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In statistical mechanics, a small system exchanges conserved charges—heat, particles, electric
charge, etc.—with a bath. The small system thermalizes to the canonical ensemble, or the grand
canonical ensemble, etc., depending on the charges. The charges are usually represented by operators
assumed to commute with each other. This assumption was removed within quantum-information-
theoretic (QI-theoretic) thermodynamics recently. The small system’s long-time state was dubbed
“the non-Abelian thermal state (NATS).” We propose an experimental protocol for observing a
system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the
system of interest. The conserved charges manifest as spin components. Heisenberg interactions
push the charges between the system and the effective bath, the rest of the chain. We predict long-
time expectation values, extending the NATS theory from abstract idealization to finite systems
that thermalize with finite couplings for finite times. Numerical simulations support the analytics:
The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can
be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and
perhaps nuclear magnetic resonance. This work introduces noncommuting charges from QI-theoretic
thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and
condensed matter.

Quantum noncommutation was recently introduced
into the following textbook statistical mechanics prob-
lem: Consider a small quantum system exchanging heat
with a large bath via weak coupling. The small system
equilibrates to a canonical ensemble [1],

ρcan := e−βH
S

/ZS
can. (1)

β = 1/T denotes the bath’s inverse temperature (we set
Boltzmann’s constant to one), HS denotes the system-of-
interest Hamiltonian, and the partition function ZS

can :=

Tr(e−βH
S

) normalizes the state. If the system and bath
exchange heat and particles, the system equilibrates to a

grand canonical ensemble ∝ e−β(HS−µNS). The bath’s
chemical potential is denoted by µ, and NS denotes
the system-of-interest particle-number operator. This
pattern extends to electric charge and other globally
conserved extensive quantities. We call the quantities
charges, even when referring to the nonconserved system
or bath charges, for convenience. The charges are rep-
resented by Hermitian operators assumed implicitly to
commute with each other.

A few references addressed this assumption during the
20th century: Jaynes and followers applied the principle
of maximum of entropy to charges that fail to commute
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with each other [2–4]. These initial steps drive us to
ask what fails to hold—how charges’ noncommutation
alters thermalization and transport—and to complement
Jaynes’s information-theoretic treatment with physical
treatments of thermalization.

First steps were taken within quantum-information-
theoretic (QI-theoretic) thermodynamics [5–9]. A small
system was imagined to exchange with a bath charges
Qα that need not commute: [Qα, Qα′ ] 6= 0. Whether
the system of interest can thermalize is unclear, for three
reasons. First, a small system thermalizes if the global
system is prepared in a microcanonical subspace, an
eigenspace shared by the global charges. If the global
charges fail to commute, they do not necessarily share
a degenerate eigenspace, so a microcanonical subspace
might not exist. Second, the total Hamiltonian Htot con-
serves each total charge Qtot

α , so Htot shares an eigenbasis
with each Qtot

α . But the Qtot
α ’s do not commute, so they

do not share an eigenbasis. Hence Htot may have an un-
usual degeneracy pattern, and degeneracies tend to nul-
lify expectations about thermalization. Third, noncom-
mutation invalidates a derivation of the thermal state’s
form [7]. Appendix A details further how charges’ non-
commutation invalidates the eigenstate thermalization
hypothesis (ETH), which elucidates why chaotic quan-
tum many-body systems thermalize internally [10–13].
Similarly, Sec. III distinguishes the NATS from the gen-
eralized Gibbs ensemble (GGE), to which integrable sys-
tems equilibrate [14–16].

QI theory was deployed to argue that a thermal state

mailto:nicoleyh@g.harvard.edu
mailto:amirk@umd.edu


2

exists and has the form [7–9]

ρNATS := e−β(HS−
∑c
α=1 µαQ

S
α)/ZS

NATS. (2)

HS denotes the system-of-interest Hamiltonian, QS
α de-

notes the αth system-of-interest charge, the µα’s denote
generalized chemical potentials, and the partition func-

tion ZS
NATS := Tr

(
e−β(HS−

∑
α µαQ

S
α)
)

normalizes the

state. Though Eq. (2) has the expected exponential form,
fully justifying this form requires considerable mathe-
matical effort when the charges fail to commute [5–9].
This non-Abelian thermal state (NATS) (2) [7] has since
spread across QI-theoretic thermodynamics [17–23].

This QI-theoretic approach offers the benefits of math-
ematical precision and cleanliness. Yet this abstract,
formal, idealized approach is divorced from implementa-
tions. Whether any real physical system could exchange
noncommuting charges, what the system could consist of,
how the charges would manifest, which interactions could
implement the exchange, etc. have been unknown. Can
NATS physics exist outside of mathematical physics?

We answer this question affirmatively, arguing that
the NATS theory of QI-theoretic thermodynamics follows
from infinitely long thermalization at infinitely weak cou-
pling. We show how to realize the NATS under realistic
conditions in condensed-matter, atomic-molecular-and-
optical (AMO), and high-energy systems. These fields
have recently experienced a surge of interest in many-
body thermalization. Therefore, we propose and numer-
ically simulate an experimental protocol for observing a
quantum many-body system thermalize to the NATS, a
peculiarly nonclassical thermal state that has never been
observed. Our protocol is suited to cold and ultracold
atoms [24–35] superconducting qubits [36–38], trapped
ions [39–41], nitrogen-vacancy centers in diamond [42],
quantum dots [43, 44], and perhaps nuclear magnetic
resonance (NMR) [45]. To extend the NATS theory to
finite times and coupling strengths, we propose initial
steps toward a NATS many-body theory. The point is
that enhancing undergraduate statistical mechanics—the
grand canonical ensemble—with noncommuting charges
produces a thermal state that has never been observed.
We observe such thermalization numerically, and we pro-
pose an experimental observation. The proposal shares
the spirit of observations of the GGE [46].

The many-body NATS theory can be tested with an
experiment of the following form. Consider a closed, iso-
lated set of N identical copies of a quantum system. We
illustrate with a chain of qubits (quantum two-level sys-
tems), realizable with ultracold atoms (Fig. 1). One copy
forms the system S of interest (e.g., n = 2 qubits). The
other copies form an effective bath B (e.g., N − 1 qubit
pairs).

Copy j evolves under a Hamiltonian H(j) = HS and

has charges Q
(j)
α that fail to commute with each other.

In the spin-chain example, each Q
(j)
α = σ

(j)
α=x,y,z man-

ifests as a spin component. We neglect factors of 1/2

and set ~ = 1. H(j) preserves each local charge, in anal-
ogy with the grand canonical problem: There, if the sys-
tem is isolated from the bath, the system’s particle num-
ber remains constant. An interaction Hamiltonian H int

pushes charges between S and B. H int conserves each

total charge, Qtot
α :=

∑N
j=1Q

(j)
α . The total Hamiltonian,

Htot :=
∑N
j=1H

(j) + H int, is nonintegrable, to promote
thermalization. The total Hamiltonian preserves each
total charge: [Htot, Qtot

α ] = 0. We illustrate Htot with
nearest-neighbor and next-nearest-neighbor Heisenberg
interactions.

S

B

FIG. 1: Setup for thermalization to the non-Abelian
thermal state (NATS): We illustrate the general
experimental setup with the spin-chain example proposed in
Sec. I. The system S of interest consists of n = 2 qubits. The
other qubits form an effective bath B. The dashed, blue
arrows illustrate nearest-neighbor and next-nearest-neighbor
interactions.

The whole system is prepared in a state ρ in which each
total charge has a fairly well-defined value: Measuring
any Qtot

α or Htot has a high probability of yielding a value
close to the “expected value,” Sα or Etot. Sα and Etot

serve analogously to the grand canonical problem’s N tot

and Etot. The whole system then thermalizes internally
for a long time under Htot. A time linear in the system
size suffices, according to numerics. A local observable
O of S is then measured.

