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There is a deep connection between the ground states of transverse-field spin systems and the late-
time distributions of evolving viral populations – within simple models, both are obtained from the
principal eigenvector of the same matrix. However, that vector is the wavefunction amplitude in the
quantum spin model, whereas it is the probability itself in the population model. We show that this
seemingly minor difference has significant consequences: phase transitions which are discontinuous in
the spin system become continuous when viewed through the population perspective, and transitions
which are continuous become governed by new critical exponents. We introduce a more general
class of models which encompasses both cases, and that can be solved exactly in a mean-field
limit. Numerical results are also presented for a number of one-dimensional chains with power-
law interactions. We see that well-worn spin models of quantum statistical mechanics can contain
unexpected new physics and insights when treated as population-dynamical models and beyond,
motivating further studies.

I. INTRODUCTION

A. Viral populations and quantum spins:
qualitative comparison

In a somewhat simplified perspective, the evolution
of viral populations is governed by two competing pro-
cesses: mutation of the genetic code upon reproduction,
and natural selection due to differences in the correspond-
ing reproduction rates. Mutations destroy the informa-
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FIG. 1. Sketch of a typical phase diagram in the Γ-β plane,
where Γ is the transverse field and β is the power to which
the wavefunction amplitude is raised (see the discussion in
Sec. I C). Red shading indicates the ordered phase and blue
indicates disordered. The black dashed line indicates a con-
tinuous transition and solid indicates discontinuous, and the
red dashed line is a transition between two ordered phases.
The quantum model corresponds to the line β = 2, and the
population dynamics model to β = 1 (both dotted).

tion contained in the genetic sequence and lead to a
wider variety of sequences in the population (known as
a quasi-species cloud), whereas selection promotes those
sequences which give the fastest reproduction rates at the
expense of slower members. The quasi-species population
collapses if the rate of mutations is too large, suggesting
a sharp transition– an “error catastrophe”– in the num-
ber of mutations per virus [1, 2]. It has motivated the
treatment of RNA viruses such as HIV through hypermu-
tation: increasing the average mutation rate in the viral
population so as to drastically reduce the proportion of
viable members [3–9].

The competition between mutation and selection is
analogous to competition between the two terms of a
quantum transverse-field Ising model: the transverse field
encourages spin flips and leads to a ground state that
is superposed from a wider variety of configurations,
whereas spin-spin interactions bias the ground state to-
wards specific configurations having lower interaction en-
ergy. An error catastrophe simply corresponds to a phase
transition in the usual sense of statistical mechanics, i.e.,
non-analyticity of an observable [10].

B. Viral populations and quantum spins:
quantitative comparison

The above analogy has been formulated mathemati-
cally and shown to be quite deep [11–15]. Let us briefly
summarize the precise relationship.

A particularly simple model for mutation-selection dy-
namics is to represent genetic sequences by chains of Ising
spins: σ ≡ {σi}Ni=1, where σi = −1 indicates a muta-
tion on site i and σi = 1 indicates no mutation (called
“wild-type”). The wild-type state on site i changes to the
mutated state at rate Γ+

i , and the mutated state reverts
to wild-type at rate Γ−i . Each sequence σ reproduces at
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a certain rate F (σ), called the fitness function. Natu-
ral selection is captured by the fact that different σ have
different values of F (σ).

A useful measure of the relative strength of mutation
versus selection is the surplus µ1, defined as the average
value throughout the population of N−1

∑
i σi, i.e., the

number of wild-type sites minus the number of mutated
sites. Clearly smaller Γ±i and steeper F (σ) favor µ1 ≈ 1
(assuming the wild-type state has highest fitness), while
larger Γ±i and shallower F (σ) favor µ1 < 1.

To describe how the population changes over time, we
consider the number of members N (σ, t) having each
possible sequence σ at time t. Denoting by Liσ the
sequence which has spin i flipped relative to σ (e.g.,
L1(1, 1, 1, ) = (−1, 1, 1)), the time evolution of the popu-
lation is given by the set of equations

d

dt
N (σ, t) =F (σ)N (σ, t)

+
∑
i

(
Γ−σii N (Liσ, t)− Γσii N (σ, t)

)
.

(1)

The first term is the change due to reproduction, and the
second term is that due to mutation. We write Eq. (1)
more compactly by denoting N (σ, t) as a vector |N (t)〉 in
the 2N -dimensional Hilbert space having basis states |σ〉
(i.e., so that 〈σ|N (t)〉 = N (σ, t)). Evolution according
to Eq. (1) is then cast in the matrix form

d

dt
|N (t)〉 = −H|N (t)〉, (2)

H ≡− F
(
σ̂z
)

+
∑
i

(
Γ+
i + Γ−i

2
+

Γ+
i − Γ−i

2
σ̂zi

)
−
∑
i

(
Γ+
i σ̂

+
i + Γ−i σ̂

−
i

)
,

(3)

with σ̂ being the standard Pauli operators.
Equation (3) is quite literally the Hamiltonian of a

transverse-field Ising model (albeit non-Hermitian un-
less Γ+

i = Γ−i ), and Eq. (2) can equally be seen as the
imaginary-time Schrodinger equation. In particular, as
t → ∞, the state |N (t)〉 approaches the ground state of
the Hamiltonian. The steady-state value of the surplus
in the population is seen to be a ground state property of
the associated Ising Hamiltonian, analogous to the lon-
gitudinal magnetization, and any error catastrophe cor-
responds to a quantum phase transition.

