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The de Almeida-Thouless (AT) line is the phase boundary in the temperature–magnetic field
plane of an Ising spin glass at which a continuous (i.e. second-order) transition from a paramagnet
to a replica-symmetry-breaking (RSB) phase occurs, according to mean-field theory. Here, using
field-theoretic perturbative renormalization group methods on the Bray-Roberts reduced Landau-
Ginzburg-type theory for a short-range Ising spin glass in space of dimension d, we show that at
nonzero magnetic field the nature of the corresponding transition is modified as follows: a) for
d− 6 small and positive, with increasing field on the AT line first, the ordered phase just below the
transition becomes the so-called one-step RSB, instead of the full RSB that occurs in mean-field
theory; the transition on the AT line remains continuous with a diverging correlation length. Then
at a higher field, a tricritical point separates the latter transition from a quasi-first-order one, that
is one at which the correlation length does not diverge, and there is a jump in part of the order
parameter, but no latent heat. The location of the tricritical point tends to zero as d → 6+; b)
for d ≤ 6, we argue that the quasi-first-order transition could persist down to arbitrarily small
nonzero fields, with a transition to full RSB still expected at lower temperature. Whenever the
quasi-first-order transition occurs, it is at a higher temperature than the AT transition would be for
the same field, preempting it as the temperature is lowered. These results may explain the reported
absence of a diverging correlation length in the presence of a magnetic field in low-dimensional spin
glasses in some simulations and in high-temperature series expansions. We also draw attention to
the similarity of the “dynamically-frozen” state, which occurs at temperatures just above the quasi-
first-order transition, and the “metastate-average state” of the one-step RSB phase, and discuss the
issue of the number of pure states in either.
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I. INTRODUCTION

A. Background and motivation

A transition in a classical Ising spin glass (SG) in a magnetic field within a mean-field treatment was found by de
Almeida and Thouless (AT) [1], who showed that the mean-field solution found by Sherrington and Kirkpatrick (SK)
[2] is unstable at sufficiently low temperature T in any magnetic field h, and so the instability or transition occurs on
a line (now known as the AT line) TAT (h) in the T–h plane; the AT line passes through the critical temperature Tc
at h = 0. In a short-range Ising SG (i.e. the Edwards-Anderson [EA] model [3]), at such a transition the correlation
length and the SG susceptibility both diverge, typical of a continuous (or second order) phase transition. The AT
instability indicated that in the SK model, or within mean field theory, the symmetry under permutations of the
replicas (introduced by EA) must be broken in the phase below the AT line in nonzero as well as in zero magnetic
field. The replica-symmetry breaking (RSB) ordering in the low-temperature phase was determined by Parisi [4], and
has been proved to give the correct thermodynamic properties of the SK model [5, 6]. Among many reviews, the most
relevant to this paper are the books, Refs. [7, 8].

In the short-range models, a controversy has remained about whether the RSB picture is a correct description of the
ordered phase in each dimension d of space, at least for those d in which a transition at nonzero temperature occurs
at h = 0. The leading alternative is the scaling-droplet picture [9–11], in which in particular there is no transition
at nonzero h. Thus the question of the existence and nature of a transition in a magnetic field is important for our
understanding of the SG ordered phase, especially in realistic dimensions, say d = 3. The problem has been studied
in a number of simulations (in both the nearest-neighbor d-dimensional and one-dimensional power law models; see
for example Refs. [12–16]), and also using high-temperature series expansions [17]. Some of these works found no
divergence of the correlation length in a magnetic field in low dimensions (d < 6, and for corresponding power-laws
in one dimension), though others did find such a divergence.

The standard method of studying the effect of fluctuations around mean-field theory in short-range models is to
use a statistical field theory with an action obtained from Landau-Ginzburg theory. Perhaps surprisingly, the analysis
of the AT line (by which we will always mean at h > 0; note that the sign of h is immaterial for Ising spins) in the
short-range case within such a treatment encounters difficulties in low dimensions (d ≤ 6). In an important early
paper, Bray and Roberts (BR) [18] formulated a “reduced” action for the fluctuating modes (called “replicons”) that
remain massless on the AT line. They found that, at one-loop order, the perturbative renormalization group (RG)
flows for the two coupling constants of this theory experience runaway flows to strong coupling for d ≤ 6, so that no
RG fixed point that could describe the behavior of the AT line for d ≤ 6 could be found within perturbation theory.
They suggested that this might mean that either (i) the transition becomes first order (with no divergence of the
correlation length), or (ii) the transition is first-order even in mean-field theory, or (iii) there is no transition in a
nonzero magnetic field for d ≤ 6. The latter possibility has been used as an argument in favor of the scaling-droplet
theory (see Ref. [19] and references therein, and also the response in Ref. [20]). It is also possible to imagine unusual
non-perturbative scenarios with a second-order transition at d ≤ 6. In a later work [21], it was proposed that an RG
fixed point that arises in two-loop RG for the BR theory at d < 6 could produce a second-order transition. However,
as such a fixed point can occur only at couplings of order one, the validity of the fixed point and its survival at higher
order are not clear (even if the theory happens to be Borel summable, as it was argued to be [21]). Later still, Moore
and one of the authors (Ref. [22]; to be referred to as MR) showed that the one-loop BR flows also imply that there
should be a multicritical point on the AT line as d → 6+. Other authors have found evidence in hierarchical-lattice
models (i.e. using Migdal-Kadanoff RG) that the transition in a magnetic field is controlled by a zero-temperature
fixed point [23, 24]; such models differ drastically from the EA model [22].

In general phase-transition theory, the possibility that a transition is first-order can rarely be ruled out entirely,
and has frequently been stated to be a possible solution to the problem raised by BR. However, it was pointed out
long ago that, within a Landau theory of a SG formulated in terms of replicas, a conventional first-order transition
with positive latent heat is not possible; it cannot originate from solving such a theory [25]. The reason is that in
replica theory (including Parisi’s RSB scheme), the free energy functional in the limit of n = 0 replicas must be
maximized with respect to Parisi’s q(x) function, not minimized, and so a crossing of the free energies of extrema
of this functional would produce a latent heat that is either zero or negative; the latter is forbidden by conventional
thermodynamics.

However, there is a way to obtain a quasi-first-order transition (i.e. first order with zero latent heat) from a RSB
Landau theory. It was identified by Gross, Kanter, and Sompolinsky (GKS) [25] when they were studying SGs of
spins with either Potts or uniaxial quadrupolar symmetry in zero magnetic field. Assuming isotropic SG order (an
assumption that need not concern us here), the SG order parameter becomes a matrix Qαβ (α, β = 1, . . . , n) that is
symmetric, with Qαα = 0 for all α, as for the Ising case. Their Landau theory, that is the free energy expanded in
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powers of Qαβ , was (with slight changes of notation for consistency with the present paper)

F =
1

4
r̃
∑
α,β

Q2
αβ −

1

6
w1

∑
αβγ

QαβQβγQγα −
1

6
w2

∑
αβ

Q3
αβ

− 1

8
y
∑
αβ

Q4
αβ ; (1.1)

the terms up to the cubic order are the most general form allowed by the symmetry of the Potts and quadrupolar
models. (The quartic term with coefficient y is not the most general form; we come to that later.) Ising SGs in
zero magnetic field are usually described by the same Landau theory, except that there w2 = 0 as a consequence of
inversion symmetry in spin space, and y > 0. GKS found that for r̃ not too large and negative (i) for y ≤ 0 and
0 < w2/w1 < 1, there is a continuous transition at r̃ = r̃c = 0, but for r̃ < r̃c the Parisi function q(x) is a step function
(of x ∈ [0, 1]) instead of the continuous function familiar for the Ising spin glass in mean field theory, and (ii) for
y < 0 and w2/w1 > 1, the transition is discontinuous: q(x) is again a step function, but q(1) has a jump at r̃c, and r̃c
is now positive; there is no latent heat. In case (ii), the eigenvalues of the Hessian are strictly positive as r̃ → r̃c on
both sides of the transition, implying that the SG susceptibility and, in a finite-dimensional version, the correlation
length do not diverge at r̃c. The step function form of q(x) describes what is known as one-step RSB (or 1-RSB), and
the quasi-first-order transition in case (ii) has the form of the transition in the random energy model (REM) [26, 27],
though there the extensive part of the entropy is zero in the low-temperature region, which is not the case here.

The non-derivative part of the BR reduced action has the same form as eq. (1.1) through terms of cubic order,

except that it involves, in place of Qαβ , the field Q̃αβ which satisfies the additional conditions
∑
α Q̃αβ = 0, that define

the replicon subspace. (The terms through cubic order give the most general cubic action in the replicon sector.) w2

can be nonzero, due to the breaking of inversion symmetry by the magnetic field. Moreover, the BR RG flows for w1,
w2 imply that for w2 6= 0 the ratio ρ = w2/w1 tends to a value ρ∗ = 14.379 . . . on the AT line for d ≤ 6. As this is
larger than unity, the GKS results could come into play. But then y < 0 is also necessary. The initial value of y in
BR is positive, but the RG flows might take the parameters into a region where GKS can be applied. Previous works
do not seem to have considered the quartic terms that could be included in the BR action. Presumably this was
because quartic and higher-order terms are irrelevant in the RG sense near d = 6 dimensions. However, Fisher and
Somplinsky (FS) [28] explained that, because the quartic terms cannot be dropped at and below a SG transition, they
are “dangerously irrelevant”, and moreover they are important for the scaling behavior when d < 8, because of the
form of their RG flows, even though they are irrelevant. For example, the form of the AT line at small h depends on
y, and so is modified for 6 < d < 8, to interpolate from the mean-field results for d > 8 to the scaling forms for d ≤ 6
(see also Ref. [29]). The GKS results indicate that an extreme form of dangerous irrelevance could occur, because
reversing the sign of y causes qualitative changes in the phase transition behavior, not just quantitative changes such
as in exponents.

These considerations motivate us to consider a Landau-Ginzburg field theory that extends the BR reduced theory

by including quartic terms. The fields in the theory are the same ones, Q̃αβ(x), and the action is now

F [{Q̃αβ}] =

∫
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∑
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∑
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. (1.2)

(Here the summations are taken freely over all of the distinct indices displayed in each term.) Here we included all
possible terms of quartic order, as each is generated by the RG; note that y1 has replaced the previous y. We aim to
show that in low dimensions the RG flows take the couplings into a regime where the nature of the transition changes
qualitatively.

B. Outline and results

The free energy in eq. (1.2), evaluated with Q̃αβ(x) independent of x, gives a Landau theory similar to that of
GKS, except for the replicon constraint that is now in force, and for the terms with coefficients y2, . . . , y5. Because of
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FIG. 1. (Color online) Schematic phase diagrams for a spin glass in a weak magnetic field near the zero-field critical point C,
in various dimensions d as indicated. PM is the paramagnetic phase, FRSB is a full RSB phase, QFO is the quasi-first-order
transition, DT is the dynamical transition, L is the Lifshitz-type point, and T is the tricritical point. In the places where the
AT line appears dotted, it is to indicate where that line would be, though in fact it no longer has significance. The final panel
for d ≤ 6 is more speculative than the others.

these differences from the GKS case, our first task is to solve this Landau theory in the various regimes for yi (i = 1,
. . . , 5) and for w1, w2; this is carried out in Sec. II below. Because of the replicon constraint, the Parisi ansatz for

RSB applied to Q̃αβ leads to a function q̃(x) in place of q(x), which obeys
∫ 1

0
dx q̃(x) = 0 in place of q(x) ≥ 0. This

change makes little difference in practice, and the results are very similar to those of GKS summarized above. The
task of including the quartic terms is aided by a paper by Goldbart and Elderfield [30], who considered the full set of
quartic terms in the same context as GKS. Similar to what they found, the relevant criteria for the extremum to be
1-RSB (in place of y ≤ 0 or y < 0) for r̃ < r̃c are that y1 − y3x + y5x

2 ≤ 0 when evaluated at x = ρ for 0 < ρ < 1,
and y1 − y3 + y5 < 0 when ρ ≥ 1. It will be convenient to write these criteria simply as ỹ ≤ 0 or ỹ < 0 respectively,
where ỹ = y1 − y3xρ + y5x

2
ρ, evaluated at xρ = min(ρ, 1). For ρ > 1, we also find another transition at r̃ = r̃d similar

to Kirkpatrick and Thirumalai [31], with r̃d > r̃c. (They argued that this is connected with a dynamical transition.)
In Sec. III, we then evaluate the RG flows for our theory at one-loop order in perturbation theory, reproducing the

results of BR, and extending them to include the important part of the flow equations for yi.
In Sec. IV, we consider the consequences of the flows; the results are summarized in the phase diagrams in Fig. 1.

