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The reliability of logical operations is indispensable for the reliable operation of computational
systems. Since the down-sizing of micro-fabrication generates non-negligible noise in these systems, a
new approach for designing noise-immune gates is required. In this paper, we demonstrate that noise-
immune gates can be designed by combining Bayesian inference theory with the idea of computation
over noisy channels. To reveal their practical advantages, the performance of these gates is evaluated
in comparison with a stochastic resonance-based gate proposed previously. We also demonstrate
that, in a high noise-level situation, this approach for computation can be better than a conventional
one that conducts information transmission and computation separately.

PACS numbers: Valid PACS appear here

Reliability of logical operations is an indispensable pre-
requisite for the operation of almost all computations.
Because of the current demand for down-sizing and low
energy consumption of computational devices, new de-
signs of logical operations with higher noise-immunity
are required. To address this problem, biological sys-
tems are regarded as good role models, because our body
and brain can conduct certain computations robustly and
stably, even though their elementary processes, i.e., in-
tracellular reactions and single-neuron spikes, consume
low amounts of energy and thereby operate stochastically
[1, 2].

Historically, biology has in fact inspired new designs
of noise immune systems. Schmitt trigger is an early ex-
ample, where the study of squid nerves directly led to
the idea to use hysteresis for noise-immunity [3]. More
recently, a new implementation of noise-immune logical
operations was proposed based on stochastic resonance
(SR) [4–6], which has been observed in neural sensory
systems to amplify signals with the aid of noise. Nonethe-
less, neither hysteresis nor SR is suffices to explain all the
noise-immune properties of biological systems.

A new possible mechanism in the current spotlight is
an exploitation of Bayesian computation. Recent psycho-
logical and molecular-biological studies indicated that bi-
ological systems ubiquitously employ Bayesian logic for
computations under noise and uncertainty from cogni-
tive down to molecular level [7–9]. This fact suggests
that the employment of the Bayesian logic for computa-
tion can contribute not only to high-level algorithms but
also to low-level gate-design.

In this paper, we demonstrate that Bayesian logic
can in fact be utilized for designing noise-immune logic
gates in combination with the idea of computation over
noisy channels presented in [10]. Bayesian logic gates are
shown to have several advantageous properties over the
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gates based on the previously proposed logical SR (LSR).
In addition, when the noise-level is sufficiently high, a
scheme that operates computation over noisy channels
(Fig. 1 (A)) can be better than a conventional one where
information transmission and computation are conducted
separately (Fig. 1 (B)). Finally, the generality and pos-
sible extensions of this approach are discussed.
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FIG. 1: Schematic diagram of Bayesian logic gate (A) and the
conventional noiseless computation after information trans-
mission (B).

Let x1(t) ∈ {0, 1} and x2(t) ∈ {0, 1} be two noise-
less binary inputs to a logic gate at time t. The bi-
nary input x(t) = (x1(t), x2(t))T ∈ {0, 1}2 is gener-
ally implemented by a physical state such as voltage as
Ui(t) = µi(x(t)) ∈ R for i ∈ {1, 2}. If noise in the
physical inputs U(t) := (U1(t), U2(t))T ∈ R2 is negli-
gible, a logical operation over x(t), e.g., AND opera-
tion x1(t)

∧
x2(t), can be implemented by a two-state

thresholded dynamics in which the state flips only when
both U1(t) and U2(t) exceed certain threshold values.
However, when the noise in U(t) is sufficiently strong,
such dynamics leads to erroneous switching driven by
the noise.

The influence of noise in Ui(t) is abstractly modeled in
this work by the white Gaussian noise (Fig. 2) as

Ui(t)dt = µi(x(t))dt + σidW
i
t , i ∈ {1, 2}.

Here, σiW
i
t is the one-dimensional Wiener process that

represents noise with intensity σi > 0. We also as-
sume that Ui(t) depends only on xi(t), i.e., µi(x(t)) =



2

µi(xi(t)). When the signal-to-noise ratio (SNR) ∆µi/σi
is not sufficiently high, where ∆µi := |µi(1)− µi(0)|, the
simple threshold-based switching fails to return the cor-
rect output of, for example, the AND operation, because
the noisy U1(t) and U2(t) can exceed the thresholds, even
when x1(t) = 1 and x2(t) = 1 do not hold. This fact illus-
trates that a simple threshold-based switching does not
suffice to implement a reliable logical operation under
noise. To overcome this problem, we need a dynamical
implementation of logical operations that is more reliable
than the simple switching dynamics.
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FIG. 2: (A) Sample paths of the noiseless inputs x1(t) and
x2(t) (white lines), the noisy inputs U1(t) and U2(t)(blue
curves), the outputs z(t) of the Bayesian NOR, XOR and
AND gates (red curves), and the outputs y(t) (green curves)
of the LSR OR/NOR and AND/NAND gates. The noise
amplitude of U1(t) and U2(t) is appropriately scaled for visi-
bility. The time intervals within which the errorless gate out-
puts should be 1 are represented by the filled yellow (NOR),
green (XOR), and red (AND) regions. Parameters are µ = 1,
σ0 = σ∗

0 = 0.75, ron = roff = 1/1000, y∗l = −0.5, y∗u = 1.3,
α = 1.8, and β = 3.

