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Abstract 

We employ Ornstein-Zernike integral equation theory with the Percus-Yevick (PY) and 

Modified-Verlet (MV) closures to study the equilibrium structural and thermodynamic 

properties of metastable monodisperse hard sphere and continuous repulsion Weeks-

Chandler-Andersen (WCA) fluids under density and temperature conditions that the 

system is strongly over-compressed or supercooled, respectively. The theoretical results 

are compared to new crystal-avoiding simulations of these dense monodisperse model 

one-component fluids. The equation-of-state (EOS) and dimensionless compressibility 

are computed using both the virial and compressibility routes. For hard spheres, the MV-

based virial route EOS and dimensionless compressibility are in very good agreement 

with simulation for all packing fractions, much better than the PY analogs. The 

corresponding MV-based predictions for the static structure factor are also very good. 

The amplitude of density fluctuations on the local cage scale and in the long wavelength 

limit, and three technically different measures of the density correlation length, are 

studied with both closures. All five properties grow in a roughly exponential manner with 

density in the metastable regime up to packing fractions of 58% with no sign of 

saturation. The MV-based results are in good agreement with our new crystal-avoiding 

simulations. Interestingly, the density dependences of long and short wavelength 

quantities are closely related. The MV-based theory is also quite accurate for the 

thermodynamics and structure of supercooled monodisperse WCA fluids. Overall our 

findings are also relevant as critical input to microscopic theories that relate the 

equilibrium pair correlation function or static structure factor to dynamical constraints, 

barriers, and activated relaxation in glass-forming liquids.  
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I. Introduction 

  The one-parameter hard sphere fluid is the most foundational, generic, and 

minimalist model of strongly interacting liquid matter  [1,2]. Understanding its structure, 

dynamics, and crystallization has been of interest for half a century. It continues to be 

relevant either literally or as a reference system for various thermal liquid and soft matter 

systems, including for questions of structure, glassy dynamics and kinetic vitrification at 

ultra-high packing fractions in the metastable to crystallization regime [2–6] . Reasonably 

accurate statistical mechanical theories for the pair structure and thermodynamics of 

equilibrium hard sphere fluids have long existed based on the Ornstein-Zernike (OZ) 

integral equation and an approximate closure (e.g., Percus-Yevick (PY))  [1,2,7]. 

However, the facile crystallization of monodisperse spheres has largely precluded testing 

such theories in the high packing fraction metastable regime relevant to strongly activated 

glassy dynamics. Indeed, to access the latter has typically required introducing 

polydispersity, i.e., quenched disorder of particle diameter, or the use of binary mixtures, 

both of which significantly complicate understanding the basic physics  [8–11].  

Recently, Zhou and Milner  [12,13] have developed a crystal-avoiding simulation 

method that allows very high packing fraction equilibrated metastable fluid states of 

monodisperse hard and soft repulsive spheres to be determined. In this article we employ 

this method to perform new simulations which are of interest in their own right and serve 

as benchmarks to test theories. This is especially relevant to microscopic theoretical 

approaches that connect slow dynamics with structural correlations, e.g., ideal mode 

coupling theory (MCT) [14], nonlinear Langevin equation (NLE) theory [15], elastically 

collective nonlinear Langevin equation (ECNLE) theory [6,16], and thermodynamic 
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approaches to glass formation based on configurational entropy such as the Random First 

Order Transition theory and its variants [17–19]. Most of these theories require accurate 

pair structural information as input at very high packing fractions, the regime where 

integral equation theories (e.g., OZ-PY) are most inaccurate and thermodynamically 

inconsistent [1,2]. This limitation also impacts making theoretical progress on the 

question of whether a growing static length defined at the pair correlation level and/or a 

thermodynamic property does or does not correlate with ultra-slow dynamics.  

The above discussion provides our motivation to carry out new equilibrated 

monodisperse fluid simulations and revisit OZ theory in search of a better closure relation 

in in the metastable regime of monodisperse hard spheres. We also use the simulation and 

theoretical results to provide new insights concerning the physics of ultra-dense highly 

correlated fluids. Concerning the new theoretical aspect, we consider the Modified-Verlet 

(MV) closure [20–23]. It was shown long ago [20,21] to produce very accurate results for 

pair structure and thermodynamic properties of monodisperse hard spheres in the 

“normal” liquid regime below the crystallization packing fraction of 𝜙~0.495 where 

glassy dynamics has not yet emerged. The predictions of OZ-MV theory in the 

metastable regime have never been determined nor confronted with monodisperse hard 

sphere fluid simulations. The one exception is the recent work of two of us which 

employed MV integral equation theory to compute the equation-of-state which was 

compared to crystal-avoiding simulations in the metastable regime [24]. Excellent 

agreement between the OZ-MV virial route results and simulation was found up to a 

packing fraction of 0.58. However, the real purpose of ref. [24] was to study highly size 

asymmetric hard sphere mixtures at relatively high temperatures and low densities in the 
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normal fluid regime. This involves very different physics than in the ultra-high density 

one-component hard sphere fluid. Neither simulation nor OZ theory studies of other 

thermodynamic properties, the static structure factor, or real and Fourier space correlation 

lengths were performed. Addressing these new issues is the primary purpose of the 

present article.  