We find that for d > 8, the transition in weak nonzero magnetic fields takes the same form as in mean-field theory: it
is continuous and q(x) below the transition is a continuous function. This occurs because all the couplings included
flow to zero, and, making use of their initial values (after the crossover from the unreduced or zero-field theory), they
do so without reaching either ρ > 1 or ỹ < 0. For d ≤ 8, the effective values of the couplings yi become asymptotic at
long length scales to expressions quartic in w1, w2, similar to the discussion in FS. For 6 < d ≤ 8 and at sufficiently
small h, the wi couplings flow towards zero, ρ remains small, and ỹ is again positive. The behavior is again as in
mean-field theory, except for modifications similar to those of FS.

For d just above 6, we build on the analysis of MR [22]. When the magnetic field is not so weak, ρ is driven
to larger values, and there is a Lifshitz-type point L beyond which the phase below the transition is 1-RSB, while
the transition remains continuous. At higher field, ρ becomes larger than 1, and the transition to 1-RSB becomes
quasi-first-order. This implies that there is a tricritical point T on the AT line at (TT , hT ) (with hT > 0). The
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tricritical point T preempts the multicritical point M in MR, as it occurs at slightly lower field in the limit. Likewise,
the quasi-first-order transition preempts the AT line for h above hT . hT tends to zero rapidly as d→ 6+. The results
mentioned are valid within perturbation theory up to h larger than hT but of similar order.

For d ≤ 6, unfortunately we cannot quantitatively analyze the flows in perturbation theory with the present
methods. We argue by continuity of the phase diagram, and because no other phase transitions are found within a
perturbative analysis, that it is possible that the quasi-first-order behavior found for h > hT persists to d ≤ 6 for all
h > 0. This implies that in these low dimensions, the AT line is preempted by a quasi-first-order transition, with
no divergence of the correlation length or SG susceptibility at the transition. This is consistent with a number of
simulations, and with high temperature series. Of course, while our arguments may hold for d not too far below 6, we
cannot rule out further changes in behavior at lower d. We also argue that one or more further transitions, probably
including one to full RSB [i.e. with continuous q̃(x)], occur as temperature is lowered further below the transition, as
shown in Fig. 1.

In Sec. V, we consider some implications of the results and scenario for the metastate [32–34] in low dimensions
when 1-RSB occurs below the transition. In addition, we further discuss the second solution with 1-RSB that persists
to higher temperatures when the quasi-first-order transition occurs; it is similar to a phase that was discussed before
for Potts and p-spin interaction spin glasses, and connected with a dynamical transition [31, 35]. We speculate that
a dynamical transition may occur in the present situation as well. Thus we connect the transition in a magnetic
field in Ising spin glasses in low dimensions with the REM-like discontinuous transition behavior (with a dynamical
transition at higher temperature) that is now believed to be somewhat generic, and which includes the random first-
order transition (RFOT) theory of structural glasses [36] as well (for a recent review, see Ref. [37]). We discuss the
issue of the number of pure states that arises in these phases.

Sec. VI is the conclusion, and an Appendix relates quantifying the number of pure states visible in a finite region
to mutual information.

We want to point out that our results also apply in cases other than Ising SGs with 2-spin interactions and a uniform
magnetic field. For Ising SGs in a random magnetic field of mean zero and standard deviation h, the same (extended)
BR action can be derived. In addition, for a SG in which the spins are m-component unit vectors, inclusion of a mean
zero, isotropically-distributed vector-valued random field of standard deviation h also produces an AT line within
mean-field theory [38]. The same BR action applies there, so that similar results are predicted for low-dimensional
XY and Heisenberg SGs in a random magnetic field. Similarly, we would find the same for a Potts spin glass in a
random magnetic field, though it is possible that there the transition is quasi-first-order even in mean-field theory
(depending on p). Another family of models are those with p- spin interaction among Ising spins [26]. A particular
3-spin interaction model has been mapped to the BR theory [39], which is reasonable in view of the lack of inversion
symmetry in the p-spin models for p odd (however our conclusions differ from that work); see Ref. [40] for another
approach.

We also mention that Goldschmidt [41] predicted a fluctuation-driven first-order transition in p > 2 Potts SGs in
zero magnetic field for d < 6. The prediction was based on the RG flows of the theory, which run to ρ > 1; his work
predates GKS and does not seem to be a complete analysis.

II. LANDAU THEORY OF EXTENDED BR ACTION

We begin by extremizing the action (1.2) with respect to x-independent Q̃αβ , using the Parisi ansatz [4]; in other
words, we consider Landau theory. We drop a factor of volume, and include a Lagrange multiplier λ for the constraints∑
β Q̃αβ = 0 for each α (it turns out that the same value λ is found for each constraint, so we do not include a separate

multiplier for each), and divide by n [3]. Then we need to extremize

F [{Q̃αβ}, λ] = lim
n→0

1

n

[
− 1

2λ
∑

Q̃αβ − style
1

2
τ
∑

Q̃2
αβ

− 1
6w1

∑
Q̃αβQ̃βγQ̃γα − 1

6w2

∑
Q̃3
αβ

− 1
8y1

∑
Q̃4
αβ − 1

8y2

∑
Q̃2
αβQ̃

2
αγ

− 1
8y3

∑
Q̃αβQ̃βγQ̃

2
γα − 1

8y4

∑
Q̃2
αβQ̃

2
γδ

− 1
8y5

∑
Q̃αβQ̃βγQ̃γδQ̃δα

]
(2.1)

with respect to λ and Q̃αβ , where Q̃αα = 0 and Q̃αβ = Q̃βα; we set τ = −r̃/2 in this section to simplify writing;
τ ∝ TAT (h) − T is positive for T < TAT (h). The value of F at the extremum gives the physical free energy density
(into which inverse temperature has been absorbed in both Landau-Ginzburg and Landau theory).
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The Parisi ansatz involves dividing the symmetric matrix Qαβ into square blocks of equal size, and setting all
matrix elements in the off-diagonal blocks to one value, and those in the diagonal blocks to another value, except for
the entries on the diagonal which are zero. This is then repeated in the same way in each diagonal block (replacing
the values originally placed there), and iterated so that it is done say k times in total (giving k- step RSB, also called
k-RSB). Formally, this means that we choose numbers 1 = m0 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 = n, where mi+1/mi

is an integer for i = 0, . . . , k. Then Qαα = 0 (all α), and

Qαβ = qi for

⌈
α

mi

⌉
6=
⌈
β

mi

⌉
,

⌈
α

mi+1

⌉
=

⌈
β

mi+1

⌉
(2.2)

for α 6= β and i = 0, . . . k. (Here dae is the ceiling function, the least integer greater than or equal to a.) When
n → 0, the mis become numbers mi = xi between xk+1 = 0 and x0 = 1 and obey the reverse inequalities. Defining
a function of these numbers by q(xi) = qi, in the limit k →∞ (and assuming the xi fill the interval [0, 1]) we obtain
a function q(x). Alternatively, for k finite, we can define q(x) for all x to be piecewise constant with steps at x = xi,
with q(x) = qi for x ∈ [xi+1, xi). We note that, as q(x) turns out to be monotonically increasing, we can use it to
define a probability measure on overlaps q (normalized per site) of pure states [42]; using the function x→ q(x), the
measure assigned to an interval [q1, q2] is the Lebesgue measure of x in the inverse image (which is again an interval)
of [q1, q2]. [Equivalently, (dq/dx)−1 (with δ-functions at q for which q(x) has zero derivative) can be viewed as the
probability density of overlaps q of pure states [42].]

In the Parisi ansatz as described, one imposes q(x) ≥ 0. In our case, we assumed (in deriving the BR action [18])

that there is a replica symmetric part Q, and set Qαβ = Q + Q̃αβ for α 6= β, where
∑
β Q̃αβ = 0 (the replicon

constraint). In terms of q(x), we can associate a function q̃(x) with Q̃αβ exactly as described above for Qαβ , and then

q̃(x) = q(x)−Q = q(x)−
∫ 1

0

dx q(x), (2.3)

as the replicon constraint implies that ∫ 1

0

dx q̃(x) = 0. (2.4)

We will assume Q is nonzero, and that |q̃(x)| is smaller than Q at all x. Then we can ignore the condition q(x) ≥ 0,

but we include the condition
∫ 1

0
dx q̃(x) = 0 instead.

Now evaluating the functional F , we find [4, 30]

F = 1
2

∫ 1

0

dx

[
λq̃(x) + τ q̃(x)2 + 1

3w2q̃(x)3 + 1
4y1q̃(x)4

− 1
3w1q̃(x)

{
2〈q̃〉q̃(x) +

∫ x

0

dx′ (q̃(x)− q̃(x′))2
}

+ 1
4y2

{
q̃(x)4 − 2q̃(x)2〈q̃2〉

−
∫ x

0

dx′
(
q̃(x)2 − q̃(x′)2

)2}
− 1

4y3

{
2q̃(x)3〈q̃〉+ q̃(x)2

∫ x

0

dx′ (q̃(x)− q̃(x))
2

}
− 1

4y5

(
〈q̃2〉2 −

{
4q̃(x)2〈q̃〉2

+ 4q̃(x)〈q̃〉
∫ x

0

dx′ (q̃(x)− q̃(x′))2

+

∫ x

0

dx′
∫ x

0

dx′′ (q̃(x)− q̃(x′))2

× (q̃(x)− q̃(x′′))2
})]

.

(2.5)
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Here 〈f〉 =
∫ 1

0
dx f(x) for a function f(x) on x ∈ [0, 1]. The term with coefficient y4 disappears on inserting the Parisi

ansatz, as
(∑

αβ Q̃
2
αβ

)2

is of order n2. We note that this term represents randomness in the mass-squared term r̃,

and may not be negligible in general, even though it drops out of Landau theory.

A. Piecewise-differentiable q̃(x)

We can find variational equations for an extremum, assuming that we can apply ordinary functional differentiation.
The derivation is tedious but straightforward, and resembles Refs. [4, 30]. Varying λ produces the constraint (2.4);
this may be used freely but only after varying F with respect to q̃(x). Given the variational equation, which is
somewhat complicated because of the quartic terms in F , we can obtain simpler equations by applying the operator

1

q̃′(x)

d

dx
, (2.6)

as in Refs. [4, 30], for x at which q̃′(x) 6= 0. Applying this operator twice, we then find that if q̃′(x) is nonzero at some
value of x, and if q̃(x) → 0 as τ approaches its critical value τc = 0 from above (i.e. for a second-order transition),
then we must have

w2 − w1x = O(τ). (2.7)

As τ → 0, this can be satisfied only at x = w2/w1 ≤ 1 [30]. Hence such a continuous transition, into a phase with
q̃(x) differentiable and non-constant at x = w2/w1 just below the transition, can occur only if 0 ≤ ρ ≤ 1 (where
ρ = w2/w1). If we take an additional derivative with respect to x before letting τ → 0, then we find similarly that as
τ → 0, we must have either q̃′(x) = 0 or [30]

q̃′(x)→ w1/3

y1 − y3x+ y5x2
. (2.8)

As q̃(x) must be monotonically increasing in x (for example, to give the interpretation as a probability, mentioned
above), and because both w1 and w2 are positive thoughout the paper, we conclude that, defining ỹ = y1− y3ρ+ y5ρ

2

for ρ ≤ 1, a nonzero finite slope of q̃(x) is possible just below the continuous transition only if 0 ≤ ρ ≤ 1 and ỹ > 0.
Otherwise, a piece-wise constant solution is the only non-trivial possibility for a continuous transition (a constant
solution would have to be q̃(x) = 0, which means no RSB, and is unstable for τ > 0).

Next, we investigate step-function possibilities when ỹ ≤ 0. We only consider ρ > 0. For ρ < 1, we expect a single
step to occur, at x1 = ρ as τ → τ+

c , in place of the non-zero slope part of q̃(x). A single step means a one-step or
(k =) 1-RSB solution.

B. 1-RSB: continuous transition at ρ < 1

The preferred way to consider a step-function (or 1-RSB) solution is to substitute the step-function or 1-RSB matrix
into the general Parisi functional F . The function has the assumed form

q̃(x) =

{
q0, x < x1,
q1, x ≥ x1,

(2.9)

where x1 ≤ 1. Then the three parameters q0, q1, and x1 (as well as λ) can be varied to extremize F . We note that
if we used the variational derivative expressions of the previous section, and then substituted the step function, the
equation that will be obtained below by varying x1 is not immediately obtained, unless some additional procedure is
used. This is why direct evaluation of F for the step function is the simplest procedure.
F can be evaluated for the step function to give

F = 1
2λ〈q̃〉+ 1

2τ〈q̃
2〉+ 1

6w2〈q̃3〉+ 1
8y1〈q̃4〉

− 1
6w1

[
2〈q̃〉〈q̃2〉+ x1(1− x1)q1(q1 − q0)2

]
+ 1

8y2

[
〈q̃4〉 − 2〈q̃2〉2 − x1(1− x1)(q2

1 − q2
0)2
]

− 1
8y3

[
2〈q̃〉〈q̃3〉+ x1(1− x1)q2

1(q1 − q0)2
]

− 1
8y5

[
〈q̃2〉2 − 4〈q̃〉2〈q̃2〉 − 4〈q̃〉x1(1− x1)q1(q1 − q0)2

− x2
1(1− x1)(q1 − q0)4

]
. (2.10)
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Other than 〈q̃〉 = 0, the equations obtained by varying the parameters in F are somewhat involved. We will explicitly
solve them in some limiting cases.