To theoretically derive such an implementation, in this
work, we reformulate logical operations under noise as
a statistical inference of partial information. In the
conventional statistical inference and logic operations,
we infer all hidden states of x(t) from U(t) as z(t) =
(z1(t), z2(t))T, where z(t) is the inferred version of x(t).
After inference of transmitted information, the functions
of x(t) are calculated with z(t) under noiseless conditions
(Fig. 1 (B)). However, the approach here differs from the
usual statistical inference in that the main purpose is the
inference of partial information of x(t), i.e., a function
of x(t), rather than the entire information of x(t), be-
cause a logical operation constitutes a reduction of the
information on x(t) that U(t) posseses. This property
enables us to conduct the necessary computation over
noisy signal U(t) before inference, as shown in Fig. 1

(A). For example, I(t) = U1(t) +U2(t) conveys sufficient
information to obtain AND, NAND, OR, NOR, and XOR
operations. This operation over noisy U substantially re-
duces the complexity of computation after inference by
avoiding the calculation of the desired output of a gate
from the inferred states of x(t). Therefore, the concept
of computation over noisy signals (channels) is suitable
for implementing a reliable circuit by combining unreli-
able and reliable components effectively, and may also be
relevant for biological systems.

To demonstrate this idea, in this paper, we consider
only I(t) = U1(t)+U2(t) as computation over noisy U(t),
although this approach is applicable for more general sit-
uations. From the definition of Ui(t) and the properties
of the Wiener process, I(t) can be simplified as I(t)dt =
ν(xt)dt + σ0dWt, where ν(x(t)) = µ1(x1(t)) +µ2(x2(t)).
The noise intensity σ0 depends on the physical implemen-
tation of the gate. For the worst case, where U1 and U2

add up just before the inference computation, the noise
both in U1 and U2 contributes to σ0 as σ2

0 = σ2
1 + σ2

2 .
In contrast, for the best case, the noise of the single
channel that transmits I(t) contributes to the noise as

σ2
0 = σ′

2
0. In order to account for these two extreme sit-

uations, we introduce a parameter q ∈ [0, 1] such that

σ2
0 = q(σ2

1 + σ2
2) + (1 − q)σ′

2
0 as in Fig. 1 (A) and,

for simplicity, assume that σ1 = σ2 = σ′0 = σ to
obtain σ2

0 = (1 + q)σ2. In addition, we also assume
that µ1(x) = µ2(x) = µ(x) because of the symmetry
of logic gates with respect to the exchange of two in-
puts. Thus, for sufficiently small ∆t > 0 and fixed x(t),
the probability distribution for I(t) can be represented

as PN (I(t); ν(x(t)), σ2
0/
√

∆t), where PN (I; ν, σ2) is the
normal distribution, the mean and variance of which are
ν and σ2, respectively. Because of its definition, ν(xt)
is either 2µ(1), µ(1) + µ(0), or 2µ(0). Thus, I(t) can
discriminate three of the four possible states of xt. We
designate the three states by χi as χ1 = (0, 0), χ2 = (0, 1)
or (1, 0), and χ3 = (1, 1). Furthermore, without losing
generality, we assume that µ(1) = µ/2 and µ(0) = −µ/2.
Now, the inference of x(t) from the noisy input I(t) is re-
duced to the problem of determining whether xt is in any
of χi. If we infer whether x(t) is in χ3 or not, then the
inference is equivalent to the AND operation, because
x(t) = χ3 only when x(t) = (1, 1). Similarly, we can
construct NOR and XOR.