We theoretically focus on the high metastable packing fraction regime of 𝜙~0.5 

to 0.6, which is still well below the random close packing (RCP) or jamming limit [25]. 

The upper limit of the latter range corresponds in the ECNLE theory of viscous thermal 

liquids [6,16] to the laboratory kinetic vitrification point, which exceeds the packing 

fraction that can typically be equilibrated in colloidal suspension experiments [9]. We 

also present a new combined theory and simulation study of several metastable 

supercooled states of the continuous repulsive interaction Weeks-Chandler-Andersen 

(WCA) [26] monodisperse fluid. Our highly limited prior work  [24] for this system was 

in the normal liquid regime at much higher temperatures and lower densities. 

 Our new results are relevant to constructing more accurate theories of the 

equilibrium behavior of ultra-dense hard sphere fluids, density functional theories of 

crystallization [27] and interfaces [28], phase separation of hard sphere mixtures [29,30] 

and polymer-colloid mixtures [31,32], etc. But our prime motivation is its relevance as 

input to the dynamical theories mentioned above, which to date have most often used the 

PY closure [10,14,33–35]. Extent microscopic theories of glassy dynamics typically 

require to high accuracy the Fourier space static structure factor, 𝑆(𝑞), or the direct 

correlation function, 𝐶(𝑞), including at very large wavevectors not easy to accurately 

determine with simulation. For the ideal MCT of the hard sphere fluid [14], use of a more 
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accurate structural theory will have little consequences since the (unphysical) critical 

power law divergence of the relaxation time occurs at 𝜙!~0.515 where errors incurred 

by PY theory are rather modest. In strong contrast, NLE and ECNLE theories that include 

activated hopping  [6,15,16] do not have any dynamical divergences below RCP, and 

make predictions for values of 𝜙 well beyond 0.515 which may be sensitive to including 

improved structural input.  

In addition to studying the pair correlation function in real, 𝑔(𝑟), and Fourier, 

𝑆(𝑞), space and thermodynamic properties, we also analyze how correlation lengths and 

density fluctuation order parameters evolve with packing fraction. The nature of growing 

static length scales defined at the pair level and their possible correlation with activated 

glassy dynamics has been an enduring question. A rather common presumption in the 

literature is that such length scales vary little with thermodynamic state in glass-forming 

liquids and/or such information is not adequate to understand strongly activated 

relaxation. We believe these notions are likely not valid, a view supported by the recent 

successes of ECNLE theory of strongly activated dynamics [6,16,36,37] and machine 

learning simulation [38,39] studies.  

 In section II we briefly review OZ theory, the closures studied, and the crystal-

avoiding simulation method employed. Section III presents our core theoretical results for 

the metastable hard sphere fluid, quantitatively compares them to simulation, and 

deduces inter-relations. A sample result is shown for the implications of using better 

structural input to the ECNLE theory of activated glassy dynamics. Equilibrium structural 

and thermodynamic results for the metastable WCA fluid are presented in section IV. The 

paper concludes with a summary and discussion in section V. 
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II. Theory and Simulation Methods  

A. Integral Equation Theories 

The radial distribution or pair correlation function, 𝑔(𝑟), obeys the OZ equation [1]: 

ℎ(𝑟) = 𝑐(𝑟) + 𝜌∫ 𝑐(|	𝑟 − 𝑟"|)ℎ(𝑟")𝑑𝑟"																																					(1) 

where 𝜌 is the particle number density, ℎ(𝑟) ≡ 𝑔(𝑟) − 1, and Eq.(1) defines the direct 

correlation function 𝑐(𝑟). It is convenient to introduce the “cavity distribution function”: 

𝑦(𝑟) = 𝑒#$(&)𝑔(𝑟), where 𝑢(𝑟) is the pair potential and 𝛽 is the inverse thermal energy. 