First we will suppose that the transition is continuous, and that the quartic terms can be dropped to leading order
in τ (we will see that τc = 0). (Note that this is consistent, because ỹ = 0 can only lead to a step-function solution.)
In addition to 〈q̃〉 = 0, varying q0, q1, and x1 leads (using x1, 1− x1 6= 0) to

0 = λ+ 2τq0 + w2q
2
0 , (2.11)

0 = λ+ 2τq1 + w2q
2
1 − w1x1(q1 − q0)2, (2.12)

0 = λ(q0 − q1) + τ(q2
0 − q2

1) + 1
3w2(q3

0 − q3
1) (2.13)

− 1
3w1

[
2(q0 − q1)〈q̃2〉+ (1− 2x1)q1(q1 − q0)2

]
.

Solving, we find to leading order in τ > 0 that

x1 = w2/w1 = ρ, (2.14)

q0 = − τ

w2
, (2.15)

q1 =
τ

w1 − w2
, (2.16)

λ =
τ2

w2
. (2.17)

These results make sense provided 0 < ρ < 1. They are very similar to corresponding ones of GKS [25]. Higher-order
terms can be found as power series in τ .

We also mention here that there is a continuous transition for ρ < 1 and τ > 0 from full RSB to 1-RSB when ỹ
changes sign. We will not discuss this in further detail. The phase boundaries τ = 0 (and any ỹ) and ỹ = 0 (for τ > 0)
for ρ < 1 meet to produce a point analogous to a Lifshitz point (though here the transition for τ > 0 is continuous,
unlike an ordinary Lifshitz point); we refer to this as a Lifshitz-type point.

C. 1-RSB: discontinuous transition at ρ > 1 and tricritical case ρ = 1

In this regime, quartic terms cannot be neglected in general. For ρ > 1, following GKS [25], we look for a solution
with x1 → 1, q1 tending to a positive constant q1c, q0 = O(1 − x1) as τ → τc (i.e. a “quasi-first-order” transition, if
τc 6= 0). Keeping the leading terms in the variational equations, we find λ ∼ −2τcq0 = O(1− x1), and the system of
quadratic equations

ỹq2
1c + (w2 − w1)q1c + 2τc = 0, (2.18)

1
4 ỹq

2
1c + 1

3 (w2 − w1)q1c + τc = 0, (2.19)

which has the unique nonzero solution

τc =
1

9

(w2 − w1)2

ỹ
, (2.20)

q1c = − 6τc
w2 − w1

= −2

3

(w2 − w1)

ỹ
. (2.21)

Here and below, for ρ > 1 we define ỹ = y1 − y3 + y5. Then τc is negative, q1c is positive (and both are finite) for
w2 > w1, ỹ < 0. Again, the results are very similar to GKS [25]. The results are valid within Landau theory provided
w2 − w1 is sufficiently small so that τc and q1c are small. We remark that, in spite of the jump in q̃(x) at x = 1 that
occurs at τ = τc (but see the following Sec. II D), the latent heat at the transition is zero [25].

For the borderline or tricritical case ρ = 1, the transition is continuous, but a separate analysis similar to the
present section is required. We find that

q0 = − 2τ

w1
, (2.22)

1− x1 ∝
(−ỹτ)1/2

w1
, (2.23)

q1 ∝
(
−τ
ỹ

)1/2

, (2.24)

λ = o(τ2) (2.25)
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as τ → 0+ for ỹ < 0.

D. Additional step solution at ρ > 1

A further one-step solution can be found, following Ref. [31]. As x1 obeys x1 ≤ 1, we can look for solutions with
x1 = 1, ignoring the requirement that ∂F/∂x1 = 0; we still divide the equation ∂F/∂q1 = 0 by 1− x1 before solving
with x1 = 1. Then q0 = λ = 0, and a single quadratic is obtained:

ỹq2
1 + (w2 − w1)q1 + 2τ = 0, (2.26)

with solution

q1 =
−(w2 − w1)−

√
(w2 − w1)2 − 8ỹτ

2ỹ
. (2.27)

For this to be real and positive when ỹ < 0, we require

τ > τd =
1

8

(w2 − w1)2

ỹ
. (2.28)

At the transition at τ = τd < 0, q1 is nonzero. Thus if q1 = 0 at τ < τd (i.e. high T ), then q1 becomes nonzero
with both a jump and a square-root singularity at τd. τd = τc at the tricritical point τc = 0, ρ = 1. Again, these
results are valid within Landau theory provided w2 − w1 is sufficiently small, and are similar to those in Ref. [31].
Thermodynamically, this solution is indistinguishable from the paramagnetic or high-temperature one, q̃(x) = 0, as
both give F = 0, because q̃(x) differs from 0 only on a set of measure zero. Within Landau theory, we have no way
to determine which solution is physical other than by maximizing F . Hence it is not clear which of the solutions (the
paramagnetic one and the present one) is correct in the region τc > τ > τd.

We remark that 0 > τc > τd, and that at τ = τc, the values of q1 in the solution here and that in Sec. II C are the
same. At larger τ , the earlier discontinuous 1-RSB solution has larger F , so is the physical one. Hence if we accept
the x1 ≡ 1 solution when τd < τ < τc, then at τc there is no jump of q1, but it is the point such that x1 moves away
from 1 at larger τ (still with no latent heat). We discuss further the meaning of the solution found in this section in
Sec. V below. For ρ = 1, τc = τd = 0; this case was discussed at the end of Sec. II C.

To avoid confusion, we will refer to the solution found here for τd < τ < τc, which has x1 = 1 throughout, as the
(dynamically-) frozen phase, reserving the term 1-RSB for the region τ > τc (with any value of ρ) in which x1 < 1.

E. ỹ ≥ 0 and ρ > 1, and tetracritical points

The results so far indicate that most features of the Landau-theory phase diagram can be parametrized using only
the three variables τ , ρ, and ỹ. There is also the regime ρ > 1 and ỹ ≥ 0 that we have not discussed. We will not
investigate this in detail, but only say that, by elimination of other possibilities, and if solutions exist within Landau
theory at all, then a discontinuous (quasi-first-order) transition should be expected, and
q̃(x) will be discontinuous (with break-point x1 → 1 as τ → τ+

c ), but not piecewise constant, thus placing it outside
the RSB forms we considered here. We might imagine that there would be a transition as ỹ changes sign when τ > τc,
and another Lifshitz-type point at τ = τc, this time involving two quasi-first-order boundaries. However, as q1c and
−τc →∞ in this limit, Landau theory breaks down before this boundary is reached.

In addition, we mention that the point τ = 0, ρ = 1, ỹ = 0 is a tetracritical point, from which all the other phases
and transitions mentioned here emerge on changing one or more of these parameters. We will not describe it in

detail. Note that we did not consider the region ρ ≤ 0 here at all. There is another tetracritical point at τ = 0, ρ = 0,
and ỹ = 0.

III. CALCULATION OF RG FLOW EQUATIONS

Next we carry out an RG calculation on the extended BR theory at one-loop order in perturbation theory. The
method is a standard one [43]: a wavevector cutoff of 1 is assumed, and Fourier components of fields with wavevectors
in a shell just below the cutoff are successively integrated out, followed at each step by rescaling to restore both the

cutoff and the coefficient of (∇Q̃)2 to 1. In the calculations reported here, we expand the fluctuations of Q̃αβ around
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Q̃αβ = 0. This should be valid at least in the high-temperature region r̃ > 0 and at the critical point (AT line) r̃ = 0.
The calculations are standard, except for the role of the replicon constraint [18]. The propagator, or zeroth-order

two-point correlation function 〈〈Q̃αβ(x)Q̃γδ(0)〉〉, for Q̃αβ has Fourier transform

Sαβ,γδ
k2 + r̃

. (3.1)

Here S is a projection operator. In the space of n × n real matrices with elements Qαβ that are symmetric and
have zeroes on the diagonal, which we equip with norm-square

∑
α<β Q

2
αβ , S is the projection onto the subspace∑

αQαβ = 0. S can be expressed as [18]

Sαβ,γδ = 1 + 1
2 (δαγ + δαδ + δβγ + δβδ)− (δαβ + δγδ)

− (δαβγ + δαβδ + δαγδ + δβγδ)

+(δαβδγδ + δαγδβδ + δαδδβγ), (3.2)

where generalized Kronecker symbols of rank k are defined as δα1···αk = 1 if all of αi (i = 1, . . . , k) are equal, and
zero otherwise; the limit n→ 0 has already been taken in the coefficients in this expression.

Then we obtain the one-loop RG flow equations for the effective couplings r̃(l), wi(l) (i = 1, 2), and yi(l) (i = 1,
. . . , 5) at length scale el (where l = 0 corresponds to the initial cutoff scale; we often refer to l as a scale, though it
is in fact the logarithm of the length scale), after setting n = 0:

dr̃

dl
= [2− η̃]r̃ −Kd

(4w2
1 − 16w1w2 + 11w2

2)

(1 + r̃)2

+ . . . , (3.3)

dw1

dl
= 1

2 [6− d− 3η̃]w1 +Kd(14w3
1 − 36w2

1w2

+ 18w1w
2
2 + w3

2) + . . . , (3.4)

dw2

dl
= 1

2 [6− d− 3η̃]w2 +Kd(24w2
1w2 − 60w1w

2
2

+ 34w3
2) + . . . , (3.5)

dy1

dl
= [4− d− 2η̃]y1 + 96Kdw

2
2(w1 − w2)2 + . . . , (3.6)

dy2

dl
= [4− d− 2η̃]y2 + 16Kd(−7w3

1w2 + 15w2
1w

2
2

− 11w1w
3
2 + 3w4

2) + . . . , (3.7)

dy3

dl
= [4− d− 2η̃]y3 + 8Kd(14w3

1w2 − 28w2
1w

2
2

+ 13w1w
3
2 + w4

2) + . . . , (3.8)

dy4

dl
= [4− d− 2η̃]y4 +Kd(11w4

1 − 32w3
1w2

+ 48w2
1w

2
2 − 32w1w

3
2 + 8w4

2) + . . . , (3.9)

dy5

dl
= [4− d− 2η̃]y5 +Kd(38w4

1 − 80w3
1w2

+ 40w2
1w

2
2 + w4

2) + . . . , (3.10)

where η̃ = Kd(4w
2
1 − 16w1w2 + 11w2

2)(d − 4)/d. Here the geometric factor Kd = 2/(Γ(d/2)(4π)d/2) arises from
integration over the surface of a sphere in d dimensions in the Fourier integrals. We neglected r̃ in denominators
arising from one-loop integrals after the first equation, eq. (3.3), and in η̃. The + . . . in the flow equations represent
possible further one-loop terms, which are of the form yi (i = 1, . . . , 5) for r̃, wiyj (i = 1, 2, j = 1, . . . , 5) for the
cubic couplings, and either wiwjyk (i, j = 1, 2, k = 1, . . . , 5) or yiyj (i, j = 1, . . . , 5) for the quartic couplings. It
will be easily seen from the following that these terms are higher order in the weak-coupling regime of interest in this
paper, and can be dropped (as can the η̃ term in the flow equations for yi also). We note that the terms quartic in wi
kept in the flow equations for yi are all of the same form as in FS for the unreduced theory. The equations (3.3–3.5)
agree exactly with those of BR [18] (see also Ref. [44]), though they put d = 6 in η̃; they (nor, to our knowledge, any
later authors) did not consider the full set of quartic couplings yi.
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IV. ANALYSIS OF FLOW EQUATIONS

In the RG flow equations (3.3–3.10), all coefficients have been left in their general form, without assuming that,
say, d is close to 6. This enables us now to analyze the flows in various dimensions. We do this first for the extended
BR theory for d > 6. After that, we apply the results to the AT line, using the crossover from the unreduced theory
to the extended BR theory, beginning with high d, and ending with d < 6.

A. Weak-coupling flows in extended BR theory

First, we focus on the extended BR Landau-Ginzburg theory. For d > 6, the Gaussian fixed point, at which

coefficients of all terms beyond the Gaussian ones (∇Q̃αβ)2 and r̃(Q̃αβ)2 are zero, is stable, that is all those coefficients
flow to zero in perturbation theory (at least for sufficiently weak initial values and when only finitely many are
included). At the moment we use only the leading behavior in each coefficient as it flows toward zero. First, however,
we show that the flows for yi take them to the region ỹ < 0 if d ≤ 8.