We posit that the expectation value thermalizes to

Tr
(
Oe−β(Htot−

∑
α µαQ

tot
α )/Ztot

NATS

)
. (3)

β and the µα’s, we posit, depend on Etot and the Sα’s
through

Etot = Tr
(
Htote−β(Htot−

∑
α µαQ

tot
α )
)
/Ztot

NATS and (4)

Sα = Tr
(
Qtot
α e−β(Htot−

∑
α µαQ

tot
α )
)
/Ztot

NATS. (5)

These equations parallel the definition of inverse tem-
perature, β, in many-body studies of energy conserva-
tion [13]. We calculate β and the µ’s analytically in the
spin-chain example.

En route to the thermodynamic limit, S and B grow
large. The characteristic scale of H int remains constant,
while the scale of HS grows. The scales’ ratio approaches
zero. The whole-system quantities in Eq. (3) can be re-
placed with S quantities:

Tr
(
Oe−β(Htot−

∑
α µαQ

tot
α )/Ztot

NATS

)
→ Tr

(
Oe−β(HS−

∑
α µαQ

S
α)/ZS

NATS

)
. (6)
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Let ρS denote the long-time state (reduced density op-
erator) of S. If all S observables O thermalize as in (6),
S thermalizes to the NATS (2) of idealized QI-theoretic
thermodynamics. Numerical simulations confirm that
the state approaches the NATS prediction:

ρS ≈ ρNATS. (7)

The rest of this paper is organized as follows. Sec-
tion I illustrates our experimental proposal with a spin
chain realizable with, e.g., ultracold atoms. Numerical
simulations in Sec. II support the analytical predictions.
Section III presents opportunities created by the intro-
duction of noncommuting charges into many-body ther-
malization.

I. PROPOSAL FOR SPIN-CHAIN
EXPERIMENT

We sketched a general experimental protocol in the
introduction. Here, we illustrate with a spin chain. We
detail the setup (Sec. I A), preparation procedure (Sec. I
B), evolution (Sec. I C), and readout (Sec. I D).

I A. Setup

Let S denote a system of n > 1 qubits. Consider a
chain of N copies of S (Fig. 1). A multidimensional
lattice would suffice, as discussed before Eq. (8). The
non-S copies form the effective bath, B. We index the
qubits with j = 1, 2, . . . , Nn and the subsystems with
k = 1, 2, . . . , N .

Let σ
(j)
α denote component α = x, y, z of the qubit-

j spin. The spin operators satisfy the eigenvalue equa-

tions σ
(j)
α |α±〉j = ±|α±〉j . The chain has the total spin

σtot
α :=

∑Nn
j=1 σ

(j)
α . Spin was applied in quantum thermo-

dynamics to work extraction previously [5, 7–9, 47, 48].

Htot must conserve each σtot
α while transferring subsys-

tem charges between S and B. We construct such an Htot

through physical reasoning. Let σ
(j)
±α denote the raising

and lowering operators for component α of the qubit-j

spin. For example, σ
(j)
±z = 1

2 (σ
(j)
x ± iσ(j)

y ). Rotating each
side of this equation unitarily yields the raising and lower-
ing operators for components x and y. The two-site oper-

ator Jα(σ
(j)
+ασ

(j+1)
−α + h.c.) transports α-charges between

sites j and j + 1 with frequency Jα. The Hamiltonian
must transport charges of all types, so we sum over α.
For the Hamiltonian to commute with each total charge,
the Jα’s must equal each other. A Heisenberg interaction

results: J
∑
α=x,y,z(σ

(j)
+ασ

(j+1)
−α + h.c.) = J~σ(j) · ~σ(j+1).

The nearest-neighbor Heisenberg interaction is inte-
grable. Next-nearest-neighbor interactions break integra-
bility, as would a higher-dimensional lattice. We there-

fore choose for the spin chain to evolve under

Htot = J

(
Nn−1∑
j=1

~σ(j) · ~σ(j+1) +

Nn−2∑
j=1

~σ(j) · ~σ(j+2)

)
. (8)

Similar interactions have been realized with ultra-
cold atoms [29, 35, 49], symmetric top molecules [50,
51], trapped ions [40], and NMR [45]. Furthermore,
anisotropic interactions can be used to generate isotropic
effective interactions [52, 53], as follows. The system is
evolved under the original Hamiltonian, the z-axis is ro-
tated into the x-axis, the system is evolved further, the
new x-axis is rotated into the new y-axis, and then the
system is evolved further.

Our interaction is weak: H int consists of the six ~σ · ~σ
terms that link S to B. Hence the interaction energy
∼ 6J . HS consists of the six bonds that act on just S.
Hence S has energy ∼ Jn. The interaction-energy-to-
S-energy ratio vanishes in the thermodynamic limit, as
N,n→∞. Hence the interaction is weak. It is also when
master equations predict equilibration to thermal states
in the absence of noncommuting charges [54, 55], Hence
one should expect S to thermalize.

I B. Preparation procedure

The grand canonical problem motivates our prepara-
tion procedure. Consider aiming to watch a small sys-
tem thermalize to the grand canonical ensemble. The
system-and-bath composite should be prepared with a
well-defined total energy, Etot, and total particle num-
ber, N tot. If classical, the whole system occupies a
shell in phase space. The shell’s width stems from mea-
surement imprecision. If quantum, the total system
approximately occupies a microcanonical subspace, an
eigenspace shared by the total Hamiltonian and total
particle-number operator [1, 56].

Let us translate this protocol into the noncommuting
problem. One might aim to prepare the whole system
with a well-defined σtot

α for all α = x, y, z. But the
spin components fail to commute; they share no joint
eigenspace. The microcanonical subspace was therefore
generalized to an approximate microcanonical (a.m.c.)
subspace, M [7]. In M, every total charge has a fairly
well-defined value Sα. We propose two protocols for
preparing the global system in a state that occupies an
a.m.c. subspace. Measuring any σtot

α will have a high
probability of yielding a value close to Sα. Sα serves sim-
ilarly to the commuting problem’s N tot. The probability
and closeness were quantified in [7] and are reviewed be-
low. The longer the spin chain, the more certain the
measurement outcome can be.

We seek to prepare an initial global state that exhibits
at least two properties:

(i) Each total charge has a standard deviation
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bounded as√
〈(σtot

α )2〉 − 〈σtot
α 〉2 ∼ O ([Nn]a) , wherein a ≤ 1/2.

(9)

(ii) The initial global state is not an Htot eigenstate.
For example, the spins do not all point in the same
direction.

We exhibit two protocols that satisfy conditions (i)
and (ii), a product-state protocol and a soft-measurement
protocol. Additionally, certain spin squeezed states [57,
58] may be able to serve as initial states.

Product-state protocol: A fraction Sα/(Nn) of the
qubits are prepared in |α+〉, for each of α = x, y, z.
The state exhibits property (i) because every σtot

α has
a subextensive standard deviation in every short-range-
correlated state (App. B). The state’s satisfaction of con-
dition (ii) was checked numerically.

Soft-measurement protocol: For motivation, we return
to the grand canonical problem. One can fix Etot and
N tot by measuring the total energy, then the total parti-
cle number. One could analogously, in the noncommut-
ing problem, measure Htot, then σtot

x , then σtot
y , then

σtot
z . But the y and z measurements would disturb the x

and y components. The projective measurements must
be “softened.” We define a soft measurement as having
two properties, (a) peaking and (b) mild disturbance: (a)
Suppose that σtot

α is measured softly, yielding outcome

S̃α. Suppose that σtot
α is then measured strongly. The

outcome must have a high probability of lying close to
S̃α. (b) Suppose that σtot

α is measured strongly, then
some other σtot

α′ is measured softly, and then σtot
α is mea-

sured strongly again. The final measurement must have a
high probability of yielding the first measurement’s out-
come. The soft measurement must scarcely disturb σtot

α .
We formalize soft measurements in App. C, using a

positive operator-valued measure (a mathematical model
for a generalized measurement [59]) with a binomial en-
velope. Similar measurements have been implemented
via weak coupling of system and detector [60, Eq. (22)].
The soft measurements’ “peaking” property determines
the protocol’s Sα’s. Mild disturbance ensures that the
global charges have small standard deviations, or prop-
erty (i). This property is checked numerically, at infi-
nite temperature, in App. D. Condition (ii) was checked
numerically. Appendix E reconciles Ineq. (9) with the
a.m.c. subspace’s original definition [7].