The PY approximation for a general pair potential, 𝑢(𝑟), can then be expressed as [1]: 

𝑐(𝑟) = 𝑔(𝑟) − 𝑦(𝑟) = @𝑒(#$(&) − 1A𝑦(𝑟) ≡ 𝑓(𝑟)𝑦(𝑟)																				(2) 

where 𝛽 ≡ (𝑘)𝑇)(* is the inverse thermal energy. For hard spheres of diameter 𝜎, this 

corresponds to 𝑐(𝑟) = 0, 𝑟 > 𝜎. The MV closure can be viewed as interpolating between 

the PY and Hypernetted Chain (HNC) closures in 𝛾-space [20], where 𝛾(𝑟) ≡ ℎ(𝑟) −

𝑐(𝑟). Specifically, one can generically write the pair correlation function as 

𝑔(𝑟) = exp[−𝛽𝑢(𝑟) + 𝛾(𝑟) + 𝑏(𝑟)] 																																												(3) 

where if the bridge function, b(r), is exactly known then Eq.(3) is exact. In the MV 

closure approximation one has 

𝑏+,(𝑟) = −
𝑎*𝛾-(𝑟)

1 + 𝑎-|𝛾(𝑟)|
																																																					(4) 
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 Fig. 1 Direct correlation function for packing fraction 𝜙  from 0.50 (lower line) to 0.60 (upper line) based 
on PY (dash-dotted) and MV (solid) closures. Inset is an expanded view of the near contact region. 

 

For hard spheres 𝑎* = 1/2 and 𝑎- = 4/5 were used in the original work [20] in order to 

exactly reproduce the fourth virial coefficient while improving the fifth virial coefficient 

compared to its PY value. The absolute value of 𝛾 enters the denominator in Eq.(4) to 

avoid the singularity at 𝛾 = −1/𝑎- , which also assures that the first and second 

derivatives of Eq.(4) with respect to 𝛾 are continuous  [22]. We explore the predictions of 

the PY and MV based theories in the high packing fraction regime 𝜙 = 0.5 to 0.6. We 

also consider the WCA fluid at reduced densities and temperatures in the modestly 

supercooled regime accessible to simulation with the same non-optimized parameters 𝑎* 

and 𝑎- employed for hard spheres.  

The negative of 𝑐(𝑟)	in units of thermal energy plays the role of a renormalized 

pair potential [1]. Figure 1 presents numerical calculations of this quantity in the high 

density regime. One sees significant differences between the PY and MV results, with the 

absolute value of 𝑐(𝑟) from PY larger than its MV analog inside the hard core. Outside 
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the hard core the PY direct correlation function incorrectly vanishes, while the MV 

predicts (inset) a short range negative tail (an effective attraction) which grows strongly 

with increasing density, features in qualitative accord with the exact 𝑐(𝑟)  [1,2,40]. The 

exact 𝑐(𝑟)	is also known [41,42] to weakly oscillate outside the hard core. If one blows 

up the inset in Figure 1 we do find (not shown) oscillatory behavior with an amplitude 

that grows with density. However, the oscillations are not about zero since in the MV 

approximation (and also for HNC) the direct correlation function is strictly non-negative. 

B. Simulations  

We employ the recently developed crystal-avoiding method [12,13] to simulate 

monodisperse HS and WCA equilibrium fluids. All simulation results presented in this 

article are new, except for the hard sphere equation-of-state data [24].   

Briefly, the crystal-avoiding simulations are based on a hybrid Monte Carlo method, a 

short Molecular Dynamics (MD) trajectory from a given amorphous configuration is first 

generated, and then the difference in crystallinity is measured using a bond-order 

parameter and the trajectory is accepted or rejected using the Metropolis algorithm. If the 

move is rejected, all particle velocities are randomized from a Maxwell-Boltzmann 

distribution before the next trial. This method essentially samples trajectories in phase 

space for which crystallization did not occur. For hard spheres, event-driven MD is used 

for generating short trajectories, while for WCA fluids the standard leapfrog integration 

method is employed. All technical details can be found in refs. [12,13]. 

 
III. Hard Sphere Fluid Results 

A. Equation-of-State 
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As relevant background we recall our recent results [24] for the hard sphere fluid 

equation of state (EOS) using two formally exact statistical mechanical routes which 

emphasize either the most local part of 𝑔(𝑟)  (virial route) or the long wavelength 

integrated aspect (compressibility route). In the former, the reduced pressure is directly 

related to the contact value, 𝑔(𝜎), as [1,43]:  

𝛽𝑃
𝜌 = 1 +

2𝜋𝜌𝜎.𝑔(𝜎)
3 																																																											(5) 

The compressibility route is based on the isothermal compressibility, 𝜅/ = −𝑉(* W01
02
X
/
 , 

and its dimensionless analog 𝑆3 = 𝑆(𝑞 = 0) defined as [1,43]:  

𝑆3 = 𝜌𝑘)𝑇𝜅/ = 1 + 𝜌ℎ(𝑞 = 0)																																										(6) 

The connection to thermodynamics is:  

𝑆3(* =
𝜕𝛽𝑃
𝜕𝜌 																																																																				(7) 

