least O(N2). The dominating costs of landmark
MDS are as follows: O(l2) for finding the embed-
ding coordinates of landmarks and O(dlN) for cal-
culating the coordinates of non-landmarks using
the distance-based triangulation, where d is the di-
mension of the embedding space.

In summary, metric MDS has computational complex-
ity O(CN2 + N2) and space complexity O(N2), while
landmark MDS has computational complexity O(ClN +
dlN + l2) and space complexity O(lN).

We use landmark MDS for networks with more than
7,000 nodes in this work.
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FIG. 6. The performance of landmark MDS algorithm on IPv6 Internet network. (a) Running time, (b) relative error, (c)
Pearson correlation, (d) greedy routing success rate, (e) greedy routing average path length, and (f) greedy routing efficiency
as functions of the number of landmarks. The embedding dimension is d = 100.
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FIG. 7. The performance of landmark MDS algorithm on IPv6 Internet network. (a) Running time, (b) relative error, (c)
Pearson correlation, (d) greedy routing success rate, (e) greedy routing average path length, and (f) greedy routing efficiency
as functions of the embedding dimension d. The number of landmarks is l = 10d.

Appendix B: Networks

1. Network data

We use both synthetic and real-world networks in this
paper. All networks are unweighted and undirected. The
nine real-world networks include two human brain net-
works, two transportation networks, one p2p network,
and four snapshots of the Internet. The synthetic net-

works include:

1. Poisson networks. They are generated by the
configuration model with Poisson degree distribu-
tion. The size of network N and average degree 〈k〉
are two tunable parameters.

2. m-ary trees. These are rooted trees with each
node having no more than m children. We control
both the parameter m and the size of the tree N .
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3. Popularity-similarity-optimization model
(PSOM) [2, 20]. PSOM is a growing network
model that assumes nodes to be connected depend-
ing on their distance in a hidden hyperbolic space.
The parameters of PSOM are average degree 〈k〉,
exponent γ of the power-law degree distribution
P (k) ∼ k−γ , and temperature T . Temperature
T controls the average clustering in the network,
which is maximized at T = 0 and decreases to zero
when T approaches 1.

Details of the real-word networks and synthetic net-
work instances can be found in Table I.

2. Network processing for visualization

For clarity, only parts of the European Road (ER) net-
work [28] and the Air Transportation (AT) network [29]
are visualized in Fig. 1. The original ER graph has
N = 1, 039 nodes and L = 1, 305 edges. The nodes repre-
sent European cities and an edge between two nodes rep-
resents a road connecting them. We remove nodes cor-
responding to cities in Asian countries (Turkmenistan,
Uzbekistan, Tajikistan, Kyrgyzstan, Iran, Syria, and
Iraq) and transcontinental countries (Turkey, Georgia,
Armenia, Kazakhstan, and Azerbaijan) as well as two
nodes located in Kosovo, because the country is not rep-
resented in the AT network. In the end, we obtain a
sub-graph of ER with N = 859 nodes and L = 1, 098
edges.

The original AT network has N = 3, 618 nodes and
L = 14, 142 edges. The nodes represent cities around
the world. A connection between two nodes indicates
the existence of at least one flight between them from
November 1st to 7th, 2000. We obtain the European
Air Transportation (EAT) network with N = 506 nodes
and L = 2, 382 edges by keeping the nodes located in
countries that appear in the ER network.

The sub-graphs are only used in visualizing Fig. 1. The
original networks are used elsewhere.

Appendix C: Relationship between the geometric
distance of nodes in MDS embedding space and

network closeness centrality

The network closeness centrality of node i equals to
the inverse of the average shortest path distance of the
node from all nodes in the network, i.e.,

Ci =
N∑
j Dij

. (C1)

A perfect MDS embedding means that

||xi − xj || = aDij

for all pairs of nodes i, j, with a > 0 arbitrary constant.
We can write that

N C−1i =
∑
j Dij = a−1

∑
j ||xi − xj ||

≤ a−1
∑
j ||xi||+ a−1

∑
j ||xj ||

,

where we used the triangle inequality. The center of
the embedding corresponds to the origin of the reference
frame. We have that

∑
j ||xi|| = N ||xi|| = N ri, with

ri distance of node i from the geometric center of the
embedding. Also, we can write that

∑
j ||xj || = N 〈r〉

with 〈d〉 average value of the distance of points from the
geometric center. We can finally write the inequality

Ci ≥
a

ri + 〈r〉
. (C2)

Our numerical results of Fig. 2 and of Fig. 8 indicate
that the inequality of Eq. (C2) is tight in all networks
considered in this paper. Other node centrality metrics
also correlate with the distance of a node from the geo-
metric center of the embedding. However, results seem
network dependent.