C. Summary of our results

Despite the deep connection between an error catastro-
phe and a quantum phase transition, the purpose of the
present paper is to show that the nature of the transition
is often qualitatively different when viewed through the
surplus rather than the magnetization. There have been
observations of this phenomenon previously [14, 16, 17]

(although some specific models have turned out to be
misleading [18]), and these observations have been ex-
plained in a purely mathematical sense [15, 19]. Yet in
our opinion, such explanations, valuable as they are, do
not give much physical intuition and risk making the cor-
respondence between the two fields seem less powerful
than it is. Our aim in this paper is to study the prob-
lem using the techniques and terminology of quantum
statistical physics, with the hope of encouraging further
investigation of population-dynamical models among the
condensed-matter physics community.

One common means of classifying phase transitions is
by the non-analyticity of an order parameter, e.g., con-
tinuous versus discontinuous. We shall show that the
surplus can go to zero continuously even when the magne-
tization is discontinuous, and can have novel critical ex-
ponents at continuous transitions. As will become clear,
these differences stem from one detail which was glossed
over in the above discussion: the weight 〈σ|N (t)〉 (once
normalized) is the probability of observing configuration
σ when sampling randomly from the population, whereas
if |N (t)〉 were a quantum state it would be the square root
of the probability.

Furthermore, we place these results in the context of a
larger family of models, taking the probabilities to be the
weights 〈σ|N (t)〉 raised to an arbitrary power β (β = 1
corresponds to the population dynamics model and β = 2
corresponds to standard quantum mechanics). This re-
veals intricate Γ-β phase diagrams, one example of which
is sketched in Fig. 1. We show that the nature of the
phase transition in Γ can depend on β in a variety of
ways, with the overall trends that the transition becomes
continuous at lower β and the critical field begins increas-
ing at larger β. The full significance of this non-trivial
β-dependence remains to be discovered, but it is already
useful in elucidating our results on surplus and magneti-
zation.

Finally, let us briefly mention an alternative perspec-
tive on the difference between surplus and magnetization:
the distinction between surface and bulk critical phenom-
ena in classical spin systems [16, 20]. We shall postpone
a review of the relationship until later in the paper, but
the main result (not due to us) is that nonzero surplus
corresponds to order at the surface whereas nonzero mag-
netization corresponds to order in the bulk. This already
gives some intuition as to how the two can have different
continuity properties: spins at the surface interact with
fewer neighbors and have larger fluctuations than in bulk,
leading to a suppressed surplus. Our results show that
this is sufficient to modify the critical properties quite
generically, not only in special cases, and further provide
a generalization to arbitrary β (which no longer has the
mapping to surface physics).
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D. Roadmap

In Sec. II, we present the analytical treatment of sym-
metric models, i.e., models in which the fitness function
depends solely on the total magnetization. Although ide-
alized, they often serve as valuable toy systems among
both the statistical physics and population genetics com-
munities [15, 21–24]. We show that the models com-
monly used to demonstrate discontinuous magnetic phase
transitions generically have a continuous surplus. In
Sec. III, we then present numerical results demonstrat-
ing the same phenomena in non-symmetric models. Al-
though finite-size effects prevent any quantitative conclu-
sions, we do find evidence that the surplus often has dis-
tinct critical exponents at continuous phase transitions.
Finally, in Sec. IV, we discuss the relationship to critical
surface phenomena, and then conclude.

II. EXACT SOLUTION OF SYMMETRIC
MODELS

Symmetric Hamiltonians constitute a large family of
models for which we can determine the ground state an-
alytically, at least to leading order in large N . By sym-
metric, we mean any fitness function F (σ) which depends
only on the total spin-z M(σ) ≡

∑
i σi. An example is

F0(σ) =
1

N

∑
i,j

σiσj =
1

N
M(σ)2, (4)

which can equivalently be thought of as an Ising model
with infinite-range interactions. More generally, we write

F (σ) = Nf

(
M(σ)

N

)
, (5)

where the factors of N are included simply for conve-
nience in what follows. Furthermore, to make closer con-
tact with the models used in statistical physics, we shall
restrict ourselves to Hermitian Hamiltonians (Γ+

i = Γ−i ).

A. Definitions & notation

Taking |N 〉 to be the ground state of Eq. (3), we de-
note 〈σ|N 〉 by Cσ. Note that by the Perron-Frobenius
theorem, Cσ ≥ 0 for all σ. The symmetry of the Hamil-
tonian ensures that the eigenstates have definite total

angular momentum Ŝ2 ≡
∣∣∑

i σ̂i
∣∣2, and we shall focus

on the subspace of maximal angular momentum N . In
this subspace, Cσ is identical for all configurations hav-
ing the same M(σ). We shall henceforth write CM , where
M ∈ {−N,−N + 2, · · · , N}.