The reduced pressure follows via integration yielding the compressibility route EOS:  

𝛽𝑃
𝜌 =

1
𝜌\ 𝑑𝜌"

4

3

1
𝑆3(𝜌")

																																																			(8) 

  Figure 2 shows theoretical results [24] using the virial(v) and compressibility(c) 

routes. For comparison, the empirical Carnahan-Starling (CS) formula as a function of 

packing fraction 𝜙 = prs./6  [40] is given by,  

𝛽𝑃/𝜌 ≈ (1 + 𝜙 + 𝜙- − 𝜙.)/(1 − 𝜙).																																				(9) 

which is also plotted, along with our simulation results [24] which now includes a new 

single (highest shown) packing fraction nonequilibrium data point. The simulations agree 
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well with the CS formula for 	𝜙 < 0.545 , but not beyond. The PY virial and 

compressibility route results differ significantly, with PY(v) strongly underestimating 

pressure, while PY(c) agrees much better with simulation. In contrast, the MV results are  

more thermodynamically consistent, with the virial route results in good accord with 

simulation for all packing fractions; only at the single highest equilibrated packing 

fraction (0.585) simulated can one see deviations. Thus, MV theory is accurate for the 

EOS, and also its derivative with density of the reduced pressure which is an important 

property per Eq.(7).   

We note in passing that ref. [11] found that a polydisperse version of the CS 

formula works well up to packing fractions of ~63%. However, this study employed an 

extremely polydisperse hard sphere model, which is not relevant to our present work.  
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Fig. 2 Dimensionless equation of state for various theoretical calculations and our hard sphere crystal-
avoiding simulation data [24]. The green (long-dashed), blue (dashed), yellow (solid), purple (dotted), and 
pink (dash-dotted_ curves indicate results for PY virial, PY compressibility, MV virial, MV 
compressibility, and CS approximations, respectively. The black circle and red triangle data are from the 
simulations under equilibrium [24] and non-equilibrium conditions, respectively. Inset: expanded view of 
the same results for high packing fractions (0.55–0.60). 
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B. Pair Structure 

The contact value of 𝑔(𝑟) plays an essential role in determining the thermodynamics 

and dynamics of hard spheres. Given Eq.(5), one can immediately deduce from Figure 2 

the high accuracy of the MV(v) reduced pressure implies excellent results for the contact 

value, significantly superior to those of the PY and CS approaches. Concerning the full 

𝑔(𝑟), we refrain from showing plots since we find the MV and PY calculations are both 

very accurate beyond the separation that defines the first minimum of 𝑔(𝑟). At smaller 

distances, the MV results are much better and in good agreement with our simulations.  

Due to its relevance to scattering experiments and central role in dynamical 

theories  [1,14–16,44–47] we consider in detail the Fourier space static structure factor: 

𝑆(�⃑�) =
1
𝑁
〈𝜌(�⃑�)𝜌(−�⃑�)〉,			𝜌(�⃑�) =cexp(𝑖�⃑� ⋅ 𝑟5)

6

57*

																											(10) 

which in our simulations is computed as:  

𝑆(𝑞) = 1 + 4𝜋𝜌\ 𝑑𝑟	𝑟-
sin(𝑞𝑟)
𝑞𝑟 [𝑔(𝑟) − 1]

8

3
																																			(11) 

Fig. 3 Static structure factor as a function of dimensionless wavevector for 3 packing fractions 𝜙=0.52, 
0.56 and 0.58 based on the PY (red dashed lines) and MV (yellow solid lines) closures and the crystal-
avoiding simulation results (black circles). Insets show an expanded view of the first peak region. 
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Figure 3 shows the new results. In all cases, PY over-predicts the first peak, and is 

inferior to the MV results. The latter are excellent for this feature except at the highest 

density where small errors are incurred. As typically observed in 𝑔(𝑟) of glass-forming 

sphere liquids [4,9,48], the second peak of 𝑆(𝑞) also “splits” at high densities, which the 

theories do not capture. However, except for this feature the MV results at higher 

wavevectors are in excellent accord with simulation, significantly better than PY.  