1. Flow of yi

The extended BR Landau-Ginzburg theory is in principle valid anywhere near a transition of AT type (among

others), provided fluctuations in Q̃αβ are small; hence it may be useful even at large magnetic fields. Perturbation
theory and perturbative RG calculations in wi, yi and so on are valid if these couplings are, in an appropriate sense,
small. For d > 6, there is a nonzero basin of attraction of the Gaussian (zero coupling) fixed point of the RG. Then
the theory will be useful at large length scales if the initial values lie inside this basin of attraction. If d− 6 is of order
one or greater, then this basin contains all values of the couplings for which perturbation theory would be expected
to be valid. For any d > 6, sufficiently small wi lie well inside the basin. For now we take the initial values to be at
the scale l = 0; later this will be replaced with a scale l0 > 0.

In this regime of linearized flow equations for wi (i = 1, 2), the solutions for wi are

wi(l) ≈ wi(0)e−
1
2 εl, (4.1)

(where ε = d− 6) so the flow lines are radial in the w1-w2 plane: ρ(l) = ρ(0). For now we will make use only of this
form.

For yi (i = 1, . . . , 5), dropping in the present regime η̃ as mentioned already, the equations (3.6–3.10) have the
form [28],

dyi
dl

= [4− d]yi +Ai(l), (4.2)

where, using the preceding approximate solution for wi, each function Ai(l) can be viewed as a known function of l
that can be read off from the corresponding flow equation. Each equation has general solution

yi(l) = yi(0)e(4−d)l + e(4−d)l

∫ l

0

Ai(l
′)e(d−4)l′ dl′. (4.3)

From the flow equations (3.6–3.10), each Ai(l) is a homogeneous quartic polynomial in w1 and w2, and so from the

behavior of wj in the present regime, we then have Ai(l
′) ≈ Ai(0)e−2εl′ . We see that for d > 8 the integral converges

as l→∞, and gives only a correction to the initial value yi(0); the correction is small if both wj(0) are small. Thus the
yi are proportional to their initial values up to small corrections, and they are simply rescaled by the same l-dependent
factor as they flow towards zero radially in yi-space. (This is in accordance with simple one-loop perturbation theory,
in which the correction to yi converges in the infrared for d > 8, in agreement with Refs. [28, 29].)

For d ≤ 8, the integral does not converge at l =∞, and instead is dominated by its upper limit, to give

yi(l) ∼
{
Ai(l)/(8− d) (d < 8),
Ai(l)l (d = 8),

(4.4)
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as l → ∞ [28]; in either case, this decays more slowly than the initial value term. Explicitly, these asymptotics are
yi ∼ y∗i as l→∞, where, for d < 8,

y∗1 = 96Kdw
4
1ρ

2(ρ− 1)2/(8− d), (4.5)

y∗2 = 16Kdw
4
1(−7ρ+ 15ρ2 − 11ρ3 + 3ρ4)/(8− d), (4.6)

y∗3 = 8Kdw
4
1(14ρ− 28ρ2 + 13ρ3 + ρ4)/(8− d), (4.7)

y∗4 = Kdw
4
1(11− 32ρ+ 48ρ2 − 32ρ3

+ 8ρ4)/(8− d), (4.8)

y∗5 = Kdw
4
1(38− 80ρ+ 40ρ2 + ρ4)/(8− d); (4.9)

these are written in terms of w1 and ρ = w2/w1, and still depend on l in general. The yi(0) correction is suppressed
by a factor O(e(d−8)l). In the regime considered here of radial flows of wi, the y∗i (l) describe flow lines that are radial
in yi- space, as ρ is effectively constant. As the y∗i s depend only on two parameters, the collection of their flow lines
form a two-dimensional space; intersected with a sphere of radius Kdw

4
1 (i.e. setting w4

1 to a constant), we obtain a
curve parametrized by ρ. For general initial conditions (|yi(0)| < 1) and given wj , all flow lines of yi asymptotically
(at large l) approach the origin along one of these lines. This differs from the case d > 8, in which the flow lines of yi
do not converge onto a single line, but approach the origin in yi-space from all directions. For d = 8, (8− d)−1 should
be replaced in these expressions by l, as in eq. (4.4). Then the terms in yi(l) quartic in wj are larger by l than the
yi(0) terms. This means that the approach to y∗i (l) is logarithmically slow in length scale, but still occurs.

We can now begin to apply the results of Sec. II. In all cases we need to evaluate

ỹ = y1 − y3xρ + y5x
2
ρ (4.10)

where xρ = min(ρ, 1). For d ≤ 8 with wi small, the yi tend to their asymptotic behavior y∗i (l), while ρ does not
change during the flow. When we evaluate ỹ(l) using these yi(l) = y∗i (l), we obtain w4

1 times a polynomial in ρ, for
either ρ ≤ 1 or ρ ≥ 1. For d < 8 and ρ ≤ 1, we have

ỹ = Kdw
4
1ρ

2(22− 48ρ+ 32ρ2 − 8ρ3 + ρ4)/(8− d), (4.11)

and for ρ ≥ 1,

ỹ = Kdw
4
1(38− 192ρ+ 360ρ2 − 296ρ3 + 89ρ4)/(8− d). (4.12)

Then ỹ(l) turns out to be positive for small ρ > 0, but negative for 0.8418 < ρ < 1.2694. This is a key point of the
analysis. The fact that ỹ < 0 in this range of ρ values means from the results of Sec. II that q̃(x) is discontinuous for r̃
below r̃c, giving 1-RSB. This is one of the central results of the paper, and will demonstrate a qualitative change from
the behavior in the SK model in dimensions near and below d = 6. For ρ < 0.8418, ỹ(l) > 0, and the transition is to
full RSB, and is continuous. For 0.84 < ρ < 1 the transition remains continuous. At ρ = 0.8418, ỹ = 0, producing a
Lifshitz-type point, with a transition line from full RSB to 1-RSB extending from it into the region r̃ < 0. As ỹ < 0
at ρ = 1, there will be a tricritical point there, beyond which the transition becomes discontinuous. At ρ = 1.2694,
again ỹ = 0, and we know of no solution to Landau theory for ρ ≥ 1, ỹ ≥ 0.

For d > 8, the yi flow essentially radially to zero, and the initial values of yi determine the behavior, provided wj
are small.

2. Critical phenomena

Next we analyze for d > 6 the Gaussian fixed point with arbitrary perturbations whose asymptotic flows were
discussed in Sec. IV A 1. First, for r̃, in eq. (3.3), we keep only the terms linear in r̃ (the zeroth order term is of
little interest), and then the AT line TAT (h) corresponds to r̃ = 0. Then as r̃(l) is the only relevant parameter at the
Gaussian fixed point when d > 6, it grows with l. We can stop the flows at l = l∗ such that the largest mass-square
in any propagator is equal to 1, and then solve the Landau-Ginzburg theory with the parameters at l = l∗ to obtain
the phase transition behavior. (The closer the initial r̃(0) is to zero, the larger the l that will be required.) On the
high-temperature side of the transition, this mass-square will be r̃ > 0, but on the low temperature side its value
should be considered further. For r̃ < r̃c, strictly in the RG one should use propagators in the expansion of the action

about its extremum [43] which may be at nonzero Q̃αβ(l), and the latter should be small. In the regime where the
Landau-Ginzburg theory is valid (in terms of the action at scale l), this will always be true sufficiently close to the
transition if it is continuous (in fact, when ρ < 1), and one would hope also if it is weakly first order, meaning that

the extremum value of Q̃αβ is small as r̃ → r̃−c . In these cases, the only leading order effect of nonzero Q̃αβ will be
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to make the mass-squared term in the propagator positive; it can be neglected in the flows themselves. In the cases
of the phases of interest in this paper, the 1-RSB form holds for r̃ < r̃c, and we have checked that the mass-squares
are positive (in agreement with GKS [25]), and that the largest is of order |r̃| as r̃ → r̃−c in most cases; see also Refs.
[45–47]. Then in most cases, for the low T side the only change is that we must stop the flows at −r̃ = 1 (within
a numerical factor), and the analysis is essentially the same as for r̃ > 0. Then, once the flow has stopped, we can
apply the Landau theory analysis of Sec. II, using the effective values of parameters at scale l. We will follow this
standard approach.

For these reasons, we now consider the solution of Landau theory as in Sec. II, but using the effective (l-dependent)
values of the parameters for d ≤ 8. (For d > 8, the critical behavior agrees with Landau theory.) Thus in terms of the
effective phase diagram of Landau theory which involved three parameters (r̃, ρ, and ỹ), the system flows onto a two
dimensional surface within that space, as ỹ becomes a function of ρ. We recall that r̃ = −2τ , so here r̃(l) = −2τ(l).

In addition to the exposition of Sec. II we point out that if q stands for any of Q̃αβ , q̃(x), q0, or q1, then at zeroth
order in perturbation theory we have

q(l) = e
1
2 (d−2)lq(0). (4.13)

We will mainly assume that ỹ < 0.
For 0 < ρ < 0.8418, the transition is to full RSB, and the scaling for 6 < d ≤ 8 is very similar to that of FS for

the zero field case, so there is little that we can add here. For 0.8418 < ρ < 1, on inserting τ(l∗) = 1 and wi(l
∗) into

the expressions in Sec. II, we obtain for r̃ < 0 that q0(l∗), q1(l∗) ∼ 1/w(l∗) ∼ e
1
2 εl
∗

(we neglect numerical coefficients
and initial values in this section, and w stands for w1, w2, or if ρ 6= 1, |w1 − w2|). In terms of q at l = 0, we
find qi(0) ∼ e−2l∗ = τ(0), which we can characterize with the exponent β = 1. We note that yi do not appear in
the expressions for q0, q1, or x1 at leading order in r̃, so the yi are irrelevant and not dangerous at this continuous
transition (i.e. at the Gaussian fixed point for ρ < 1), provided ỹ ≤ 0, though they are dangerous in the RSB region
as in FS, similar to Refs. [45, 46]. (wi are still dangerously irrelevant for d > 6, and responsible for the breakdown of
the hyperscaling relation implied by β = 1.)

For the cases of the discontinuous (quasi-first-order) or the dynamical transition when 1 < ρ < 1.2694, we can sit
at τc or τd, which are both negative and scale the same way, so the results are the same for both; we consider τc. In

order to set τc(l
∗) ∼ (w2 − w1)2/ỹ = −1, we must have w2 − w1 ∼ e−εl

∗
, so ρ − 1 ∼ e−

1
2 εl
∗
. Then q1c(l

∗) ∼ eεl
∗
, so

q1c(0) ∼ r̃c(0)(10−d)/4 for d < 8, where the exponent interpolates the values 1/2 at d = 8 (as in Landau theory) and
1 at d = 6 (as required by hyperscaling). This is an instance of the scaling forms found by FS [28].

In all the preceding cases, the largest mass-square in any propagator just below or at the transition is of order |r̃|.
For the tricritical point ρ = 1, where r̃c = 0, this is not the case: the largest mass-square on the low-temperature side
is instead of order w1(r̃/ỹ)1/2 [47]. This implies that, within fluctuations around mean-field theory, without use of
RG, the critical exponent for the leading correlation length is ν′ = 1/4 on the low temperature side for this case, as
compared with ν = 1/2 on the high-temperature side. (There is also a mass-square that goes to zero in a similar way
at the dynamical transition [45, 46], implying a corresponding correlation length exponent ν′ = 1/4, however there
it is subleading to others ∝ r̃d > 0 as r̃ → r̃d.) We can carry out a similar analysis as before, but stopping the RG
flow when w1(l∗)[r̃(l∗)/ỹ(l∗)]1/2 = 1. Then τ(l∗) ∼ e−εl

∗
, so τ(0) ∼ e−(d−4)l∗ , and q1(0) ∼ e−2l∗ ∼ τ(0)2/(d−4) for

6 < d ≤ 8, while q0(0) ∼ τ(0) for all d > 6. The largest mass-square (in units for l = 0) is then ∼ e−2l∗ ∼ τ(0)2/(d−4).
Again, for 6 < d ≤ 8, the exponents for q0, q1 interpolate between their values as d→ 6+ (obeying hyperscaling) and
at d = 8 (as in Landau theory), while now ν′ = 1/(d−4) for 6 < d ≤ 8, which interpolates between ν′ = 1/4 for d = 8
and ν′ = 1/2 (in agreement with the scaling law ν′ = ν) for d→ 6+. These results are analogous to some of those of
FS, though the precise forms differ, as this particular dependence of the mass-square on ỹ did not occur in FS, and
they did not have a ν′ = 1/4.