I C. Evolution

The whole system has been prepared in some state in
an a.m.c. subspace M. The chain is now evolved under
Htot. Numerical simulations imply that a time ∼ Nn/J
suffices for distinguishing the NATS from the canonical
prediction. The interaction hops spin quanta between
sites. The evolution is intended to prepare the chain in an

a.m.c. ensemble, the noncommuting analog of the micro-
canonical ensemble: Let PM denote the projector onto
M. The a.m.c. ensemble is defined as PM/Tr(PM) [7].
Tracing out the bath from PM/Tr(PM) was proved an-
alytically to yield a system-of-interest state close to the
NATS [7].

I D. Readout

We aim to test experimentally the analytical predic-
tion in [7]. Let ρS denote the long-time state of S. We
posit that most local observables O end with expectation
values given by the NATS prediction (3). Equations (4)
and (5) determine β and the µα’s.

If the system is hot and the effective chemical poten-
tials are small, β and the µα’s can be calculated per-
turbatively (App. F). Loosely speaking, the assumptions
are

√
Nn |β|J,

√
Nn

∑
α

µ2
α |β|,

|β|∑α µ
2
α

J
� 1. (10)

More-precise forms for the constraints depend on bound-
ary conditions and appear in App. F. The inverse tem-
perature evaluates to

β =
−Etot

3(2Nn− 3)J2
+O2 . (11)

O2 stands for “terms of second order in the small param-
eters in (10).” The effective chemical potentials evaluate
to

µα = −3(2Nn− 3)

Nn

SαJ
2

Etot
+O2 . (12)

In the thermodynamic limit, H int drops out of the pre-
diction (3), as discussed in the introduction. If all S ob-
servables O have NATS expectation values, S thermalizes
to the NATS state (2). Outside the thermodynamic limit,
noncommutation may prevent ρS from reaching ρNATS

precisely [7]. The distance between the states was quan-
tified with the relative entropy,

D(ρS||ρNATS) = log(ρS[log ρS − log ρNATS]). (13)

Logarithms are base-e throughout this paper. The rel-
ative entropy quantifies the accuracy with which ρS can
be distinguished from ρNATS, on average, in a binary hy-
pothesis test [59]. The relative entropy (13) was pre-
dicted to decline as the number N of systems grows [7]:

D (ρS||ρNATS) ≤ const.√
N

+ const. (14)

This scaling can be checked with quantum state tomog-
raphy [61] in the finite-size experiments feasible today.
We detail the tomographic process in App. G. Numeri-
cal simulations point to a scaling close to (14) (Sec. II).
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The constant term in (14) comes from the charges’ non-
commutation. The constant depends on the parameters
that quantify how much the definition of “microcanonical
subspace” is relaxed to includeM. The larger the whole
system, the better the (Qtot

α /N)’s commute, so the less
the definition needs relaxing, so the greater the probabil-
ity that some M corresponds to a smaller constant.

II. NUMERICAL SIMULATIONS

We numerically simulated the experimental protocol
via direct calculation. The spin chain’s length varied
from Nn = 6 to 14 qubits. The first two qubits served
as S, without loss of generality due to periodic boundary
conditions.

We followed the first state preparation protocol
in Sec. I: The first six qubits were prepared in
|x+〉|z+〉|x−〉|z−〉|x−〉|z+〉; and the rest of the qubits,
in copies of |z−〉|z+〉. Hence the total charges had the
expectation values Sx = −1, Sy = 0, and Sz = 1.

The state evolved under the Hamiltonian (8) for a
time t = 2Nn, wherein J = 1. The exponential time
sharpens the distinction between the NATS and canon-
ical predictions. However, a time t ∼ Nn suffices. Usu-
ally, when simulating charge-conserving evolution, one
represents the Hamiltonian as a matrix relative to an
eigenbasis shared with the charges. The matrix is block-
diagonal, simplifying calculations. Here, the charges σtot

α

share no eigenbasis, due to their noncommutation. Hence
Htot does not block-diagonalize in terms of an eigenba-
sis shared by the charges, and calculations do not sim-
plify accordingly. Relatedly, calculating the NATS’s β
and µα’s from Eqs. (4) and (5) numerically would cost
considerable computation. Four matrix-containing equa-
tions must be solved from four unknowns. Hence the
parameters were calculated analytically, from analogs of
Eqs. (11) and (12) that follow from periodic bound-
ary conditions (App. F). Using the analytics requires
us to simulate high, though finite temperatures and
low, though nonzero, µα’s. Extensions to |T | & 0 and
|µα| � 0 may be facilitated by, e.g., techniques in [62, 63].
The calculations are correct to first order in the small pa-
rameters in Eq. (10).

The final system-of-interest state ρS was compared to
the NATS prediction (2), to the canonical prediction (1),

and to a grand canonical state ρGC ∝ e−β(HS−µzσS
z )

that follows from ignoring the conservation of two non-
commuting charges. The canonical and grand canonical
comparisons were modeled on the comparison to micro-
canonical and grand canonical predictions in the original
GGE studies [14, 15]. The canonical state’s β equals the
NATS’s to first order in the dimensionless parameters
[Eq. (10)]. The more-precise versions of inequalities (10)
(App. F) were satisfied: Each small parameter was an
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FIG. 2: Distances from the long-time state to
thermal states: A chain of qubits subject to periodic
boundary conditions was simulated numerically. The first
preparation protocol and the evolution in Sec. I thermalized
a two-qubit system S of interest to a long-time state ρS.
Plotted is the relative-entropy distance [Eq. (13)] from ρS to
each of three thermal states: the NATS [Eq. (2)] (blue dots),
the canonical state (red squares), and a grand canonical

state ∝ e−β(H
S−µzσS

z ) (green triangles). The NATS theory
predicts ρS with greater accuracy, which grows with the
spin-chain size, for finite systems. The dashed line
represents the best polynomial fit. Entropies are expressed
in units of nats (not to be confused with the NATS:
logarithms are base-e).

order of magnitude less than 1.1

Figure 2 shows the relative entropies. The blue dots
show D(ρS||ρNATS); the red squares, D(ρS||ρcan); and
the green triangles, D(ρS||ρGC). The NATS theory pre-
dicts ρS with greater accuracy, which grows with the spin
chain.

The dashed line shows the best polynomial fit, which
scales as approximately N−5/2. This fit merits compari-
son with the right-hand side of Eq. (14). As the system
size N grows, the best fit shrinks more quickly than the
∼ N−1/2 prediction in [7]. This contrast suggests two
possibilities: (i) A bound tighter than that in [7] can be
proved. (ii) “Transients,” such as ∼ N−5/2, dominate
the scaling at small system sizes. The transients vanish
quickly as N grows, and ∼ N−1/2 dominates the scaling
at large system sizes.

As the whole system grows, the NATS, grand canoni-
cal, and canonical predictions appear to converge. On the
right-hand side of Fig. 2, the blue circle, green triangle,
and red square clump close together. This converge is be-
lieved to result from the largeness of T and the smallness

1 One exception arises at small system sizes: When Nn = 6, 8,
two small parameters equal 0.667, 0.500 < 1.
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of the µα’s. When the temperature is high, all thermal
ensembles resemble the maximally mixed state, 1/2Nn.
The predictions are expected to separate as T falls and
the µα’s grow.

In experiments, a Hamiltonian close to have

the Heisenberg form
∑
α σ

(j)
α σ

(j+1)
α can suffer from

anisotropies [49]. Appendix H demonstrates our proto-
col’s robustness with respect to realistic anisotropies.