C. Density Fluctuation Order Parameters 

The amplitude of the first peak of the structure factor, 𝑆9:; , quantifies the 

coherence or intensity of short-range amorphous order. The main frame of Figure 4 plots 

this quantity as a function of packing fraction. Despite PY theory under-predicting the 

contact value of 𝑔(𝑟) , it systematically over-predicts this Fourier space quantity. In 

contrast, MV theory is in near perfect agreement with simulation for 𝑆9:;. Interestingly, 

the inset of Figure 4 shows that 𝑆9:; is well described by an exponential form,  
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same results as the main frame but in a log-linear manner. The straight lines in the inset are exponential 
fits: 𝑆!"# = 𝐴𝑒𝑥𝑝(𝐵𝜙), where the fit parameters are listed in Table 1. 
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Table 1 Parameters A and B of the exponential fits, 𝐴 exp(𝐵𝜙) in Figures 4-8 for the PY and MV closure 
theoretical results. Length scales are in units of the hard sphere diameter. From left to right the quantities 
are: the value of 𝑆(𝑞) at its first peak, inverse dimensionless compressibility computed from the q=0 limit 
of the static structure factor per Eq.(6), inverse dimensionless compressibility computed using the virial 
route relation of Eq.(7), a Fourier-space derived correlation length extracted from the full width at half 
maximum, 𝜆 , of 𝑆(𝑞) , a Fourier-space derived correlation length defined in Eq.(14), and the density 
correlation length extracted from an exponential fit of the envelope of |𝑟ℎ(𝑟)|. 

 

 𝑆!"# 

1/𝑆$ = 

1/𝑆(𝑞 = 0) 

    1/𝑆$  

 (virial) 
𝑙 = 𝜋/𝜆 𝛹 𝜉% 

PY 
A 0.0125 0.3097 0.5913 0.1179 0.0534 0.0746 

B 6.535 10.663 8.581 6.107 7.023 6.404 

MV 
A 0.224 0.543 0.213 0.117 0.0937 0.105 

B 5.200 9.182 11.277 6.056 5.671 5.5152 

 

𝐴 exp(𝐵𝜙) , for both closures with fit parameters reported in Table 1. The parameter 𝐵 is 

~ 5.2 and 6.5 for MV and PY, respectively. 

Concerning the exponential fits, it is the best 2-parameter description of the above 

(and below) theoretical results we have found. However, we are not arguing for a 

fundamental significance of this form, and have tested it only over the packing fraction 

range studied here. At even higher densities we do not expect the exponential form will 

continue to be accurate since eventually the RCP jammed state is approached [25], which 

is not correctly captured by PY or MV based OZ theory.  

   A very different “scalar order parameter” is the dimensionless amplitude of long 

wavelength density fluctuations, 𝑆(𝑞 = 0) = 𝑆3. Although a thermodynamic property, it 

is directly related to an integrated measure of nonrandom structure over all length scales 

given Eq.(6). Moreover, it plays a central role in the predictive mapping employed in 
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ECNLE theory of activated relaxation to treat molecular and polymeric thermal liquids in 

terms of an effective hard sphere fluid [16,49]. Figure 5 shows PY and MV theory results 

for this quantity plotted in an inverse representation and log-linear format. Results are 

shown based on both the direct calculation of 𝑆(𝑞 = 0)  and an indirect route 

corresponding to differentiation of the virial route EOS using Eq.(7). Both theories are 

thermodynamically inconsistent, but MV far less so than PY. Interestingly, all theoretical 

results are again empirically well described by a nearly exponential growth of 1/S0 with 

packing fraction, as indicated by the straight line fits with parameters given in Table 1.  

Our discrete equation-of-state simulation data of Figure 2 is fit to interpolating 

curves and 1/S0 extracted using Eq.(7). Results up to packing fractions that this numerical 

exercise can be accurately carried out are shown in Figure 5. Compared to this simulation 

data, both the MV(v) and PY(c) results are quite accurate with B ~11 in the exponential 

fit. Interestingly, the numerical results in the metastable regime are generically well 

captured by an exponential form for both the local and long wavelength order parameters, 
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Fig. 5 Inverse dimensionless compressibility computed directly from 𝑆(𝑞 = 0) as a function of packing 
fraction for PY (black square) and MV (red circle) closures. Corresponding results based on the virial 
route of Eq.(7) are shown for PY (yellow star) and MV (green triangle) approximations, and our 
simulation (blue diamond) data. The lines are exponential fits: 	𝑆$%& = 𝐴exp(𝐵𝜙) , where the fit 
parameters are listed in Table 1. 
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𝑆9:;  and 𝑆3 , with the value of 𝐵  for 1/𝑆3	  roughly double that of 𝑆9:; , and hence 

1/𝑆3 ∝ 𝑆9:;-  based on the MV-virial analysis. 

