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In this work, we revisit the classic problem of site percolation on a regular square lattice. In
particular, we investigate the effect of quantization bias errors on percolation threshold predictions
for large probability gradients and propose a mitigation strategy. We demonstrate through extensive
computational experiments that the assumption of a linear relationship between probability gradient
and percolation threshold used in previous investigations is invalid. Moreover, we demonstrate that,
due to skewness in the distribution of occupation probabilities visited the average does not converge
monotonically to the true percolation threshold. We identify several alternative metrics which do
exhibit monotonic (albeit not linear) convergence and document their observed convergence rates.

I. INTRODUCTION

For statistical mechanics problems dealing with trans-
port properties and particle connectivity, percolation the-
ory is an important resource in predicting composite be-
havior and dispersion in random media and provides a
tool for linking microstructure and macroscopic material
properties [1]. It is often described in terms of the critical
parameter at which bulk connectivity is established, the
percolation threshold pc. Below the percolation thresh-
old, large connected components do not exist.

Percolation is a well-studied physical phenomena be-
cause of its broad applicability, including the physical
percolation of fluids through rock [2–4], as well as resis-
tor networks [5], disease spread [6], and many problems
in material science [7, 8]. Studies of these phenomena of-
ten focus on either lattice or continuum systems. Lattice
percolation is described by regular or irregular networks,
where sites or bonds are occupied with some probability
p, and occupied sites form connected pathways. Here we
will focus on site percolation on a regular square lattice.

For certain lattice systems, such as bond percolation
on a square lattice or site percolation on a triangular
lattice, the percolation threshold may be determined
analytically. However, for many other lattice systems
the percolation threshold must be estimated numerically.
Many techniques have been developed over the years for
evaluating the percolation threshold in lattice systems
including hull gradient [9–16], planar crossing [17–21],
histogram Monte Carlo [22], invaded cluster algorithms
[23, 24], toroidal wrapping [4, 25, 26], cylindrical corre-
lation [27], dynamic programming [28], and transfer ma-
trices [29].

For simulations on finite-sized lattices the results must
be extrapolated to an infinitely large lattice. This is typ-
ically done by taking advantage of known critical expo-
nents for the given universality class [20, 25, 30]. For gra-
dient percolation, an analogous problem presents itself in
the need to extrapolate results to a gradient-free lattice.
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Unfortunately, this convergence rate is not known to be
related to the known critical exponents.

It has been common practice when estimating the per-
colation threshold via gradient percolation to evaluate to
high statistical precision p∗c for decreasing values of ∇p,
where p∗c is the average value of p sampled during the
hull walk. For large values of ∇p these have been ob-
served to converge approximately linearly to pc [11, 16].
However, they do not converge precisely linearly, and ad-
ditional unconsidered sources of error can complicate the
estimation of the true convergence rate. Consider, for
example, the results in Figure 1. On a linear scale, the
percolation threshold p∗c appears to converge linearly to
the known value pc as ∇p → 0. However, nonlinear be-
havior is occurring for small probability gradients. In
fact, when examined more closely (insert), the percola-
tion threshold is observed to overshoot the known value
suggesting that data commonly used for extrapolation is
outside the asymptotic regime.

FIG. 1: Convergence of the percolation threshold p∗c to
the known limit pc for site percolation on a square

lattice is apparently linear. However, for small
probability gradients (insert), the behavior is nonlinear

and even nonmonotonic.

In this work, we consider extremely small occupation
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probability gradients (as low as 655360−1). Smaller oc-
cupation probability gradients should provide more accu-
rate estimates of the percolation threshold if commonly
made assumptions regarding convergence hold. Previous
work using the gradient hull method to predict percola-
tion thresholds has used occupation probability gradients
as low as 320−1 [11], 4000−1 [12], 10000−1 [14], 12800−1

[10], 16400−1 [16], and 100000−1 [15]. A linear extrapo-
lation of ∇p→ 0 has been used in all cases. In this work,
we consider significantly smaller occupation probability
gradients and demonstrate that the assumed linear con-
vergence rate as ∇p→ 0 is incorrect.

II. METHODS

A. Frontier Walk

We calculate percolation thresholds using the gradient
percolation method [12]. In this method, lattice sites in
the x-y plane are occupied with a probability p = p(y),
where p is chosen to vary linearly with y. The occupation
probability gradient creates an extended frontier between
the percolating and non-percolating regions. The result-
ing frontier is roughly perpendicular to the gradient of
p (parallel to the x-axis). The frontier is generated and
traversed using a self-avoiding hull-generating walk, ac-
cording to the rule that an occupied site will be traversed
by the walk and a unoccupied site will reflect the walk
as in [9]. Periodic boundary conditions are used on the
right and left edges of the domain to reduce the size of
the computational domain without limiting the length of
the walk.

Each simulation begins with an empty blank lattice.
Sites are neither occupied nor unoccupied until encoun-
tered by the walk with the exception of sites in the left-
and right-most columns which are initialized to insure
that the walk proceeds from left to right. The right-most
column is initialized as unoccupied while the left-most
column is initialized as half occupied and half unoccu-
pied. The walk begins in the middle of the left-most
column at the first occupied site facing away from the
last unoccupied site.

