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Modeling foraging via basic models is a problem that has been recently investigated from several

points of view. However, understanding the effect of the spatial distribution of food on the lifetime

of a forager has not been achieved yet. We explore here how the distribution of food in space affects

the forager’s lifetime in several different scenarios. We analyze a random forager and a smelling

forager in both one and two dimensions. We first consider a general food distribution, and then

analyze in detail specific distributions including constant distance between food, certain probability

of existence of food at each site, and power-law distribution of distances between food. For a forager

in one dimension without smell we find analytically the lifetime, and for a forager with smell we

find the condition for immortality. In two dimensions we find based on analytical considerations

that the lifetime (T ) scales with the starving time (S) and food density (f) as T ∼ S4f3/2.

I. INTRODUCTION

Optimization of foraging for food spread in space is a problem that has been widely studied [1–4]. Many studies

claim that stochastic search yields optimal results [5–7] and that random walks or Lévy flights can be used to model

the forager behavior [8–12]. Several models for a forager’s movement behavior have been proposed including some

that are based on stimuli, memory, and cues from fellow foragers [4, 13–15].

Recent work has suggested a new model where a forager performs a random walk, however the food is explicitly

consumed until the forager starves to death [16, 17]. In this model, the forager begins at some point on a lattice

where each site contains a unit of food. The forager then moves and eats the food at the discovered site, leaving no

remaining food in this site. It continues to move throughout the region either returning to sites without food or eating

food at newly visited sites. If the forager walks S steps without finding food and eating, it starves to death. Notably,

this process leads to inherent desertification [18, 19], as the forager eventually creates a desert of visited sites among

which it could move until starvation. It was shown [16] that the lifetime of a forager, T , in 1D scales linearly with its

starving time, S, the number of steps it can walk without food. In 2D, however, it scales approximately as T ∼ S2.

Later work expanded this model to cases where the food renews after some time [20], where the forager eats only if it

is near starvation [21, 22], and where the forager walks preferentially in the direction of a nearby site with food [23, 24].

Another recent study [25] has extended the starving forager models to a forager with an explicit sense of smell that

extends to potentially longer ranges [26]. The contribution of an individual food site to the overall smell in a given

direction decays with its distance d from the forager. While actual patterns of odor diffusion are turbulent and vary

in time in highly complex ways [27], it can assumed to be simplified by considering two realistic cases: power-law

decay with distance and exponential decay of smell. Power-laws have been suggested in the context of odor regarding
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perceptions and concentrations, see for example the Steven’s Law [28, 29]. Similarly, in real applications, guidelines

for setback distances for odorous agricultural factories, have been applied based on a power-law decay of concentration

with distance [30]. We note also that both power-law and exponential decay have been experimentally found for

on odor patterns depending on the type of wind, threshold concentration, and other conditions [27]. We therefore

consider in this paper both cases in order to better understand the possible behavior of our model. We assume here

that the likelihood of the forager to walk in each direction is proportional to the total smell in that direction. In San-

hedrai et al [25] it was shown that when there is a long range smell in 1D, then under some conditions the probability

to live forever exists. This study [25] as all above studies, considered the case where initially all the space is full of food.

In contrast to previous studies that analyzed lattices in which food was at every site, here we analyze, for the first

time to the best of our knowledge, the more realistic scenario where food is not everywhere. We consider a general food

distribution in space and also analyzed in detail several specific distributions, and examine how different distributions

impact the life time of the forager. We find that for a smelling forager [25] in 1D, the chance of immortality highly

depends on food distribution. Moreover, for a forager walking in two dimensions we find that the existence of long

range smell increases the forager’s lifetime dramatically from T ∼ S2 to T ∼ S4. We also find for the lifetime of a

random forager in 1D a general scaling function that includes the density of food.

II. ONE DIMENSION - RANDOM FORAGER

We aim in this Section to find out how the distribution of food in space influences the lifetime of forager in one

dimension, see illustration in Fig. 1. First, we consider a forager walking randomly on a one dimensional infinite

lattice. The forager hops to one of its two neighboring sites at each time step. For getting full analytic solution we

analyze the case of a semi-infinite desert. In this scenario, at the beginning there is food only at one side of the

forager, while the other side is a semi-infinite desert. We assume that between positions of food there is a distance l

distributed according to an arbitrary distance distribution P (l), and the forager walks randomly. If the forager makes

S steps without reaching any food it starves and dies.

We are interested in the following quantities, the mean life time of the forager, T , and N , the expectation value of

number of meals the forager consumed during its lifetime. We study also τ , the expected time between meals given

the next meal occurs. To this end, we should first evaluate F (t), the likelihood of the forager to get food for the

first time at step t after it ate. It is well known [31, 32] that the generating function of F (t, l), the first passage time

probability to be at x = 0 starting at x = l, is

F(z, l) = α(z)l, (1)

where

α(z) =
1−
√

1− z2
z

. (2)

Then, we consider x = 0 as the site with the closest food and x = l as the site where the last meal happened.

Next, we note that the probability that the closest food is at distance l given that the forager just ate is P (l).
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FIG. 1: Illustration of forager in one dimension (a) Here all food is in the right of forager (filled circles), whereas in

the left there is a semi infinite desert. Between food there are distances, l, distributed according to P (l). The forager walks

randomly. We assume that the forager just ate the food in its initial position, hence it can walk S steps without eating. This

case is studied in Sec. II. (b) In this scenario food is located in both directions. Here we study in detail the case of forager

with long range smell in Sec. III.

Thus, the first passage time probability, F (t), is

F (t) =

∞∑
l=1

P (l)F (t, l), (3)

resulting in,

F(z) =

∞∑
l=1

P (l)F(z, l) =

∞∑
l=1

P (l)α(z)l = G(α(z)), (4)

where

G(x) =

∞∑
l=1

P (l)xl, (5)

is the generating function of the distance distribution P (l).