We will find that CM is, to leading order, exponentially
small in N . In particular,

CM ∼ e−Nα(m), (6)

for some smooth function α of m ≡M/N .
By definition, the magnetization density of |N 〉 when

viewed as a quantum state is

µ2 ≡
1

N

∑
σM(σ)C2

M(σ)∑
σ C

2
M(σ)

. (7)

Correspondingly, the surplus density of |N 〉 when viewed
as a population is

µ1 ≡
1

N

∑
σM(σ)CM(σ)∑

σ CM(σ)
. (8)

Note that we can write

µ2 =
1

N

∑
M

M
∣∣Ψ(M)

∣∣2, µ1 =
1

N

∑
M

MP (M), (9)

where∣∣Ψ(M)
∣∣2 =

∑
σ δM(σ),MC

2
M(σ)∑

σ C
2
M(σ)

∝
(

N
N+M

2

)
C2
M ,

P (M) =

∑
σ δM(σ),MCM(σ)∑

σ CM(σ)
∝
(

N
N+M

2

)
CM ,

(10)

i.e., |Ψ(M)|2 and P (M) are the probability distributions
for the magnetization and surplus respectively.

At large N , the binomial coefficient can be approxi-
mated as (m ≡M/N)(

N
N+M

2

)
∼ eNh(m), (11)

where

h(m) = −1 +m

2
log

1 +m

2
− 1−m

2
log

1−m
2

. (12)

Using Eq. (6), we have that∣∣Ψ(M)
∣∣2 ∝ eN(h(m)−2α(m)

)
, P (M) ∝ eN

(
h(m)−α(m)

)
.

(13)
To leading order as N →∞,

µ2 ∼ argmax
[
h(m)− 2α(m)

]
,

µ1 ∼ argmax
[
h(m)− α(m)

]
.

(14)

where argmax denotes the value of m for which the argu-
ment is maximum. Generalizing slightly, we can define
an entire family of distributions

Pβ(M) =

∑
σ δM(σ),MC

β
M(σ)∑

σ C
β
M(σ)

∝ eNsβ(m), (15)

where sβ(m) = h(m) − βα(m), for an arbitrary posi-
tive real number β. The generalized magnetization µβ is
defined as the expectation value with respect to Pβ(m)
(hence the notation µ2 for magnetization and µ1 for sur-
plus). Although we do not have a physical interpretation
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for µβ at arbitrary β, it will be useful to consider β as a
tunable parameter.

In the calculations that follow, it will be easier to work
directly with Ψ(M) rather than CM , thus we give the
exponent a name:

1

N
log Ψ(M) ≡ φ(m) =

1

2
h(m)− α(m). (16)

To summarize, in the following section we shall calcu-
late φ(m), then determine sβ(m) via

sβ(m) =

(
1− β

2

)
h(m) + βφ(m), (17)

and finally µβ via

µβ = argmax
[
sβ(m)

]
. (18)

B. Large-N analysis

The eigenstates of H in the subspace of maximal angu-
lar momentum can be determined analytically using the
WKB method, which becomes exact in the N →∞ limit.
This technique, or equivalent formulations of it, has been
applied successfully in both the quantum physics and
population genetics fields, and we refer to the literature
for further details [13, 15, 23, 25, 26].

Noting that 〈M |N 〉 = Ψ(M) as defined above (where
|M〉 is the basis state having total spin-z M), we project
the eigenvalue equation E|N 〉 = H|N 〉 onto |M〉 to ob-
tain

EΨ(M) =−Nf
(
M

N

)
Ψ(M)

− Γ

2

√
(N +M)(N −M + 2)Ψ(M − 2)

− Γ

2

√
(N −M)(N +M + 2)Ψ(M + 2).

(19)
We write both log Ψ(M) and E as series in N :

Ψ(M) = eNφ(m)+φ1(m)+ 1
N φ2(m)+···, (20)

E = Nε+ ε1 +
1

N
ε2 + · · · , (21)

then insert into Eq. (19) and equate like powers of N
(while expanding terms like φ(m± 2

N ) in Taylor series).
For our purposes, only the O(N) equation will be needed.
It is

ε = −f(m)− Γ
√

1−m2 cosh

(
2

dφ

dm

)
. (22)

Solving for dφ/dm, we have

dφ

dm
=

1

2
log
(
κ(m)±

√
κ(m)2 − 1

)
,

κ(m) ≡ −ε− f(m)

Γ
√

1−m2
.

(23)

m

U−(m), ϕ(m)

ϵGS

μ2
FIG. 2. Sketch of an example potential U−(m) (solid black
line), the ground state energy density εGS and average mag-
netization µ2, and the resulting wavefunction exponent φ(m)
(red line).

As discussed in Appendix A, the correct sign to use
in Eq. (23) is the plus sign near m = −1 and the minus
sign near m = 1, needed so that Eq. (23) agrees with
the Schrodinger equation at the endpoints (for which a
separate expansion is needed). This then requires that
|κ(m)| cross 1 at some intermediate value of m, so that
dφ/dm is non-analytic there [27]. The requirement that
|κ(m)| ≤ 1 for at least one point m translates to a re-
striction on the allowed values of ε: there must be a point
m at which

U−(m) ≤ ε ≤ U+(m),

U±(m) ≡ −f(m)± Γ
√

1−m2.
(24)

The ground state energy is the lowest allowed value:

εGS = minm
[
U−(m)

]
. (25)

These equations are best understood graphically, such as
in Fig. 2.