The statistically optimal inference of xt is derived by
using the sequential Bayesian inference as in [8]. Let
zi(t) := Pt(x(t) = χi|I(0 : t)) be the posterior prob-
ability that x(t) = χi given the history of I(t′) from
time t′ = 0 to t′ = t. By following sequential Bayes’
theorem[11], we have

zi(t
′) ∝ PN

(
I(t′); ν(χi),

σ2
0√
∆t

)∑
j

PT (t′, χi|t, χj)zj(t)

where t′ = t + ∆t, and PT (t′, xi|t, xj) is the transition
probability that x(t′) becomes χi when x(t) = χj . Then,



3

we have

zi(t
′)

zj(t′)
=

PN (I(t′); ν(χi),
σ2
0√
∆t

)

PN (I(t′); ν(χj),
σ2
0√
∆t

)

∑
k PT (t′, χi|t, χk)zk(t)∑
k PT (t′, χj |t, χk)zk(t)

.

For simplicity, we assume that PT (t′, χi|t, χj) is time-
homogeneous and can be represented for sufficiently
small ∆t by PT (t′, χi|t, χj) = ∆t × ri|j for i 6= j and
PT (t′, χi|t, χi) = 1−∆t× ri|i where ri|j is the instanta-
neous transition rate from χj to χi and ri|i =

∑
k 6=i rk|i

holds. If the dynamics of both x1(t) and x2(t) follow a
two-state Markov process whose transition rate from 0 to
1 and 1 to 0 are ron and roff , respectively, then we have

R := (ri|j) =

−2ron roff 0
2ron −ron − roff 2roff

0 ron −2roff

 .

By taking the limit as ∆t→ 0, we obtain a three dimen-
sional equation as

d

dt

(
log

zi(t)

zj(t)

)
= Bi,j(I(t)) +

[Rz(t)]i
zi(t)

− [Rz(t)]j
zj(t)

,

where z(t) = (z1(t), z2(t), z3(t))T and

B(I(t)) =
µ

σ2
0

I(t)

0 −1 −2
1 0 −1
2 1 0

+
µ

2

0 −1 0
1 0 1
0 −1 0

 ,

Finally, by transforming the above equation with respect
to z(t), we have the following equation with quadratic
nonlinearity:

dz(t)

dt

◦
= diag(z(t))B(I(t))z(t) +Rz(t), (1)

where
◦
= indicates that the integrals with respect to dWt

are interpreted as the Stratonovich integrals [12]( see Ap-
pendix for a general and detailed derivation). The three
outputs, z1(t), z2(t), and z3(t), correspond to Bayesian
NOR, XOR, and AND gates, respectively, and there-
fore, this system can simultaneously compute these op-
erations. By an appropriate transformation of variables,
we can also implement OR, NXOR, and NAND opera-
tions. Equation (1) contains σ0 and µ as the system’s
parameters, indicating that the optimal tuning of these
parameters such that they coincide with those of the in-
put I(t) is necessary to realize statistically optimal log-
ical operations. However, the gate parameters may not
be accurately adjusted in a real situation. In order to
analyze the influence of such a parameter mismatch, we
introduce µ∗0 and σ∗0 to specifically represent the gate’s
parameters µ and σ0 in Eq. (1), and therefore, Eq. (1)
is statistically optimal only when µ∗0 = µ and σ∗0 = σ0.

Figure 2 demonstrate that the Bayesian gates can con-
duct logical operations under a very noisy condition. To
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as σ∗

0 = σ0. The other parameters are the same as those in
Fig.2.

achieve such operations, the gates should optimally re-
duction noise while keeping in track of the change in the
input behind noise. Additionally, the change in the input
is preferably outputted in an all-or-none manner without
amplifying noise. While such balancing of noise reduc-
tion and signal amplification may also be realized by op-
timizing a linear filter, the linear filter with the optimized
response property typically requires a complex design for
its implementation. In contrast, as shown above, the op-
timal Bayesian gates can be implemented by a relatively
simple three dimensional equation with only quadratic
nonlinearity and with a few control parameters. In addi-
tion, the behavior of the Bayesian gate is very robust to
the increase in noise as shown in Fig. 3.

We further compare the performance of the Bayesian
gates with LSR, which was proposed as a nonlinear noise-
immune implementation of logical gates [4, 5]. LSR is
defined by the following stochastic differential equation
with a double-well potential:

dy = [−αy + βg(y) + I(t)] dt,

where g(y) = y when y∗l ≤ y ≤ y∗u, g(y) = y∗l when
y < y∗l , and g(x) = y∗u when y > y∗u. The op-
timal LSR NOR gate can be implemented by setting
(y∗l , y

∗
u) = (−0.5, 1.3) as in [4] (Fig. 2). In order to

evaluate the performance of the Bayesian and LSR NOR
gates, we use a time-averaged error (TAE) defined as