Note that if the distance l is always one, then G(x) = x, and F(z) = α(z), which converges to the well known result

for the scenario where space is filled with food [24].

After having F(z), following the steps in [24] (see also Appendix A) we obtain for the average number of meals,

N , and for the average time between meals, τ ,

N =
E(S)

1− E(S)
, (6)

τ =
π(S)

E(S)
. (7)
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Thus, the average lifetime is

T = τN + S =
π(S)

1− E(S)
+ S, (8)

where E(S) is derived from the generating function E(z) = F(z)/(1 − z), and the generating function of π(S) is

Π(z) = zF ′(z)/(1− z), where F(z) is given in Eq. (4).

To conclude, given the distribution of food in space P (l), we find the lifetime, T , and the number of meals, N . The

term which depends directly on P (l) and determines T and N is G(x). In the next Secs. we discuss three specific

cases of food distribution having three different functions for G(x).

A. Asymptotic behavior for large S

For finding the behavior of N , τ, T for large S we analyze the asymptotic behavior of Eqs. (6), (7) and (8) by

expanding the corresponding generating functions in the limit z → 1 and using the Tauberian Theorems [33–35]. For

a more detailed analysis see Appendix B. We show that for the leading term, the only property of food distribution

which matters is the mean distance between food, 〈l〉, in case it is finite. We denote the density of food by f = 1/〈l〉.

We wish to get F(z), Eq. (4), which determines all quantities. Because F(z) = G(α(z)) we treat first α(z), and then

G(x). An expansion of α where z → 1 gives, α(z) ∼ 1−
√

2
√

1− z. Therefore, we analyze G(x) for x→ 1. G(1) = 1

due to normalization, and if the mean distance, 〈l〉, is finite, G′(1) = 〈l〉, and then using Taylor expansion,

G(x) ∼ 1− 〈l〉(1− x). (9)

Having G(x) we obtain

F(z) = G(α(z)) ∼ 1− 〈l〉(1− α(z)) ∼ 1− 〈l〉
√

2
√

1− z.

Using this, we can derive all other quantities (see Appendix B) and obtain,

N ∼
√
π

2

1

〈l〉
√
S ∼

√
π

2
f
√
S,

τ ∼
√

2

π
〈l〉
√
S ∼

√
2

π

1

f

√
S,

T = N τ + S ∼ 2S.

(10)

In Appendix B we find that the limit of large S is obtained when S is large relative to the average distance between

food units 〈l〉 such that
√
S � 〈l〉, or in term of the density S � (1/f)2. The effect of f on the limit of large S is

shown in Fig. 9d.

Next, we analyze the case in which 〈l〉 is infinite, and we assume that the distance distribution behaves according

to P (l) ∼ l−(1+β), where 0 < β < 1 such that 〈l〉 =∞, then unlike Eq. (9),

G(x) ∼ 1−A(1− x)β . (11)

This result leads to

F(z) = G(α(z)) ∼ 1−A(1− α(z))β ∼ 1− 2β/2A(1− z)β/2,
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what provides,

N ∼ Γ(β/2)

2β/2A
Sβ/2,

τ ∼ β2β/2A

2Γ(2− β/2)
S1−β/2,

T ∼
(

Γ(1 + β/2)

Γ(2− β/2)
+ 1

)
S.

(12)

Next we consider an edge case where β = 1, which presents an infinite average distance between food as well. In this

case we get a logarithmic correction, as follows,

G(x) ∼ 1 +
1

ζ(2)
(1− x) ln(1− x). (13)

Using this we obtain

N ∼ Γ(1/2)
√

2ζ(2)

√
S

lnS
,

τ ∼ 1

Γ(1/2)
√

2ζ(2)

√
S lnS,

T ∼ 2S.

(14)

The conclusions are that in the asymptotic limit of large S the behavior depends if the mean distance between food

locations is finite or infinite. In the finite average case interestingly, while the food distribution does not affect the

exponents of scaling relations, it does change the pre-factors, as follows, N ∼ fS1/2, τ ∼ f−1S1/2 and T ∼ S of Eq.

(10), where f = 1/〈l〉 is the food density.

However, food distribution with power-law tail, P (l) ∼ l−(1+β), where β < 1 (where 〈l〉 diverges), yields exponents

which depend on the distribution, i.e., N ∼ Sβ/2 and τ ∼ S1−β/2 rather than S1/2, while the scaling of T ∼ S1 is

conserved. The pre-factor of T , however, depends on β, Eq. (12). Where β = 1 a logarithmic correction appears, and

N ∼
√
S/ lnS and τ ∼

√
S lnS, Eq. (14).

B. Examples of several distance distributions

I. Uniform distance between food locations

Here we consider the case where l, the distance between food locations, is uniform, l = L. Namely,

P (l) = δl,L. (15)

In this case

G(x) =

∞∑
l=1

δl,Lx
l = xL. (16)

Note that when L = 1, then G(x) = x, and we recover the case of food is everywhere [24].

Substituting Eq. (16) in Eq. (4), we have the theory for the constant distance between food, shown in Fig. 2.

The scaling for large S is, according to Eq. (10), T ∼ S, N ∼ L−1S1/2, τ ∼ LS1/2.
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II. Random spread of food - likelihood f of having food in each site

Here we assume that randomly each site has food with probability f . Hence, the chance that an arbitrary food unit

has, at a certain direction, the closest food at distance l, is

P (l) = f(1− f)l−1. (17)

Thus, Eq. (17) is the normalized distance distribution between food. The average distance is related to the density

by 〈l〉 = 1/f . Thus,

G(x) =

∞∑
l=1

f(1− f)l−1xl =
fx

1− (1− f)x
. (18)

Note that when f = 1, then G(x) = x, and we recover the case of food is everywhere [24].