III. DISCUSSION

We have formulated and simulated an experimental
protocol for thermalizing a quantum many-body sys-
tem to the NATS. The protocol holds promise for ul-
tracold atoms, trapped ions, quantum dots, nitrogen-
vacancy centers, and NMR. This work initiates a bridge
from the abstract, idealized NATS theory of QI-theoretic
thermodynamics to many-body physics: We introduce
noncommutation—a key feature of nonclassicality—of
charges into condensed matter and AMO physics. Ex-
tensions to high-energy physics beg to be realized. Be-
low, we contrast the NATS with the GGE. Similarly, in
App. A, we detail how noncommuting charges invalidate
predictions by the ETH. However, Deutsch’s original ar-
gument for studying the ETH provides extra motivation
for studying the NATS (App. I). Then, we present op-
portunities for future research.

The GGE is an ensemble to which quantum systems
equilibrate if extensively many nontrivial charges are
conserved [14–16]. Our prediction lies outside existing
GGE studies for three reasons. First, GGE studies have
not emphasized noncommutation (though noncommut-
ing charges have now appeared in [64]). Second, the GGE
was designed for integrable Hamiltonians. Our Hamilto-
nian is nonintegrable, because we study thermalization.
Third, the charges conserved in GGE problems tend not
to equal sums of local charges. Our globally conserved
charges do, in the spirit of the textbook problem reviewed
in the introduction. We maintain this spirit to emphasize
that beginning with a textbook problem and introduc-
ing the minimal noncommutative tweak unmoors conven-
tional expectations, as explained in the paragraph above
Eq. (2). Our work moors this nonclassical thermalization
to an experimental protocol and numerical simulations.

This paper opens up several opportunities for fu-
ture research. In condensed-matter, AMO, and high-
energy physics have recently emerged toolkits for study-
ing many-body thermalization: quantum-simulator ex-
periments [32, 36, 39, 42, 45], the ETH [10–12], random
unitary circuits [65–68], the GGE [14, 15, 46], and out-
of-time-ordered correlators [69]. These toolkits should
and can be generalized to accommodate noncommuting

charges, now that such charges have been imported from
QI-theoretic thermodynamics into many-body physics.

Furthermore, these frameworks can be leveraged to ex-
plore noncommutation’s effects on thermalization. Con-
straining dynamics, noncommutation might slow the
transport of energy, information, and/or charges. Hence
noncommutation might enhance storage and memory.
Additionally, noncommutation underlies quantum error
correction, quantum cryptography, and other applica-
tions. Noncommutation might advance information pro-
cessing in materials. Furthermore, group theory struc-
tures high-energy physics. Non-Abelian groups therein
might give rise to NATS physics.

The thermodynamic limit, too, merits study. We fo-
cus on experimentally realizable systems, of finite size N .
Figure 2 suggests that, as the whole system grows, the
canonical prediction’s accuracy grows. How much the
NATS prediction outperforms the canonical as N → ∞
remains an open question.

Degeneracies suggest more questions: The ETH eluci-
dates how quantum many-body systems thermalize un-
der nondegenerate Hamiltonians. Conserved charges in-
troduce degeneracies, which can affect thermodynamic
ensembles. We address degeneracy through the mi-
crocanonical lens of [7]: Noncommutation can prevent
the charges from sharing an eigenspace. No degener-
ate microcanonical subspace necessarily exists. The mi-
crocanonical subspace was therefore generalized to the
a.m.c. subspace [7]. We have proposed protocols for
preparing a global system in an a.m.c. subspace. This
QI-thermodynamic approach to degeneracy should be
complemented with a many-body-physics approach.

ACKNOWLEDGMENTS

The authors are grateful to many people for illumi-
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Appendix A PROTOCOL’S INEQUIVALENCE TO THERMALIZATION UNDER A HAMILTONIAN
THAT HAS ONLY U(1) SYMMETRY

One might worry that our protocol’s final state could be predicted without the NATS theory, that the NATS
adds nothing to our knowledge of thermalization. Prima facie, the prediction seems to require knowledge of only
the ETH and thermalization under U(1)-symmetric Hamiltonians. The latter thermalization has been studied in,
e.g., [67, 68]. A U(1)-symmetric qubit Hamiltonian conserves σtot

z . The Hamiltonian is equivalent, via a Jordan-
Wigner transformation, to a Hamiltonian that conserves particle number. Hence systems thermalize to the grand
canonical ensemble under U(1)-symmetric evolution. This thermalization, we show, is inequivalent to our protocol’s
thermalization: Justifiably predicting our protocol’s final state requires knowledge of the NATS. Afterward, we present
three more reasons for the inequivalence of thermalization to the NATS and thermalization under a U(1)-symmetric
Hamiltonian: First, microscopic dynamics distinguish the two thermalization processes. Second, thermalization to the
NATS is inequivalent to thermalization to the grand canonical ensemble just as thermalization to the grand canonical
state is inequivalent to thermalization to the canonical state. Third, our thermalization protocol and thermalization
to the grand canonical state lead to thermal states whose group-theoretic properties differ.

A brief review of the ETH is in order [10–13]. The ETH governs a chaotic quantum many-body system evolving
under a nondegenerate Hamiltonian Htot =

∑
mEm|m〉〈m|. Suppose that Htot conserves no nontrivial charges. Let

O denote a local observable. A matrix with elements Omn represents O relative to the energy eigenbasis. The
diagonal elements Omm vary little with m, according to the ETH. Furthermore, off-diagonal elements Om(n 6=m) are
exponentially small in the system size. The ETH implies ergodicity, thermalization to a microcanonical (or canonical)
expectation value [70]. In many studies, Htot conserves a charge, such as σtot

z . The ETH is justified within a charge
sector.

First, we elucidate why our protocol’s final state appears predictable with just knowledge of the NATS and of
thermalization under U(1)-symmetric Hamiltonians. Imagine learning our protocol’s initial state, ρ, and Hamiltonian,
Htot. Imagine having to predict the final state’s form without knowing the NATS theory. One might reason as follows:
Htot has SU(2) symmetry. σtot

x , σtot
y and σtot

z generate SU(2). Hence the evolution conserves 〈σtot
α 〉 = Tr (ρσtot

α ) for

all α = x, y, z. The expectation values form a vector (〈σtot
x 〉 ,

〈
σtot
y

〉
, 〈σtot

z 〉) ≡ rr̂. The coordinate system can be

transformed such that r̂ coincides with the new z-direction, ẑ′. The transformation conserves Htot. In this reference
frame, only 〈σtot

z′ 〉 6= 0. Furthermore, 〈σtot
z′ (t)〉 remains constant. The thermalization therefore appears, prima facie,

identical to thermalization under a U(1)-symmetric Hamiltonian. One might therefore predict that the system of
interest thermalizes to a grand canonical state in this reference frame. Knowing the ETH, one might predict Eq. (3),
wherein

∑
α µαQα = µz′σ

tot
z′ , despite misrepresenting the microscopic dynamics (see below). One could extrapolate

the ETH to reconstruct the NATS prediction. Without the NATS theory, however, this prediction would have even
less justification than most ETH claims. (The ETH remains a hypothesis. Analytical support for the ETH remains
under construction.)

The ETH implies thermalization when the initial state’s support lies on a small microcanonical window of energy
levels. Consider the extension of the ETH to the grand canonical ensemble. The Hamiltonian shares an eigenbasis with
the particle-number operator. The extension is justified when the initial state’s weight lies on a small microcanonical
window of shared eigenstates. Now, consider extending the ETH to thermalization under a Hamiltonian that conserves
noncommuting charges Qtot

α . One would näıvely expect the extension to be justified when the initial state’s support
lies on a small microcanonical window of eigenstates shared by Htot and all the Qtot

α ’s. Earlier studies of thermalization
in the presence of U(1) symmetry would support the extension. But the Qtot

α ’s do not necessarily share eigenstates,
as they fail to commute. Hence an extension of the ETH seems impossible to justify. . . unless the notion of a
microcanonical subspace is generalized to an approximate microcanonical subspace. This generalization forms a
cornerstone of the NATS theory [7]. Hence the NATS theory is necessary for justifiably predicting the state to which
our system thermalizes. This paper shows that the prediction is accurate for finite-size spin chains evolving under
Eq. (8).