Equation (24) further has a nice physical interpreta-
tion: Consider a classical spin ŝ, by which we mean a
unit vector in R3, with an energy function Hcl(ŝ) analo-
gous to the original Hamiltonian:

Hcl

(
ŝ
)

= −f
(
sz
)
− Γsx, (26)

where sx and sz are the projections along the x and z
axes. If sz is fixed to be m, then sx can take values
between −

√
1−m2 and

√
1−m2. U+(m) and U−(m)

are precisely the maximum and minimum corresponding
energies, and the lowest possible energy is found by min-
imizing U−(m), i.e., Eq. (25).

The magnetization density of the ground state is cor-
respondingly

µ2 = argminm
[
U−(m)

]
. (27)
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This follows from having dφ/dm > 0 for m less than the
argmin and dφ/dm < 0 for m greater than the argmin:

dφ

dm
=


1
2 log

(
κ(m) +

√
κ(m)2 − 1

)
, m ≤ argmin[U−]

1
2 log

(
κ(m)−

√
κ(m)2 − 1

)
, m ≥ argmin[U−]

.

(28)
Thus φ(m) is maximized at the argmin. Since µ2 is the
sum over M of M |Ψ(M)|2 and Ψ(M) scales exponentially
with N , the sum is dominated by where the exponent is
maximal, giving Eq. (27). The situation is sketched in
Fig. 2.

With this analysis in hand, we now calculate φ(m) and
sβ(m) for a variety of symmetric Hamiltonians. The lo-
cations of the maxima of sβ(m) then give the values of
µβ shown in what follows (see Eqs. (17) and (18)).

C. Results

For concreteness, we have focused on systems which
exhibit a transition from an ordered phase having mag-
netization µ2 > 0 to a disordered phase having µ2 = 0
as Γ is increased. A sufficient condition is that the fit-
ness function f(m) increase monotonically with m and
grow no faster than O(m2) near m = 0. For example,
f(m) = m2sgn[m] and f(m) = m3 both exhibit such a
transition, as shown in Fig. 3. Note that the former un-
dergoes a continuous transition (in that µ decreases to 0
continuously) whereas the latter is discontinuous.

The corresponding µβ for these examples are shown in
Fig. 4. Considering the upper panel, we see that as Γ→
Γc from below, the magnetization µ2 vanishes as

√
Γc − Γ

but the surplus µ1 vanishes more rapidly as Γc − Γ (the
precise scaling can easily be verified analytically). In
the language of critical exponents, the magnetization has
exponent 1/2 whereas the surplus has exponent 1.

The contrast is even more stark in the lower panel:
whereas µ2 remains finite as Γ → Γc, µ1 vanishes. This
behavior is quite generic. Fig. 5 presents the magnetiza-
tion and surplus for a wide variety of fitness functions, all
chosen so that the transition in magnetization is discon-
tinuous. In all cases, the transition in surplus is nonethe-
less continuous.

Furthermore, one can prove that the surplus transition
is continuous for any model which meets our two criteria
stated above (namely that f(m) increases monotonically
and grows no faster than O(m2) near m = 0). The proof
is given in Appendix B.

Our goal is now to understand this phenomenon in
more physical terms. In doing so, it will be convenient
to consider the parameter β as an arbitrary positive real
number. For reference, recall the expressions

µ2 = argminm
[
U−(m)

]
, εGS = U−(µ2),

κ(m) ≡ 1 +
U−(m)− εGS

Γ
√

1−m2
,

(29)

0.00 0.25 0.50 0.75 1.00
m

0.05

0.00

0.05

0.10

U
(m

)

f(m) = m2sgn[m]
< c

= c

> c

0.00 0.25 0.50 0.75 1.00
m

0.05

0.00

0.05

0.10

U
(m

)

f(m) = m3

< c

= c

> c

FIG. 3. Two examples of the potential U−(m) as a function
of m, for various Γ (increasing from blue curves to red). The
fitness functions f(m) are indicated, and the potential is given
by Eq. (24). For this figure, constants have been added to
U−(m) so that U−(0) = 0. (Top) A potential which gives a
continuous transition. Solid curves are Γ = 1.5, 2.0, 2.5 (blue
to red). (Bottom) A potential which gives a discontinuous
transition. Solid curves are Γ = 1.2, 1.3, 1.4.

from which the exponent of the ground state wavefunc-
tion is, for m ≤ µ2 (see Eq. (28)),

φ(m) = −1

2

∫ µ2

m

dm log
(
κ(m) +

√
κ(m)2 − 1

)
, (30)

and the generalized magnetization µβ is given by

µβ = argmaxm
[
sβ(m)

]
,

sβ(m) =

(
1− β

2

)
h(m) + βφ(m),

(31)

where h(m), the “binomial entropy,” is given by Eq. (12).
We are setting φ(µ2) = 0 for convenience.