Substituting Eq. (18) in Eq. (4) provides the theory for random spread of food, shown in Figs. 2 and 3.

The scaling for large S is, according to Eq. (10), T ∼ S, N ∼ fS1/2, τ ∼ f−1S1/2.

For this food distribution, Eq. (17), we analyze in Appendix C also the behavior of T, τ,N in the limit of small f

for given S, and we get T ∼ f , N ∼ f and τ ∼ Constant, see Fig. 9.

In Fig. 2 we also study which way to spread the food in space is better for the forager to live longer. Given the

same amount of food we compare the results of life time between random spread of food and a constant distance

between food. The black line in the phase diagram, Fig. 2c, distinguishes between the two cases. For parameters

below this line it is better to have a constant distance while above this line random distribution of food increases

the life time of the forager. One can see that if S � 〈l〉 then constant distance between food leads to a longer life

time because random distribution will create at some place a long gap which causes starving. On the other hand, if

〈l〉 ≈ S then random spread is better, because l might be many times lower than 〈l〉 ≈ S, and thus the forager will

probably get to cross this desert, unlike in constant distance L ≈ S where the forager will starve very fast.

III. Power law distribution of distances between food units

If the spread of food is uniformly random, the distances between food are distributed exponentially as shown above,

Eq. (17). In reality in many cases food is clustered such that most distances are short but few are long, what can

be described by a power law distribution of distances between food locations. Therefore, we assume now that P (l)

fulfills

P (l) = Al−(1+β), (19)

where A = 1/ζ(1 + β), and ζ is Riemann zeta function.

In this case the generating function is,

G(x) = A

∞∑
l=1

l−(1+β)xl =
Li1+β(x)

ζ(1 + β)
, (20)

where Li1+β(x) is the polylogarithm of order 1 + β. Substituting Eq. (20) into Eq. (4) provides the theory for a

power law distribution of distances between food units.
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(a) (b)

(c)

FIG. 2: Random forager in one dimension. Comparison between constant distance between food and random

food distributions. (a) Results of the forager’s lifetime for random spread of food, Tf , from theory (lines), Eqs. (4), (8) and

(18), and simulations (symbols) averaged over 103 realizations, show good agreement. In our simulations, whenever the forager

approaches the edge of the system we add new sites in this direction, therefore we obtain identical behavior as an infinite

lattice. (b) Results of forager’s lifetime for a constant distance between food units, TL. Lines represent the theory, Eqs. (4),

(8) and (16), and symbols are simulation results. Good agreement can be observed. (c) Phase diagram that compares which

food distribution for the same 〈l〉 (same amount of food) is better and yields longer lifetime of the forager. Above the black

line the random spread gives longer life, Tf , while below the line, where S is significantly larger than 〈l〉, the constant distance

enables longer lifetime, TL. In (c) the life times are calculated excluding the last walk which is always S steps for any food

distribution.

For β > 1 follows 〈l〉 <∞, and for β ≤ 1 follows 〈l〉 =∞. We analyzed above both cases for the asymptotic behavior

for large S yielding Eqs. (10) and (12). For β > 1, the average is finite, and the scaling is N ∼ S1/2,τ ∼ S1/2 and

T ∼ S, while for β < 1, N ∼ Sβ/2, τ ∼ S1−β/2, T ∼ S. For β = 1, we obtain logarithmic corrections to the scaling,

N ∼
√
S/ lnS, τ ∼

√
S lnS and T ∼ S, Eq. (14). Results for this power law distribution and the scaling relations

are presented in Fig. 3.
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FIG. 3: Random forager in one dimension with random (uniform) and power-law food distributions. In the upper

panels we show results of theory for random uniform spread of food, Eqs. (4),(6),(7),(8) and (18). One can see that the scaling

relations for large S in Eq. (10) are valid, (a) N ∼ fS1/2 , (b) τ ∼ f−1S1/2 , and (c) T ∼ S. Analysis of the behavior for small

values of f is presented in the Appendix in Fig. 9. In the lower panels, (d,e,f), we show results of simulations for power-law

distribution of distance between food, P (l) = Al−(1+β). The results agree well with the theoretical scaling (dashed lines) found

in Eq. (12), N ∼ Sβ/2, τ ∼ S1−β/2, T ∼ S, for β < 1, and with the scaling in Eq. (10), N ∼ S1/2, τ ∼ S1/2, T ∼ S, for

β > 1. The results of simulations have been averaged over 103 realizations. Note that in (f) for β = 0.6 the factor T/S is close

to 1.5 instead of 1.99 as found in Eq. (12). This is since the analytical approximation in Eq. (12) should be valid only for

much larger S.

III. ONE DIMENSION - SMELLING FORAGER

In this chapter we study the case where each unit of food generates a smell felt by the forager and direct him

towards the food. We assume that the smell decays with the distance from its source. All smell to the forager’s right

is summed up to FR, and all smell to the left, to FL. Then, the probability to go right, pR, or left, pL, is determined

according to FR and FL simply by

pR,L =
FR,L

FR + FL
. (21)

Note that the the probabilities pR,L are normalized by the total smell, and hence depend only on the ratio between

the strength of smell in both directions, and not on their absolute value. Therefore, fast decay of smell causes more

significant bias towards the direction with closer food because the strength of smell in the other direction is relatively

much weaker.

Food is distributed all over a one dimensional infinite lattice, with some distance distribution P (l) between food
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locations. Here, given P (l), we focus on the question whether the forager has a non-zero probability to live forever,

p∞, or it is certainly mortal. To study this question we analyze two decay functions of smell, power law decay and

exponential decay.