The walk proceeds by looking to the left and deter-
mining if that site is occupied or unoccupied according
to a random draw and the occupation probability of that
site. The ith row of sites on the lattice has a single oc-
cupation probability given by pi = p(yi) = p(y0) + i∇p.
If the adjacent site is occupied, the walk advances to the
new site updating its direction. If the adjacent site is
unoccupied, the walk direction is rotated 90to the right
and the process is repeated. Once the walk reaches the
right edge of the computational domain, periodic bound-
ary conditions are used to wrap it back to the left side.
Sites one column to the right of the current walk posi-
tion are progressively reset to blank allowing the walk
to backtrack up to the width of the computational do-
main The width is required to be sufficiently large that

the walk never backtracks to a column which has already
been reset. The walk is determined to have made one
pass through the domain when the left-most column is
reset.

A single simulation consists of 501 passes through the
domain, with the data from the first pass being discarded
to eliminate any effect from the initialization procedure.
The width of the walk scales as ∇p4/7 and the height
of the computational domain is adjusted to always be
approximately an order of magnitude larger than the ex-
pected width of the walk so that the walk never impacts
the top or bottom boundary. The width of the computa-
tional domain is set to 2048 for ∇p ≥ 1/40960, 4096 for
1/40960 > ∇p ≥ 1/163840, and 8192 for smaller gradi-
ents. The width of the domain is increased for especially
small gradients to guarantee that the width of the com-
putational domain is always greater expected hull width.

The parameters of each simulation are the occupa-
tion probability gradient ∇p and the minimum occupa-
tion probability p0 = p(y0). Each simulation produces
a count, Ni for the number of times each row was vis-
ited during the simulation. The quantity

∑
i
Nipi
Ntotal

with

Ntotal =
∑
iNi has been used as an approximation for

the percolation threshold [11, 12, 16].

B. Quantization Bias Errors

The occupation probability of the sites visited is ap-
proximately normal

p ∼ N (µ, σ2). (1)

The average value of p sampled during the walk is an
estimate of the percolation threshold pc [11]. However, it
is generally a biased estimate because the discrete nature
of the lattice implies that, in general,

∑
i
Nipi
Ntotal

9 µ,
especially for large probability gradients.

Within a given simulation, only p ∈ patt = {p0, p1, ...}
values of the occupation probability may be observed,
where pi = p0 + i∇p. Because only occupation proba-
bilities corresponding to integer lattice rows may be ob-
served, the distribution of the observed occupation prob-
abilities becomes

pdf(p) = w(µ, σ2, pi)δ(p− pi),
i ∈ {0, 1, · · · , Nrows − 1} (2)

with

w(µ, σ2, p) =

∫ p+ 1
2∇p

p− 1
2∇p

pdf(µ, σ2, p̃)dp̃

= Φ(µ, σ2, p+
1

2
∇p)− Φ(µ, σ2, p− 1

2
∇p), (3)

where w is the mass probability function, δ is the delta
function, and Φ is the cumulative probability distribu-
tion function. Using the discrete probability distribution
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function, the expected mean m is determined to be

m(µ, σ2, p0) =
∑
i

w(µ, σ2, yi)pi ≈
1

Ntotal∇p
∑
i

Nipi.

(4)
The bias introduced by the discrete lattice |µ −m| is a
function of the minimum occupation probability p(y0),
with |µ−m| = 0⇔ {µ, µ+∇p/2} ∩ patt 6= ∅.

The bias error introduced by the use of a discrete lat-
tice is analgous to bias errors due to finite resolution
measurements [31]. The results of the simulations are
more rightly viewed as samples from this discrete distri-
bution than the underlying continuous distribution for p
(although for sufficiently small values of ∇p, this distinc-
tion becomes unimportant).

C. Dithering

Dither is the intentional application of noise (with the
intent of randomizing quantization error) commonly used
in the processing of digital images [32, 33] and audio
recordings [34, 35]. Here, we apply dither by randomly
varying p0 in order to randomize the bias errors intro-
duced by the use of a discrete lattice with nonzero ∇p.
Without dither, p0 would be fixed, i.e., p0 = p̄0. With
dither p0 ∼ U(p̄0, p̄1).

Because the expected value of the discrete distribution,
m is a function of p0, it may be possible to eliminate
the quantization bias error through dither. Again, the
jth simulation produces a set of data points (pji , N

j
i ).

Without dither, pji = pi = p̄0+i∇p for all j. With dither,

each pji is different. For each simulation, the expected
value mj may be computed through Equation 4. The
variation in m is now due to both the dither and the
stochastic nature of the underlying hull walk process.

D. Distribution Fitting

With or without dither, determining the central ten-
dency µ of the sample comes down to a question of dis-
tribution fitting. We will examine 7 options which we
will denote µMoM , µMLE , µMD1, µMD2, µMD∞, µMed,
and µMode. The first, µMoM uses the approach which
has been used in all prior studies.

1. Method of Moments

In all previous investigations of percolation thresholds
using gradient percolation, quantization bias errors have
been ignored. The samples generated from the discrete
distribution have been assumed to have been drawn from
the true distribution. The expected value of the discrete
probability distribution is used as the estimate of the per-
colation threshold, which is equivalent to fitting a normal

distribution to the data through the method of moments
(MoM) [36].

µMoM,j =
1

N j
total

∑
i

N j
i p
j
i ≈

N j
occ

N j
total

σ2
MoM,j =

1

N j
total

∑
i

(N j
i p
j
i − µMoM,j)

2.

(5)

Each simulation yields an expected value µMoM,j and
many simulations can be combined by simple averaging,
since variations in Ntotal are negligible and not correlated
with the variations in µMoM,j , e.g.