Note that the numerator of κ(m)−1 is the height of the
potential barrier, U−(m)− εGS. Furthermore, dφ/dm in-
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.000.0
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0.4

0.6

0.8

1.0
(

)
f(m) = m2sgn[m]

= 2
= 1
= 0 +

0.0 0.2 0.4 0.6 0.8 1.0 1.20.0

0.2
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1.0
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)

f(m) = m3
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= 0 +

FIG. 4. Generalized magnetization µβ as a function of Γ, for
various β (decreasing from blue to red) and the same fitness
functions as in Fig. 3. The vertical black lines indicate the
values of Γc (µβ is identically 0 for Γ > Γc).

creases monotonically with κ(m). Thus the wavefunction
behaves roughly as one would find in the WKB treatment
of 1D tunneling problems: the slope is zero only at points
where the barrier vanishes, and the wavefunction falls off
faster in regions where the barrier is larger (albeit with

the factor of Γ
√

1−m2 included). Figure 6 gives an ex-
ample. Note that the qualitative features of φ(m) can be
predicted simply from the shape of U−(m).

First consider β < 2. A number of results follow im-
mediately from the above discussion:

• The surplus is less than the magnetization — this
follows from the fact that dsβ/dm|m=µ2 < 0 for
β < 2.

• The surplus is non-negative — this follows from
dsβ/dm > 0 for m < 0.

• The surplus is positive for all Γ < Γc — this follows
from dφ/dm|m=0 > 0 (since U−(0) > εGS) and thus

dsβ/dm|m=0 > 0.

• The surplus is strictly zero for all Γ > Γc — both
dφ/dm and (1−β/2)h(m) are maximized at m = 0
when Γ > Γc.

Note that all these features are borne out in Fig. 4.
The maximization of sβ(m) can be thought of as a

competition between two terms. The binomial contribu-
tion h(m) is an entropic term, in that it is maximal at
m = 0 and strictly concave everywhere. The wavefunc-
tion φ(m) is an energetic term (although not literally an
energy), since it is maximal at m = µ2. β then plays
a role analogous to the inverse temperature in a ther-
mal ensemble: in one limit (β = 0), the entropic term
dominates; in another limit (β = 2), the energetic term
dominates; and for β in between, the maximum is at an
intermediate value of m.

These considerations together explain why µβ lowers
continuously to 0 as Γ → Γc, at least for small β. The
wavefunction φ(m) is a small perturbation to h(m) when
β is small, and in particular sβ(m) will be strictly concave
for β less than a certain non-zero value. The strict con-
cavity ensures that µβ varies continuously with Γ, and
since we know that µβ = 0 at Γ = Γc, it follows that
µβ → 0 as Γ→ Γc.

Of course, this argument does not prove that µ1, the
quantity which we are most interested in, must approach
0. That proof is supplied in Appendix B, where we show
that s1(m) cannot be maximized at m ∼ O(1) as Γ→ Γc.
In this sense, β = 1 is sufficiently “small” for the above
argument to hold. The critical value of β separating con-
tinuous from discontinuous µβ can generically be any-
where between 1 and 2, depending on the fitness func-
tion.

It is interesting to note that in models with flat fitness
functions, such as the single-peak landscape often stud-
ied in the literature [16, 18], these conclusions no longer
hold. In particular, one can verify that the surplus of
the single-peak landscape (f(σ) = δm,1) is discontinuous:
the surplus jumps from 1 to 0 at Γ = 1. The situation
also becomes more complex if one allows for alternate
configuration spaces, such as the truncated configuration
space considered in Ref. [17]. In that model, the authors
demonstrated that the surplus and magnetization tran-
sitions can occur at different values of Γ.

Finally, let us briefly consider β > 2. The entropy term
(1−β/2)h(m) is now convex, and is minimized at m = 0
rather than maximized. Thus µβ > µ2. As a result, µβ
need not be zero for all Γ > Γc, although it is certainly
non-analytic at Γc. We generically find the behaviors in-
dicated in Fig. 7: if the transition in µ2 is continuous,
then the transitions in all µβ will be as well, but at fields
increasing with β. One can confirm that the critical ex-
ponents are the same as for the magnetization, i.e., those
of standard mean-field theory. For discontinuous transi-
tions, the critical field remains at the original Γc for β
less than a certain model-dependent value, past which it
increases with β. In its place at the original Γc remains



7

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
f(m) = m3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
f(m) = m6

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
f(m) = m2 + m3

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0
f(m) = m3 3m4/4

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
f(m) = m3cosm

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0
f(m) = m4e m

FIG. 5. Comparison of magnetization (blue, β = 2) against surplus (red, β = 1) for many different fitness functions. In all
plots, the right-most value of Γ is the transition point Γc.

an ordered-to-ordered transition, which is always contin-
uous: since dφ/dm is continuous at Γc for all m > µ2 (see
Eq. (28) and note that m > argmin[U−] both above and
below Γc), so is the solution to the equation dsβ/dm = 0.
The resulting phase diagram is sketched in Fig. 1.
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in Eqs. (32), (33), and (34). System size is N = 22. For
each model, Γm is the field at which µ2 = 0.3, chosen simply
to normalize the x axis (since the three models have signifi-
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line drawn for comparison.
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III. NUMERICAL RESULTS FOR
SHORT-RANGE MODELS

To reiterate, our analysis of symmetric models identi-
fied two important differences between the magnetization
and surplus at the critical point: in situations where the
magnetization approaches 0 continuously, the surplus is
characterized by a different critical exponent (µ1 ∼ Γc−Γ
vs µ2 ∼

√
Γc − Γ); and in situations where the magne-

tization is discontinuous, the surplus is nonetheless con-
tinuous. The rough intuition is that the surplus is more
influenced by the entropic effect of there being more con-
figurations having small total spin-z than large. Yet the
analysis used to derive these results relied heavily on the
model being symmetric, thus we now investigate whether
the conclusions extend to more general systems.