A. Power Law decay of smell

Here we assume the decay of smell with distance is according to d−α, where d is the distance between the locations

of the forager and the food units which are the sources of smell. Note that if α ≤ 1 the total smell to each side diverges,

and thus the forager walks completely randomly, a case that has been discussed above. Therefore we consider here

only the case α > 1 and investigate the impact of smell.

We want to explore whether immortality exists. The reason that immortality might be possible is that as long as

the forager propagates in one direction, its bias to this direction gets stronger because of the effect of smell. The

question is if and in which conditions, this intensification is significant enough, and forager would live forever.

We define P (l) to be the distribution of distances between food units locations. In order to explore immortality, we

treat separately two cases: (i) limited : the original distance between food cannot be larger than S according to P (l),

and (ii) unlimited : the distance between food can be longer than S according to P (l). We first analyze these two

types of distributions generally, and then consider the specific examples discussed in the previous section under the

corresponding category.

(i) Limited: The case where the distance between food cannot be larger than S

For this case, we find that there is an immortality phase which is dependent on the value of α. There is a critical

value αc below which the forager will die at finite time with probability 1, and above which there is a nonzero chance

to live forever. This αc, as we will show, depends on the distribution of food. In order to find αc , we follow the steps

in [25] and adjust them to our model as follows.

First, we define some useful quantities. p∞ is the probability to live forever. φ(D) is the chance to get the next meal,

given the forager just ate and left behind a desert of size D without food. pD is the probability to step towards the

desert. We will focus on large D because we are interested here in long time walks, which is needed for determining

if the life time can be infinite.

Our goal is to determine if the probability to live forever, p∞, is zero. Since p∞ is the probability to always reach the

next meal, hence

p∞ =

∞∏
n=1

φ(Dn), (22)

where n counts the meals, and Dn is the size of the desert before the nth meal. Note that Dn+1 = Dn + ln is satisfied

where ln is distributed according to P (l).

In order to find φ(D), we study first pD. After a long time of walking there is a large desert of size D in one direction,

thus the likelihood to step towards the desert is small and estimated [25] by

pD ∼ D1−α. (23)
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Next, we denote φ(D, l) as the likelihood to get a next meal given the next food is at distance l, and the desert on the

other side is of size D. We consider long times for which D is very large, hence pD is small, and thus the chance to

starve 1−φ(D, l) is small. Its leading term comes from the possibility with minimum number of steps, k, towards the

desert among S steps, such that the forager does not get the next food. This k, in our model with food distribution,

depends on l, thus we denote it by kl. It was shown in [25] that the chance not to escape a desert is

1− φ(D, l) ∼ pklD . (24)

Here, kl satisfies

(S − kl)− kl ≤ l − 1, (25)

or

kl ≥
S − l + 1

2
. (26)

Because kl is minimal,

kl =

⌈
S − l + 1

2

⌉
. (27)

The next step is to find φ(D), the desert escape probability without knowing the distance l from the next food.

We denote l∗ as the maximal possible distance between food according to P (l). In this section, l∗ ≤ S because

Pr(l > S) = 0.

Then, the likelihood to get a next meal, φ(D), where l is not given, using Eq. (24), is

1− φ(D) =

∞∑
l=1

[1− φ(D, l)]P (l) =

l∗∑
l=1

[1− φ(D, l)]P (l) ∼
l∗∑
l=1

pklDP (l). (28)

Because pD is very small, the dominant term in the sum is the one with the minimal exponent kl, which is for the

largest l, i.e., l∗. Thus, recalling Eq. (23), we get

1− φ(D) ∼ pkl∗D ∼ D(1−α)kl∗ . (29)

Now we can evaluate p∞ using Eqs. (22) and (29),

p∞ =

∞∏
n=1

φ(Dn) = exp

( ∞∑
n=1

ln(φ(Dn))

)
∼ exp

(
−
∞∑
n=1

D(1−α)kl∗
n

)
. (30)

Thus, p∞ = 0 if and only if the sum in the exponent diverges. Because the differences between Dn are bounded by

S, the sum diverges simply when,

(1− α)kl∗ ≥ −1 (31)

Thus,

αc = 1 +
1

kl∗
= 1 +

1⌈
S−l∗+1

2

⌉ , (32)

and p∞ = 0 if α ≤ αc, i.e., the forager will definitely die at finite time, while for α > αc there is a non-zero chance to

survive forever.
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This result is not trivial because the naive guess might be that αc should be determined by the average distance, 〈l〉,

however we find that the maximal distance, l∗, is the quantity determining αc.

After treating the case of general distribution we consider the simplest example obeying the condition l ≤ S which

already was discussed in the previous section.

Constant distance between food units

For a constant distance between food units such that l = L ≤ S, Eq. (32) simply takes he form

αc = 1 +
1⌈

S−L+1
2

⌉ . (33)

Note that while in general critical exponents are not sensitive to microscopic characteristics and change only with

dimension or symmetry changes [36, 37], here the critical exponent is governed both by a quantitative feature of the

forager (S) and by a quantitative feature of the spread of food in space (L).

In Fig. 4a we show the results for αc of theory and simulations for a constant distance between food, L = 3. Fig.

4b shows the result of Eq. (33). Of course where L > S the forager is mortal, however, for L ≤ S each point has a

critical value of the exponent α above which the forager is immortal.

In our computer simulations, we summed up the smell until far distance such that increasing the range does not

affect the value of FR or FL (smell forces) to a precision of 10−4.

(ii) Unlimited: The case where the distance between food units can be larger than S

At this scenario, we show that there is no chance to live forever because after each eating there is a nonzero

probability that l > S, and when this happens the forager will certainly die. Hence there is no immortality phase,

and the lifetime T is finite for any α. Where α is large such that the forager walks almost certainly towards the

closest food, we can find the lifetime T .