µMoM =
1

Nsims

Nsims∑
j=1

µMoM,j , (6)

where the width of the walk taken is proportional to the
standard deviation σ and may similarly be found by av-
eraging the computed σjs.

2. Maximum Likelihood

An alternative method for distribution fitting is max-
imum likelihood estimation (MLE) [37]. In this ap-
proach, the values for the parameters µj and σj are
sought that maximize the likelihood (or equivalently the
log-likelihood) of the observed data for each simulation j.
For the continuous normal distribution, the log-likelihood
is given by

log
(
L(µj , σj)

)
=

−
N j
total

2
log(2πσ2

j )− 1

N j
total2σ

2
j

∑
i

(N j
i p
j
i − µj)

2.
(7)

Differentiating and equating to zero yields

µMLE,j =
∑
i

N j
i p
j
i

N j
total

σ2
MLE,j =

1

N j
total

∑
i

(N j
i p
j
i − µMLE,j)

2,

(8)

which is equivalent to the estimates obtained by MoM.
For the discrete distribution described in section II B,

the log-likelihood is given by

log
(
L(µ, σ)

)
=
∑
i

Ni log(w(µ, σ2, pi)), (9)

where w is given by Equation 3. Similar to MoM, varia-
tions in Ntotal are negligible and not correlated with the
variations in µ, such that

µMLE =
1

Nsims

Nsims∑
j=1

µMLE,j . (10)

For the results and discussion to follow, we will refer to
the minimum likelihood estimate for the discrete distri-
bution given by Equation 10 as µMLE .
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3. Minimum Discrepancy

Another alternate estimate for µ may be recovered
by minimizing the discrepancy ‖ Ni

Ntotal∇p −w(µ, σ2, pi)‖,
where ‖·‖ is an arbitrary vector norm. From Equation
3, the probability mass function for the jth simulation is
given by P (p = pi) = w(µ, σ2, pji ). The empirical proba-

bility mass function is given by P̂ (p = pi) =
Nji

Njtotal∇p
.

The discrepancy between the probability mass function
and empirical probability mass function is given by

D(µ, σ) = ‖P − P̂‖ (11)

where ‖·‖ is an arbitrary vector norm. The parameters µ
and σ2 may be determined as the values which minimize
the discrepancy. For example, using the Euclidean norm,
the objective function is defined as

D(µj , σ
2
j ) = ‖P−P̂‖2 =

√√√√∑
i

(
N j
i

N j
total∇p

− w(µ, σ2, pji )

)2

.

(12)
Minimizing the objective function gives an estimate for

µj and σ2
j , and this process is repeated for each simula-

tion. The final estimate for µ is found by averaging

µMDn =
1

Nsims

Nsims∑
j=1

µMDn,j , (13)

where n is either 1, 2, or∞ depending on the norm used.

E. Median and Mode

Due to the presence of skewness in the data, the clas-
sical statistical methods described in sections II D 1 and
II D 2 consistently underestimate the location of the dis-
tribution peak, resulting in some distinctly undesirable
consequences, namely competing convergence rates that
combine to yield the nonmonotonic convergence behav-
ior seen in Figure 1. Nonmonotonic convergence behavior
may be avoided by using the median or mode as the mea-
sure of central tendency (rather than the mean) and the
root mean square deviation about the median or mode as
a corresponding approximation of the hull width. In this
way, two alternative defintions of µ and σ are defined,
with

µMed,j = 〈M〉

M =

p :
∑

i∈{ξ:pjξ<p}

N j
i =

∑
i∈{ξ:pjξ>p}

N j
i


σ2
Med,j =

1

N j
total

Njtotal∑
i=1

(pji − µMed,j)
2

(14)

and

µMode,j = pjξ, ξ = argmax
i

N j
i

σ2
Mode,j =

1

N j
total

Njtotal∑
i=1

(pji − µMode,j)
2.

(15)

In Equation 14, we use 〈·〉 to denote the average over the
set.

F. Error Estimation

The uncertainty in µ is determined by examining the
variance of µj . The samples µj are observed to be nor-
mally distributed about µ regardless of the method used
to compute µ. The uncertainty in µ is given by its stan-
dard error

SEµ =

√√√√ 1

Nsims(Nsims − 1)

Nsims∑
j=1

|µj − µ|2. (16)

When using the method described in Section II D 3, the
uncertainty in µ is observed to scale approximately with
∇p0.136(2), as shown in Figure 2. This exponent is not
known to be related to any of the known critical expo-
nents for this lattice geometry.
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FIG. 2: Uncertainty in µMD2 after 5.12× 1010 steps
(50,000 simulations of width 2048 or 25,000 simulations

of width 4096).

III. RESULTS

As a case study, consider the canonical example of
site percolation on a two-dimensional square lattice with
nearest neighbor (von Neumann) connectivity. This
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system has been studied extensively in the literature
[12, 25, 29, 38–40] and the percolation threshold is known
with high precision to be pc ≈ 0.5927460507921 [29].
Each of our simulations consists of a frontier walk travers-
ing the domain 501 times. We perform a large number of
simulations with occupation probability gradients rang-
ing from 8−1 to 655360−1. For each simulation, the num-
ber of sites visited per pass through the computational
domain is proportional to the width of the domain W
and related to the probability gradient through the frac-
tal dimension of the hull walk [10]

Ntotal
W

∝ ∇p−αN = ∇p−
ν

1+νD. (17)

In the simulations, we use the pcg64 k1024 random num-
ber generator [41].