Further information about scaling properties can be obtained as well, analogously to Refs. [45, 46]. Note that in
some cases [45–47] there remain modes in the ordered phase that are still massless at l = l∗ (i.e. the mass-squares are
much smaller than the leading ones, and tend to zero at r̃c = 0 and at r̃d). It would be possible, and it is necessary,
to restrict to a theory of these modes alone (analogous to what BR did in constructing their action), and then carry
out the RG at l > l∗ on this smaller set of modes. While it is possible that this will change the scaling of qi(0), we
do not expect that it does, and we will not consider it further here.

We have some concerns about the preceding analysis of the scaling behavior at the tricritical point and the discon-

tinuous transition. In addition to yi, we can similarly treat terms of higher order k > 4, for example zk
∑
αβ Q̃

k
αβ ;

for each of these there are one-loop diagrams that contain a polygon with k sides (for k = 4, this becomes the “box”

diagram form as in FS), and for d < 2k the resulting flows approach zk(l) ∼
∑k
a=0 bkaw

k−a
1 (l)wa2(l) ∼ e−

1
2kεlw(0)k.

(We will not need the detailed form of these asymptotics as we did for yi.) If we add one of these terms to the action

as a perturbation, and look at its effect on q(l), we find a negligible effect of relative order w(l∗) ∼ e−
1
2 εl
∗

(for all



14

U w1

w2

Z

FIG. 2. (Color online) RG flows for w1, w2 for d = 6 + ε, ε > 0. The flows shown are correct topologically, but not drawn to
scale. U and Z are fixed points; Z is on the fixed line w2/w1 = ρ∗ = 14.379. w2 = w1 (ρ = 1) is shown as the dashed line. The
unique flow line that approaches ρ = 1 tangentially as l →∞ is shown. The flow line asymptotically tangent to ρ = 0.8418 is
qualitatively similar to that one.

k) in the case of the continuous transition. But for the discontinuous transition (as ρ → 1+), we estimate a change

in q1c(l
∗) of relative size e

1
2 (k−4)εl∗ , which increases with l∗ for 6 < d ≤ 8. Similarly for the tricritical point, we find

that the change is of relative order 1, intermediate between the preceding cases. These results mean that, especially
for the discontinuous and dynamical transitions, and possibly also for the tricritical point, these higher-order terms
should not be neglected, and it would be better to include all of them by summing them up to obtain the one-loop
fluctuation correction to the free energy. We suspect that the result will be modifications of the scaling for 6 < d ≤ 8
in at least some of these cases, but we will not pursue this here. We emphasize that we do not expect such effects to
modify the qualitative form of the transitions; in particular, the tricritical point will still exist.

B. Fate of the AT line

Now we come to the central points: the application of the preceding results to the AT line. We work downwards in
dimension d, from d� 6 to d < 6.

First, we describe the effects of the nonlinear terms in the flows for wi. The flows for d > 6 were shown explicitly in
Ref. [19] (see Fig. 2). There is a weak coupling region inside which flows go to the origin, separated by a lobe-shaped
separatrix from the region where flows go to infinity (within the leading one-loop RG). There are two pairs of fixed
points on the separatrix (the two members of each pair are related by a symmetry, wi → −wi, i = 1, 2). One pair

of fixed points are at U , −U defined by w1 = ±
√
ε/(24Kd), w2 = 0, and both are unstable under a perturbation

that remains on the separatrix. The other pair Z, −Z are on the fixed line ρ = ρ∗ = 14.379, and both are attractive
on the separatrix. When the nonlinearities are important within perturbation theory, that is when d ≤ 6 + O(ε)
and wi is order ε1/2 or greater, the value of ρ changes during the flow (unless ρ = 0, which is also a fixed line). In
the strong-coupling region, or for all nonzero couplings if d < 6, ρ flows towards the fixed value, ρ∗. Moreover, we
should reconsider the RG flows of yi in light of the flows of wi. We can no longer carry out the integration of the flow
equations for yi directly. But, as each yi has dimension 4−d to zeroth order, while wi has dimension (6−d)/2 = −ε/2
(and the latter is still of the correct order in the vicinity of the separatrix), the integral in the solution for yi(l), eq.
(4.3), contains a kernel that decays rapidly (as l′ decreases) compared with the inverse rate of change of Ai(l). This
means that for large l and with ε small, again yi ∼ y∗i as l → ∞. Hence we know the expressions for y∗i in terms of
w1 and ρ, and the resulting ỹ(l) is negative for 0.8418 < ρ < 1.2694, but we will need to consider further the flows of
wj (or of w1 and ρ).
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1. d > 6 at sufficiently weak magnetic field

In order to describe the AT line, we will need some results about the unreduced Landau-Ginzburg theory as in Ref.
[48], and the crossover to the BR reduced theory. For the unreduced theory, the field is Qαβ without the restriction
to the replicon subspace, and the action is

Fun[{Qαβ}] =

∫
ddx

[
1
4

∑
(∇Qαβ)2 − 1

2h
2
∑

Qαβ

+ 1
4r
∑

Q2
αβ − 1

6w
∑

QαβQβγQγα

− 1
8y
∑

Q4
αβ + 1

4x
∑

Q2
αβQ

2
αγ

− 1
8u
∑

QαβQβγQγδQδα

]
. (4.14)

For d > 6 and zero magnetic field, all couplings (of order higher than quadratic) flow towards zero at leading order in
perturbation theory (including the nonlinear terms for dw/dl). When h is nonzero, at some scale l = l0, |r(l0)| = 1
becomes of order 1, and the nonreplicon modes become massive. That is when the crossover to the BR reduced theory
occurs. The initial values of the couplings in the BR action, at the initial scale that is now l0, are then determined
as follows [18], with all parameters taking their effective values at l = l0. In non-zero magnetic field there is a replica
symmetric order parameter Qαβ = Q for α 6= β [2], and BR showed that the result of expanding the action in terms

of Q̃αβ = Qαβ −Q (for α 6= β) and then imposing the replicon constraint on Q̃αβ is to produce the values

r̃ = r + 2wQ, (4.15)

w1 = w − 3uQ, (4.16)

w2 = 3yQ, (4.17)

and further y1, y2, and y5 will be the same as their counterparts y, −2x, and u in the unreduced action Fun above
[this x has nothing to do with Parisi’s x in q(x)], up to terms of higher order in Q (that involve terms higher than
quartic order in the unreduced theory); Q = −r/(2w) = [h2/(2y)]1/3 on the AT line [18]. In addition, the initial
values of y, x, and u at l = 0 (not l = l0!) are positive. y3 = 0 in the unreduced theory because of symmetry at h = 0,
so for us it is of higher order, while we have seen that y4 is not needed in Landau theory.

For the location of the AT line for d > 6, we have h(l0)2 = −y(l0)r(l0)3/(4w(l0)3) ∼ e
1
2 (d−10)l0 for d ≥ 8, and

∼ e−
1
2 (d−6)l0 for 6 < d ≤ 8. At weak coupling, h(l)2 ∼ e

1
2 (d+2)lh(0)2. Then in terms of h(0) and −r(0) ∼ e−2l0 , this

gives h(0)2 ∼ −r(0)3 for d ≥ 8, and h(0)2 ∼ [−r(0)](d−2)/2 for 6 ≤ d ≤ 8 as h(0) → 0, in agreement with FS and
Green et al. [28, 29]. Note that for now we consider the limit h(0)→ 0 (l0 →∞) at fixed d.

For the initial values of couplings in the BR theory, we use Q(l0) ∼ w(l0)−1 ∼ e
1
2 εl0 . Then for d > 6, we find

w1(l0) ∼ w(l0) ∼ e−
1
2 εl0w(0), and, for d ≥ 8, for the ratio ρ(l0) ∼ e−2l0 ∼ −r(0). For 6 < d ≤ 8, we have instead

ρ(l0) ∼ e−εl0 ∼ [−r(0)]ε/2, or w2(l0) ∼ w1(l0)3. Taking into account the relation of r(0) and h(0) given by the AT line,
these mean that w1(l0) and ρ(l0) are small at weak magnetic field on the AT line. Note that r(0) ∝ TAT (h)−TAT (0) < 0
for positive h.

We can now draw conclusions about the transitions and ordered phase below the AT line for d > 6 at weak magnetic
field. For any d > 6, when the crossover to the extended BR theory occurs, initial values (now at l = l0) of w1 and ρ
are small, as are the values of yi(l0). For d > 8, as ρ is small and does not flow at weak coupling, and as the ratios of
yi do not flow either, for ỹ the most important term is y1, so ỹ ≈ y > 0; it remains positive under the flow at larger l.
Hence at l∗, when the Landau theory can be used at r̃ < 0, ỹ(l∗) > 0, and the transition, which occurs at r̃c = 0, is
continuous; the Parisi q(x) function [or q̃(x)] is continuous below the transition. Thus, unsurprisingly, the behavior
for d > 8 at small h is that conventionally expected on the AT line.

For 6 < d ≤ 8 at sufficiently weak magnetic field, as we have seen the flows take yi to y∗i (l), and ρ is invariant
during the flow. As ρ is initially small and positive, it remains so, and we are in the regime in which ỹ > 0. Even
though the flow could have driven an initial positive ỹ to negative values, for the initial values in question this does
not happen. Hence for d > 6 and at sufficiently weak magnetic field, the transition remains a continuous one to full
RSB, as for d > 8. The transition line is still the AT line, Tc(h) = TAT (h), with the FS scaling properties at weak
magnetic field, as mentioned just now.
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2. Tricritical and Lifshitz-type point on AT line for d→ 6+

For dimensions close to 6, we consider here ε > 0 and small. The flows of w1, w2 in this region were considered
by BR and others [18, 19, 22]. When these couplings are of order ε1/2 or greater, the flows are no longer given by
the exponential decay that we saw for larger d (or at weak fields), but instead the flow lines exhibit curvature (see
Fig. 2). The crossover and initial values at l0 were discussed by MR [22]. From those results, we must now consider
the limit as ε → 0 with εl0 fixed. We find also from MR that the value of the ratio initially is ρ(l0) = O(ε) [22]
(because w1(l0) ∼ ε1/2). The important region once the BR flows apply is close to the unstable fixed point U ; the
initial values lie on a line of slope that tends to zero as ε → 0. The RG flows take ρ > 0 to larger values. For flows
inside the separatrix, the flows initially increase ρ and possibly w1, w2, but eventually fall back towards the origin
along radial lines with constant slope = liml→∞ ρ(l); these were discussed earlier. As w1(l0) increases, the value of
ρ(l → ∞) increases and eventually exceeds 1. Once ρ is larger than 0.8418, ỹ(l → ∞) is negative. This implies that
the phase just below the transition becomes 1-RSB, while the transition is still at r̃c(l →∞) = 0 (the AT line), and
is continuous.

There is a unique flow line that leaves U and approaches the origin with slope ρ = 0.8418 asymptotically as l→∞.
Because ỹ(l) < 0 for ρ(l) close to 1, initial values that intersect this flow line define the Lifshitz-type point L on the
AT line in the T–h plane. The form of the flows (in particular, the eigenvalues of the linearized equations at U)
implies that, on going back along the flows (i.e. as l → −∞), this flow line approaches U asymptotically tangent to
the separatrix. As ρ(l0) ∝ ε is small, we see that as ε → 0, the difference between w1/ε

1/2 on this flow and on the
separatrix is a higher-order correction. Consequently, to leading order, we find the exact same asymptotic behavior of
the location of this point as ε→ 0 as for the multicritical point M in MR [22] (M arises from the flow into Z). There
is a similar flow line that approaches ρ = 1 as l→∞ (shown in Fig. 2). It defines the tricritical point T at (TT , hT )
in the T–h plane. It too has the same asymptotic behavior as M in MR. Likewise, there is a third flow line that
leaves U and approaches the origin with asymptotic slope 1.2694. But because this region undergoes a discontinuous
transition at r̃(l∗) = 1, while r̃c in Landau theory at this transition diverges as ỹ → 0, the asymptotic region is not
reached, and ρ(l∗) never exceeds 1.2694 for any flow starting at h > hT . Thus, for both points L and T , we then
have the same leading asymptotic location as for T (or M in MR [22]), that is

r(0)T = ε−5/3
(
e−εl0T

)2/ε [
2Kdw

2
0(1− e−εl0T )

]5/3
, (4.18)

h(0)2
T =

Aε4r(0)2
Mw0e

−εl0T

8 [2Kdw2
0(1− e−εl0T )]

4 (4.19)

(where A is a constant, and we restored the factors Kd for consistency; Kd can be evaluated at d = 6 here), as ε→ 0
with εl0T held constant at εl0T = ln 13 = 2.565 . . . [22]. Thus, like M , the tricritical point T and the Lifshitz-type
point L tend to the zero magnetic field critical point C as d→ 6+, and do so exponentially fast in ε.