First, we prove that the forager is mortal in this case. Let us observe the forager after creating a desert larger than

S. After each meal the likelihood to eat again is φ(D). The distance to next food, l, is random and sampled from

P (l). If l > S it will not eat again for sure. It is easy to see that φ(D) ≤ 1−Pr(l > S), and that Pr(l > S) is nonzero,

and independent on D or on time.

Then, we approach to find p∞, the chance to live forever, according to Eq. (22),

p∞ =

∞∏
n=1

φ(Dn) ≤
∞∏
n=1

[1− Pr(l > S)] = 0. (34)

Namely, the forager will certainly die in a finite time for any value of S and α.

Since the lifetime is finite, we wish to calculate the average number of meals, N , for large α. We assume that α is

large such that the forager steps always towards closest food. Hence, the only chance to die is if l > S. Therefore,
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FIG. 4: Smelling forager with a constant distance between food and power law decay of smell. (a) Results of

theory (line between two phases) and simulations (symbols) for forager in one dimension with power law decay of smell, and

food is distributed with a constant distance, L = 3, between food units. The theory is taken from Eq. (33), and the simulations

have been performed over 108 realizations, where αc is determined by the maximal value of α for which there was no forager

which lived forever in any realization, i.e., in all 108 realizations the forager died. The deviation between theory and simulations

is reasonable because the theory finds when the probability to live forever is completely zero, whereas the simulations find when

the probability is small enough such that it does not appear in the finite number of realizations, and thus it happens for a

slightly larger value of α. (b) Shows the dependence of αc on L and S according to Eq. (33). Where L > S of course the

forager dies after one walk and it is mortal for any value of α. The color represents the value of αc required for immortality

which changes with L and S.

the chance to reach the next meal is φ = 1− Pr(l > S), and from the average of geometric distribution follows,

N =
1

Pr(l > S)
. (35)

Next, we study the scaling derived from Eq. (35) for two examples of distance distributions discussed above, random

and power law since they fall under the category of the case where l can be larger that S.

I. Random spread of food in space

In this case we assume there is a likelihood f of having food in each site. The result is that the distribution of distance

between food is geometrical,

P (l) = f(1− f)l−1. (36)

It is clear that Pr(l > S) > 0. Thus, there is no immortality regime. Let us find Pr(l > S),

Pr(l > S) =

∞∑
l=S+1

P (l) = f

∞∑
l=S+1

(1− f)l−1 = (1− f)S . (37)
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Therefore, based on Eq. (35), N for large α is,

N =

[
1

(1− f)

]S
. (38)

The average time between meals is smaller than 〈l〉 because it is an average given l ≤ S. However it is in the order

of magnitude of 〈l〉. Therefore, T = N τ + S obeys the same scaling as N .

Thus, for large α,

T ∼ [1/(1− f)]S , (39)

namely the mean lifetime increases exponentially with S.

II. Power law distribution of distances between food units

Here, we assume that P (l) satisfies

P (l) = Al−(1+β). (40)

In this case,

Pr(l > S) =

∞∑
l=S+1

Al−(1+β) ≈ A
∫ ∞
S+1

l−(1+β)dl =
A

β
(S + 1)−β . (41)

Therefore, plugging this in Eq. (35),

N ∼ Sβ . (42)

Here τ might be dependent strongly on S because the tail is not neglected, so it matters where it is cut,

τ =

S∑
l=1

lAl−(1+β) ≈ A
∫ S

1

l−βdl =
A

1− β
(
S1−β − 1

)
∼

S
1−β , 0 < β < 1

1, β > 1
. (43)

Therefore,

T = N τ + S ∼

S, 0 < β < 1

Sβ , β > 1
. (44)

Summary of all cases

We denote l∗ as the maximal l with non-zero probability. When l∗ ≤ S, then there is αc above which p∞ > 0,

therefore T =∞, and αc depends on the distance distribution as αc = 1 + 1/d(S − l∗ + 1)/2e. Therefore, T (α) is an

increasing function that diverges at αc as illustrated in Fig. 5a.

When l∗ > S, then T < ∞ for any α. Then we get that T (α) is an increasing function with α, starting at the

completely random case (α < 1) where the scaling is T ∼ S as in Eqs. (10) and (12) and approaching a saturation

where α is large such that the forager always tends towards the closest food. Then the scaling is a power law or

exponential as in Eqs. (39) and (44). See Fig. 5b.
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FIG. 5: Sketches of theory results for lifetime of smelling forager in one dimension (a) If the maximal possible

distance between food (l∗) is not greater than the starving time (S), then there is αc above which the average lifetime is

infinite. Its value depends on l∗ according to Eq. (32). (b) If the distance between food can be larger than S, there is no

immortality regime. However, the lifetime has a saturation for large α, and in this region the scaling of T (S) is found for

power law distribution of distance between food, Eq. (44), and for random spread of food, Eq. (39). For α < 1 the total smell

diverges, and hence the walk is random, thus the scaling is as in Eqs. (10) and (12).

B. Exponential decay of smell

Here we assume the decay of smell with distance is according to exp(−λd). The results for this case can be studied

using the same formalism as in Sec. III A for power law decay.

For unlimited food distribution that allows l > S, the analysis to obtain Eq. (39) is the same for exponential and

power law decays, hence the forager is mortal. The analysis of Eq. (44) is valid for exponential decay with large λ

the same as for power law decay with large α.

For limited food distribution where all l < S, similar steps as in power law decay can be performed to obtain Eq.

(30). Then, for exponential decay of smell, the sum in the exponent is exponential, therefore it converges for any

λ > 0. Thus, in contrast to Eq. (32) where we get critical αc, in the case of exponential decay of smell there is no

critical λ, and p∞ > 0 for any λ > 0, and the mortal regime vanishes. The intuitive explanation is that since fast

decay causes more significant bias towards close food, and for power law function which decays fast enough (α > αc)

we get immortality, exponential decay which is faster than any power law decay also provides immortality for any

λ > 0.