D. Real Space Density Correlation Length 

We now study the real space density correlation length. Motivated by the classic 

idea ℎ(𝑟) is of a damped oscillatory Yukawa form [1,2,50] characterized by a single 

decay length (density correlation length) at large enough interparticle separations, Figure 

6 plots MV theory results for |(𝑟/𝜎)	ℎ(𝑟)| versus 𝑟/𝜎 in a log-linear manner over a wide 

range of high packing fractions. Beyond 𝑟~3 − 4	𝜎 the decay envelope is extremely well 

described by an exponential, ~exp(−𝑟/𝜉4). Curiously, the lines extrapolate back to a 

common intersection point at 𝑟 = 0. The inset shows the extracted density correlation 

length, 𝜉4  , based on PY and MV calculations, which grows from ~1.5	𝜎 at 𝜙~0.5 to 

~3	𝜎	at 𝜙~0.6. Both theoretical results follow quite well an exponential growth of 𝜉4 

with packing fraction, with 𝐵	~	5.5 and 6.4 for MV and PY, respectively.  
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Fig. 6 Main frame: Absolute value of  𝑟ℎ(𝑟)/𝜎	 calculated using OZ-MV theory as a function of 
normalized radial distance 𝑟/𝜎 for 3 packing fractions. Inset: Packing fraction dependence of the real 
space density correlation length (in units of hard sphere diameter) for the PY (black) and MV (red) 
closures. The lines in the inset are exponential fits: 𝜉' = 𝐴exp(𝐵𝜙), with the fit parameters listed in 
Table 1. 
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Figure 7 presents our analogous simulation results in the metastable regime. We 

follow standard procedure and fit 𝑟	ℎ(𝑟) from 𝑟~2 − 6	𝜎 to the analytic 

form [1,41,42,51]: 

 𝑟ℎ(𝑟) = 𝐴𝑒(<(&cos(𝛼*	𝑟 − 𝜃)																																													(12) 

where 𝜉4 = 1/𝛼3 . Figure 7a shows the simulation data is very well described by Eq.(12). 

The main frame of Figure 7b compares our simulation, PY and MV results for the density 

correlation length. We find the theoretical correlation lengths extracted using Eq.(12) are 

identical to those obtained from simply fitting the envelope of ln |(𝑟/𝜎)	ℎ(𝑟)| in Figure 6 

to an exponential. An important simulation finding is the correlation length continues to 

grow beyond the equilibrium melting packing fraction 𝜙9 = 0.545 , reaching ~2.7 

particle diameters at 𝜙 = 0.58. The MV based OZ theory agrees well with our simulation 

data, while the PY approximation predicts a length scale that is too large and grows too 

strongly with density.   
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from simulation compared with the predictions of OZ-PY and OZ-MV theories. Inset: comparison of 
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 The inset of Figure 7b plots the two key fit parameters in Eq.(12) extracted by 

analyzing our simulation and theoretical results. This representation is shown to allow 

comparison with the monodisperse hard sphere fluid simulations of Statt et al.  [51] who 

used a standard, not crystal-avoiding, algorithm. We note that the analysis in [51] also 

employed Eq.(12) and performed fits over the range of 1.5 < 𝑟/𝜎 < 4. One sees there is 

excellent agreement between the two simulation studies up to 𝜙~0.545. Beyond that, a 

rough saturation was found in ref.  [51], and perhaps even a hint of non-monotonicity. 

We do not find these latter trends intuitive, and they are likely not reliable since 

crystallization occurred in the simulations, more so with increasing packing fraction, and 

the simulation runs were short [51,52].  

Other recent simulation studies of monodisperse hard sphere fluids [41,42] have 

only been performed in the lower density normal fluid regime. Our simulations results, 

those of ref. [51], and the MV calculations are all in good agreement with each other and 

the data of refs. [41,42] in this normal fluid regime; an explicit example of this can be 

seen in Figure 7b where results down to 𝜙 = 0.45 are shown. Finally, we note that 

experiments and other simulations up to a packing fraction of 𝜙 = 0.6  [53] have studied 

various real space correlation lengths, but these employed polydisperse systems and 

focused on locally favored structures and hence are not germane to our present work.  

E. Fourier-Space Correlation Length  

We now study correlation lengths and other quantities that can be extracted from 

𝑆(𝑞). As expected, we find (see Table 1) that the exponential growth of the real space 

correlation length and its associated 𝐵  value agree well with the behavior of 𝑆9:;  in 

Figure 4. This connection between real and Fourier space is buttressed by extracting a 
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correlation length from 𝑆(𝑞) in two ways. The first is from the full width at half height of 

the primary peak of the structure factor, 𝜆 ,  from which we define a length scale as 𝑙 =

𝜋/𝜆. The second is to quadratically expand 1/𝑆(𝑞) around its first peak at 𝑞 = 𝑞∗  (a 

local Lorentzian approximation) thereby defining a correlation length 𝛹:  

𝑆(*(𝑞) ≈ 𝑆(*(𝑞∗)[1 + 𝛹-(𝑞 − 𝑞∗)-]																																				(13) 

Using the exact relation 𝑆(*(𝑞) = 1 − 𝜌𝐶(𝑞), the length scale in Eq.(13) is: 