Equation 17 relates the total number of sites gener-
ated per lattice width to the probability gradient ∇p,
where ν = 4/3 describes the divergence of the correlation
length and D = 1 + 1/ν is the fractal dimension of the
frontier [42]. In the present numerical investigation, the
exponent αN is experimentally determined to be approx-
imately 0.429, which is consistent with the theoretical
value of 3/7.

The width of the percolation hull has been shown to
scale as ∇p−4/7 based on correlation length arguments
[10]. Note that this width is in lattice units. In concen-
tration units, the width (pmax − pmin) scales as ∇p3/7,
as shown in Figure 3. The scaling of the hull width with
∇p remains consistent regardless of which distribution
fitting procedure is utilized.
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FIG. 3: Proportionality between σ and ∇p3/7 for all
distribution fitting procedures.

Figure 4 shows the effect that quantization bias er-
rors can have for large probability gradients and the ef-
fectiveness of using dither to randomize the effect and
produce a reasonably normal output. Since the lattice
offset is an arbitary simulation parameter, it is desirable
for the resulting distribution to be independent of that

choice (no horizontal variation). Unfortunately, for large
probability gradients this is not the case. For smaller
probability gradients (see Figure 5), the effect is signifi-
cantly reduced. The dependence of µMoM,j on p0 decays
very rapidly as ∇p → 0. While dithering is an effec-
tive technique for eliminating the bias associated with
quantization, a prudent alternative approach is likely to
restrict simulations to such sufficiently small probability
gradients that the effect is negligible. If large probabil-
ity gradients are unavoidable, the minimum discrepancy
distribution fitting procedure successfully eliminates the
quantization bias effect even for large ∇p as shown in
Figure 6.

While not pictured here, the results using the MLE
distribution fitting procedure are indistinguishable from
those using MoM. Both approaches define the central ten-
dency using the mean occupation probability of the sites
visited. This is in contrast to the median and mode ap-
proaches as well as the minimum discrepancy approach
which appear to be more robust to to skewness in the
distribution than the mean-based MoM and MLE ap-
proaches.

FIG. 4: Variation of µMoM,j with p0 for a large
probability gradient, ∇p = 12−1.

Despite the fact that the results of each simulation
consistently pass the Anderson-Darling normality test
[43, 44], there is notable negative skewness

γj =

∑
i

(
N j
i p
j
i − µMoM,j

)3
(
N j
total − 1

)
σ3
MoM,j

(18)

in the data. For large probability gradients, this skew-
ness is due to the walk encountering sites with an oc-
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FIG. 5: Variation of µMoM,j with p0 for a slightly
smaller probability gradient, ∇p = 40−1.

FIG. 6: Variation of µMD2,j with p0 for a large
probability gradient, ∇p = 12−1.

cupation probability of 1 more often than sites with an
occupation probability of 0 (since pc > 1/2) as shown
in Figure 7. For smaller probability gradients, the walk
does not impact these hard boundaries, yet the skewness
remains as seen in Figure 8. Note that the skewness de-
cays proportionally to the hull width and that the shift

FIG. 7: Distribution of occupation probabilities of sites
visited during all simulations with ∇p = 16−1.

Asymmetric tails result in a leftward shift of the mean
relative to the median.

µMed − µMoM converges consistently across the entire
range of ∇p (Figure 9), suggesting that both are related
to the asymmetric boundary effect.
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FIG. 8: Reduction in skewness as ∇p→ 0 is
proportional to ∇p3/7.

It is well-known that of the proposed measures of cen-
tral tendency, the mean is most impacted by skewness.
In this case, the negative skewness of the data causes
the mean to be smaller than either the median or the
mode. Crucially, for this lattice geometry, the mean is
sufficiently shifted by the skewness to be below pc for
even fairly small values of ∇p while the other measures
are above pc.

As ∇p → 0 the skewness decreases proportional to
∇p3/7 and the resulting leftward shift of the mean is re-
duced as shown in Figure 9. The mean is observed to
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approach the median approximately linearly as ∇p→ 0.

FIG. 9: Convergence of µMoM to µMed as ∇p→ 0 is
approximately linear.

Because pc is known so precisely for this system, the
convergence of |pc − µ(∇p)| may be easily studied with-
out the added complication of determining pc. Figure
10 shows the convergence of µ to the true percolation
threshold pc as ∇p→ 0 for the various methods for com-
puting the central tendency. Note the steep dip in the
error in the neighborhood of ∇p = 1280−1 for the mean-
based MoM and MLE estimates, indicating where the
error transitions from negative to positive. To the right
of this point, error introduced in the distribution fitting
procedure cancels the error from the finite gradient pro-
ducing unreliably accurate solutions. To the left of this
point, a slight divergence and then continued convergence
is observed, as the MoM and MLE values become sand-
wiched between the minimum discrepancy values and pc.
Although the mean-based measures produce the most ac-
curate estimates of the percolation threshold for a given
∇p, the non-monotonic convergence behavior makes ex-
trapolating to ∇p = 0 using these values, as has been
done previously, invalid. Additionally, the mean-based
MoM and MLE values agree very well with each other
indicating little benefit of treating the distribution as dis-
crete.