NATS thermalization is inequivalent to thermalization under a U(1)-symmetric Hamiltonian for three more reasons.
First, under U(1) symmetry, just two quantities hop between subsystems: energy and quanta of one component of
angular momentum. Quanta of all three components of the angular momentum—charges that fail to commute with
each other—hop during thermalization to the NATS. One misrepresents the microscopic dynamics when attempting
to reduce NATS thermalization to thermalization under a U(1)-symmetric Hamiltonian.

The attempt’s failure parallels the failure to reduce grand canonical thermalization to canonical thermalization.
The grand canonical state is ∝ e−β(H−µN), wherein H denotes a Hamiltonian, N denotes a particle-number operator,
and µ denotes a chemical potential. One can define an effective Hamiltonian H̃ := H−µN . The grand canonical state

will look identical to a canonical state, ∝ e−βH̃ . But this definition cannot reduce grand canonical physics to canonical
physics. During thermalization to the canonical state, subsystems exchange only energy. During thermalization to the
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grand canonical state, subsystems exchange energy and particles. The very existence of the name “grand canonical”
implies that the energy-and-particle problem differs significantly from the canonical problem and deserves independent
consideration. Analogously, one can redefine the z-axis such that the NATS state in (3) looks identical to the grand
canonical ensemble. But this redefinition cannot reduce NATS thermalization to grand canonical, just as a definition
cannot reduce grand canonical to canonical.

Finally, if the Hamiltonian has only U(1) symmetry, the thermal state is proportional to an exponential that
contains a Hamiltonian that has only U(1) symmetry. The NATS contains a Hamiltonian that has a non-Abelian
symmetry. The two states have different group-theoretic properties.

Appendix B IN EVERY SHORT-RANGE-CORRELATED STATE, EACH TOTAL SPIN COMPONENT
HAS A SUBEXTENSIVE STANDARD DEVIATION.

Consider an arbitrary short-range-correlated state of correlation length ξ. Let 〈O〉 denote the expectation value of
an observable O in that state. By assumption,〈

σ(j)
α σ(j′)

α

〉
−
〈
σ(j)
α

〉〈
σ(j′)
α

〉
∼ e−|j−j′|/ξ . (B1)

We have set the lattice spacing to one. Let us calculate each term in the standard deviation of σtot
α ,√

〈(σtot
α )2〉 − 〈σtot

α 〉2 . (B2)

The first term has the form

〈
(σtot
α )2

〉
=

〈Nn∑
j=1

σ(j)
α

 Nn∑
j′=1

σ(j′)
α

〉 =

〈
Nn∑
j=1

(σ(j)
α )2

〉
+
∑
j 6=j′

〈
σ(j)
α σ(j′)

α

〉
. (B3)

The first term on the right-hand side of Eq. (B3) simplifies as〈
Nn∑
j=1

(σ(j)
α )2

〉
=

Nn∑
j=1

〈
1
⊗Nn
2

〉
= Nn. (B4)

The second term on the right-hand side of Eq. (B3) simplifies under assumption (B1):∑
j 6=j′

〈
σ(j)
α σ(j′)

α

〉
∼
∑
j 6=j′

〈
σ(j)
α

〉〈
σ(j′)
α

〉
+
∑
j 6=j′

e−|j−j
′|/ξ. (B5)

The second term has significant contributions only from subterms in which j′ lies within ξ of j. Hence the e−|j−j
′|/ξ ∼

e−ξ/ξ = const. A constant number of such subterms exist. Hence the right-hand side of Eq. (B5) can be approximated
with ∑

j 6=j′

〈
σ(j)
α σ(j′)

α

〉
∼
∑
j 6=k

〈
σ(j)
α

〉〈
σ(j′)
α

〉
+Nn. (B6)

Substituting from Eqs. (B4) and (B6) into the right-hand side of Eq. (B3) yields〈
(σtot
α )2

〉
∼ Nn+

∑
j 6=j′

〈
σ(j)
α

〉〈
σ(j′)
α

〉
. (B7)

Let us estimate the second term in (B2):

〈
σtot
α

〉2
=

〈
Nn∑
j=1

σ(j)
α

〉2

=

Nn∑
j=1

〈
σ(j)
α

〉2

=

Nn∑
j=1

〈
σ(j)
α

〉 Nn∑
j′=1

〈
σ(j′)
α

〉 (B8)

=

Nn∑
j=1

〈
σ(j)
α

〉2

+
∑
j 6=j′

〈
σ(j)
α

〉〈
σ(j′)
α

〉
(B9)

∼ Nn+
∑
j 6=j′

〈
σ(j)
α

〉〈
σ(j′)
α

〉
. (B10)
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We have approximated the first term with (number of terms)(operator norm of σ
(j)
α ). Let us substitute from Eqs. (B7)

and (B10) into Eq. (B2). The
∑
j 6=k terms cancel exactly, leaving√

〈(σtot
α )2〉 − 〈σtot

α 〉2 ∼
√
Nn. (B11)

Appendix C SOFT MEASUREMENT

This appendix details the soft measurements introduced in Sec. I. We formalize soft measurements in App. C 1.
Appendix C 2 provides physical intuition about the preparation procedure that relies on soft measurements.

C 1 Formalization of soft measurements

We formalize soft measurements with a positive operator-valued measure (POVM). POVMs model generalized
measurements in QI theory [59]. A POVM consists of positive operators M` > 0, called Kraus operators. They satisfy

the completeness relation
∑
`M

†
`M` = 1. Measuring the {M`} of a state ρ has a probability Tr(M†`M`ρ) of yielding

outcome `. The measurement updates ρ to M`ρM
†
` /Tr(M†`M`ρ). Let PSαα denote the projector onto the eigenvalue-Sα

eigenspace of σtot
α . A soft σtot

α measurement has the form {MSα
α }. The outcome Sα labels the Kraus operators,

MSα
α =

∑
S̃α=−Nn,−Nn+2,...,Nn−2,Nn

√
fNn(Sα, S̃α) P S̃αα . (C1)

Outputting Sα, the measurement projects the state a little onto each of the eigenspaces in superposition. How much
does the measurement project onto the eigenspace associated with some eigenvalue S̃α? The amount depends on the
amplitude fNn(Sα, S̃α). The amplitude must maximize where Sα = S̃α, to satisfy the peaking requirement (Sec. I).
The binomial distribution suggests itself. We present the distribution, then derive and analyze it:

fNn(Sα, S̃α) =

(
Nn

1
2 (Nn+ Sα)

)[
1

2

(
1 +

S̃α
Nn

)] 1
2 (Nn+Sα) [

1

2

(
1− S̃α

Nn

)] 1
2 (Nn−Sα)

. (C2)

We define 00 ≡ 1. Numerics confirm that the POVM (C1) satisfies the mild-disturbance condition (ii) in Sec. I.
The envelope (C2) is constructed as follows. We semiclassically model each qubit as pointing upward or downward

along the α-axis. We formulate the binomial probability that an (Nn)-qubit chain has a magnetization Sα, if the

average-over-trials magnetization equals S̃α. Let n↑ and n↓ denote the numbers of upward- and downward-pointing
qubits in some configuration. Let p↑ denote the probability that a given qubit points upward and p↓, the probability

that the qubit points downward. We must solve for each of these quantities in terms of Sα, S̃α, and Nn. As
Nn = n↑ + n↓ and Sα = n↑ − n↓, n↑ = 1

2 (Nn + Sα), and n↓ = 1
2 (Nn − Sα). On average, S̃α = (p↑ − p↓)Nn qubits

point upward. By normalization, p↓ = 1− p↑. Hence p↑ = 1
2

(
1 + S̃α

Nn

)
, and p↓ = 1

2

(
1− S̃α

Nn

)
. The binomial function

has the form fNn(Sα, S̃α) =
(
Nn
n↑

)
(p↑)

n↑(p↓)
n↓ . Substituting in yields Eq. (C2).