𝛹 = u−
1
2𝑆
(𝑞∗) v

𝑑-𝜌𝐶(𝑞)
𝑑𝑞- w

>7>∗
																																									(14) 

Figure 8 shows theoretical results for these length scales. Their exponential density 

dependences are nearly identical, and almost the same as the real space analog 𝜉4, with 

𝐵	~	6 to 7 (Table 1). Based on the most accurate MV calculations, Table 1 suggests that 

to leading order these 3 length scales and 𝑆9:; grow exponentially with packing fraction 

with a very similar 𝐵 value.  
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Fig. 8 Packing fraction dependence of the two density fluctuation correlation lengths deduced from 𝑆(𝑞) 
as defined in the text, as predicted based on the PY and MV closures. The lines in the main frame and 
inset are exponential fits with parameters listed in Table 1. 
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 Interestingly, the 4 local quantities discussed above all exhibit an exponential 

packing fraction dependence, as does the long wavelength thermodynamic quantity 1/𝑆3. 

Based on MV theory, the value of 𝐵  for the inverse dimensionless compressibility 

computed using the more accurate virial route is roughly twice of that of the various 

correlation lengths extracted by analysis of finite length scale structural features. This 

suggests an interesting correlation between the density dependent growth of different 

metrics of static density correlations, with potentially significant dynamical implications. 

For example, if there is a deep connection between equilibrium properties and the alpha 

relaxation time in supercooled or over-compressed liquids, then our results suggest a type 

of degeneracy of interpretation with regards to the existence of practical empirical 

correlations between slow dynamics and thermodynamic and/or local structural order 

quantities based on density fluctuations. The elementary reason is that any function that 

varies exponentially with density when raised to any power remains of an exponential 

form. Moreover, if the dynamic barrier relevant to the alpha relaxation process is 

proportional to any of the aforementioned quantities (raised to any power), the 

corresponding relaxation time will empirically be a “double exponential” function of 

packing fraction. The above logic does not apply for other mathematical functions of 

density such as power laws or an exponential of a multi-term polynomial.  

Concerning the quality of MV versus PY closure predictions, the former is 

significantly better for both thermodynamic properties and the real and Fourier space 

structure, 𝑔(𝑟) and 𝑆(𝑞). However, both closures predict that all 5 quantities in Table 1 

grow exponentially with packing fraction to a good approximation. Quantitatively, the 

absolute value and increase with packing fraction of the 3 density correlations lengths 
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and cage peak amplitude 𝑆9:; are all larger for PY than for MV, reflecting the systematic 

difference between these two approximations. Though these differences may seem 

modest for these properties, they are manifested in significant differences for the EOS.  

 

F. Dynamic Implications 

We emphasize that a static length scale associated with a 2-point correlation 

function that grows with packing fraction is also relevant to isobaric experiments on 

supercooled liquids where, typically, density increases with cooling. Moreover, isobaric 

experiments on a variety of fragile glass forming liquids find the primary wide angle peak 

of 𝑆(𝑞) grows significantly with cooling, and suggestions for its connection to glassy 

dynamics have been proposed [54,55]. Since glassy dynamics is known to be very 

sensitive to small changes of thermodynamic state and structure, the predictions of 

microscopic theories of activated relaxation are expected to be nontrivially sensitive to 

using PY versus MV structural input.  Though this topic is beyond the scope of this 
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Fig. 9 Comparison of the local cage barrier (𝐹*), collective elastic barrier (𝐹+,) and total dynamic barrier 
(𝐹-.-/,) of the activated relaxation ECNLE theory [16,36] based on S(q) input computed using the PY 
(dash-dot) and MV (solid) closure approximations. Inset: schematic of the conceptual elements of the 
ECNLE theory where the activated structural relaxation event is of a coupled local-nonlocal nature. 
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article, it is a primary motivation for our present work. This motivates our presentation in 

Figure 9 of an illustrative calculation of how the local cage, collective elastic, and total 

dynamic barriers in the units of thermal energy evolve with packing fraction for a hard 

sphere fluid based on ECNLE theory [16]; we note that the mean structural relaxation 

time scales as the exponential of 𝛽𝐹?@?:A . In the present context, the relevant point is 

ECNLE theory requires only 𝑆(𝑞)  as input, which we have shown in this article is 

significantly more accurately predicted in the metastable regime based on the MV closure 

than its PY analog. The differences in the barriers based on the structural input from the 

two closures seen in Figure 9 are significant, and their consequences will be studied in a 

future publication.  