Although the leading asymptotic positions of T and of M are the same, nonetheless T preempts M as h is increased
on the AT line (i.e. occurs at smaller h and Tc − T ), because the value of w1 at l0 is smaller for the flow to T . (From
here on, we write h(0) as simply h, and similarly hT (0) as hT .) At h slightly larger than hT , the discontinuous
transition sets in, and occurs at r̃ > 0, that is Tc(h) is above the AT line TAT (h): it preempts the AT transition in this
region. In addition, the dynamical transition at Td(h) (if it exists) occurs for h > hT , and Td(h) > Tc(h) > TAT (h)
for h > hT .

In the vicinity of T in the T–h plane, the ordered phase below (but not too far below) Tc(h) is again of the 1-RSB
form. For the critical behavior at and near the tricritical point T , at ε fixed and small, but T or h approaching T ,
we have the critical properties, described above. For h just above hT , the asymptotic ρ(l)− 1 is small, so the scaling
for the jump in q1 applies. We note that the critical exponents at M were non-trivial [22], while simple behavior is
found for T , because it is controlled by the Gaussian fixed point. The latter behavior seems more natural than having
nontrivial exponents above the upper critical dimension, here d = 6.

For larger h, the initial values at l0 would hit, then pass outside of, the separatrix. As the value of q1(l∗) when
the flow stops becomes of order one, we eventually pass out of the domain of validity of Landau theory itself (even
if wi(l

∗) are still small), and should not trust the results beyond such a point. As the flows stop before ρ = ρ∗, the
fixed point Z that controlled the point M in MR will not be reached (it plays no role in the analysis). Hence the
results may be valid even for initial values somewhat outside the separatrix. But with the present methods the results
cannot be justified beyond a value of h that is of the same order as hT as ε→ 0.

The fate of T and L as d increases to d − 6 of order one or larger is not known. At some dimension d > 6 one or
both may reach the zero-temperature line and disappear. It is also possible that one or both of them persists at high
field, even above d = 8.
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3. d ≤ 6

We have shown that a discontinuous (quasi-first-order) transition occurs for d slightly above 6 and at magnetic field
h > hT . Although we do not see a transition to other behavior at sufficiently large h, we cannot rule it out. Likewise,
because of the continuity of RG flows as a function of d as well as of other parameters (away from fixed points), it is
possible that the discontinuous transition persists to d = 6 and below, here for all (sufficiently small) h > 0, though
other behavior might set in for 6−d sufficiently large, and strictly speaking the region of validity of the analysis above
shrinks to zero as d→ 6+. Again, the discontinuous transition (and the dynamical transition, if it exists) would

preempt the AT line, and would do so now for all h > 0.
We now consider the quantitative analysis of the transition at small h for d ≤ 6. We only consider d not far below

6. Then the flows of yi for d = 6 + ε still apply, and yi ∼ y∗i for l→∞.
For d = 6, the RG flows for wi exhibit a scaling property: they are invariant if we rescale all of w1, w2, and l−1/2

by the same factor. Consequently, the flow lines, which can be obtained by solving the equation for dw2/dw1 that
results from the flow equations, are mapped to one another by such a rescaling. For ρ = w2/w1 small, we find

dw2

dw1
=

11

6

w2

w1
(4.20)

to leading order in ρ, with solutions w2 = Bw
11/6
1 for B independent of w1, w2; these exhibit the scaling property (B

changes under rescaling). Note that here the behavior corresponds to the region outside the separatrix in the flows
for d = 6 + ε, so it is not clear that we can even get close to the flows that control the tricritical point for d > 6.

The crossover to the BR theory occurs when |r(l0)| = 1. The flows for w(l) in the unreduced theory for d = 6 are
logarithmic, w(l) ∝ l−1/2 at weak coupling. For ρ, again ρ(l0) ∼ w(l0)2, so here ρ(l0) ∼ l−1

0 . To determine the value

of B for the relevant flow, we use ρ = Bw
5/6
1 at small ρ, giving B ∼ l

−7/12
0 . This is small at weak field, however for

flow lines that start near the origin in the w1–w2 plane, the smaller the value of B, the larger the coupling w1 at
which the flow reaches ρ = 1. We conclude that for weak field (large l0), the flows pass out of the domain of validity
of perturbation theory before reaching ρ = 1. Hence our approach breaks down, and we cannot evaluate (at least,
not with the present method) the dependence of, for example, the size of the jump in q1 in terms of h, even though
we expect it to be small in the limit h → 0. For d < 6, this effect only becomes worse. It is possible that general
methods for fluctuation-driven first-order transitions [49–51] could be useful here.

C. Full RSB at lower T

For d of order 6 + ε or below, we find a transition from 1-RSB to full RSB as temperature is lowered further below
the line Tc(h), which occurs because ỹ changes sign during the RG flow. If we work near Tc, where Landau-Ginzburg
theory is valid, then at weak field ỹ (or rather its analog in the unreduced theory) is positive. But we have seen that
when the crossover to the BR theory occurs, initially ρ < 1, and when ρ(l) is large enough, the RG flows drive ỹ to
negative values; this occurs rapidly (over a range of l of order 1). For d = 6 + ε, this occurs only at sufficiently large
h, and the resulting transition line intersects the AT line in the Lifshitz-type point L, the location of

which was already discussed. For d ≤ 6, it occurs right after the crossover. This will occur on a line essentially
given by the crossover at which |r(l0)| = 1; this line is similar to, but below, the AT line or its replacement Tc(h).

In the literature on Potts and p-spin mean-field SG models [25, 52], there is a transition from 1-RSB to full RSB
that occurs at lower temperature; it is frequently termed the “Gardner transition”. In these theories, typically the
parameters wi, yj that occur in Landau theory are treated as constants, while r, h are varied as parameters. Hence
the transition here seems to occur in a different way than in those theories.

V. DISCUSSION: THE FROZEN PHASE AND THE METASTATE OF 1-RSB

In this Section, we take a broad view and discuss the meaning of both the dynamically frozen phase and the 1-RSB
phase, including the metastate. Some issues are uncovered that are common to these two phases and suggest that we
lack a full understanding of them in short-range systems.

In the mean-field SG models that exhibit a dynamical transition at a temperature T = Td higher than the thermo-
dynamic transition temperature Tc [31, 35], what occurs is a breakdown of the ergodicity of the dynamics at and below
Td in an infinite-size system. We note that, at the microscopic level, a theory using Langevin dynamics requires the
use of soft spins. In our short-range models, a time-dependent Landau-Ginzburg theory could be used instead; such
a theory would include the static (equilibrium) results of this paper as special cases. We expect that, in a mean-field
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treatment, a similar dynamical transition would be found at Td, but we will not attempt this calculation in the present
paper. Instead, we turn to the implications for an equilibrium description. A loss of ergodicity in dynamics implies
that the configuration space can be broken into a number of ergodic components; by definition, if the (infinite) system
were started in a configuration in one of these components, it would never find its way into a distinct component after
any finite time. In a short-range system, it is natural to associate each of these ergodic components with a pure state,
that is, an extremal Gibbs state of the infinite system (see e.g. Refs. [32–34] and references therein). In the case of
the dynamical transition, it appears [31, 35] that the entropy of these ergodic components or pure states (calculated
from the measure giving the decomposition of the Gibbs state into pure states), is extensive, that is, the entropy
(when defined somehow for a finite “window” or subregion of the infinite system; the details of this need not concern
us now) per unit volume is positive.

Consequently, if one takes the frozen phase of Landau theory seriously, the theory presented here for low-dimensional
SGs appears to predict that in the regime Tc < T < Td, the Gibbs state of the infinite system decomposes into pure
states with the associated “configuration” entropy being extensive. For T < Tc in the 1-RSB state (thus, for T
not too low), it is believed that the pure states are characterized by random free energies that are independent and
exponentially distributed, such that the system is condensed into a countable number of pure states [7]; hence the
entropy of the distribution given by the set of corresponding normalized Boltzmann weights is of order one only. Such
behavior for T above and below Tc (but below Td and above some lower transition temperature) closely resembles
the REM [26, 27], except that energies of the latter are replaced here by free energies, and each individual spin
configuration is replaced by a pure state.

There may be legitimate concerns about whether such a picture is truly possible in a short-range, finite-dimensional
model. We want to argue that this is no more of an issue for the dynamically-frozen phase than for the 1-RSB phase,
and (with one reservation) no more than for RSB in general. (We will leave aside dynamics; there the issue is that,
in a short-range system, a diverging relaxation time on approaching some Td should be accompanied by a diverging
length scale [53], but this does not seem to occur at the dynamical transition of Ref. [31], or here, on approaching
Td from above.) The way that a many(-pure)-state picture could break down in a short-range model, when it exists
in an infinite range model (or mean field description), is that it may be possible to make a droplet, whose interior
is essentially in one pure state, say a, as an excitation of another pure state, say b. If the increase in free energy
on exciting the droplet does not diverge when the size of the droplet goes to infinity, then such droplets will appear
thermally on all scales, and the distinction between the pure states a and b will be lost. If instead the droplet free
energy does diverge (at least, if it diverges fast enough), then there will only be some density of finite size droplets,
and this does not destroy pure state b. In a dynamical picture, to get from pure state or component a to b requires
thermal activation of a similar droplet; if the droplet free energy diverges with its size then the probability of going
from a to b in a finite time will be zero, and such a divergence is a necessary condition for the existence of many ergodic
components or pure states. This is the same issue in SG theory that has remained an unresolved controversy for many
years, with proponents of RSB and of the scaling-droplet theories on the two sides (the answer to the question may
depend on the dimension of space, but we leave this implicit).

The reservation in the present case concerns the extensive entropy of the pure states in the dynamically-frozen
phase. It can be shown rigorously that, for a given short-range Hamiltonian and at a given temperature, any Gibbs
state, and in particular all the pure states, must have the same free energy density [54]; by extending the argument,
they have the same density of total entropy also. (The former can also be seen heuristically. A difference in free energy
density between two Gibbs states implies that a droplet of the phase with lower free-energy density can be created in
the higher one; the probability of such a droplet goes to one as it is made arbitrarily large.) If we define the entropy
of the pure state decomposition as seen in a region of volume W d to be that of the Gibbs state minus the average of
those of the pure states, then it follows that the entropy of the pure state decomposition cannot be extensive, that is
∼ W d [54]. Indeed, we show in Appendix A that this difference is the mutual information between the spins in the
region and the pure states, and that it is bounded above by the surface area ∼W d−1 of the finite region. It should be
noted that this does not imply that the decomposition into pure states is trivial; it appears that mutual information
of order W d−ζ′ with ζ ′ ≥ 1 cannot be ruled out a priori. Alternatively, it may be that the frozen region is actually
ergodic in the short-range cases, but with timescales that diverge as T → T+

c (not at Td); this view is widely held in
the RFOT community, beginning from Ref. [36]. We also note that the scaling-droplet theory has been argued [55] to
produce large relaxation times at h > 0 and T < Tc(0); the difference is the absence of a thermodynamic transition
in the latter theory at h > 0 [9, 11].

Next we turn to the metastate of the SG. The metastate, introduced in SG theory by Newman and Stein [32]
(NS), can characterize the dependence of the Gibbs state in a finite region (or “window”) on the finite size of the
system, or alternatively on the disorder far away [the latter giving the Aizenman-Wehr [56] (AW) metastate; the two
constructions are known to be equivalent at least in some cases]. Formally, a metastate is a probability distribution
on infinite- size Gibbs states, for given disorder. An earlier paper [34] introduced a method for studying the AW
metastate using RSB. Here we will apply this to the case of 1-RSB, and allow the possibility of a magnetic field.
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Using the AW metastate, we can define the average of the Gibbs state with respect to the metastate for given
disorder. For correlation functions, this corresponds to averaging the correlation function over the metastate, for
given disorder; we say that this gives a correlator in the “metastate-averaged state” (MAS). To obtain this from finite
size, we use several copies of a finite-dimensional system of size L in a box with free boundaries; in an outer region at
distance > R from the origin (R < L) these have independent samples of the disorder (the bonds and the magnetic
fields, if the latter are random), while in the inner region at distance < R they are identical. For the case of a square
of a correlator in the MAS, we can use this construction; taking the average over the disorder in the outer region
corresponds to using the MAS. Then we square and average over the disorder in the inner region, and take L, R→∞
[34].

In the present case, with a magnetic field, the MAS correlation function of interest can be represented by first
considering (in finite size) the average

Cij =
[(

[〈sisj〉]> − [〈si〉]> [〈sj〉]>
)2]

<
. (5.1)

Here [· · · ] stands for a disorder average, while 〈· · · 〉 is a thermal average, initially in finite size. The square brackets
with subscripts > and < denote averages over only the disorder in the outer and inner regions, respectively. On taking
the limits L→∞, then R→∞, this gives the correlation function of interest.