As Nn→∞, the binomial approaches a Gaussian. The Gaussian has a mean of 〈Sα〉 = S̃α and a standard deviation
of

∆ =
1

2

√√√√Nn

(
1 +

S̃α
Nn

)(
1− S̃α

Nn

)
∼
√
Nn. (C3)

Hence

lim
Nn→∞

fNn(Sα, S̃α) = exp

(
− (Sα − S̃α)2

2∆2

)/√
2π∆2 . (C4)

Prima facie, Sα and S̃α appear to have been swapped relative to their natural roles: Sα was defined as the
“expected” σtot

α value in Sec. I. But S̃α determines the mean spin in Eq. (C2). This swap impacts the function’s

behavior little: fNn(Sα, S̃α) peaks at Sα = S̃α. The peak grows higher and narrower as Nn grows. As Nn → ∞,

the envelope approaches a Gaussian symmetric under Sα ↔ S̃α [Eq. (C4)]. Normalization motivates the swap: The
POVM (C1) must satisfy the completeness condition

∑
Sα

(MSα
α )†MSα

α = 1. The POVM does because the envelope

is normalized as
∑
Sα
fNn(Sα, S̃α) = 1.
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C 2 Physical intuition about the soft-measurement preparation procedure

Suppose that the spin chain begins in a random state. Measuring Htot with decent precision projects the chain’s
state approximately onto an energy eigenspace. This eigenspace is larger than the a.m.c. subspace, M. The soft x
measurement collapses the state a little, shrinking the state’s support. The soft y and z measurements shrink the
support further. After the final measurement, at least most of the state’s support lies inM, as quantified in App. E.
Figure 3 sketches the relationships amongst the subspaces.

Htot
σtot

x

σtot
y

σtot
z

M
<latexit sha1_base64="wcBFi8DgPFhUePE/Ke1N1uT8niI=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZcFN26UCvYB06Fk0kwbmkmGJCOUoZ/hxoUibv0ad/6NmXYW2nogcDjnXnLuCRPOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXog15UzQtmGG016iKI5DTrvh5Cb3u09UaSbFo5kmNIjxSLCIEWys5PdjbMYE8+xuNqjW3Lo7B1olXkFqUKA1qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqi6yBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0mnUvYt64+Gy1rwv6ijDCZzCOXhwBU24hRa0gYCEZ3iFN8c4L86787EYLTnFzjH8gfP5A4d0kXM=</latexit>

FIG. 3: Sketch of subspaces: The black, outermost line represents an eigenspace of the total Hamiltonian, Htot. Inside lies
the approximate microcanonical subspace, M, represented by the shaded shape. M generalizes the microcanonical subspace
to noncommuting exchanged charges. The total-spin components σtot

α=x,y,z have eigenspaces that largely coincide with M.

Let us illustrate how each soft measurement partially collapses the spin chain’s state. Consider a toy system of
Nn = 2 qubits whose σtot

z and σtot
x are measured softly. Suppose that the measurements yield Sz, Sx = 0. The

conditioned soft z measurement projects the state with P 0
z ∝ M0

z , by Eqs. (C1) and (C2). P 0
z projects onto the

eigenvalue-0 eigenspace of σtot
z . This eigenspace is spanned by the singlet |sz〉 := 1√

2
(|z+, z−〉 − |z−, z+〉) and the

entangled triplet |tz〉 := 1√
2

(|z+, z−〉 + |z−, z+〉). That is, P 0
z = |sz〉〈sz| + |tz〉〈tz|. Similarly, the conditioned x

measurement projects the state with P 0
x = |sx〉〈sx|+ |tx〉〈tx|.

Onto what subspace does the sequence of approximate measurements project? Let us express P 0
x in terms of the

z-type singlet and triplets. The singlet relative to any axis equals the singlet relative to every other, to within a
global phase: |sx〉 = (phase)|sz〉. The x-type entangled triplet decomposes as |tx〉 ∝ 1√

2
(|z+, z+〉 − |z−, z−〉). Hence

P 0
xP

0
z = |sz〉〈sz|. The approximate σtot

z measurement collapses the state onto a two-dimensional subspace; and the
approximate σtot

x measurement, onto a one-dimensional subspace.

Appendix D STANDARD DEVIATIONS IN GLOBAL CHARGES σtot
α AFTER A SEQUENCE OF SOFT

MEASUREMENTS

Section I B and App. C introduce the soft-measurement protocol for preparing a global state ρtot in an a.m.c.
subspace. ρtot should exhibit property (i): In ρtot, every global charge σtot

α should have a standard deviation that
grows with the system size, Nn, no more than linearly. The need for slow scaling motivated soft measurements’
“mild-disturbance” property. Here, we numerically check the standard-deviation scaling at infinite temperature.

Setting T = ∞ obscures the distinction between the NATS and other thermodynamic ensembles as measured in
Sec. II. However, this study offers two benefits: First, these initial results motivate detailed numerics, at large system
sizes, outside the scope of this paper. Second, T = ∞ will not necessarily hinder future thermodynamic studies of
noncommuting charges.

We checked the standard deviations with the following protocol:

1. Prepare the global system in a random pure initial state [71]: Form a superposition of all the σz product states.
Choose each amplitude’s real part according to the standard normal distribution. Choose the amplitude’s
imaginary part, independently, according to the same distribution. Normalize the state.

2. Measure σtot
x softly.

3. Measure σtot
y softly.
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4. Measure σtot
z softly.

5. Compute the standard deviation

√
〈(σtot

α )2〉 − 〈σtot
α 〉2 for every α.

6. Perform steps 1–5 for each of 100 random initial states.

7. For each α, average the standard deviation

√
〈(σtot

α )2〉 − 〈σtot
α 〉2 over the states.

Figure 4 shows the state-averaged standard deviations plotted against the global system size, Nn. The curves show
the best fits of the form (const.)(Nn)const.. If α = x, y, the exponents are 0.277, 0.381 < 0.5, as required in property (i)
of Sec. I B.

If α = z, the exponent lies slightly above 0.5, at 0.566. The reason is, σtot
z was softly measured last: In another

study we softly measured σtot
z , then σtot

x , then σtot
y . The last-measured charge scales with the greatest exponent, 0.612.

However, the second-measured charge, σtot
x , scales with the least exponent. In contrast, in Fig. 4, the first-measured

charge, σtot
x scales with the least exponent. We expect this discrepancy, as well as the slightly-above-0.5 exponent, to

disappear as the global system grows: Large numbers promote internal averaging.
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FIG. 4: Standard deviations in global charges σtot
α after a sequence of soft measurements: Each standard

deviation has been averaged over 100 random initial global states, which mimic infinite-temperature states. The curves depict
the best fits of the form (const.)(Nn)const..

Appendix E PARAMETERIZATION OF THE APPROXIMATE MICROCANONICAL SUBSPACE

An a.m.c. subspaceM is defined in terms of five small parameters [7]. They govern the constants in Ineq. (14), the
bound on the distance between ρS and the NATS. The constants’ forms are calculated partially in [7]. Calculating
them completely would require experiments or extensive analytics. We review the a.m.c. subspace’s definition in
Sec. E 1. In Sec. E 2, we identify parameter values suited to our protocol. We focus on the soft-measurement state
preparation for concreteness.

E 1 Definition of the a.m.c. subspace

M is defined in terms of two conditions [7]: (i) Every state in M has a fairly well-defined value of each σtot
α . (ii)

Consider state whose σtot
α has a fairly well-defined value for every α. Most of the state’s support lies in M. These

conditions are quantified in terms of small parameters δ, η, δ′, η′, ε & 0.
(i) Let ω denote any whole-system state supported in just M. In ω, every total charge has a fairly well-defined

value: Consider measuring any σtot
α . The measurement has a high probability of yielding an outcome close to the

“expected value” Sα. (The notation vα = Sα
N is used in [7].) Consider a narrow strip of σtot

α eigenvalues centered
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on Sα. Recall that the system-of-interest charge σ
(j)
α + σ

(j+1)
α has a spectral diameter of two. The strip is therefore

chosen to extend a distance 2ηN on either side of Sα. Consider the σtot
α eigenvalues in [Sα − 2ηN, Sα + 2ηN ]. They

correspond to eigenspaces whose direct sum is projected onto by Πη
α. A σtot

α measurement has a probability Tr(ωΠη
α)

of yielding a value in this interval. The probability must be at least 1− δ:
supp(ω) ⊂M ⇒ Tr(ωΠη

α) ≥ 1− δ ∀α. (E1)

(ii) Let ω′ denote any state for which measuring any σtot
α has a high probability of yielding an outcome close to the

expected value, within 2η′Nn of Sα. Most of the support of ω′ lies in M—at least a fraction 1− ε. As PM denotes
the projector onto the a.m.c. subspace,

Tr
(
ω′Πη′

α

)
≥ 1− δ′ ∀α ⇒ Tr(ω′PM) ≥ 1− ε. (E2)

E 2 Parameter values suited to the soft-measurement preparation procedure

We have freedom in choosing the parameters’ values: We have specified a procedure for preparing a global state
ρtot that has substantial support on an a.m.c. subspaceM. In fact, ρtot might have much support on each of multiple
a.m.c. subspaces. Hence we may be able to specify one of multiple possible sets of parameter values.