IV. FORAGER IN TWO DIMENSIONS

In this chapter we analyze a forager walking in a two dimensional infinite lattice. We consider several types of

walk and compare between them, random walk, short range smell (the forager detects only sites in distance one),
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long range smell, and complete bias towards smell. We also consider several distributions of food in space, food is

everywhere, food is located in constant distances, and random spread of food with density f .

A. Space is full of food

We define a forager with short range smell as one that if there is food in a site next to it, it steps towards food

with probability 1. However the forager does not consider food that are at distances more then 1. Such a forager has

been investigated in [23, 24], and it was shown that it dies because of traps it creates to itself, i.e., when the forager

closes a loop, it might go inside at the next step, and then eat all food inside, until it finds itself at the middle of a

desert without food which it created. Then, since there is no close food it walks randomly. If the loop of the trap is

large enough the forager might starve before it reaches the edge of its self made desert, see Fig. 6a.

In contrast, a smelling forager senses also far food. Let us consider a forager that steps with probability 1 to the

direction of the closest food. We call this forager perfect smelling forager. This forager walks in 2D exactly the same

as the short range smell forager we mentioned above, except that if it finds itself in a middle of a desert it does not

walk randomly but walks certainly towards the closest food, see Fig. 6a.

We next consider the relation between these two cases, short range smelling and perfect smelling. We argue, using a

rigorous mapping, that perfect smelling with starving time S, is similar to a short range smelling forager with starving

time S2. The reason is that the short range smelling forager walks randomly inside the trap, and therefore reaches in

S steps a distance of order
√
S, while the perfect smelling forager moves in a straight line, thus reaches a distance S

in S steps, see Fig. 6a. The conclusion is that if the function of lifetime of a short range smelling forager is known to

be Tshort(S), then for the lifetime of the perfect smelling forager,

Tperfect(S) ∼ Tshort(S2). (45)

Computer simulations suggest, as presented in Fig. 7b, that for greedy forager with short range smell the mean life

time scales similar to a random forager [16] approximately as

Tshort ∼ S2. (46)

Thus, according to our prediction in Eq. (45), the mean lifetime of a forager with long range smell should scale

approximately as

Tperfect ∼ S4, (47)

and indeed this result is supported in Fig. 7c.

The meaning of Eqs. (45),(46) and (47) is that the difference between short and long range of smell is dramatic, the

exponent changes from 2 to 4 and the life time increases tremendously for perfect smelling forager. The result of

Eq. (47) will serve us in the next chapter where we study forager with long range smell in two dimensions with food

distribution in space.



16

FIG. 6: Illustrations of forager in two dimensions. (a) The forager dies when it creates a loop and goes inside. The loop

should be large enough such that after it eats most of the food inside and find itself at the middle of desert, it does not succeed

escaping the desert in S steps. At this situation, long range smelling forager and one with short range are very different but

can be mapped. While the long range smelling forager goes directly towards the closest food (blue straight line), the short

range one walks randomly (red random path). Typically random walker reaches distance of ∼
√
S in S steps, while the direct

walk reaches a distance S. Hence the short range smelling forager should have starving time of S2 to die at the same trap as

the long range smeller forager with starving time of S. Therefore, we obtain Eq. (45). (b) Illustration of a constant distance

between food in 2D Lattice where L = 2. The filled circles represent food, while the white empty ones represent empty sites.

Theory for this case is given in Eqs. (48) and (52). Simulation results of this case are shown in Fig. 8. (c) Illustration of

uniform random spread of food in two dimensions with density f ≈ 1/2. Simulation results for this scenario are presented in

Fig. 8.

B. Space not full of food

Here we consider a forager in 2D given some distribution of food in space. We focus on forager walking according

to its sense of smell. We explore two distributions of food in space, constant distance L between food, Fig. 6b, and

random uniform spread of food with density f , Fig. 6c.

1. Constant distance between food locations

Let food located in 2D at points (nL,mL) where m and n are all the integers, and L is the distance between

neighboring food units. The forager starts at point (0, 0) and its steps to right/left/up/down have size 1. We call this

scenario a constant distance L between food in 2D, see Fig. 6b.

Now, let us consider a smelling forager with a power law decay of smell, d−α, with large exponent α, or exponential

decay, e−λd, with large λ, namely the bias towards the food is very high and the forager walks almost always towards

the closest food. We note that in this case, the walk is same as for constant distance L = 1 (food is everywhere),

except that each step now is replaced by L straight steps. Therefore,

Tspread(S,L) = L · Tspread(S/L, 1) = LTfull(S/L), (48)
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FIG. 7: Lifetime in 2D where the space is full with food. We show the scaling between lifetime, T , and starving time,

S, at three cases: (a) random walk, (b) short range smell (steps towards food only if distance is one), and (c) perfect smelling

forager (steps towards the closest food). It can be seen that for random forager and short range smelling forager the scaling is

about T ∼ S2 when S is getting large, while perfect smelling forager has scaling of about T ∼ S4. This confirms our theoretical

argument that the transformation from short range smell to perfect smelling should be expressed by S → S2, see Fig. 6a and

Eq. (45). The insets suggest that the exponents smaller than 2 and 4 are due to finite size systems, and when S increases they

reach the values 2 and 4 respectively.

where Tfull is the life time of smelling forager in space full with food. Thus, assuming a smelling forager in full space

scales with S as,

Tfull(S) ∼ Sγ , (49)

then

Tspread(S,L) = LTfull(S/L) ∼ L(S/L)γ = L1−γSγ , (50)

or in different shape, the scaling of T , S and L, for perfect smelling forager in 2D with constant distance between

food, is

T

L
∼
(
S

L

)γ
. (51)
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This scaling is supported in Fig. 8a where it can be seen that all points of different S and L, where S/L is large,

lay on the same curve when plotting T/L vs S/L, what validates the scaling we predicted theoretically in Eq. (48).