We study a series of one-dimensional transverse-field
Ising models through exact diagonalization of the Hamil-
tonian. Unfortunately, the accessible system sizes are too
small to draw any quantitative conclusions. One could
perform a more systematic study using quantum Monte
Carlo – note that the models considered here do not have
sign problems – together with a finite-size scaling analy-
sis, but we leave that for future work. The purpose of this
section is merely to provide preliminary evidence suggest-
ing that the surplus and magnetization exhibit different
critical properties even in non-symmetric models.

One such Hamiltonian, the nearest-neighbor ferromag-
netic chain, can be solved analytically as was done in
Ref. [11]. The authors showed that the surplus undergoes
a non-analyticity at the same Γc as the magnetization,
but with an exponent of 1/2 rather than the well-known
1/8 of the magnetization (see also Ref. [28]).

Here we consider the following fitness functions, all of
which are for an N -site chain:

F5

(
σ̂z
)

=
∑
i<j

1

|i− j|5
σ̂zi σ̂

z
j , (32)

F5/2

(
σ̂z
)

=
∑
i<j

1

|i− j|5/2
σ̂zi σ̂

z
j , (33)

F3/2

(
σ̂z
)

=
∑
i<j

1

|i− j|3/2
σ̂zi σ̂

z
j , (34)

FFour

(
σ̂z
)

=
∑
i

σ̂zi σ̂
z
i+1 −

∑
i

σ̂zi σ̂
z
i+1σ̂

z
i+2σ̂

z
i+3. (35)

These models do not have analytic solutions, but it is
known that the quintic power-law model F5 has the same
magnetization exponents as the nearest-neighbor chain,
the 3/2 power-law model F3/2 has those of mean-field
theory, and the 5/2 model F5/2 has intermediate expo-
nents [29, 30]. In general, longer-range interactions have
a larger exponent governing the magnetization. The re-
sults shown in Fig. 8 are qualitatively consistent with

0.2 0.4 0.6 0.8 1.0 1.20.0

0.2

0.4

0.6

0.8

1.0
N = 12
N = 16
N = 20

FIG. 9. Surplus (solid lines) and magnetization (dashed lines)
for the Ising model with four-spin interactions, Eq. (35). In-
sets show magnified portions of the plot, demonstrating that
the magnetization curves cross each other whereas the surplus
curves decrease monotonically with N even at small Γ.

this trend – the curvature of the curves is smaller for
the longer-range models – and we see that the same
trend holds for the surplus. Again, these observations are
hardly quantitative and the differences are quite modest.
One feature which is reasonably clear, however, is that
the surplus seems to have a larger exponent than the
magnetization in all cases shown.

As for Eq. (35), the model with antiferromagnetic four-
spin interactions, it has been shown to exhibit a discon-
tinuity in magnetization as one increases Γ [31]. Figure 9
shows the surplus and magnetization for FFour. Even
though the small system sizes again prohibit quantita-
tive statements, we see that the magnetization curves
are consistent with a discontinuous transition: the fall-off
near the transition region becomes sharper as system size
increases. The surplus curves do not show any such be-
havior, and instead are more consistent with a continuous
transition. It thus appears that even in non-symmetric
models, the surplus and magnetization transitions can
have different orders.

We have not been able to reach any conclusions re-
garding β > 2 – finite size effects are too severe – but
we expect the behavior seen in symmetric models to ap-
ply here as well, namely that µβ remains non-zero at Γc
(albeit non-analytically) for sufficiently large β. The in-
tuition is again that µβ is shifted relative to µ2 by an
entropic effect, but with the entropic correction now act-
ing to keep µβ 6= 0 at Γc. There are many interesting
questions, e.g., the nature of the non-analyticity at Γc
and whether µβ drops to zero at larger fields, and a more
systematic study is clearly warranted.



11

IV. DISCUSSION & CONCLUSION

Many quantum spin Hamiltonians can serve as genera-
tors for the evolution of populations under joint mutation
and selection, and quantum phase transitions are then
associated with error catastrophes. We have shown here
that despite the correspondence between the spin magne-
tization and the population surplus, the continuity prop-
erties of the two can be different. Transitions in which
the magnetization is discontinuous often have a surplus
which remains continuous, while continuous transitions
come with novel critical exponents for the surplus.