The median, mode, and minimum discrepancy values
converge monotonically to the true percolation threshold
pc from above according to a power law

µ(∇p) = pc + c∇pr, (19)

as shown in Figure 10. The mode and minimum dis-
crepancy values all display similar convergence rates r
(see Table I), although the differences between them are
statistically significant. The convergence rates are known
within the 95% confidence intervals given in Table I. The
median has a noticeably faster convergence rate, but a
larger error for a given probability gradient over the wide
range of probability gradients simulated.
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FIG. 10: Variation of error |µ(∇p)− pc| with ∇p on
the square lattice with von Neumann connectivity.

TABLE I: Convergence Rates of µ→ pc.

Rate (r) 95% Confidence Interval
Median 0.9864 0.9856 0.9873
Mode 0.8462 0.8421 0.8504
∞-norm 0.8279 0.8239 0.8320
2-norm 0.8263 0.8228 0.8298
1-norm 0.8176 0.8062 0.8291

While the minimum discrepancy metric using the 1-
norm generally provides the most accurate estimate of
the percolation threshold, it results in a significantly less
well-behaved optimization problem relative to the 2-norm
or∞-norm, which manifests itself in the jittery behavior
observed at large ∇p in Figure 10.

The mean-based MoM and MLE metrics are not power
law convergent in the range of ∇p frequently encountered
in gradient percolation studies. It is possible that they
might be power law convergent for significantly smaller
∇p, but it is not possible to determine this from our data.
Taken together, the results of Figures 8, 9, and 10 suggest
that a fit of the form

µMoM (∇p) ≈ pc + c1∇pr1 + c2∇pr2 (20)

might be appropriate. Unfortunately, the two power law
terms are of opposite sign and similar magnitude result-
ing in loss of significance. As a result, our data is unable
to conclusively determine if Equation 20 is accurate.

The 3 constants in Equation 19 may be simultaneously
fit to the experimental data. Doing so produces the con-
vergence rates in Table I as well as the estimates of pc in
Table II.
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TABLE II: Published estimates for the site percolation
threshold on a two-dimensional square lattice with von

Neumann connectivity.

Method Estimate
Hull Gradient [10] 0.5929 ±3× 10−4

Hull Gradient [11] 0.592802 ±1× 10−5

Hull Gradient [12] 0.592745 ±2× 10−6

Planar Crossing [17] 0.5930 ±1× 10−4

Planar Crossing [18] 0.5927460 ±5× 10−7

Histogram MC [22] 0.5928 ±1× 10−4

Toroidal Wrapping [25] 0.59274621 ±13× 10−8

Toroidal Wrapping [4] 0.59274621 ±13× 10−8

Planar Crossing [19] 0.5927464 ±5× 10−7

Toroidal Wrapping [26] 0.927 ±1× 10−4

Cyl. Correlation [27] 0.5927465 ±4× 10−7

Planar Crossing [20] 0.59274603 ±9× 10−8

Planar Crossing [21] 0.59274598 ±4× 10−8

Dyn. Programming [28] 0.59274605095 ±15× 10−11

Transfer Matrices [29] 0.59274605079210 ±2× 10−14

T
h
is

W
o
rk Median 0.592746 ±1× 10−5

Mode 0.592745 ±7× 10−6

1-norm 0.59274 ±8× 10−5

2-norm 0.5927463 ±8× 10−6

∞-norm 0.5927469 ±1× 10−5

IV. CONCLUSIONS

We show that the average value of the occupation prob-
ability visited during a gradient percolation simulation is
an unreliable surrogate for the percolation threshold on
the regular square lattice. While initially suspected to
be related to quantization effects, we demonstrate these
effects to be small for reasonably small occupation prob-
ability gradients. For large probability gradients, dither
may be an effective tool for randomizing the quantiza-
tion effects; however, when metrics beyond the average
occupation probability are used, the dependence on lat-
tice offset is essentially eliminated and dither is likely
unnecessary.

Unlike the average, the median, mode, and minimum
discrepancy metrics are all observed to converge mono-
tonically to the known value of the percolation threshold
according to a power law. The minimum discrepancy
metric behaves very similarly to the mode, both in terms
of convergence rate and absolute error as a function of
probability gradient, with the minimum discrepancy met-
ric producing slightly more accurate results but with a
slightly slower convergence rate. Due to the higher com-
putational cost of computing the minimum discrepancy
metric, the mode is likely preferable for most applica-
tions. The median has the fastest observed convergence
rate (approximately linear) and the largest observed ab-
solute error for a given probability gradient within the
range considered. The net result of this is that all five ap-
proaches produce similarly accurate and similarly uncer-
tain predictions for the extrapolated percolation thresh-

old pc at ∇p = 0 when fit with a curve of the form
µ = pc + c∇pr.

Future work will seek to analytically derive relation-
ships for the observed convergence rates. It is suspected
that these rates should be related to the properties of
the underlying probability distribution and the known
critical exponents. A clue to these relationships may be
found be examining how these rates change for different
lattice geometries.
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TABLE III: Uncertainty and and error in percolation threshold estimates for various values of ∇p using classical
statistical methods.