E := 1
T

∫ T
0
|1[a(t) > ath]−G[x1(t);x2(t)]|dt, where a(t)

is either zi(t) or y(t). 1[a > ath] returns 1 when a > ath

and 0 otherwise. For a(t) = zi(t), we choose ath = 1/2,
whereas we choose ath = 0 for a(t) = y(t) by follow-
ing [4]. G[x1;x2] is the output of the ideal noiseless gate
with input x. If the NOR gate is concerned, for example,
G[x1;x2] returns 1 when (x1, x2) = (0, 0), and 0 other-
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FIG. 4: (A) Time-averaged error E of the Bayesian NOR
(solid curves) and the LSR NOR (dotted curve) gates as a
function of the noise intensity σ of the input. Thin colored
curves correspond to the TAE of the Bayesian NOR gate with
different σ∗

0 . The thick blue curve represents the TAE of
the Bayesian NOR gate whose parameter σ∗

0 is adjusted to
be optimal as σ∗

0 = σ0. (B) Total TAE E of the Bayesian
NOR gate as a function of σ0 and σ∗

0 . The broken white line
represents σ0 = σ∗

0 . The solid white curves are the contours
of TAEs. (C) Error rate of the Bayesian NOR gate due to the
delay of switching, ED. (D) Error rate of the Bayesian NOR
gate due to erroneous switching by input noise, EE . The other
parameters than σ0 and σ∗

0 are the same as those in Fig. 2.

wise. The performance of LSR is shown to be optimal
when 0.6 < σs < 0.8, as in Fig. 4(A). Under this optimal
noise intensity for the LSR gate, the TAEs of the LSR
and the Bayesian gates are comparative, indicating that
the performance of the LSR gate is close to the statistical
optimal (Figs. 2 and 4(A)).

As shown in Figs. 4(A) and 5, however, the perfor-
mance of the LSR gate quickly degrades if the noise in-
tensity of the input, σ0, deviates from its optimal one,
whereas the Bayesian gate can still conduct a reliable
logical operation within a wider range of noise inten-
sity (Figs. 3 and 4(B)). Furthermore, the TAE of the
Bayesian gate does not increase if σ0 is less than the gate
parameter, σ∗0 . This property of the Bayesian gate means
that its performance is determined by the worst noise
level that σ∗0 specifies. As long as the actual noise inten-
sity σ0 is less than this expected worst level σ∗0 , the gate
operates robustly at the cost of a fixed lower bound of the
TAE. Since information of the actual noise level within
a system may not always be available before designing
gates, the Bayesian gate has a practical advantage over
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FIG. 5: Sample paths ofthe Bayesian NOR and the LSR gates
when the input noise intensity σ0 is less (A) or more (B)
than the expected noise intensity σ∗

0 to which the gates are
optimized. All the color codes and parameters are the same
as in Fig. 2 except σ0 = 0.35 (A) and σ0 = 1.0 (B).

the LSR gate. In general, the error stems from either er-
roneous switching for constant xt or delay in the switch-
ing of zt when xt changes. Since the total TAE can be
attributed only to the delay of switching when no noise
exists in the input, i.e., σ0 = 0, we can approximately
dissect the total TAE E into the errors from the delay
of switching at the changes of xt as ED := limσ0→0 E ,
(Fig. 4(C)) and those from the erroneous switching for
constant xt as EE := E − ED, (Fig. 4(D)). As clearly
seen in Fig. 4(D), EE hardly changes if σ∗0 (the expected
noise intensity) is larger than σ0 (the actual noise inten-
sity), whereas ED increases. Thus, the cost of choosing
σ∗0 larger than σ0 is the delay of switching, which limits
the speed of the gate. However, σ∗0 larger than σ0 works
as a margin for systematic variations of σ0, because EE
increases little provided that σ0 is less than σ∗0 . The same
result is obtained for Bayesian XOR and AND gates (Fig.
6). Thus, the variation in σ0 can be compensated at the
cost of slow switching, reflecting a trade-off between the
computational speed and the reliability of computation
[13].

Information transmission and computation are usually
separated in conventional computational architectures in
which computation is conducted under virtually noiseless
conditions (Fig. 1(B)). This usual computation without
noise is expected to perform better than the Bayesian
gates that conducts computation and transmission si-
multaneously in noisy conditions. However, it requires
two independent channels for input transmission (Fig. 1
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(B)), whereas the Bayesian gate combines them along the
transmission path for the computation (Fig. 1 (A)). This
observation suggests that the Bayesian gate may outper-
form the usual computation if a noisy channel is effec-
tively exploited for computation with small q. In order to
clarify this condition, we calculated E(q) of the Bayesian
NOR gate as a function of q ∈ [0, 1], and that of the usual
computation EU to obtain a performance ratio η defined
as η := E(q)/EU . Figure 7 (A) shows that the operation
of the Bayesian gate can be more efficient (η < 1) than or
comparative (η < 100.1 ≈ 1.25) to the usual computation
when q is sufficiently small. In addition, the range of q
within which the Bayesian gate operates better expands
as the noise intensity σ increases. The same result is ob-
tained for other gates (Fig. 8). This result indicates that
the operation of the Bayesian gate can be efficient when
the noise in the channel is large, whereas the usual com-
putation is better when the channel noise is very small,
meaning that the computation over noisy channels may
be practical when the noise cannot be small.