There is a third perspective through which to view
these results: the different critical properties of free sur-
faces as compared to bulk in classical Ising models. It

is well-known that d-dimensional quantum Ising systems
can be mapped to (d+ 1)-dimensional classical systems,
and it is also well-documented that systems with open
boundary conditions can have different critical exponents
or even orders of transitions at the free surfaces.

To see explicitly that the surplus in mutation-selection
models corresponds to a surface magnetization, note that
the time evolution of the population (say starting from a
specific sequence σ(0)) can be written compactly as

N (σ, t) = 〈σ|N (t)〉 = 〈σ|e−Ht|σ(0)〉, (36)

which can then be expressed through standard means as
the partition function of a classical system. For example,
in the transverse-field models considered here,

N (σ, t) =
∑

σ(1)···σ(M−1)

〈σ|e−H t
M |σ(M−1)〉〈σ(M−1)| · · · |σ(1)〉〈σ(1)|e−H t

M |σ(0)〉

∼
∑

σ(1)···σ(M−1)

exp

[
M−1∑
m=0

(
t

M
F
(
σ(m)

)
+ V

(
σ(m+1), σ(m)

))]
,

(37)

where V (σ, σ′) ≡ 1
2 log coth Γt

M

∑
i σiσ

′
i plus a constant

(with M →∞ implied). We see that the transverse field
corresponds to a ferromagnetic interaction between σ(m)

and σ(m+1), regardless of the form of the fitness function.
Note that in Eq. (37), σ(M) is fixed at σ. It is also

a “surface” layer of spins, in that there is no σ(M+1) to
interact with. Finally, to compute the average over the
population of any quantity g(σ), we evaluate

∑
σ

g(σ)
N (σ, t)∑
σ′ N (σ′, t)

∝
∑

σ(1)···σ(M)

g
(
σ(M)

)
exp

[
· · ·
]
,

(38)
where · · · denotes the exponent in Eq. (37). For the sur-
plus in particular, we see that it is precisely the average
magnetization of the surface layer in the classical Ising
model.

This relationship was first discussed in Ref. [20], and
indeed, many of the previous works comparing surplus to
magnetization have been in the language of surface versus
bulk magnetization [16, 32]. In particular, the continuity
of magnetization at the surface despite discontinuity in
the bulk has been understood as an example of “wetting”.
The existence of novel surface exponents has also been
well-studied in that context [33–35].

Of course, these considerations alone do not prove that
the surplus must behave differently than magnetization
at the transition point. Rather, they simply raise the pos-
sibility. The results we have presented here show that it
is indeed a generic phenomenon which occurs in practice.

It is clear that the techniques and ideas of quantum
statistical physics can fruitfully be applied to problems
in population dynamics. At the same time, as the above

results demonstrate, the population-dynamical analogues
of quantum spin systems exhibit novel behaviors which
are not simple corollaries to the quantum physics. The
former can also be considered in situations where the
latter cannot, such as non-Hermitian models [36]. Fur-
ther investigation of quantum systems as population-
dynamical models and vice-versa will undoubtedly un-
cover additional surprises and insights for both fields.

Finally, there is the question of whether the generalized
magnetization µβ has physical significance for arbitrary
β. This larger family of observables is useful for under-
standing the distinction between surplus and magnetiza-
tion, as can be seen in Fig. 1, and it would be valuable
to know what other information is contained in the Γ-β
phase diagram. There are contexts in which one con-
siders a probability distribution raised to arbitrary pow-
ers. For example, Ref. [37] has recently shown that, for
certain classes of quantum Hamiltonians, exponentiating
the reduced density matrix obtained from an eigenstate
at some energy density allows one to probe properties
of the system at different energy densities. Similarly,
Ref. [38] has demonstrated that raising the reduced den-
sity matrix to a large power, as had been done in stud-
ies of topological order [39, 40], can introduce spurious
phase transitions not seen in the original system. Two
other situations which come to mind are calculation of
Renyi entropies (both classical [41] and quantum [42])
and multifractality [43–45], and we certainly expect that
these are not the only examples. The implications of our
results in these areas is a topic for further study.
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Appendix A: Boundary conditions

In the main text, we derived Eq. (22), written here as

cosh

(
2

dφ

dm

)
= κ(m), κ(m) ≡ −ε− f(m)

Γ
√

1−m2
. (A1)

At every m, this equation has two solutions:

dφ

dm
=

1

2
log
(
κ(m)±

√
κ(m)2 − 1

)
. (A2)

Just as in one-dimensional tunneling problems, the
boundary conditions determine which sign to use. Here,
we show that the correct sign is + near m = −1 and −
near m = 1. This then fixes the allowed values of ε, as
discussed in the main text.

Starting from the Schrodinger equation, Eq. (19), first
set M = N − 2J with J � O(N). To leading order in
J/N , the equation simplifies to

Ψ(J + 1) = − E +Nf(1)

Γ
√
N(J + 1)

Ψ(J)−
√

J

J + 1
Ψ(J − 1).

(A3)
The second term on the right-hand side will turn out to
be subleading compared to the first, and so we omit it.
Defining Φ(J) ≡ log Ψ(J), we have

Φ(J + 1) = Φ(J) +
1

2
log

N

J + 1
+ log

−ε− f(1)

Γ
, (A4)

which can be easily solved:

Φ(J) = Φ(0) + J log
−ε− f(1)

Γ
+

1

2

J∑
K=1

log
N

K
. (A5)

This is an exact expression for the solution of the
Schrodinger equation, which does not rely on taking any
continuum limit.