Three principles guide our choice: informativeness, tradeoffs, and the soft measurement’s form. First, some choices
of parameters are less informative than others. The greater the parameters, the less an a.m.c. subspaceM resembles
a microcanonical subspace, the less the global system is expected to thermalize internally, and the looser the bound on
D(ρS||ρNATS) is expected to be. Yet the parameters cannot be arbitrarily small, because they trade off, second. For
example, the lesser the η, the greater δ will tend to be, by the inequality in (E1). Third, the soft measurement’s form
points to a natural choice of parameter values. For example, ≈ 68% of a Gaussian’s support lies within a standard
deviation of its mean. Hence we will choose δ′ = 1 − 0.68. This choice is not unique but is suggested by the soft
measurement’s form.

After the procedure, measuring any σtot
α likely yields a value within a standard deviation ∆ of Sα. The standard

deviation scales as ∆ ∼
√
Nn. Hence the procedure prepares an instance of the ω′ in (E2), for 2η′N = (const.)

√
Nn.

Rearranging yields the first small parameter,

η′ = (const.)/
√
N . (E3)

We have incorporated
√
n =
√

2 into the constant. The spin chain is large, so η′ is small, as desired.
We choose δ′ by calculating the left-hand side of the leftmost inequality in (E2), the probability that measuring a

σtot
α of ω′ yields a value within ∆ of Sα. We integrate fNn(Sα, S̃α) across a region, centered on S̃α = Sα, of half-width

∆:

1− δ′ ≤
∫ Sα+∆

Sα−∆

dS̃α fNn(Sα, S̃α). (E4)

We approximate fNn with the Gaussian (C4). A Gaussian is well-known to have 68% of its weight within a standard
deviation of its mean. Hence we choose 1− δ′ = 0.68, or

δ′ = 0.32 . (E5)

δ′ � 1, as desired.
We have chosen values for two of the five parameters that define an a.m.c. subspaceM, η′ and δ′. Let us turn to η,

δ, and ε. In [7], c denotes the number of non-Hamiltonian charges. Theorem 4 in [7, Suppl. Inf.] presents a condition
under which M is known to exist. The condition governs the small parameters and the number N of subsystems:
For every ε > (c + 1)δ′ > 0, η > η′ > 0, δ > 0, and all great-enough N , “there exists an (ε, η, η′, δ, δ′)-approximate
microcanonical subspace M [. . . ] associated with [. . . ] the approximate expectation values” Sα. An M might exist
under other conditions. But these known conditions motivate choices of ε and η. The theorem suggests choosing

η > η′ = (const.)/
√
N. . (E6)

By Eq. (E4) and c = 3,

ε > (c+ 1)δ′ = 1.28 , (E7)
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Though ε > 1 contradicts the spirit of the a.m.c. subspace’s definition, the inequality does not contradict the letter.
We have chosen values for all the parameters except δ. The soft-measurement procedure underdetermines δ. For

inspiration for our choice of δ, we turn to the a.m.c. subspace’s definition, (E1) and (E2). δ and δ′ play analogous
roles. Hence we choose

δ = δ′ = 0.32 . (E8)

Appendix F CALCULATION OF THE INVERSE TEMPERATURE β AND THE EFFECTIVE
CHEMICAL POTENTIALS µα

Let us derive Eqs. (11) and (12). We index such that S consists of qubits j = 1, 2, . . . , n. This choice is for
convenience, and S lies far from the boundaries. We assume that the temperature is high and the chemical potentials
are low: Calculations are to first order in the small parameters approximated in the left-hand side of Ineq. (10) and
presented precisely below [in Ineq. (F14) for closed boundary conditions and in Ineq. (F16) for periodic]. We calculate
the partition function, then β, and then the µα’s. Rewriting Eq. (8) will prove convenient:

Htot = J
∑

α=x,y,z

Nn−1∑
j=1

σ(j)
α σ(j+1)

α +

Nn−2∑
j=1

σ(j)
α σ(j+2)

α

 . (F1)

This Hamiltonian encodes closed boundary conditions. The numerical simulations (Sec. II) involve periodic boundary
conditions. We extend calculations to periodic boundary conditions at the end of the appendix.

Partition function: Let us Taylor-approximate the exponential in the NATS:

e−β(Htot−
∑
α µασ

tot
α ) = 1− βHtot + β

∑
α

µασ
tot
α +O2. (F2)

The exponential’s trace equals Z. The linear terms vanish, as Tr(σ
(j)
α ) = 0 for all α and j. Hence

Z = 2Nn +O2. (F3)

Inverse temperature: β follows from the prediction

Etot = Tr
(
Htote−β(Htot−

∑
α µασ

tot
α )
)
/Z. (F4)

We substitute in for the exponential from Eq. (F2), then invoke the trace’s linearity. Terms one and three vanish by
the Paulis’ tracelessness:

Etot = −βTr
([
Htot

]2)
/Z +O2. (F5)

Let us evaluate the trace:

Tr
([
Htot

]2)
= J2

∑
α,α′

Tr

(
Nn−1∑
j,j′=1

σ(j)
α σ(j+1)

α σ
(j′)
α′ σ

(j′+1)
α′ +

Nn−1∑
j=1

Nn−2∑
j′=1

σ(j)
α σ(j+1)

α σ
(j′)
α′ σ

(j′+2)
α′

+

Nn−2∑
j=1

Nn−1∑
j′=1

σ(j)
α σ(j+2)

α σ
(j′)
α′ σ

(j′+1)
α′ +

Nn−2∑
j=1

Nn−2∑
j′=1

σ(j)
α σ(j+2)

α σ
(j′)
α′ σ

(j′+2)
α′

)
. (F6)

Most of the terms vanish, by the Paulis’ tracelessness. In each surviving term, α = α′, j = j′, and the second Pauli

operator acts on the same qubit as the fourth. Every Pauli squares to the identity,
(
σ

(j)
α

)2

= 12, so

Tr
([
Htot

]2)
= J2

∑
α

Nn−1∑
j=1

+

Nn−2∑
j=1

 2Nn (F7)

= 3(2Nn− 3)2NnJ2. (F8)
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We substitute into Eq. (F5):

Etot = −3(2Nn− 3)βJ2 +O2. (F9)

Solving for β yields Eq. (11).
Effective chemical potentials: µα follows from the prediction

Sα = Tr
(
σtot
α e−β(Htot−

∑
α′ µα′σtot

α′ )
)
/Z. (F10)

We Taylor-approximate the exponential as in Eq. (F2), then invoke the trace’s linearity. Terms one and two vanish,
by the Paulis’ tracelessness:

Sα =

[
β
∑
α′

µα′Tr
(
σtot
α σtot

α′

)
+O2

]
/Z. (F11)

The trace evaluates to

Tr
(
σtot
α σtot

α′

)
=

Nn∑
j,j′=1

Tr
(
σ(j)
α σ

(j′)
α′

)
= Nn 2Nnδαα′ . (F12)

In the sum’s nonzero terms, the two Pauli operators collide. We substitute into Eq. (F11) and solve for µα:

µα =
Sα
Nnβ

+O2. (F13)