Since our approach is based not on a specific physical
implementation but on the general theory of inference,
it potentially has more extensions and applications than
those demonstrated here. First, we can choose arith-
metic operations other than addition over noisy signals
U1(t) and U2(t), which lead to different noise character-
istics and gate properties. For example, subtraction may
lead to more reliable gates than addition in principle by
canceling out the correlated noise in U1 and U2. Second,
we can easily design noise-immune gates with more than
two inputs to conduct more complicated logical opera-
tions at the cost of the complexity of individual gates.
Third, noise is not restricted to Gaussian white noise.
For example, an equation similar to Eq. 1 can be de-
rived for Poisson noise, which is more relevant to gate
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7.

implementations by photons or by intracellular reactions.
Since intracellular systems are known to conduct various
computations [14], the Poissonian version may help us
to understand and synthetically design intracellular in-
formation processing networks [15]. The combination of
computation over noisy channels and the design of re-
liable gates by inference theory proposed in this paper
is sufficiently general to cover all these situations and
should be investigated further for individual situations.

We thank Hiroyasu Ando, Yuzuru Sato, Atsushi
Kamimura, Yoshihiro Morishita, and Ryo Yokota for
fruitful discussions. This work was supported par-
tially by JSPS KAKENHI Grant Numbers 15H00800 and
19H05799, the Platform for Dynamic Approaches to Liv-
ing Systems funded by MEXT and AMED, Japan, and
the JST PRESTO program.
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Appendix

A1. DERIVATION OF BAYESIAN GATES
WITH TWO INPUTS

The derivation of Bayesian gates with two gate inputs
is described. In the main text, we consider the situa-
tion where two binary inputs x1(t) and x2(t) represented
physically by U1(t) and U2(t) are combined into one gate
input I(t). In this extended derivation, we consider that
x are n dimensional binary inputs, and they are com-
bined into two gate inputs I1(t) and I2(t), which includes
one gate input shown in Fig. 1(A) of the main text as
a special case, as well as the conventional computation
I(t) = U(t) (Fig. 1(B) in the main text). We also con-
sider the correlation between two inputs due to common
noise as a generalization.

A. Derivation of general expression

Let x(t) ∈ X := {0, 1}n be the state of an n dimen-
sional noiseless binary input to a gate. Because of the
noise and computation over a noisy channel, the actual
input to the gate, I(t), is generally disturbed as

I(t)dt =

(
ν1(x(t))
ν2(x(t))

)
dt +

(
σ̃1

˜dW
1

t

σ̃2
˜dW

2

t

)
+ σ̃c

(
1
1

)
˜dW

c

t ,

where Ii(t)dt = νi(x(t))dt + σ̃i ˜dW
i

t + σ̃c ˜dW
c

t for i ∈
{1, 2}, and ν(t) := (ν1(x(t)), ν2(x(t)))T. We assume that

˜dW
1

t , ˜dW
2

t , and ˜dW
c

t are independent. ˜dW
c

t is intro-
duced to account for the correlation due to the common
noise to the gates. If we define σidW

i = σ̃i ˜dW
i

t+σ̃c
˜dW

c

t ,
then we have σ2

i = σ̃2
i + σ̃2

c for i ∈ {1, 2}.
If more than one state of x(t) produces the same out-

put ν(x), the information on x is degenerated by being
passed through I(t). In other words, I(t) operates as a
gate to compute certain logical operations over x. Let
the set of subsets of x be XI that can be discriminated
from the output of ν(x). Let χi be the i-th member
of XI , where i ∈ {1, . . . ,#XI}. From the definition,
ν(x) = ν(x′) for x,x′ ∈ χi, and ν(x) 6= ν(x′) for x ∈ χi
and x′ ∈ χj with i 6= j. Since each χi has its represen-
tative member xi ∈ χi, we identify this representative
member with χi for notational simplicity when no con-
fusion arises. Therefore, x ∈ XI is equivalent to χ ∈ XI .