Using computer simulations we find that T ∼ Sγ for large S, and γ ≈ 4. Hence, for a large ratio S/L, we expect

Tspread(S,L) ∼ L−3S4. (52)

In terms of density of food f , rather than the distance between food L, using the simple relation

f = 1/L2,

we obtain the scaling

Tspread(S, f) ∼ f
γ−1
2 Sγ ≈ f3/2S4. (53)

Note that this scaling is valid for large S/L, or, for large S
√
f , i.e., for f � S−2.

2. Random uniform spread of food in space

Here we assume that at each site in two dimensional square lattice there is food with likelihood f . This probability

f is, therefore, the density of food, see the illustration in Fig. 6c. The forager walks according to a long range smell

with high bias, such that it steps towards the closest food. In Fig. 8b we show the results of the lifetime of such a

forager for different values of density f . One can see that the approximated scaling we found for a constant distance

between food in the previous section, Eq. (53), T ∼ f3/2, using the combination of simulations results and theoretical

considerations, works well also for different cases of food distribution in space.

V. DISCUSSION

We have studied a forager that walks in space where food is distributed in several fashions, a constant distance

between food units, uniform random distribution and power law distribution of distances. We have considered foraging

both in one and two dimensions. Moreover, we have treated a few types of forager’s walk; random, according to short

range smell and according to long range smell. We studied two cases of long-range smell. Smell decaying exponentially

and as a power law. We found new scaling relations between forager’s lifetime, number of meals, the starving time

and the density of food in one and two dimensions. We also found how the immortality of a long range smelling

forager in one dimension depends on the distribution of food in space.

Further work could compare these results to experimental measurements, which also might lead to additional

extensions to the model such as exploring cases incorporating the fact that food often appears in ‘patches’ [38].

Likewise, multiple foragers living in the region could be considered with all of them depleting food sources [15].

Another interesting future direction can be to explore how the results here change if the forager performs a Lévy flight

instead of constant steps with length 1, since it has been shown that Lévy flights may importantly change foraging

efficiency in asymmetric landscapes [39]. Further theoretical studies could investigate how different embedded spaces

affect our results, for instance, lattices of higher dimensions and random networks.
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FIG. 8: Forager in two dimensions where space is not full with food. (a) Here the distance between food units is

constant, L, and the forager walks perfectly according to smell, i.e., towards the closest food. We show that the scaling with

the distance L is T/L and S/L when S/L is large, hence all points lay approximately on one curve. This supports Eq. (48)

derived from theoretical considerations. This scaling allows us to obtain T ∼ L−3, see Eq. (52). The dashed line represents

the expected approximated slope according to the result of Fig. 7c. (b) Here food is distributed randomly with density f , see

Fig 6c. The forager walks perfectly according to smell. We examine in this case the scaling of T vs f . One can see that the

approximated scaling in Eq. (53), T ∼ f3/2, found for constant distances, is approximately valid also for a uniform random

food distribution.
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Appendix A: Derivation of N , τ, T using F(z)

In this Appendix we summarize what relevant to us for derivation of N , τ and T based on Ref. [24]. After having

the generating function F(z), we define E(S) as the probability of a random forager to escape the desert, namely to

get food before starving, given it starves after S steps without food, and it just ate. One should note that

E(S) =

S∑
t=1

F (t), (A1)

what implies regarding the generating functions

E(z) =
F(z)

1− z
. (A2)

Next, we find the distribution of N , number of meals which is a geometric distribution,

pN = (1− E)EN . (A3)

Hence for the average, N = 〈N〉,

N =
E

1− E
(A4)

Then, to evaluate τ , we note that

τ =

∑S
t=1 tF (t)∑S
t=1 F (t)

=

∑S
t=1 tF (t)

E(S)
≡ π(S)

E(S)
. (A5)

Therefore, we approach to find π(S) via its generating function, which obeys

Π(z) =
zF ′(z)
1− z

. (A6)

Finally, for the lifetime of the forager we obtain

T (S) = τN + S =
π(S)

E(S)

E(S)

1− E(S)
+ S =

π(S)

1− E(S)
+ S. (A7)

To summarize, given the distribution of food in space P (l), we find G(x), what provides F(z). Using the last one, we

find N , τ, T .

Appendix B: Asymptotic behavior where S is large in one dimension

We analyze for general distance distribution between food P (l) the asymptotic behavior of T,N and τ for large

S. For this goal we observe the limit z → 1 and use the Tauberian theorems [33–35]. α(z) fulfills α(1) = 1. Close

to 1 α(z) ∼ 1 −
√

2
√

1− z. In cases for which the mean distance, 〈l〉, is finite, G′(1) = 〈l〉. In addition, G(1) = 1.

Therefore, for x→ 1

G(x) ∼ G(1) +G′(1)(x− 1) = 1− 〈l〉(1− x). (B1)

Hence, for z → 1

F(z) = G(α(z)) ∼ 1− 〈l〉(1− α(z)) ∼ 1− 〈l〉
√

2
√

1− z. (B2)
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Hence,

E(z) =
F(z)

1− z
∼ 1

1− z
−
√

2〈l〉√
1− z

. (B3)

Thus,

E(S) ∼ 1−
√

2〈l〉
Γ(1/2)

1√
S

= 1−
√

2〈l〉√
π

1√
S
. (B4)

Hence,

N =
E

1− E
∼
√
π

2

1

〈l〉
√
S. (B5)

In addition,

Π(z) =
zF ′(z)
1− z

∼
√

2〈l〉
2(1− z)3/2

. (B6)