Let us now compare Eq. (A5) to what we would find
expanding the continuum Eq. (A2) in 1 −m. Note that
κ(m)→∞ as m→ 1 (at least for ε 6= f(1)). Thus

dφ

dm
∼± 1

2
log 2κ(m)

∼± 1

2
log

√
2
(
− ε− f(1)

)
Γ

∓ 1

4
log (1−m).

(A6)

Integrating from m = 1 to m = 1− 2j gives

φ(1−2j) = φ(1)∓j log
−ε− f(1)

Γ
∓ 1

2

∫ j

0

dk log
1

k
. (A7)

Comparing Eqs. (A5) and (A7) (noting that Φ(J) =
Nφ(1 − 2j) by definition), we see that the lower sign is
needed for the continuum result to agree with the exact
expression.

A similar analysis holds near m = −1. Writing M =
−N + 2J and Φ(J) = Nφ(−1 + 2j), we find

Φ(J) = Φ(0) + J log
−ε− f(−1)

Γ
+

1

2

J∑
K=1

log
N

K
, (A8)

to be compared with

φ(−1 + 2j) = φ(−1)± j log
−ε− f(−1)

Γ
± 1

2

∫ j

0

dk log
1

k
.

(A9)
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The upper sign is needed for the two expressions to agree.
Thus a valid solution to the Schrodinger equation must

indeed obey Eq. (A2) with the plus sign near m = −1
and the minus sign near m = 1.

Appendix B: Continuity of the surplus

Here we show that the surplus must approach 0 con-
tinuously as Γ → Γc, for any symmetric model which
meets the criteria given in the main text (f(m) increas-
ing monotonically with m and growing no faster than
O(m2) near m = 0). We do so by proving that at Γc,
ds1/dm ≤ 0 for all m ≥ 0, with equality only at m = 0.

Since s1(m) varies continuously as Γ approaches Γc from
below (it is only when the argmin of U−(m) jumps as
Γ crosses Γc that there is a non-analyticity), this im-
plies that for Γ infinitesimally less than Γc, the argmax
of s1(m) cannot be at any non-infinitesimal m, i.e., µ1 is
continuous in Γ.

Without loss of generality, we can take f(0) = 0. At
Γc, which is the field strength at which U−(0) = εGS, we
thus have εGS = −Γc. Then

κ(m) =
Γc − f(m)

Γc
√

1−m2
. (B1)

We thus write ds1/dm as

ds1

dm
=

1

4
log

1−m
1 +m

+
1

2
log
(
κ(m) +

√
κ(m)2 − 1

)
=

1

2
log

1

1 +m
+

1

2
log

(
1− f(m)

Γc
+

√
m2 − 2

f(m)

Γc
+
f(m)2

Γ2
c

)
.

(B2)

Since the minimum of U−(m) is not at m = 1, we know that

U−(1) = −f(1) > εGS = −Γc, (B3)

and since f(m) is monotonic in m, it follows that for all m ∈ [0, 1],

0 ≤ f(m) < Γc. (B4)

We thus have the following chain of inequalities:

−2
f(m)

Γc
+
f(m)2

Γ2
c

≤ 0

⇒ −2
f(m)

Γc
+
f(m)2

Γ2
c

≤ m2

(
−2

f(m)

Γc
+
f(m)2

Γ2
c

)
⇒ m2 − 2

f(m)

Γc
+
f(m)2

Γ2
c

≤ m2

(
1− f(m)

Γc

)2

⇒ 1− f(m)

Γc
+

√
m2 − 2

f(m)

Γc
+
f(m)2

Γ2
c

≤
(
1 +m

)(
1− f(m)

Γc

)
.

(B5)

Inserting into Eq. (B2), we have simply

ds1

dm
≤ 1

2
log

(
1− f(m)

Γc

)
. (B6)

Since f(m) is monotonic and f(0) = 0, this establishes
what we claimed: ds1/dm ≤ 0 with equality only at
m = 0.

In fact, s1(m) has nice properties which allow us to
determine the surplus quite simply. Starting from the
upper line of Eq. (B2) and setting ds1/dm = 0, we have

κ(m) +
√
κ(m)2 − 1 =

√
1 +m

1−m
. (B7)

Using the explicit expression for κ(m) (note that here we
are considering arbitrary Γ), this becomes

−ε− f(m) +

√(
ε+ f(m)

)2 − Γ2(1−m2) = Γ(1 +m),

(B8)
which simplifies considerably to (see also Ref. [15])

f(m) = −ε− Γ. (B9)

The surplus is given merely by the solution to Eq. (B9).
This result holds for all Γ, and thus is quite useful in of

itself. Furthermore, it gives an immediate alternate proof
that the surplus is continuous at Γc (albeit one that does
not generalize to other values of β): since ε approaches
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−Γc continuously as Γ→ Γc, the solution of Eq. (B9) for any monotonic f(m) must approach 0 continuously.