For x ∈ XI , let Pt(x|I0:t) be the posterior probabil-
ity of x ∈ XI at time t given the time series of I(t),
I0:t := {I(t′)|t ∈ [0, t]}. By following the sequential
Bayes’ theorem, we have

Pt′(x′|I0:t′) ∝ Pt′(I|x′)
∑
x∈XI

PT (x′, t′|x, t)Pt(x|I0:t),

where PT (x′, t′|x, t) is the transition probability from
x ∈ XI at t to x′ ∈ XI at t′, and Pt′(I|x′) is the

probability to observe I at t′ conditioned by x′ at t′.
In general, PT (x′ ∈ XI , t′|x ∈ XI , t) may not always
be well-defined, because it must be constructed from
PT (x′ ∈ X , t′|x ∈ X , t) and the degeneration of X in-
duced by ν(x) . This fact is related to the realization of
a Bayesian gate, and is discussed later. At this moment,
we assume that PT (x′ ∈ XI , t′|x ∈ XI , t) is well-defined,
as in the case analyzed in the main text.

For I(t) defined above, Pt′(I|x′) can be represented as

Pt′(I|x′) = PN (It′ ;ν(x′),Σ/∆t) ,

where PN (I;ν,Σ) is a Gaussian distribution with a mean
vector ν and covariance matrix Σ. It′ here should be
interpreted not as the value of I at t′ but as its average
between t and t′. Σ is described as

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where the coefficient of correlation ρ is ρ = σ̃2
c/σ1σ2.

For x,y ∈ XI , we have

Pt′(x|I0:t′)

Pt′(y|I0:t′)
=

PN (It′ ;ν(x),Σ/∆t)

PN (It′ ;ν(y),Σ/∆t)

Pt′(x|I0:t)

Pt′(y|I0:t)
,

where Pt′(x|I0:t) :=
∑
x′∈XI

P(x, t′|x′, t)Pt(x′|I0:t). By
taking the logarithm of both sides, we have

log
Pt′(x|I0:t′)

Pt′(y|I0:t′)
= log

PN (It′ ;ν(x),Σ/∆t)

PN (It′ ;ν(y),Σ/∆t)

+ log
Pt′(x|I0:t)

Pt′(y|I0:t)
.

By expanding log PN (It′ ;ν(x),Σ/∆t)
PN (It′ ;ν(y),Σ/∆t) with respect to ∆t, we

have

log
PN (It′ ;ν(x),Σ/∆t)

PN (It′ ;ν(y),Σ/∆t)
= ∆t

[
∆ν1(I1(t′)− 〈ν〉1)

(1− ρ2)σ2
1

+
∆ν2(I2(t′)− 〈ν〉2)

(1− ρ2)σ2
2

− ρ(∆ν1I1(t′) + ∆ν2I2(t′)−Υ)

(1− ρ2)σ1σ2

]
+ o(∆t2),

where

∆νi = ∆νi(x,y) :=νi(x)− νi(y),

〈ν〉i = 〈ν〉i (x,y) :=(νi(x) + νi(y))/2,

Υ = Υ(x,y) :=ν1(x)ν2(x)− ν1(y)ν2(y),

and we abbreviate the dependency on x and y for read-

ability. By redefining σ̄i := σi
√

1− ρ2, we have

log
PN (It′ ;ν(x),Σ/∆t)

PN (It′ ;ν(y),Σ/∆t)
≈ ∆t

[
∆ν1(I1(t′)− 〈ν〉1)

σ̄2
1

+
∆ν2(I2(t′)− 〈ν〉2)

σ̄2
2

− ρ(∆ν1I1(t′) + ∆ν2I2(t′)−Υ)

σ̄1σ̄2

]
,
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Furthermore, let us define

Bi(x,y) :=
∆νi(Ii(t

′)− 〈ν〉i)
σ̄2
i

,

Bci (x,y) :=− ρ∆νiIi(t
′)

σ̄1σ̄2
,

BΥ(x,y) :=
ρΥ

σ̄1σ̄2
,

and then we have

log
PN (It′ ;ν(x),Σ/∆t)

PN (It′ ;ν(y),Σ/∆t)
≈

∑
i∈{1,2}

[Bi +Bci ] +BΥ,

From the definitions, we have

∆νi(x,y) =−∆νi(y,x),

〈ν〉i (x,y) = 〈ν〉i (y,x),

Υ(x,y) =−Υ(y,x).

Therefore, we also have

Bi(x,y) =−Bi(y,x),

Bci (x,y) =−Bci (y,x),

BΥ(x,y) =−BΥ(y,x).

Furthermore, for x,y, z ∈ XI , Bs satisfies

Bi(x,y)−Bi(z,y) =Bi(x, z),

Bci (x,y)−Bci (z,y) =Bci (x, z),

BΥ(x,y)−BΥ(z,y) =BΥ(x, z).