This correlator resembles that in the definition of the SG susceptibility, namely

χij =
[
(〈sisj〉 − 〈si〉〈sj〉)2

]
, (5.2)

which however differs in that all disorder is averaged over at the end. The SG correlator χij tends to zero at large
distance |xi − xj | (where for any i, site i is located at xi on the lattice) whenever the thermal average
〈· · · 〉 is taken in a pure state, such as at high temperature. When the Gibbs state is not pure, χij usually tends

to a constant, which using RSB can be expressed in terms of integrals of q(x); hence the SG susceptibility, which
is the sum of χij with respect to j (say) running over all space, diverges like the volume in any SG ordered phase,
for example below the AT line according to the standard full RSB picture. In the present case, in the frozen region
Tc < T < Td, χij tends to zero at large distance, because in integrals the resulting q(x) is indistinguishable from the
constant (= Q) that occurs in the high-temperature region, and which cancels as for a pure state.

The idea of the correlator Cij is that, if there is no dependence of the two-point spin correlation on the distant
disorder, then it becomes the same as the SG correlator χij , and so goes to a constant in the SG phase. (This will
occur if the metastate is trivial, that is if it is supported on a single Gibbs state.) But if there is such dependence
that remains in the limit R → ∞ then the metastate is non-trivial. The MAS is itself a Gibbs state, and so can be
decomposed into pure states, and for a non-trivial metastate it is expected that there are many pure states in that
decomposition, and consequently Cij will decay as |xi − xj | → ∞; RSB theory predicts [34] that in fact it will tend
to zero in this limit.

In Ref. [34], it was argued that the use of distinct disorder in two samples in the outer region breaks the symmetry
among the replicas; the replicas are divided into groups that in effect arise from different copies in the outer region.
Then a correlation function of spins well in the interior of the inner region as R→∞ can be calculated by taking spins

with replica indices in different groups. In the replica formalism, using Qαβ(xi) ∼ sαi s
β
i , Cij becomes the correlation

function

Cij = 〈〈Q̃αβ(xi)Q̃αβ(xj)〉〉 − 2〈〈Q̃αβ(xi)Q̃αγ(xj)〉〉
+ 〈〈Q̃αβ(xi)Q̃γδ(xj)〉〉, (5.3)

where 〈〈· · · 〉〉 stands for an average in the Landau-Ginzburg theory, and each of α, . . . , δ belongs to a distinct group.
Here we subtracted off the replica symmetric part Q (which in the BR theory is non-fluctuating) to arrive at the

fields Q̃αβ ; the Q terms cancel. It was argued in Ref. [34] that the components in distinct groups correspond to the

outermost blocks in the RSB form (before n → 0). Thus the expectation 〈〈Q̃αβ〉〉 is equal to q0, which is zero above

Tc, and negative below. These expectations again cancel, so we can replace Q̃αβ by δQ̃αβ = Q̃αβ −〈〈Q̃αβ〉〉, which are
the fluctuations around the ordered phase.

In the cases studied here, which involve at most 1-RSB, we know that at the Gaussian level, all modes have positive
mass-squared, except at some of the transitions. Here we discuss only the non-critical properties. It now follows,
without detailed calculation, that the correlator Cij decays exponentially to zero as |xi − xj | → ∞ in all such cases.
Note that in the SG phase, this is distinct from the SG correlator χij , which goes to a constant. It means that there
are many pure states in the MAS; the metastate is highly non-trivial.
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In Ref. [34], it was argued that in a SG phase, we would have

Cij ∼
1

|xi − xj |d−ζ
, (5.4)

where ζ is universal and gives information about the metastate; ζ ≤ d. For a trivial metastate, ζ = d. (See also Refs.
[58–60].) Exponential decay should be considered equivalent to ζ being at its other bound ζ = 0, as in both cases the
integral of Cij over xi−xj just converges (up to logarithms). It was further argued that, if we examine the MAS only
in a window of size W , the logarithm of the number of pure states in the MAS that can be distinguished within the
window (see Appendix A for this notion and an improved definition as mutual information) scales as W d−ζ′ (when
nonzero), and that ζ ′ = ζ (we hope that no confusion will arise from using the same symbol ζ ′ as for the similar
exponent in the frozen phase; we do not mean that the two values must necessarily be equal). ζ ′ = 0 would mean an
extensive entropy of pure states.

In Ref. [34], it was also argued that in short-range models there is a lower bound ζ ≥ 1. This bound, which
strengthens the result that the entropy of pure states must be sub-extensive, was obtained from the obvious fact that

at zero temperature, there cannot be more than 2O(Wd−1) ground states in a window of size W , so ζ ′ ≥ 1, together
with the belief that the full RSB phase can be continued to zero temperature, with the exponent ζ ′ unchanged, and
then ζ ′ = ζ implies that the same bound arises for full RSB. As mentioned already, in Appendix A we have proved
such a bound on the mutual information directly at any temperature; hence, when ζ ′ is defined, ζ ′ ≥ 1. The present
result that ζ = 0 does not satisfy the bound if ζ = ζ ′, and hence there is an inconsistency somewhere in the arguments.
Perhaps either ζ ′ 6= ζ, or an improved calculation of Cij would produce a larger ζ. We note that if the MAS has
trivial decomposition into pure states, then exponential decay to zero of Cij is possible (e.g. in the high temperature
phase); then ζ = 0 but ζ ′ is not defined when the mutual information is zero.

In the frozen phase Tc < T < Td, Cij decays exponentially, and so does χij . This strongly suggests that the
metastate is trivial in this region, even though the Gibbs state may contain a large number of pure states. (This form
has been discussed as a possible scenario [32, 34].) Indeed, we can show [47] in leading order within Landau-Ginzburg
theory that in this case Cij = χij , as for a trivial metastate, and that both are equal to χij of the paramagnetic
(replica symmetric) phase, given in Fourier space by appropriate components of expression (3.1). (If the metastate is
trivial then the MAS is the same as the Gibbs state, and the use of the same notation ζ ′ is justified.) It is tempting
to think that on passing through Tc, the latter pure states become those involved in the non-trivial metastate of the
1-RSB phase, just as in the REM picture of the transition. (We should caution that the idea that the pure states
are the “same” should not be taken too literally, due to the expected “temperature chaos” [11, 57], the sensitivity at
large length scales of the Gibbs (and pure) states to small changes in temperature.) In fact, the MAS in the 1-RSB
region appears to have a very similar structure to the Gibbs state in the frozen phase, and if the metastate is trivial
in the latter, then the MAS could be virtually unchanged on passing through the transition to 1-RSB, with the same
values of both ζ and ζ ′.

We also mention here a simpler criterion for non-triviality of the metastate, given in Ref. [34]. If

[
〈si〉2

]
−
[
[〈si〉]2>

]
<
> 0 (5.5)

(in the limit), then the metastate is non-trivial (the converse may also hold, but that is not completely clear). This
means that the conditional variance of 〈si〉 due to the distant disorder (for given disorder in the inner region), averaged
over disorder in the inner region, is nonzero (in the limit). In terms of RSB, it reduces to∫ 1

0

q(x) dx− q(0) > 0, (5.6)

and in terms of q̃(x) becomes q̃(0) < 0; thus for the one-step cases in this paper, this is q0 < 0. This immediately
gives all the non-triviality results above, however it does not yield the additional information provided by ζ. It is
interesting to note that the left-hand side is of order τ − τc (to leading order) in all cases considered in Landau theory
here; thus this order parameter for a non-trivial metastate has exponent β = 1. In the case of the discontinuous
transition, there are no critical fluctuations, so the same should hold even in dimensions d < 6 at that transition.

To sum up the arguments presented in this section, we find that once one considers the metastate or MAS, there
are consistency issues not only for the frozen phase, but also similar ones for the 1-RSB phase, in relation to Ref. [34].
These issues with these phases arise not only for the AT line in the Ising 2-spin interaction model considered in this
paper, but also for other models in short-range finite-dimensional cases (e.g. Potts, p-spin models, and so on) that
may possess similar phases. We are not able to resolve these issues at present.
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VI. CONCLUSION

In this work, we considered the BR reduced Landau-Ginzburg theory for a SG, extended by the addition of quartic
terms. This theory is the most general one for a RSB transition in the absence of any symmetry. Here it arose because
we considered the AT line for an Ising SG in a magnetic field, or for other SGs in random isotropic magnetic fields.
This theory is “reduced” in that it contains only the so-called replicon modes, which are the ones involved in RSB
[4]. Other fluctuating modes do not generically become massless at the same point as the replicons, in the absence
of symmetry; hence they can be neglected or integrated out to leave the reduced theory. Consequently we believe
that this theory is of widespread applicability. The case of a SG with no symmetry is a most basic case; SGs with
additional symmetry, which usually (except for the Ising case) have additional indices (other than replica indices α,
β) on the Qαβ field on which the symmetry operations act, are more specialized.

Based on a renormalization-group (RG) analysis of this theory, we showed that for the AT line at d close to 6,
fluctuations cause the effective value of the combination ỹ of the quartic couplings to become negative, signaling a
continuous transition to a one-step RSB (1-RSB) phase at weak (but not extremely weak) magnetic field. At slightly
higher magnetic field, there is a tricritical point T , and the transition becomes a quasi-first-order transition to 1-RSB
beyond that point. We suggest that this latter transition, in particular its quasi-first-order character, could persist
for any non-zero field when d ≤ 6, giving a possible resolution of the long-standing problem first posed by BR.
We emphasize that our results for d > 6 and magnetic fields that are not too large are well controlled within the
perturbative RG treatment for the Landau- Ginzburg theoy, similar to an epsilon expansion; of course, we cannot rule
out the existence of non-perturbative effects that invalidate perturbation theory itself, but such effects have not been
discovered for the present theory to our knowledge. We also mention that results of the same form apply in other
models, including the power-law one-dimensional model [61] in a magnetic field, in the region σ = 2/3 − ε (ε > 0)
that corresponds to d = 6 + ε.

We want to comment here on the possible implications for other techniques for studying the AT line, such as Monte
Carlo simulation. The most common method of searching for a transition in a magnetic field has been to look for a
divergence of the SG susceptibility, or of the related correlation length. Unfortunately, these methods can only detect
a second-order transition, and negative results at d < 6 (and in the corresponding regime in power-law models) have
been interpreted as meaning that there may be no transition. The problem should be studied with methods that can
detect a (quasi-)first-order transition. To do so, we suggest use of some of the diagnostics mentioned near the end
of Sec. V. These were (i) the divergence (as the volume) of the SG susceptibility in both the 1-RSB and full RSB
phases; (ii) the MAS correlation function Cij and its exponent ζ (ζ < d means a non-trivial metastate, which does
not occur in the high-temperature phase), or (iii) perhaps most simply, the single-spin average as in ineq. (5.5), which
again would signal that the metastate is non-trivial.

We also comment that Ref. [13] found some evidence of a dynamical transition in three dimensions and near where
the AT line would be. They also found evidence of an ordered phase using the criterion of the form of ineq. (5.6),
obtained from Monte Carlo evolution. These results seem consistent with aspects of our findings (see Ref. [31] and
Sec. V above). Other results for a range of dimensions were obtained from high-temperature series [17] that studied
the SG susceptibility; evidence of an AT line was found for d ≥ 6, but for d = 5 most Pade approximants showed
no divergence of

∑
j χij . Clearly these results agree with ours to some degree. The fact that there appeared to be a

second-order transition for d = 6 could be a consequence of it being the borderline case; the quasi-first-order behavior
might be very weak there, and the SG susceptibility, though finite, could be large (at the fields studied).

In this work we used the RG approach in a simple way. To consider the possible quasi-first-order transition for
d ≤ 6, more powerful RG methods are required. We hope to return to this elsewhere.

ACKNOWLEDGMENTS

NR is grateful to B. Chakraborty, P. Charbonneau, P. Goldbart, C. Newman, D. Stein, M. Moore, D. Fisher, G.
Biroli, and L.-P. Arguin for emails and discussions, and M. Moore for a previous collaboration. He is also grateful to C.
O’Hern for organizing the 4th International Conference on Packing Problems at Yale University in June 2019, which
helped stimulate the ideas contained herein. Both authors acknowledge the support of NSF grant no. DMR-1724923.

Appendix A: Entropy of pure-state decomposition as mutual information, and a bound

In this Appendix, we introduce a definition for the entropy (associated with a finite window) of the decomposition
of an (infinite-size) Gibbs state into pure states, valid in short-range systems of spins, each of which takes a finite
number of states (for example, Ising spins). We interpret it as the mutual information between the spins in the window
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and the pure states, derive a bound on it, and consider some examples. We also critique the idea of counting the pure
states that are “distinguishable within the window” (that is, those that differ by more than some amount). We have
in mind a SG, though we will not need to average over disorder, and the results are very general. We will assume
the system is a hypercubic lattice in d dimensions with nearest-neighbor pair-wise interactions, though the arguments
can easily be generalized considerably. The main result is easy to prove, but we are not aware of a discussion of it
within the statistical mechanics literature. These are foundational results about Gibbs states.