 

IV. WCA Fluid 

We have also performed new OZ-MV calculations for supercooled metastable 

states of the WCA fluid and compared the results with our new crystal-avoiding 

simulations. The WCA potential is defined as  [1]:  

𝑢BCD(𝑟) = y4𝜖 {W
𝜎
𝑟X

*-
− W

𝜎
𝑟X

E
| + 𝜖,					𝑟 ≤ 2*/E𝜎	

0,																																													𝑟 > 2*/E𝜎
																									(15) 

where 𝜖  is the energy scale and 𝜎 the nominal length scale. The reduced density and 

temperature are defined as 𝜌𝜎. and 𝑘)𝑇/𝜖 , respectively, where 𝑘)  is the Boltzmann 

constant. Here we employ for simplicity the same values of 𝑎* and 𝑎- in Eq.(4) which 

were optimized for hard spheres. Hence, we expect the theoretical results will not be as 

accurate for the WCA fluid as found for hard spheres. We emphasize that all the 

simulation results in Figures 10-12 are new since they are in the metastable low 



 23 

temperature and high density regime, in contrast to our prior brief study [24] of the 

equation-of-state of the WCA fluid in the normal fluid regime.  

  Figure 10 shows the dimensionless EOS as a function of reduced temperature for 

two high reduced densities of 1.2 and 1.4. Rather good thermodynamic consistency and 

agreement with simulation is found, albeit not as quantitatively good as found for hard 

spheres. Overall, the virial route based results are modestly better than their 

compressibility route analogs, a conclusion that also applies to hard spheres.  

Figures 11 and 12 show representative structural results in real and Fourier space, 

respectively. For each density, only the results for the lowest temperature studied is 

presented since it provides the most incisive test of theory. The predicted 𝑔(𝑟)’s in 

Figure 11 are in excellent accord with simulation, with (again) the exception of no 

weakly split second peak. The analogous structure factors in Figure 12 are also quite 

accurate, albeit the intensity of the first peak is over-predicted. The latter deviation is 
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Fig. 10 Dimensionless pressure of WCA fluids in the metastable regime as a function of reduced 
temperature at reduced densities of 𝜌𝜎0 = 1.2 (red) and 1.4 (green) based on MV virial (solid) and 
compressibility (dash-dotted) route calculations. Simulation data are the red circles and blue disks. 
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much smaller at higher temperatures (not shown), and modestly worse at higher density. 

As expected, the theoretical predictions for 𝑆(𝑞) are not as good as we found for hard 

spheres.  

V. Summary  

 We have applied OZ integral equation theory with the PY and MV closures to study 

the equilibrium structural and thermodynamic properties of monodisperse hard sphere 
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Fig. 12 Structure factor as a function of dimensionless wavevector of WCA fluids in the metastable 
regime for dimensionless densities and temperatures of (a) r𝜎0 	= 1.2 and 𝑘*𝑇/𝜖 = 0.9, and (b) r𝜎0 	=
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and WCA fluids under density and temperature conditions that the system is over-

compressed or supercooled (metastable relative to crystallization). The theoretical results 

were compared to our new crystal-avoiding simulations. To the best of our knowledge, 

this is the first comprehensive application of MV-OZ theory to study thermodynamic 

properties and real and Fourier space structure and correlation lengths of metastable hard 

sphere and WCA fluids, and the first to carry out a comparison with new crystal-avoiding 

simulations. 

As found previously [24], for the hard sphere fluid 𝑔(𝑟)  the MV results at small 

distances (including the contact value) are much better than predicted based on the PY 

closure and in good agreement with simulation. The MV virial route produces excellent 

results for the EOS for all packing fractions. New MV based results for the static 

structure factor and various local and long wavelength measures of density fluctuations 

associated with the real and Fourier space pair correlations were obtained. Overall the 

MV-based OZ theory performs very well, and is far more accurate and 

thermodynamically self-consistent than the analogous PY-based approach. 

Rather remarkably, two measures of density fluctuation order parameter amplitude (on 

the cage scale and 𝑞 = 0) and density correlations lengths extracted in 3 distinct manners 

are all predicted to grow in an exponential manner with packing fraction over the 

metastable regime studied. The established behaviors are directly relevant to microscopic 

theories (e.g., MCT [14,56], ECNLE theory [6,16]) that relate dynamical constraints to 

structural pair correlations, an issue that will be explored in a future article. Our new 

simulations have also revealed that the real space density correlation length continues to 

grow up to the highest packing fraction (0.58) we are able to achieve full equilibration. 
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We studied several high density and low temperature states of the WCA fluid in 

the metastable regime. The MV based theory of structure and thermodynamics is again 

quite accurate, though not as quantitatively good as for hard spheres. This is unsurprising 

since no attempt was made to adjust the two parameters of the MV closure for the WCA 

potential. This is an avenue for future work, not only for the WCA potential, but also 

other soft matter systems characterized by repulsive interactions of variable softness and 

spatial range. 
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