The transition probability can be expanded with re-
spect to ∆t as

PT (x′, t′|x, t) ≈ I + ∆tR(x′|x) + o(∆t2),

where I is the identity matrix and R(x|x′) is a matrix to
describe the rate of transition from x to x′. Thus,

log
Pt′(x|I0:t)

Pt′(y|I0:t)
≈ log

Pt(x|I0:t) + ∆t
∑
x′ R(x|x′)Pt(x′|I0:t)

Pt(y|I0:t) + ∆t
∑
y′ R(y|y′)Pt(y′|I0:t)

≈ log
Pt(x|I0:t)

Pt(y|I0:t)
+ ∆t

∑
x′ R(x|x′)Pt(x′|I0:t)

Pt(x|I0:t)

−∆t

∑
y′ R(y|y′)Pt(y′|I0:t)

Pt(y|I0:t)
.

Thus, by defining Lt(x,y) := log Pt(x|I0:t)
Pt(y|I0:t) , we have

dLt(x,y)

dt

◦
=

1

Pt(x|I0:t)

dPt(x|I0:t)

dt
− 1

Pt(y|I0:t)

dPt(y|I0:t)

dt
◦
=
∑

i∈{1,2}

[Bi +Bci ] +BΥ

+

∑
x′ R(x|x′)Pt(x′|I0:t)

Pt(x|I0:t)

−
∑
y′ R(y|y′)Pt(y′|I0:t)

Pt(y|I0:t)
, (2)

where
◦
= represents the Stratonovich interpretation.

Then, after the change of the variable, we can obtain

dPt(x|I0:t)

dt

◦
=Pt(x|I0:t)

∑
x′

B(x,x′)Pt(x′|I0:t)

+
∑
x′

R(x|x′)Pt(x′|I0:t), (3)

where, for x,x′ ∈ XI ,

B(x,x′) :=
∑

i∈{1,2}

[Bi(x,x
′) +Bci (x,x

′)] +BΥ(x,x′).

We can easily check that Eqs. (2) and (3) are equivalent
as follows. From Eq. (3), we have

dPt(x|I0:t)
dt

Pt(x|I0:t)

◦
=
∑
x′

B(x,x′)Pt(x′|I0:t)

+

∑
x′ R(x|x′)Pt(x′|I0:t)

Pt(x|I0:t)
.

Obviously, the last two terms in Eq. (2) appear directly
from the second term in the right-hand side of this equa-
tion as∑

x′ R(x|x′)Pt(x′|I0:t)

Pt(x|I0:t)
−
∑
y′ R(y|y′)Pt(y′|I0:t)

Pt(y|I0:t)
.

The first two terms in Eq. (2) can be calculated from
Eq. (3) as∑

x′

B(x,x′)Pt(x′|I0:t)−
∑
x′

B(y,x′)Pt(x′|I0:t)

=
∑
x′

[B(x,x′)− B(y,x′)]Pt(x′|I0:t)

=
∑
x′

B(x,y)Pt(x′|I0:t) = B(x,y),

where we use the equality that B(x,x′) − B(y,x′) =
B(x,y).

Let z(t) ∈ [0, 1]#XI be a vector representation of
Pt(x|I0:t) for x ∈ XI as

zi(t) = Pt(χi ∈ XI |I0:t) for i ∈ {1, . . . ,#XI}.

Then, we have

dz(t)

dt

◦
= diag(z(t))Bz(t) +Rz(t), (4)

where diag(z(t)) is a diagonal matrix generated by a vec-
tor z(t). B and R are matrix representations of B(x,y)
and A(x,y) for x,y ∈ XI . It should be noted that Eq.
(4) is interpreted as

dz(t)
◦
= [diag(z(t))Bz(t) +Rz(t)] dt.
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B. Bayesian gates in Ito form

In order to numerically calculate Eq. (4), its Ito form
is convenient. To obtain the Ito form of Eq. (4), let us
substitute Ii(t)dt = νi(x(t))dt + σidW

i
t as

Bi(x,y)dt =
∆νi(Ii(t)− 〈ν〉i)

σ̄2
i

dt

=
∆νi[(νi(t)− 〈ν〉i)dt + σidW

i
t ]

σ̄2
i

,

and

Bci (x,y)dt = −ρ∆νiIi(t)

σ̄1σ̄2
dt

= −ρ∆νi
σ̄1σ̄2

(νi(t)dt + σidW
i
t ),

where νi(t) = νi(x(t)). Then, let us define

BIi (x,y) := ∆νi

[
(νi(t)− 〈ν〉i)