We define a window Λ that is a hypercube of side W , with edges parallel to those of the hypercubic lattice; we also
view Λ as a set of sites Λ = {i ∈ Λ} in the lattice. The set of lattice sites on the surface of Λ, the spins on which
have an interaction with at least one spin outside Λ, is denoted ∂Λ. Spins at sites in the interior Λo = Λ − ∂Λ of Λ
interact only with others in Λ. Λc is the complement of Λ, Λc = Zd − Λ. As before, we denote the spins by si, and
write sΛ for (si)i∈Λ, and similarly for s∂Λ and sΛo .

We assume that the system possesses Gibbs states. A Gibbs state Γ with temperature T ≥ 0 is a probability measure
on the spins that satisfies the condition that, for any window Λ, the conditional probability distribution Γ(sΛ|sΛc)
(i.e. conditioned on the spins outside Λ) is the usual Gibbs distribution ∝ e−H(sΛ,sΛc )/T , where the fixed spins sΛc are
treated as a boundary condition. A Gibbs state has a unique decomposition into pure Gibbs states, Γ =

∑
α wαΓα,

where wα are nonnegative and
∑
α wα = 1 (see e.g. Refs. [32–34] and references therein; the assumption that the Γα

are pure will not be used). (We write a sum for ease of writing, but it may be that it should be an integral employing
some measure on an uncountable set of α instead, or a sum plus an integral. Such a change can be made throughout,
and causes few difficulties, except in an alternative approach that we discuss at the end.)

It will be useful to view wαΓα as a joint probability measure for both spin configurations and pure states. We
will be most interested in its marginal distribution wαΓα(sΛ) (i.e. ignoring spins outside Λ) which gives the joint
probability distribution for the pair of random variables SΛ, A. Its marginal distribution on spins alone is Γ(sΛ), and
on pure states alone is wα; the conditional probability that SΛ = sΛ given that A = α is Γα(sΛ).

We can now give our proposed definition for the entropy for a finite window of the decomposition into pure states.
As SΛ takes a finite set of values, it has well-defined entropy using the marginal Γ:

S(SΛ) = −
∑
sΛ

Γ(sΛ) ln Γ(sΛ). (A1)

We use a similar definition for Sα(SΛ), with Γα in place of Γ. We can then subtract the average of Sα (with respect to
the probabilities wα) from S. This should isolate the entropy “due to” forming the mixture using the weights wα, and
so correspond to the entropy of the decomposition, relativized to the finite window Λ. (Similar definitions, though
not relativized to a finite window, were given in Refs. [54, 62].) Thus our proposal is to use

S(SΛ)−
∑
α

wαSα(SΛ) = I(SΛ;A). (A2)

Here we have identified the difference as the mutual information I(SΛ;A) of the spin configuration SΛ and the pure
state A. The definition is based on the joint probability measure wαΓα(sΛ). The standard way to write the definition
of the mutual information of two random variables A, B with joint distribution p(A = a,B = b) is [63]

I(A;B) = S(A) + S(B)− S(A,B) (A3)

= S(A)− S(A|B); (A4)

here we used physics notation S for the Shannon entropy, in place of the more standard notation H used in information
theory. Thus we have A = SΛ, B = A, and we can identify

∑
α wαSα(SΛ) as the conditional entropy S(SΛ|A). (If

B is continuous, but not A, then some of the terms containing B in these expressions suffer the usual ambiguity
resulting from the need to define a reference measure for the integral over the variable in terms of a density, the
logarithm of which is taken to define the entropy. This ambiguity cancels in the conditional entropy S(A|B) and in
the mutual information I(A;B); in particular, it does so in our case.) The mutual information I(SΛ;A) can be viewed
as a measure of how much information we obtain about which pure state we are in from the spin configuration in the
window. A standard application of Jensen’s inequality implies that I(SΛ;A) ≥ 0.

We now observe that we can break S into two terms, by conditioning on the spins in ∂Λ:

S(SΛ) = −
∑
sΛ

Γ(sΛ) ln Γ(s∂Λ)−
∑
sΛ

Γ(sΛ) ln Γ(sΛo |s∂Λ). (A5)

The first term is the entropy S(S∂Λ) of S∂Λ, the spin configuration on the boundary only, while the second is the
conditional entropy S(SΛo |S∂Λ) of the interior given the boundary. But because the interactions are between nearest
neighbors only, the conditional probabilities Γ(sΛo |s∂Λ) are determined by the definition of a Gibbs state (here for
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the window Λo rather than Λ), and consequently are independent of the Gibbs state Γ or Γα with which we started.
We can do the same with Sα, and as

Γ(sΛ) = Γ(sΛo , s∂Λ) = Γ(sΛo |s∂Λ)Γ(s∂Λ) (A6)

=
∑
α

wαΓα(s∂Γ)Γ(sΛo |s∂Λ), (A7)

we see that, in the difference, the interior (conditional entropy) terms cancel. We are left with

I(SΛ;A) = S(S∂Λ)−
∑
α

wαSα(S∂Λ) = I(S∂Λ;A). (A8)

(The general case of this result is contained in the proof of Thm. 2.8.1 in Ref. [63].) Each term in the middle expression
is an entropy on the boundary, and is non-negative, so we immediately obtain (for the case of Ising spins)

I(SΛ;A) ≤ S(S∂Λ) (A9)

≤ |∂Λ| ln 2. (A10)

Thus at any T ≥ 0 the mutual information is at most of order the surface area ∝W d−1 of Λ. This is the main result.
We now make a few remarks on why we believe this is a reasonable way in which to define the finite-volume entropy

of the decomposition into pure states, and make some additional points. First, suppose that we have probabilities
(not necessarily Gibbs states) Γ(sΛ) =

∑
α wαΓα(sΛ), where the probabilities Γα for distinct α are nonzero on disjoint

sets of configurations, and these subsets are indexed by α. Then the mutual information is

I(SΛ;A) = −
∑
α

wα lnwα, (A11)

which indeed is the entropy (or “complexity” [62]) S(A) ofA. This occurs because the conditional entropy S(A|SΛ) = 0
in this case.

Of course, such a partition of the configurations does not usually occur in Gibbs states in practice. For Gibbs states
in general, we obtain instead

I(SΛ;A) =
∑
s∂Λ,α

wαΓα(s∂Λ) ln
Γα(s∂Λ)∑

α′ wα′Γα′(s∂Λ)
. (A12)

We may make some observations about this expression. One is that distinct pure states may become identical when
restricted to their marginals Γα(s∂Λ). Then we may as well define the random variable AΛ, with values αΛ, such that
the (marginal) distribution for AΛ is

WΛ(αΛ = α) =
∑

α′:∀sΛ,Γα′ (sΛ)=Γα(sΛ)

wα′ , (A13)

that is, the weights of pure states that are identical in Λ have been summed. [As any Γα(s∂Λ) is equivalent to a
collection of 2|∂Λ| probabilities that sum to 1, they form a space (a simplex) of dimension 2|∂Λ|− 1, and a probability
measure on that space is sufficient to characterize WΛ(αΛ).] For discrete αΛ, another bound on the mutual information
becomes tighter after this is done, namely

I(SΛ;A) = I(SΛ;AΛ) ≤ S(AΛ), (A14)

which follows from non-negativity of S(AΛ|SΛ) for discrete αΛ. The right-hand side is the definition we might have
anticipated for the entropy of the pure-state decomposition (similar to Refs. [54, 62]), at least when the αΛ are discrete.
In the case that discreteness of αΛ holds for T > 0, such a definition is reasonable; but we note again that even then
it is not clear in general why, in addition, the conditional entropy S(AΛ|SΛ) should be zero, and hence the definitions
would not be equivalent.

We can also see that use of the mutual information is consistent with the entropy of a distribution on ground states,
for which the upper bound by the surface area is obvious. At zero temperature, in a SG with a continuous distribution
of bonds, a pure state is a ground state, which is a configuration the energy of which does not decrease on changing
the values of any finite set of spins. Then the values αΛ correspond one-to-one with spin configurations s∂Λ (these
determine the spins in the interior, because the configuration is a ground state). [Thus we now have the case mentioned
earlier, of disjoint support of each Γα(s∂Λ).] For the mutual information of perfectly-correlated variables such as these,
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the upper bounds are both saturated, and one has I(S∂Λ;AΛ) = S(S∂Λ) = S(AΛ) = −
∑
αΛ
WΛ(αΛ) lnWΛ(αΛ), as

for the case of disjoint supports. It is clear that this is the correct result.
For any T ≥ 0, if the αs form a countable discrete set, then so do the αΛ. If we consider the dependence on the

size W of Λ, then the first inequalities (A9,A10) imply that the mutual information goes to zero as W → 0. When
α are discrete, as W increases the second upper bound (A14) becomes S(AΛ) → S(A) which, if finite, is eventually
tighter than the first. For large W we expect in this case that

lim
W→∞

I(SΛ;A) = S(A); (A15)

this is because in this situation, when W is large, knowledge of the spins SΛ should determine the pure state A = α
with high confidence, so S(A|SΛ) → 0. There will be a length scale W ∼ ξ, say, at which I(SΛ;A) crosses over to
S(A). In any RSB phase with a plateau in q(x) [or q̃(x)] extending from x = x1 to 1, the entropy (or complexity) of
A within mean-field or Landau theory is [26, 27]

S(A) = ψ(1)− ψ(1− x1), (A16)

where ψ is the digamma function, and so S(A)→∞ as x1 → 1. In particular, this occurs in the 1-RSB phase at the
discontinuous transition as T → T−c , and implies that ξ → ∞ at that transition; this diverging length or vanishing
mass-square at this transition does not show up in the conventional analysis of fluctuations about the 1-RSB solution
(i.e. in the eigenvalues of the Hessian) to which we referred in Secs. IV A 2 and V [45].

In the more general case (for a non-trivial decomposition into pure states and at T > 0) that the αΛ are not a
countable discrete set, S(AΛ) suffers from the ambiguity already mentioned, and the right-hand side of the second
upper bound is not well- defined, and can even be made negative, so no bound can be obtained. We may try to
make S(AΛ) well defined by approximating it by replacing αΛ with a discrete set, say αr for a countable set of r,
and attaching a weight wr to each; each wr should be the integral of W (αΛ) over a neighborhood of αr, and the
neighborhoods should form a partition of the space of αΛ, so

∑
r wr = 1. Calculating the entropy using the wrs

is then a Riemann-sum type of approximation of S(AΛ). This is a refined version of the prescription of taking the
logarithm of the number of pure states that can be viewed as distinguishable probability distributions Γα(sΛ) (say,
differing by at least ε with respect to some metric). We want to point out, first, that the use of the integral over
a neighborhood eliminates the ambiguity resulting from a reference measure in defining the probability density on
αΛ. However, there are similar issues because we had to make a choice of how to partition the space of αΛ. Ignoring
that, we can then ask about the dependence on ε. If ∆ is the volume of each neighborhood in the partition (so, in N
dimensions, we might have ∆ = εN ), then for the entropy we have

S = −
∑
r

wr lnwr (A17)

' −
∑
r

WΛ(αr)∆ ln[WΛ(αr))∆] (A18)

∼ − ln ∆−
∫
dαΛWΛ(αΛ) lnWΛ(αΛ) (A19)

as ∆→ 0, which diverges [63]. Here we treated WΛ(αΛ) as an integrable function, which might not be true—it could
represent a singular measure, but in that case the integral formula for entropy cannot be used anyway. [For a general
measure, using the same procedure and extracting the coefficient of ln 1/ε (i.e. the leading term as ε → 0) yields
by definition the information (fractal) dimension of the measure. The information dimension is ≤ N in general, so
≤ 2|∂Λ| − 1 in our case.] In the absence of more detailed

information about the measure, we cannot improve the argument. If the pure states are concentrated in clusters in
αΛ, then the discrete version of S(AΛ) for a well-chosen ∆ or ε might be a good approximation to I(SΛ;AΛ), and this
might work at either very low temperature or very large W . In general the attempt to use some ε to distinguish the
pure states when calculating S(AΛ) seems to give results that will depend on ε in unpleasant ways. No such issues
arose for our definition, which led to I(SΛ;A); the latter can be approximated arbitrarily well by discretization [63].

For spins that take continuous values, for example if each si is an m-component unit vector (m > 1), the mutual
information I(SΛ;A) is again well defined and non-negative [63], but the upper bounds we used in ineqs. (A9) and
(A10) are no longer valid.
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