Therefore,

π(S) ∼
√

2〈l〉
2Γ(3/2)

√
S =

√
2〈l〉√
π

√
S. (B7)

And thus,

τ =
π

E
∼
√

2〈l〉√
π

√
S. (B8)

Then,

T (S) =
π(S)

1− E(S)
+ S ∼ (

√
2〈l〉/

√
π)
√
S

(
√

2〈l〉/
√
π)/
√
S

+ S = 2S. (B9)

The condition for large S

The expansion we performed above is valid for the limit S →∞, namely much larger than any other quantity of the

problem. However, we want to find out what can be regarded as large S. For this purpose, we go back to Eq. (B4),

and recognize that we assumed

1�
√

2〈l〉√
π

1√
S
. (B10)

Assuming this we can expect the next terms are negligible. Therefore we extract the condition for large S relative to

other quantity of the problem,

√
S � 〈l〉. (B11)

In terms of food density f = 1/〈l〉 we obtain

S � (1/f)2. (B12)

Fig. 9d shows how the limit of large S changes with different densities f , when T/S approaches to a constant value

slower for small f .
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Power-law distance distribution

Here we consider power law distance distribution P (l) = Al−(1+β) between food units, where A = 1/ζ(1 + β), and ζ

is Riemann zeta function. The generating function of this distribution is,

G(x) = A

∞∑
l=1

l−(1+β)xl =
Li1+β(x)

ζ(1 + β)
, (B13)

where Li1+β(x) is the polylogarithm of order 1 + β. Here 〈l〉 is not finite in all cases, and one should separate the

treatment into two cases. The expansion of polylogarithm around 1 is

Li1+β(x) ∼


ζ(1 + β)− ζ(β)(1− x), β > 1

ζ(1 + β) + Γ(−β)(1− x)β , 0 < β < 1

ζ(2) + (1− x) ln(1− x), β = 1

. (B14)

For β > 1, the mean distance is finite, and we already obtained the asymptotic behavior in this case above.

For β < 1 we analyze the asymptotic behavior in large S. To this end, we expand the relevant functions in the limit

z → 1. At z → 1, α(z) ∼ 1−
√

2
√

1− z, and therefore

F(z) = G(α(z)) =
Li1+β(α(z))

ζ(1 + β)
∼ 1 +

Γ(−β)

ζ(1 + β)
(2(1− z))β/2 ∼ 1− C(1− z)β/2. (B15)

Next, for the generating function of E(S),

E(z) =
F(z)

1− z
∼ 1

1− z
− C(1− z)β/2−1. (B16)

Thus,

E(S) ∼ 1− C

Γ(β/2)
S−β/2. (B17)

Hence,

N =
E

1− E
∼ Γ(β/2)

C
Sβ/2. (B18)

In addition, for the generating function of π(S)

Π(z) =
zF ′(z)
1− z

∼ Cβ

2(1− z)2−β/2
. (B19)

Therefore,

π(S) ∼ Cβ

2Γ(2− β/2)
S1−β/2. (B20)

Then

T (S) =
π(S)

1− E(S)
+ S ∼ Cβ

2Γ(2− β/2)
S1−β/2 Γ(β/2)

C
Sβ/2 + S =

(
Γ(1 + β/2)

Γ(2− β/2)
+ 1

)
S. (B21)

In the edge case β = 1, we get at z → 1

F(z) = G(α(z)) =
Li2(α(z))

ζ(2)
∼ 1 +

1

ζ(2)

√
2(1− z) ln

√
2(1− z) ∼ 1 + C

√
1− z ln(1− z). (B22)
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Next, for the generating function of E(S),

E(z) =
F(z)

1− z
∼ 1

1− z
+ C

ln(1− z)√
1− z

. (B23)

Thus,

E(S) ∼ 1− C

Γ(1/2)

lnS√
S
. (B24)

Hence,

N =
E

1− E
∼ Γ(1/2)

C

√
S

lnS
. (B25)

In addition, for the generating function of π(S)

Π(z) =
zF ′(z)
1− z

∼ −C ln(1− z)
2(1− z)3/2

. (B26)

Therefore,

π(S) ∼ C

2Γ(3/2)

√
S lnS. (B27)

Then

T (S) =
π(S)

1− E(S)
+ S ∼ 2S. (B28)

Appendix C: Asymptotic behavior for small f for a random forager with random spread of food

Let us analyze Eq. (18) in the limit of small density f ,

F(z) = G(α(z)) = f
α

1− α+ fα
=

fα

1− α
1

1 + fα/(1− α)

∼ fα

1− α
−
(

fα

1− α

)2

∼ f α

1− α
.

(C1)

Consequently,

E(z) =
F(z)

1− z
∼ f α

1− α
1

1− z
. (C2)

Thus,

E ∼ f. (C3)

Hence,

N =
E

1− E
∼ f. (C4)

For π(S) we get

Π(z) =
zF ′(z)
1− z

∼ f z

1− z

(
α(z)

1− α(z)

)′
. (C5)
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Therefore,

π ∼ f (C6)

As a result,

τ =
π

E
∼ Const. (C7)

For the lifetime

T − S = τN ∼ f. (C8)

(a) (c)(b) (d)

FIG. 9: Random forager in one dimension with uniform random food distribution. (a-c) We can see the two limits

of small densities f and large ones. (a) The quantity N is linear with f while (b) τ approaches to a constant for small f

and then scales as 1/f when f tends to 1, and (c) T is linear with f for small f and then approaches to a constant. (d) The

linear scaling of T versus S is valid for large S where it is large relative to the average distance between food units such that
√
S � 〈l〉, which in terms of f becomes S � (1/f)2. Therefore T/S is getting constant slower for small values of f . However,

this figure shows the non-leading correction while in Fig. 3c one can see only the effect of the leading term.