σ̄2
i

− ρν̄i(t)

σ̄1σ̄2

]
BWi (x,y) := ∆νi

[
1

σ̄i
− ρσi
σ̄1σ̄2

]
,

and then B becomes

B(x,y)dt =
[
BI +BΥ

]
dt +

∑
i

BWi dW i
t ,

where BI :=
∑
i∈{1,2}B

I
i , and we have

dzt =
(
diag(zt)

[
BI +BΥ

]
zt +Rzt

)
dt

+
∑
i

diag(zt)B
W
i zt ◦ dW i

t ,

where zt = z(t). Thus, the Ito version of this
Stratonovich stochastic differential equation becomes

dzt =
[(

diag(zt)
[
BI +BΥ

]
zt +Rzt

)
+

1

2

∑
i

(∇zdiag(zt)B
W
i zt)(diag(zt)B

W
i zt))

]
dt

+
∑
i

diag(zt)B
W
i ztdW

i
t .

By expanding the matrices, we have[
diag(zt)B

W
i zt

]
k

=(zt)k
∑
j

BWk,j;i(zt)j

∇zdiag(zt)B
W
i zt =


(zt)1B

W
1,1;i · · · · · ·

... (zt)2B
W
2,2;i · · ·

...
... · · ·



+

 (zt)1B
W
1,1;i (zt)1B

W
1,2;i · · ·

(zt)2B
W
2,1;i (zt)2B

W
2,2;i · · ·

...
... · · ·


=diag(BWi zt) + diag(zt)B

W
i

Finally, we have the Ito form as

dz(t)

dt
=
[
(diag(z(t))Bz(t) +Rz(t))

+
1

2

∑
i

[
diag(BWi z(t)) + diag(z(t))BWi

]
× (diag(z(t))BWi z(t))

]
dt

+
∑
i

diag(zt)B
W
i ztdW

i
t .

C. Derivation of Bayesian NOR, XOR, and AND
gates

Let consider the situation where there is one gate input
I1(t), as in Fig. 1(A) in the main text, which is realized
by setting ν2 = 0, σ2 = 0, and ρ = 0. We set σ1 = σ0. In
addition, we assume that ν1 in I1 is as

ν1(x(t)) = U1(x1(t)) + U2(x2(t)),

where

U1(x) = U2(x) =

{
µ/2 for x = 1
−µ/2 for x = 0

.

Because of this definition of ν1(x(t)), XI has three sub-
sets of X , χ1 = {(0, 0)}, χ2 = {(1, 0), (0, 1)}, and
χ3 = {(1, 1)}. For each χi, we assign zi. Under these
conditions, we have

B1(x,y) :=
(ν1(x)− ν1(y))(I1(t′)− (ν1(x) + ν1(y))/2)

σ2
0

,

B2(x,y) = 0, Bci (x,y) = 0, and BΥ(x,y) = 0 for
x,y ∈ XI . Since we have ν1(χ1) = −µ, ν1(χ2) = 0,
and ν1(χ3) = µ,

B =
µ

σ2
0

 0 −(I1(t′) + µ
2 ) −2I1(t′)

(I1(t′) + µ
2 ) 0 −(I1(t′)− µ

2 )
2I1(t′) (I1(t′)− µ

2 ) 0

 ,

=
µ

σ2
0

I1(t′)

 0 −1 −2
1 0 −1
2 1 0

+
µ

2

 0 −1 0
1 0 1
0 −1 0

 .
The transition matrix R can be obtained by consid-

ering the transition rate of individual x1(t) and x2(t).
When the transition rates from 0 to 1 and from 1 to 0
are rion and rioff for each i ∈ {1, 2}, we have the following
transition rates between x,x′ ∈ X :

R̃ =

 −r
1
on − r2

on r2
off r1

off 0
r1
on −r1

on − r2
off 0 r1

off

r2
on 0 −r2

on − r1
off r2

off

0 r1
on r2

on −r1
off − r2

off

 ,

where we should note that X =
{(0, 0), (0, 1), (1, 0), (1, 1)}. By setting rion = ron
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and rioff = roff , R̃ is reduced to

R̃ =

 −2ron roff roff 0
ron −ron − roff 0 roff

ron 0 −ron − roff roff

0 ron ron −2roff

 .

By degenerating X into XI =
{{(0, 0)}, {(0, 1), (0, 1)}, {(1, 1)}} where x = (0, 1)

and x′ = (0, 1) are identified, we obtain R in the main
text:

R =

 −2ron roff 0
2ron −ron − roff 2roff

0 ron −2roff

 .
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