Appendix D: Metric of evaluation for MDS
embedding

1. Relative error

We quantify the ability of MDS to preserve network
proximity by estimating the relative error

E = min
γ>0

 2

N(N − 1)

∑
i>j

|Dij − γXij |
Dij

 , (D1)

where, for shortness of notation, we usedXij = ||xi−xj ||.
Low values of E correspond to good embeddings. Specif-
ically, E = 0 is obtained for an embedding that perfectly
preserves the pairwise distance for all node pairs.

Please note that for large networks it’s infeasible to test
every possible pair of nodes. For network with N > 500,
we choose 105 random pairs of nodes to approximate the
relative error.

2. Pearson correlation coefficient

The Pearson correlation coefficient between the pair-
wise shortest path length in the original networks and
distance in the embedding space can be an alternative
metric to measure how well the MDS embedding pre-
serves the distance. The relative error and Pearson cor-
relation values are all in the interval [0, 1]. For perfect
embedding, the relative error should be zero and Pearson
correlation should be one.

Fig. 9 replicates Fig. 3 of the main text, but with the
Pearson correlation coefficient as the evaluation metric.
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FIG. 8. Pairwise relation between different centralities and the distance of a node from the geometric center in MDS embedding
space (r) for different real-world networks. Network centralities considered are closeness (C), eigenvector (EV), non-backtracking
(NB), Katz (K), k-core (KC), betweenness (B), PageRank (PR), and degree (D). The embedding dimension is 100. The results
for IPv4 and AS2 are obtained by landmark MDS with the number of landmarks l = 1, 000. For clarity, we only show 10% of
all nodes if the network size is larger than 1,000.

Similar to relative error, the results here also quickly sat-
urate to an asymptotic value as the embedding dimension
increases. The optimal dimensions obtained using Pear-
son correlation coefficients are slightly different from the
ones calculated using relative error, but the values are
still very small for all networks considered.

Appendix E: Estimating the optimal dimension of
networks

To estimate the optimal dimension of MDS embedding
for different networks, we use the method introduced in
Ref. [60]. Assuming the plateau value E∞ of the relative
error E corresponds to the best geometric description

that the embedding algorithm can achieve, the optimal
dimension do(ε) at accuracy level ε is defined as

do(ε) = arg min
d

(E(d)− E∞ < ε) , (E1)

i.e., the minimal d value such that the difference between
E(d) and the optimum E∞ is at most ε. Our numerical
tests indicate that E(d) can be well described by the
function

E(d) = E∞ + sd−α . (E2)

We fit data points to Eq. (E2) and obtain the best esti-

mates of the parameters Ê∞, ŝ and α̂. The best estimate
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FIG. 9. Same as Fig. 3 in the main text, but with the
Pearson correlation ρ between the shortest path length and
distance in the embedding space as the evaluation metric. For
Poisson networks and P2P network, the continuous curves
are obtained by fitting data points with exponential function
ρ(d) = ρ∞ − seβd. For tree networks and other real-world
networks, the data points are fitted with power law function
ρ(d) = ρ∞ − sdα. The optimal dimension is also calculated
at the accuracy level ε = 0.05.

of the optimal embedding dimension d̂o(ε) is calculated
as

d̂o(ε) =

(
ŝ

ε

)1/α̂

. (E3)

The estimated optimal dimensions and the asymptotic
relative error Ê∞ are shown in Table I.

Appendix F: Greedy routing

We randomly select 10, 000 source-target pairs. Start-
ing from the source node, the packet tries to reach the
target node using the greedy strategy described in the
main text. Two outcomes are possible: (i) the packet
reaches its destination in R steps; (ii) the packet fails to
reach its target. To evaluate the performance of greedy
routing, three metrics are used:

1. The success rate ps defined as the ratio of correctly
delivered packets over total number of packets con-
sidered [5].