MoM Mean MLE Mean Median Mode
∇p−1 Ntotal Skewness µ− pc µ uncert. µ− pc µ uncert. µ− pc µ uncert. µ− pc µ uncert.
8 4× 1011 −1.2× 10−1 −1.3× 10−3 1× 10−6 −1.3× 10−3 1× 10−6 1.3× 10−1 1× 10−4 1.4× 10−2 1× 10−4

9 4× 1011 −1.1× 10−1 −1.3× 10−3 1× 10−6 −1.3× 10−3 1× 10−6 1.1× 10−1 1× 10−4 1.3× 10−2 1× 10−4

10 4× 1011 −1.1× 10−1 −1.3× 10−3 8× 10−7 −1.3× 10−3 8× 10−7 1.0× 10−1 9× 10−5 1.1× 10−2 9× 10−5

11 5× 1011 −1.1× 10−1 −1.3× 10−3 8× 10−7 −1.3× 10−3 8× 10−7 9.3× 10−2 8× 10−5 1.1× 10−2 8× 10−5

12 5× 1011 −1.0× 10−1 −1.2× 10−3 7× 10−7 −1.2× 10−3 7× 10−7 8.6× 10−2 8× 10−5 9.8× 10−3 8× 10−5

13 5× 1011 −1.0× 10−1 −1.1× 10−3 7× 10−7 −1.1× 10−3 7× 10−7 7.9× 10−2 7× 10−5 9.2× 10−3 7× 10−5

14 5× 1011 −9.9× 10−2 −1.1× 10−3 7× 10−7 −1.1× 10−3 7× 10−7 7.3× 10−2 7× 10−5 8.5× 10−3 7× 10−5

15 5× 1011 −9.6× 10−2 −1.0× 10−3 7× 10−7 −1.0× 10−3 7× 10−7 6.8× 10−2 6× 10−5 8.0× 10−3 6× 10−5

16 5× 1011 −9.4× 10−2 −9.4× 10−4 7× 10−7 −9.4× 10−4 7× 10−7 6.4× 10−2 6× 10−5 7.5× 10−3 6× 10−5

17 6× 1011 −9.2× 10−2 −8.9× 10−4 7× 10−7 −8.9× 10−4 7× 10−7 6.0× 10−2 5× 10−5 7.3× 10−3 5× 10−5

18 6× 1011 −8.9× 10−2 −8.4× 10−4 7× 10−7 −8.4× 10−4 7× 10−7 5.7× 10−2 5× 10−5 7.0× 10−3 5× 10−5

19 6× 1011 −8.7× 10−2 −7.9× 10−4 7× 10−7 −7.9× 10−4 7× 10−7 5.4× 10−2 5× 10−5 6.7× 10−3 5× 10−5

20 6× 1011 −8.5× 10−2 −7.5× 10−4 7× 10−7 −7.5× 10−4 7× 10−7 5.1× 10−2 5× 10−5 6.4× 10−3 5× 10−5

21 6× 1011 −8.4× 10−2 −7.1× 10−4 7× 10−7 −7.1× 10−4 7× 10−7 4.9× 10−2 4× 10−5 6.1× 10−3 4× 10−5

22 6× 1011 −8.2× 10−2 −6.8× 10−4 7× 10−7 −6.8× 10−4 7× 10−7 4.7× 10−2 4× 10−5 5.8× 10−3 4× 10−5

23 6× 1011 −8.0× 10−2 −6.4× 10−4 7× 10−7 −6.5× 10−4 7× 10−7 4.5× 10−2 4× 10−5 5.6× 10−3 4× 10−5

24 6× 1011 −7.9× 10−2 −6.1× 10−4 7× 10−7 −6.2× 10−4 7× 10−7 4.3× 10−2 4× 10−5 5.4× 10−3 4× 10−5

25 6× 1011 −7.8× 10−2 −5.9× 10−4 7× 10−7 −5.9× 10−4 7× 10−7 4.1× 10−2 4× 10−5 5.2× 10−3 4× 10−5

40 8× 1011 −6.3× 10−2 −3.4× 10−4 6× 10−7 −3.4× 10−4 6× 10−7 2.6× 10−2 2× 10−5 3.5× 10−3 2× 10−5

50 9× 1011 −5.7× 10−2 −2.7× 10−4 6× 10−7 −2.7× 10−4 6× 10−7 2.1× 10−2 2× 10−5 2.9× 10−3 2× 10−5

80 1× 1012 −4.7× 10−2 −1.5× 10−4 6× 10−7 −1.5× 10−4 6× 10−7 1.3× 10−2 1× 10−5 2.0× 10−3 1× 10−5

100 1× 1012 −4.2× 10−2 −1.1× 10−4 6× 10−7 −1.1× 10−4 6× 10−7 1.0× 10−2 9× 10−6 1.6× 10−3 9× 10−6

160 1× 1012 −3.4× 10−2 −5.9× 10−5 5× 10−7 −5.9× 10−5 5× 10−7 6.5× 10−3 6× 10−6 1.1× 10−3 6× 10−6

200 2× 1012 −3.1× 10−2 −4.4× 10−5 5× 10−7 −4.4× 10−5 5× 10−7 5.2× 10−3 5× 10−6 9.1× 10−4 5× 10−6

320 2× 1012 −2.5× 10−2 −2.2× 10−5 5× 10−7 −2.2× 10−5 5× 10−7 3.3× 10−3 3× 10−6 6.0× 10−4 4× 10−6

400 2× 1012 −2.3× 10−2 −1.6× 10−5 5× 10−7 −1.6× 10−5 5× 10−7 2.6× 10−3 2× 10−6 5.1× 10−4 3× 10−6

640 3× 1012 −1.9× 10−2 −6.6× 10−6 4× 10−7 −6.6× 10−6 4× 10−7 1.7× 10−3 1× 10−6 3.4× 10−4 3× 10−6