Substituting in for β from Eq. (11) yields Eq. (12).
Small-parameter conditions: Inequalities (10) specify loosely when our Taylor approximations hold. More-

precise forms for the conditions are presented here. The conditions follow from calculating second-order corrections,
then demanding that the corrections be much smaller than the first-order terms:√

3(2Nn− 3) |β|J,
√
Nn

∑
α

µ2
α |β|,

2

3

|β|∑α µ
2
α

J
, 6

Nn− 2

2Nn− 3
|β|J, 4

2Nn− 3

Nn
|β|J � 1. (F14)

Periodic boundary conditions: The numerical simulations (Sec. II) involve periodic boundary conditions. The
Hamiltonian has the form

Htot = J
∑
α

Nn∑
j=1

(
σ(j)
α σ(j+1)

α + σ(j)
α σ(j+2)

α

)
. (F15)

The site label j = Nn + 1 is defined as j = 1, and j = Nn + 2 is defined as j = 2. Equation (F8) changes to

Tr
(
[Htot]2

)
= 6Nn2NnJ2, so β = − Etot

6NnJ2 +O2. The µα prediction remains unchanged to first order, though not to
second-order. The small-parameter conditions become

√
6Nn |β|J, 2

3

|β|∑α µ
2
α

J
, 8|β|J � 1. (F16)

Appendix G QUANTUM STATE TOMOGRAPHY FOR INFERRING THE LONG-TIME
SYSTEM-OF-INTEREST STATE

We aim to observe that S, the n-qubit system of interest, thermalizes to the NATS. The following quantum-state-
tomography protocol suffices. A more efficient protocol, that takes advantage of the NATS’s form, might exist.

Let ~α = (α1, α2, . . . , αn) specify a product σ
(1)
α1 ⊗ σ(2)

α2 ⊗ . . .⊗ σ(n)
αn of Pauli operators. 3n such products exist. The

set of the products’ eigenbases forms a basis for the n-qubit Hilbert space. We measure each eigenbasis at the end of
each of Ntrials trials. Each measurement yields one of 2n possible outcomes, ` = 1, 2, . . . , 2n. If outcome ` obtains, the
projector Π~α

` projects the state. Each measurement has a probability p~α(`|ρS) = Tr(Π~α
` ρS) of yielding outcome `. Let

f ~α` denote the frequency with which measuring ~α yields outcome ` in our Ntrials trials. The frequency approximates
the probability with an error ∼ 1/

√Ntrials.
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From the frequencies, we estimate ρS. We can do so by solving the semidefinite program

min
ρ : ρ≥0,Tr(ρ)=1

∑
~α∈{x,y,z}n

2n−1∑
`=0

[
f ~α` − Tr(Π~α

` ρ)
]2
. (G1)

Solving this program is equivalent, in the limit of large Ntrials and so Gaussian noise, to maximizing the likelihood
function that generated the frequencies.

We can solve the program (G1) efficiently by recasting the frequencies in terms of expectation values. Knowing 2n

probabilities, we can calculate the expectation values of 2n − 1 products of Pauli operators and identity operators.

4n−1 such products exist. They have the form σ
(1)
m1⊗σ(2)

m2⊗ . . .⊗σ(n)
mn . The jth qubit’s mj = 0, x, y, z; and σ

(j)
0 = 1

(j).

Consider, for example, a system of n = 2 qubits. Suppose that we know the four probabilities p
(x,z)
±1,±1 and p

(x,z)
±1,∓1.

We can calculate three expectation values, 〈σx ⊗ σz〉, 〈σx ⊗ 1〉, and 〈1⊗ σz〉. Hence solving the program (G1) is
equivalent to solving

min
ρ : ρ≥0,Tr(ρ)=1

∑
m∈{0,x,y,z}n

{〈
σ(1)
m1
⊗ . . .⊗ σ(n)

mn

〉
− Tr

([
σ(1)
m1
⊗ . . .⊗ σ(n)

mn

]
ρ
)}2

. (G2)

The expectation values
〈
σ

(1)
m1 ⊗ . . .⊗ σ(n)

mn

〉
are calculated from the measurement data.

The program (G2) can be solved efficiently as follows [72]. First, we solve the linear inversion problem

min
ρ

∑
m∈{0,x,y,z}n

{〈
σ(1)
m1
⊗ . . .⊗ σ(n)

mn

〉
− Tr

([
σ(1)
m1
⊗ . . .⊗ σ(n)

mn

]
ρ
)}2

. (G3)

Then, we impose the positive-semidefinite and trace constraints.

Appendix H PROTOCOL’S ROBUSTNESS WITH RESPECT TO EXPERIMENTAL ERROR

In [49], a nearly isotropic Heisenberg model is effected with a Bose-Hubbard Hamiltonian in the hardcore limit.
The Hamiltonian has the form

HBH = −Jex

∑
j

[
2
(
σ

(j)
+zσ

(j+1)
−z + σ

(j)
−zσ

(j+1)
+z

)
+ ∆σ(j)

z σ(j+1)
z

]
. (H1)

Again, we have ignored factors of ~/2. Jex denotes the energy scale, and ∆ denotes the isotropy parameter. HBH

becomes an isotropic Heisenberg model when ∆ = 1. When ∆ 6= 1, angular momenta associated with different axes
hop at different rates. HBH consequently conserves only σtot

z , not σtot
x and σtot

y . An isotropy parameter of ∆ = 0.986
was achieved in the experiment.

We investigated our protocol’s robustness with respect to this error. We simulated evolution under a Hamiltonian
that resembles (H1) but that encodes next-nearest-neighbor couplings:

H̃BH = −Jex

Nn∑
j=1

(
σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y + ∆σ(j)
z σ(j+1)

z

)
+

Nn∑
j=1

(
σ(j)
x σ(j+2)

x + σ(j)
y σ(j+2)

y + ∆σ(j)
z σ(j+2)

z

) . (H2)

As in Sec. II, we simulated periodic boundary conditions. We chose for the nearest-neighbor and next-nearest-neighbor
terms to have the same ∆. We focused on a 1% anisotropy and set Jex = 1. To mitigate the error, we implemented
the scheme in [52] (Sec. I): The evolution time t = 2Nn was split into steps of duration dt = t/(3 × 2Nn + 1). After
each time step, the system underwent a 90◦ rotation. (Qubits can be rotated experimentally with microwave pulses.)
The x-axis was rotated into the y-axis, then into the old z-axis, and then returned to its original orientation. This
cycle was then repeated.

Figure 5 shows the resulting relative entropies. Each state was calculated from Htot, as though the error were
absent. For example, ρNATS continues to have the form in Eq. (2). The NATS prediction remains the most accurate,
despite the simulated experimental error.
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FIG. 5: Protocol’s robustness with respect to anisotropy: Experimental implementations of the Heisenberg
Hamiltonian (8) may involve anisotropic couplings. Evolution under the Hamiltonian (H2) was simulated with an isotropy
parameter of ∆ = 0.99, in mimicry of the experiment in [49].

Appendix I NATS ADAPTATION OF DEUTSCH’S ARGUMENT FOR STUDYING THE ETH

Deutsch’s original ETH paper [10] offers another lens through which to view our NATS protocol. The ETH
describes a closed quantum many-body system’s thermalization to a canonical state. Quantum systems were known
to thermalize to the canonical state by exchanging heat with external baths. Did the ETH not therefore recapitulate
well-known physics? No, Deutsch argued: Different mechanisms drive the two thermalization processes. Similarly,

consider placing a spin system S in a magnetic field ~B =
∑
α µαα̂ and in contact with an inverse-temperature-β bath. S

thermalizes to a state identical to the NATS, ρtriv := e−β(HS−
∑
α µασ

S
α)/ZS

NATS. This thermalization is well-understood.
Yet the NATS remains nontrivial: Different physics drives the two thermalizations, as in Deutsch’s argument. A
classical external field thermalizes spins to ρtriv. Exchanges of noncommuting charges within a closed, isolated
quantum system thermalizes spins to the NATS. As ETH thermalization merits study, so does NATS thermalization.
NATS thermalization arguably demands more, highlighting nonclassical noncommutation.
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