2. Efficiency η = ps〈1/R〉, where 〈1/R〉 represents the
mean value of the inverse of the path length R ob-
tained for each packet successfully delivered [10].

0.0 0.5 1.0
GR-score, hyperbolic

0.5

1.0

GR
-s

co
re

, M
DS

HB1
HB2
ER
AT
P2P
IPv4
IPv6
AS1
AS2
PSOM1
PSOM2
PSOM3

FIG. 10. Same analysis as in Fig. 4 of the main text, but
the performance is measured by GR-score.

3. GR-score = 2
N(N−1)

∑
i>j

Dij

Rij
, where Dij is the

shortest path length from i to j in graph and Rij
is the greedy routing path length from i to j. GR-
score considers all successful and unsuccessful de-
livering. When greedy routing is unsuccessful, Rij
is infinite and Dij/Rij = 0 [34].

In the main text, we use the success rate and efficiency
to evaluate the performance of greedy routing. Here we
implement the GR-score for the evaluation. As shown in
Fig. 10, the result of GR-score is similar as the success
rate in main text.

In our tests, we compare the performance of MDS and
hyperbolic embedding in guiding greedy routing. Both
methods have a tunable parameter that can affect the
navigation performance. In MDS embedding, the pa-
rameter is the dimension d of the embedding space. We
consider discrete values in [1, 100] for d. In hyperbolic
embedding, the parameter is temperature T . We try dif-
ferent values in [0, 1] for T. Results in Fig. 4 are obtained
using the parameter values that maximize the metrics for
both methods. Detailed results are shown in Fig. 11.

Appendix G: Susceptible-Infected process on
networks

1. Susceptible-Infected model

In the Susceptible-Infected (SI) model, the state of
the individuals in the network is either susceptible or
infected. Susceptible individuals do not carry the disease
but they can be infected. Infected individuals carry the
disease, and they can spread it to susceptible individuals.
The rate of infection is β.

We use the Gillespie algorithm to simulate SI dynam-
ics [68]. The steps of the algorithms are as follows:

1. At time t = 0, randomly select one infected indi-
vidual, and all other individuals are susceptible.
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FIG. 11. The comparison of greedy routing success rate ps, average path length 〈R〉, efficiency η, and GR-score on MDS and
hyperbolic embedding for different real-world networks. The solid lines represent results based on MDS embedding and the
dashed lines are the results based on hyperbolic embedding.

2. Determine the time interval ∆t.

∆t =
− log(u)

β
_

SI
, (G1)

where u is a random number extracted from the
uniform distribution with support in the interval

(0, 1), and
_

SI is the number of susceptible-infection
pairs.

3. Randomly select a susceptible-infection pair and
let the susceptible individual be infected. Increase
time from t to t+ ∆t.

4. Iterate step 2 and step 3 until all susceptible indi-
viduals become infected.

For each network, we simulate the SI process N times
to get the average arrival time of infection for every node
where N is the network size.

2. Susceptible-Infected process on additional
networks

In the main text, we show the relation between aver-
age infection arrival time and the distance of nodes from
the geometric center of the MDS map, and the spread-
ing pattern for air transportation network (Fig. 5). Here,

we report the results for other real-world and synthetic
networks (Fig. 12). For all networks tested, the rank cor-
relations are very high and clear concentric wave patterns
in the 2-dimensional representation of the networks can
be seen in the insets of Fig. 12.
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FIG. 12. Scatter plot of the average infection arrival time against the distance of nodes from the geometric center of the
MDS map for different real-world networks and synthetic networks. Each point in the plot represents a node in the network.
The average infection arrival time is calculated based on N independent simulations of the susceptible-infected model with a
random seed each time, where N is the network size. The network is embedded with d = 100. For illustrative purposes only,
we display in the inset how the spreading looks like in a 2-dimensional MDS map. Nodes with larger size and darker color are
infected earlier.
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[31] O. Kuchaiev, M. Rašajski, D. J. Higham, and N. Pržulj,
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