800 3× 1012 −1.7× 10−2 −3.6× 10−6 4× 10−7 −3.6× 10−6 4× 10−7 1.3× 10−3 1× 10−6 2.8× 10−4 3× 10−6

960 3× 1012 −1.6× 10−2 −2.6× 10−6 4× 10−7 −2.6× 10−6 4× 10−7 1.1× 10−3 1× 10−6 2.4× 10−4 3× 10−6

1280 3× 1012 −1.4× 10−2 −1.3× 10−6 4× 10−7 −1.3× 10−6 4× 10−7 8.4× 10−4 8× 10−7 1.9× 10−4 2× 10−6

1600 4× 1012 −1.3× 10−2 4.1× 10−7 4× 10−7 4.0× 10−7 4× 10−7 6.7× 10−4 7× 10−7 1.6× 10−4 2× 10−6

1920 4× 1012 −1.2× 10−2 8.2× 10−7 4× 10−7 8.1× 10−7 4× 10−7 5.6× 10−4 6× 10−7 1.3× 10−4 2× 10−6

2240 4× 1012 −1.1× 10−2 3.7× 10−7 4× 10−7 3.7× 10−7 4× 10−7 4.8× 10−4 5× 10−7 1.2× 10−4 2× 10−6

2560 5× 1012 −1.0× 10−2 1.1× 10−6 4× 10−7 1.1× 10−6 4× 10−7 4.2× 10−4 5× 10−7 1.0× 10−4 2× 10−6

3200 5× 1012 −9.4× 10−3 9.8× 10−7 3× 10−7 9.8× 10−7 3× 10−7 3.4× 10−4 5× 10−7 8.8× 10−5 2× 10−6

5120 6× 1012 −7.7× 10−3 1.4× 10−6 3× 10−7 1.4× 10−6 3× 10−7 2.1× 10−4 4× 10−7 5.7× 10−5 2× 10−6

6400 7× 1012 −7.0× 10−3 6.1× 10−7 3× 10−7 6.2× 10−7 3× 10−7 1.7× 10−4 3× 10−7 5.0× 10−5 2× 10−6

10240 8× 1012 −5.7× 10−3 8.2× 10−7 3× 10−7 8.1× 10−7 3× 10−7 1.1× 10−4 3× 10−7 3.3× 10−5 2× 10−6

12800 9× 1012 −5.2× 10−3 9.5× 10−7 3× 10−7 9.4× 10−7 3× 10−7 8.7× 10−5 3× 10−7 2.6× 10−5 2× 10−6

20480 1× 1013 −4.3× 10−3 8.8× 10−7 3× 10−7 8.8× 10−7 3× 10−7 5.5× 10−5 3× 10−7 1.8× 10−5 1× 10−6

25600 1× 1013 −3.9× 10−3 2.5× 10−7 3× 10−7 2.4× 10−7 3× 10−7 4.4× 10−5 3× 10−7 1.4× 10−5 1× 10−6

40960 1× 1013 −3.0× 10−3 8.6× 10−7 2× 10−7 8.6× 10−7 2× 10−7 2.8× 10−5 2× 10−7 9.3× 10−6 1× 10−6

51200 3× 1013 −2.9× 10−3 2.4× 10−7 2× 10−7 2.3× 10−7 2× 10−7 2.2× 10−5 2× 10−7 7.9× 10−6 9× 10−7

81920 4× 1013 −2.2× 10−3 3.4× 10−7 2× 10−7 3.3× 10−7 2× 10−7 1.4× 10−5 2× 10−7 4.3× 10−6 8× 10−7

163840 5× 1013 −1.7× 10−3 3.1× 10−7 1× 10−7 3.0× 10−7 1× 10−7 7.2× 10−6 1× 10−7 3.1× 10−6 7× 10−7

327680 6× 1014 −1.4× 10−3 1.2× 10−7 4× 10−8 1.2× 10−7 4× 10−8 3.7× 10−6 5× 10−8 1.8× 10−6 3× 10−7

500000 7× 1014 −1.1× 10−3 9.2× 10−9 4× 10−8 −7.9× 10−10 4× 10−8 2.4× 10−6 4× 10−8 1.3× 10−6 3× 10−7

655360 8× 1014 −9.5× 10−4 1.9× 10−8 4× 10−8 1.9× 10−8 4× 10−8 1.8× 10−6 4× 10−8 1.1× 10−6 3× 10−7
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TABLE IV: Uncertainty and and error in percolation threshold estimates for various values of ∇p using the
minimum discrepancy criteria.

1-norm 2-norm ∞-norm
∇p−1 µ− pc µ uncertainty µ− pc µ uncertainty µ− pc µ uncertainty
8 4.8× 10−3 1× 10−5 5.9× 10−3 8× 10−7 7.7× 10−3 2× 10−6

9 4.6× 10−3 1× 10−5 5.2× 10−3 8× 10−7 6.8× 10−3 4× 10−6

10 2.9× 10−3 7× 10−6 4.7× 10−3 8× 10−7 6.1× 10−3 3× 10−6

11 3.2× 10−3 3× 10−6 4.3× 10−3 8× 10−7 5.5× 10−3 2× 10−6

12 4.0× 10−3 4× 10−6 4.0× 10−3 8× 10−7 5.2× 10−3 2× 10−6

13 4.6× 10−3 5× 10−6 3.7× 10−3 8× 10−7 4.8× 10−3 2× 10−6

14 2.2× 10−3 4× 10−6 3.5× 10−3 8× 10−7 4.6× 10−3 1× 10−6

15 2.4× 10−3 5× 10−6 3.3× 10−3 7× 10−7 4.3× 10−3 1× 10−6

16 2.4× 10−3 4× 10−6 3.1× 10−3 7× 10−7 4.1× 10−3 9× 10−7

17 2.9× 10−3 4× 10−6 2.9× 10−3 7× 10−7 3.9× 10−3 9× 10−7

18 1.8× 10−3 4× 10−6 2.8× 10−3 7× 10−7 3.7× 10−3 1× 10−6

19 1.6× 10−3 2× 10−6 2.7× 10−3 7× 10−7 3.5× 10−3 1× 10−6

20 1.7× 10−3 1× 10−6 2.6× 10−3 7× 10−7 3.4× 10−3 1× 10−6

21 1.9× 10−3 2× 10−6 2.5× 10−3 7× 10−7 3.2× 10−3 8× 10−7

22 2.0× 10−3 2× 10−6 2.4× 10−3 7× 10−7 3.1× 10−3 8× 10−7

23 1.8× 10−3 2× 10−6 2.3× 10−3 7× 10−7 3.0× 10−3 8× 10−7

24 2.0× 10−3 2× 10−6 2.2× 10−3 7× 10−7 2.9× 10−3 8× 10−7

25 1.4× 10−3 2× 10−6 2.1× 10−3 7× 10−7 2.8× 10−3 8× 10−7

40 1.0× 10−3 9× 10−7 1.4× 10−3 7× 10−7 1.9× 10−3 7× 10−7

50 9.1× 10−4 9× 10−7 1.2× 10−3 6× 10−7 1.6× 10−3 7× 10−7

80 7.0× 10−4 8× 10−7 8.2× 10−4 6× 10−7 1.1× 10−3 6× 10−7

100 5.4× 10−4 7× 10−7 6.9× 10−4 6× 10−7 9.3× 10−4 6× 10−7

160 3.6× 10−4 6× 10−7 4.7× 10−4 5× 10−7 6.4× 10−4 6× 10−7

200 3.1× 10−4 6× 10−7 3.9× 10−4 5× 10−7 5.3× 10−4 6× 10−7

320 2.1× 10−4 5× 10−7 2.7× 10−4 5× 10−7 3.7× 10−4 5× 10−7

400 1.8× 10−4 5× 10−7 2.2× 10−4 5× 10−7 3.0× 10−4 5× 10−7

640 1.2× 10−4 5× 10−7 1.5× 10−4 4× 10−7 2.1× 10−4 5× 10−7

800 1.0× 10−4 5× 10−7 1.3× 10−4 4× 10−7 1.7× 10−4 5× 10−7

960 8.8× 10−5 5× 10−7 1.1× 10−4 4× 10−7 1.5× 10−4 5× 10−7

1280 6.9× 10−5 4× 10−7 8.6× 10−5 4× 10−7 1.2× 10−4 5× 10−7

1600 5.9× 10−5 4× 10−7 7.3× 10−5 4× 10−7 9.7× 10−5 4× 10−7

1920 5.1× 10−5 4× 10−7 6.3× 10−5 4× 10−7 8.3× 10−5 4× 10−7

2240 4.4× 10−5 4× 10−7 5.4× 10−5 4× 10−7 7.2× 10−5 4× 10−7

2560 4.1× 10−5 4× 10−7 4.9× 10−5 4× 10−7 6.5× 10−5 4× 10−7

3200 3.4× 10−5 4× 10−7 4.1× 10−5 4× 10−7 5.4× 10−5 4× 10−7

5120 2.3× 10−5 4× 10−7 2.8× 10−5 3× 10−7 3.7× 10−5 4× 10−7

6400 1.9× 10−5 3× 10−7 2.3× 10−5 3× 10−7 2.9× 10−5 4× 10−7

10240 1.3× 10−5 3× 10−7 1.5× 10−5 3× 10−7 2.0× 10−5 3× 10−7

12800 1.1× 10−5 3× 10−7 1.3× 10−5 3× 10−7 1.7× 10−5 3× 10−7

20480 7.6× 10−6 3× 10−7 8.9× 10−6 3× 10−7 1.2× 10−5 3× 10−7

25600 5.9× 10−6 3× 10−7 7.0× 10−6 3× 10−7 9.2× 10−6 3× 10−7

40960 4.5× 10−6 3× 10−7 5.2× 10−6 3× 10−7 6.7× 10−6 3× 10−7

51200 3.3× 10−6 2× 10−7 3.9× 10−6 2× 10−7 5.2× 10−6 2× 10−7

81920 2.2× 10−6 2× 10−7 2.7× 10−6 2× 10−7 3.5× 10−6 2× 10−7

163840 1.3× 10−6 1× 10−7 1.6× 10−6 1× 10−7 2.0× 10−6 2× 10−7

327680 7.4× 10−7 5× 10−8 9.1× 10−7 5× 10−8 1.1× 10−6 5× 10−8

500000 4.5× 10−7 5× 10−8 5.3× 10−7 4× 10−8 6.6× 10−7 5× 10−8

655360 3.4× 10−7 4× 10−8 4.2× 10−7 4× 10−8 5.5× 10−7 5× 10−8
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